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The purpose of this article is to describe various conditions on the parameters of
pairs of nonhomogeneous Poisson or pure birth processes under which the corre-
sponding epoch times or interepoch intervals are stochastically ordered in various
senses+We derive results involving the usual stochastic order, the multivariate haz-
ard rate order, the multivariate likelihood ratio order, as well as the dispersive and
the mean residual life orders+ A sample of applications involving generalized Yule
processes, load-sharing models, and minimal repairs in reliability theory illustrate
the usefulness of the new results+
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1. INTRODUCTION AND MOTIVATION

Nonhomogeneous Poisson processes arise naturally in many applications of proba-
bility+ In reliability theory, the times of repair of an item which is being continuously
minimally repaired are the epoch times of a nonhomogeneous Poisson process+ In
the study of records, the times of the consecutive record values of a sequence of
independent and identically distributed nonnegative random variables are the epoch
times of a nonhomogeneous Poisson process+ Therefore, results which give stochas-
tic comparisons of the epoch times or of the interepoch times of different nonhomo-
geneous Poisson processes can be useful in reliability theory and in the studies of
progressive records+

Roughly speaking, the intensity of a jump of a nonhomogeneous Poisson pro-
cess at any timet depends only ont, and not on any other information about the past
or the present of the process+ If the intensity of a jump at any timet depends ont and
also on the state~i+e+, the number of previous jumps! of the process, but not on any
other information about the past or the present of the process, then the resulting
process is called nonhomogeneous pure birth process+ Recently, Hu and Pan@8#
have used nonhomogeneous pure birth processes to model the epochs in which in-
surance claims occur+ Other applications of nonhomogeneous pure birth processes
in epidemiology and load sharing are described in Section 5+

The purpose of this article is to describe various conditions on the parameters of
pairs of nonhomogeneous Poisson or pure birth processes under which the corre-
sponding epoch or interepoch times are stochastically ordered in various senses+

In Section 2,we give the definitions of nonhomogeneous Poisson and pure birth
processes, and we describe a useful presentation of pure birth processes+ We also
derive in Section 2 some mathematical formulas that are used later in the article+The
main results are given in Sections 3 and 4+We obtain a large number of stochastic
comparisons, in various senses, of epoch times and interepoch intervals of pairs of
nonhomogeneous Poisson and pure birth processes+ Some of the results provide
stochastic comparisons in various senses of vectors of epoch times and interepoch
intervals+ It is remarkable that some of the stochastic comparison results actually
characterize relationships between the pairs of nonhomogeneous Poisson processes
that are compared+ Finally, in Section 5, we describe some applications in epidemi-
ology, reliability theory, and load sharing+ One particular application that we de-
scribe involves the construction of computable upper or lower bounds on various
probabilistic quantities of interest+

This article may be contrasted with the work of Shaked and Szekli@21# + The
work @21# focused on the usual stochastic ordering of epoch times and interepoch
intervals of two point processes, whereas, here, we derive many results that give
finer comparisons in other stochastic ordering senses+ However, whereas the results
of @21# apply to general point processes, here we derive results only for nonhomo-
geneous Poisson and pure birth processes+The results in@21# were mainly applied to
comparisons of replacement and maintenance policies in reliability theory; here,we
indicate also some other areas of applications of the new results+ In fact, we show

200 F. Belzunce et al.

https://doi.org/10.1017/S0269964801152058 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964801152058


that the new results here provide useful bounds in almost any application where
nonhomogeneous pure birth processes are used+ Finally, the methods of proof of the
present article differ from the methods of@21#:Whereas in@21# , most of the basic
results were essentially proven using coupling, here we use more analytical methods
because most of the stochastic orderings that we derive are stronger than the usual
stochastic order and the tool of coupling does not suffice for their derivation+

In this article, “increasing” and “decreasing” mean “nondecreasing” and “non-
increasing,” respectively+ Any inverse function that we use is understood to be the
right-continuous one+

2. NONHOMOGENEOUS POISSON AND PURE BIRTH PROCESSES

A counting process$N~t !, t $ 0% is anonhomogeneous Poisson processwith inten-
sity ~or rate! functionr $ 0 if

~a! $N~t !, t $ 0% has the Markov property,
~b! P$N~t 1 Dt ! 5 n 1 16N~t ! 5 n% 5 r ~t !Dt 1 o~Dt !, n $ 1,
~c! P$N~t 1 Dt ! . n 1 16N~t ! 5 n% 5 o~Dt !, n $ 1+

We assume that

E
t

`

r ~u! du 5 ` for all t $ 0; (2.1)

this ensures that,with probability 1, the process has a jump after any time pointt+ For
convenience, if r ~t0! 5` for somet0, then we definer ~t ! 5` for t $ t0+

A nonnegative functionr which satisfies~2+1! can be interpreted as the hazard
rate function of a lifetime of an item+ More explicitly, if r satisfies~2+1! and we
definef by

f ~t ! 5 r ~t ! expS2E
0

t

r ~u! duD5 r ~t !e2R~t !, t $ 0, (2.2)

whereR~t ! [ *0
t r ~u! du, thenf is a probability density function of a lifetime; in fact,

f is the probability density function of the time of the first epoch of the underlying
nonhomogeneous Poisson process+

Let 0[ T0 # T1 # T2 # {{{ be the epoch times of the nonhomogeneous Poisson
process+ Denote byfn the density function ofTn, n $ 1+ Then,

fn~t ! 5 f ~t !
~R~t !!n21

~n 2 1!!
, t $ 0, n $ 1; (2.3)

this is Eq+ ~3! in Baxter@4# +Note, in particular, thatf1[ f+ It is worthwhile to mention
that in the monograph by Kamps@9# , the definition of the epoch times is extended to
the so-called generalized order statistics; various extensions of~2+3! can be found
there+
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Let Xn 5 Tn 2 Tn21, n $ 1, be the interepoch intervals of the nonhomogeneous
Poisson process+ Denote bygn the density function ofXn, n $ 1+ Then, g1 5 f and

gn~t ! 5E
0

`

r ~s!
Rn22~s!

~n 2 2!!
f ~s1 t ! ds, t $ 0, n $ 2; (2.4)

this is Eq+ ~7! in Baxter@4# +
The following extension of the nonhomogeneous Poisson process will also be

studied in this article+ Let rn, n $ 1, be nonnegative functions that satisfy~2+1!+ A
counting process$N~t !, t $ 0% is anonhomogeneous pure birth processwith inten-
sity ~or rate! functionsrn $ 0 if

~a! $N~t !, t $ 0% has the Markov property,
~b! P$N~t 1 Dt ! 5 n 1 16N~t ! 5 n% 5 rn~t !Dt 1 o~Dt !, n $ 1,
~c! P$N~t 1 Dt ! . n 1 16N~t ! 5 n% 5 o~Dt !, n $ 1+

Nonhomogeneous pure birth processes are called “relevation counting processes” in
@14# , where some applications of them in reliability theory are described+When all
thern’s are identical, a nonhomogeneous pure birth process reduces to a nonhomo-
geneous Poisson process+

Let 0[ T0 # T1 # T2 # {{{ be the epoch times of the above nonhomogeneous
pure birth process and letXn 5 Tn 2 Tn21, n $ 1, be the corresponding interepoch
intervals+We will now describe a useful stochastic representation of these epoch and
interepoch times+ Consider a set of independent absolutely continuous nonnegative
random variables$Yn, n $ 1%, with corresponding hazard rate functionsrn, n $ 1+
Define, recursively,

ZT1 5 Y1, (2.5)

ZTn 5 @Yn6Yn . ZTn21# , n $ 2, (2.6)

where, for any eventA, the notation@Yn6A# stands for the random variableYn trun-
cated onA ~so, the distribution of@Yn6A# is the conditional distribution ofYn given
A!+ Also, define

ZX1 5 Y1,

ZXn 5 @Yn 2 ZTn216Yn . ZTn21# , n $ 2+

Then, it is easy to verify that the joint distribution of theTn’s is the same as the joint
distribution of the ZTn’s, and that the joint distribution of theXn’s is the same as the
joint distribution of the ZXn’s+

Using ~2+5! and~2+6!, it is easy to derive the density functions of theZTn’s ~or,
equivalently, of theTn’s!+ In order to do that, let kn denote the density function of
Yn, n $ 1; that is, kn~t ! 5 rn~t ! exp@2*0

t rn~u! du# , t $ 0+ Also, let PKn denote the
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survival function ofYn, n $ 1; that is, PKn~t ! 5 exp@2*0
t rn~u! du# , t $ 0+ The proba-

bility density functionsfn of theTn’s are then given, recursively, by

f1~t ! 5 k1~t !, t $ 0, (2.7)

fn~t ! 5 kn~t !E
0

t fn21~u!

PKn~u!
du, t $ 0, n $ 2+ (2.8)

Also, the probability density functionsgn of the ZXn’s ~or, equivalently, of theXn’s!
are then given by

g1~t ! 5 k1~t !, t $ 0,

gn~t ! 5E
0

`

kn~u 1 t !
fn21~u!

PKn~u!
du, t $ 0, n $ 2,

where thefn’s are defined in~2+7! and~2+8!+

3. STOCHASTIC COMPARISONS OF EPOCH TIMES

3.1. Epoch Times of Nonhomogeneous Poisson Processes

Consider two nonhomogeneous Poisson processes with intensity functionsr ands,
respectively, and with associated density functions@see Eq+ ~2+2!# f andg, respec-
tively, associated distribution functionsF andG, respectively, and associated cumu-
lative hazard functionsR andS, respectively, whereR~t ! [ *0

t r ~u! du andS~t ! [
*0

t s~u! du+ Let the epoch times of the first nonhomogeneous Poisson process be
denoted byT1,1 # T1,2 # {{{ and let the epoch times of the other nonhomogeneous
Poisson process be denoted byT2,1 # T2,2 # {{{+

In this subsection, we derive some results which stochastically compare, in
several senses, vectors ofT1, j ’s with vectors ofT2, j ’s+

For the sake of completion,we start by giving conditions under which the epoch
times of the first process are smaller than the epoch times of the other process in the
usual stochastic ordersense+ Recall that a random variable or vectorX is smaller in
the usual stochastic order than the random variable or vectorY ~of the same dimen-
sion! if

Ef~X ! # Ef~Y!

for all increasing functionsf for which the above expectations exist+ This relation-
ship is usually denoted byX #stY+ If the distribution functions ofX andYareFX and
FY, respectively, then this relation will sometimes be denoted byFX #st FY+ The
following result is essentially not new~see Remark 3+2!+

Theorem 3.1: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. Then, F #st G if and only if

~T1,1,T1,2, + + + ,T1, n! #st ~T2,1,T2,2, + + + ,T2, n!, n $ 1+ (3.1)
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Remark 3.2:Note thatF #st G in Theorem 3+1 is equivalent toR~t ! $ S~t !, t $ 0+
Thus,Theorem 3+1 is essentially the same as Proposition 3+9 in @21# +Roughly speak-
ing, inequality~3+1! for n5` is denoted in@21# asN1 $st2D N2,whereN1 andN2 are
the underlying nonhomogeneous Poisson processes+

We now proceed to comparisons in the sense of the hazard rate order+ The next
result gives conditions under which the epoch times of the first process are smaller
than the epoch times of the other process in themultivariate hazard rate order.
Shaked and Shanthikumar have given a few equivalent definitions of this order in
different articles; see references in@20, p+ 148# + For the purpose of this article, we
will use a modification of the definition given in Theorem 4+D+1 of @20# ~thus, inci-
dentally, correcting a typographical error there!+ Let X andY be twon-dimensional
nonnegative random vectors with multivariate conditional hazard rate functions
h{6{~{6{! and l{6{~{6{! as defined in Theorem 4+C+2 of @20# + For any vectort 5
~t1, t2, + + + , tn! and any subsetI 5 $i1, i2, + + + , ik% # $1,2, + + + , n%, let tI denote the vector
~ti1, ti2, + + + , tik!+ Let 0 andedenote respectively vectors of 0’s and 1’s; the dimensions
of 0 ande can be determined from the context+When the multivariate conditional
hazard rate functions of two random vectorsX andY satisfy

hi 6 I øJ~u6sI øJ ! $ l i 6 I ~u6tI !

wheneverI ù J 5 B, 0 # sI # tI # ue, and0 # sJ # ue, (3.2)

wherei [ I ø J ~ this denotes the complement ofI ø J in $1,2, + + + ,n%! andsI øJ andtI
are possible realizations of the underlying random vectors, we say thatX is smaller
thanY in the multivariate hazard rate order and we denote it byX #hr Y+ If the
distribution functions ofX andY areFX andFY, respectively, then this relation will
sometimes be denoted byFX #hr FY+ In the univariate case, the relationFX #hr FY is
equivalent to the requirement thatOFY0 OFX is an increasing function, and if the corre-
sponding hazard rate functionsrX andrY exist, then the relationFX #hr FY is equiv-
alent to the requirement thatrX $ rY+ It is known ~see@20, Thms+ 4+C+1 and 4+D+1!
that X #hr Y n X #st Y+ Thus, the next result gives a stronger conclusion than
Theorem 3+1, but under a stronger assumption+

Theorem 3.3: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. Then, F#hr G if and only if

~T1,1,T1,2, + + + ,T1, n! #hr ~T2,1,T2,2, + + + ,T2, n!, n $ 1+

Proof: Fix ann $ 1+ Let h{6{~{6{! be the multivariate conditional hazard rate func-
tions associated with~T1,1,T1,2, + + + ,T1, n! and letl{6{~{6{! be the multivariate condi-
tional hazard rate functions associated with~T2,1,T2,2, + + + ,T2, n!+

First, let us obtain an explicit expression forl i 6 I ~u6tI ! in ~3+2!+ SinceT2,1 #
T2,2 # {{{ # T2, n a+s+, it follows that tI in ~3+2! can be a realization~“history”! of
observations up to timeu only if I is of the formI 5 $1,2, + + + ,m% for somem$ 1, or
I 5 B ~i+e+, m5 0!+ Then, we have
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l i 6 I ~u6tI ! 5 Hs~u! if i 5 m1 1

0 if i . m1 1,

whereI 5 $1,2, + + + ,m%; here, s is the hazard rate function associated withG+
Next, let us obtain an explicit expression forhi 6 I øJ~u6sI øJ! in ~3+2!+SinceT1,1 #

T1,2 # {{{ # T1, n a+s+, we see that whenI 5 $1,2, + + + ,m%, sI øJ in ~3+2! can be a
realization of observations up to timeu only if J is of the formJ 5 $m 1 1,m 1
2, + + + , k% for somek $ m1 1, or J 5 B ~ i+e+, k 5 m!+ Then, we have

hi 6 I øJ~u6sI øJ ! 5 Hr ~u! if i 5 k 1 1

0 if i . k 1 1,

where I 5 $1,2, + + + ,m% and J 5 $m 1 1,m 1 2, + + + , k%; here, r is the hazard rate
function associated withF+

Suppose thatF #hr G+ Sincei in ~3+2! must satisfyi [ I ø J ~ i+e+, i . k!, we see
that if k . m, then

hi 6 I øJ~u6sI øJ ! 5 r ~u! $ 0 5 l i 6 I ~u6tI ! if i 5 k 1 1,

hi 6 I øJ~u6sI øJ ! 5 0 5 l i 6I ~u6tI ! if i . k 1 1;

thus, ~3+2! holds+ If k 5 m ~ i+e+, J 5 B!, then, usingF #hr G, we get

hi 6 I øJ~u6siøJ ! 5 r ~u! $ s~u! 5 l i 6 I ~u6tI ! if i 5 k 1 1,

hi 6 I øJ~u6sI øJ ! 5 0 5 l i 6 I ~u6tI ! if i . k 1 1;

thus, ~3+2! holds in this case too+
The necessity part follows from~3+2! with i 5 1 ~ then, I 5 J 5 B!+ n

The order#hr is not closed under marginalization~although it is closed under
the dynamic conditional marginalization described in@19# !+ Thus, it does not follow
from Theorem 3+3 thatT1, n #hr T2, n for n $ 2 under the conditions stated there+
However, in the following result, it is shown that this indeed happens to be the case+

Theorem 3.4: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. Then, F #hr G if and only if T1, n #hr

T2, n for all n $ 1+

Proof: Recall thatr andsdenote the hazard rate functions ofF andG, respectively,
and that the corresponding cumulative hazard functionsR and S are defined by
R~t ! [ *0

t r ~u! du andS~t ! [ *0
t s~u! du, respectively+ The survival function OF1, n of

T1, n is given by

OF1, n~t ! 5 P~T1, n . t ! 5 (
j50

n21 ~R~t !! j

j!
e2R~t ! 5 OGn~R~t !!, t $ 0, (3.3)
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where OGn is the survival function of the gamma distribution with scale parameter 1
and shape parametern; see, for example,Gupta and Kirmani@7# or Kochar@12# +The
corresponding density functionf1, n is given by

f1, n~t ! 5 gn~R~t !!r ~t !, t $ 0,

wheregn is the density function associated withOGn+ The corresponding hazard rate
functionrF1, n

is given by

rF1, n
~t ! 5 rGn

~R~t !!r ~t !, t $ 0,

whererGn
is the hazard rate function associated withOGn+ Similarly,

rF2, n
~t ! 5 rGn

~S~t !!s~t !, t $ 0+

If F #hr G, then

rF1, n
~t ! 5 rGn

~R~t !!r ~t ! $ rGn
~S~t !!s~t ! 5 rF2, n

~t !, t $ 0,

where the inequality follows fromr ~t ! $ s~t !, R~t ! $ S~t !, and the fact that the
hazard rate function of the gamma distribution described is increasing+

The necessity part follows from the fact thatF is the distribution function ofT1,1

andG is the distribution function ofT2,1+ n

Next, we proceed to comparisons in the likelihood ratio order sense+ The fol-
lowing result~Thm+3+6! gives conditions under which the epoch times of the first pro-
cess are smaller than the epoch times of the other process in themultivariate likelihood
ratio order.This order is defined as follows~see, e+g+, @20, Sect+ 4+E# !+ Let X andY
be twon-dimensional random vectors with density functions fX andfY, respectively+
If ~∧ and∨ denote respectively the minimum and the maximum operations!

fX ~x1 ∧ y1, x2 ∧ y2, + + + , xn ∧ yn! fY~x1 ∨ y1, x2 ∨ y2, + + + , xn ∨ yn!

$ fX ~x1, x2, + + + , xn! fY~ y1, y2, + + + , yn!

for all ~x1, x2, + + + , xn! and~ y1, y2, + + + , yn! in Rn, then we denoteX #lr Y+ If the dis-
tribution functions ofX andY areFX andFY, respectively, then this relation will
sometimes be denoted byFX #lr FY+ In the univariate case, the relationFX #lr FY is
equivalent to the requirement thatfY0fX is an increasing function+ It is known ~see
@20, Thm+ 4+E+4# ! that X #lr Y n X #hr Y+ Thus, Theorem 3+6 gives a stronger
conclusion than Theorem 3+3, but under the additional assumption~3+4!+ The fol-
lowing lemma is used in the proof of Theorem 3+6+The proof of the lemma is straight-
forward and is therefore omitted+

Lemma 3.5: Let F and G be two distribution functions with associated hazard rate
functions r and s. If F#hr G and if

s~t !

r ~t !
is increasing in t$ 0, (3.4)

then F#lr G+
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Theorem 3.6: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. If F#hr G and if the associated
hazard rate functions r and s satisfy (3.4), then

~T1,1,T1,2, + + + ,T1, n! #lr ~T2,1,T2,2, + + + ,T2, n!, n $ 1+

Proof: First, note that by Lemma 3+5, we have thatF #lr G+ Thus, the stated result
is true forn51+ So, let n$ 2+ The density function of~T1,1,T1,2, + + + ,T1, n! is given by

h1, n~x1, x2, + + + , xn! 5 r ~x1!r ~x2! {{{ r ~xn21! f ~xn! for x1# x2 # {{{ # xn,

wheref is the density function associated withF+ Similarly, the density function of
~T2,1T2,2, + + + ,T2, n! is given by

h2, n~x1, x2, + + + , xn! 5 s~x1!s~x2! {{{ s~xn21!g~xn! for x1 # x2 # {{{ # xn,

whereg is the density function associated withG+
Consider now~x1, x2, + + + , xn! and~ y1, y2, + + + , yn! such thatx1 # x2 # {{{ # xn

andy1 # y2 # {{{ # yn+We want to prove that

r ~x1 ∧ y1!r ~x2 ∧ y2! {{{ r ~xn21 ∧ yn21! f ~xn ∧ yn!

3 s~x1 ∨ y1!s~x2 ∨ y2! {{{ s~xn21 ∨ yn21!g~xn ∨ yn!

$ r ~x1!r ~x2! {{{ r ~xn21! f ~xn!s~ y1!s~ y2! {{{ s~ yn21!g~ yn!+ (3.5)

Let E 5 $i # n 2 1 : xi $ yi %+ Then, ~3+5! reduces to

S)
i[E

r ~ yi !s~xi !D f ~xn ∧ yn!g~xn ∨ yn! $ S)
i[E

r ~xi !s~ yi !D f ~xn!g~ yn!,

and this follows from~3+4! andF #lr G+ n

Since the order#lr is closed under marginalization~see@20, Thm+ 4+E+3~b!# !,
we get, as a corollary, that if F #hr G and if ~3+4! holds, thenT1, n #lr T2, n for all
n $ 1+ The following theorem is a variation of this corollary+ When one com-
pares the following theorem to the above-stated corollary, it should be noted that
~3+4! implies ~3+6!; see Remark 3+8+ It should also be noted thatF #lr G impliesF
#hr G+

Theorem 3.7: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. If F#lr G and if the cumulative
hazard functions R and S, defined by R~t ! [ *0

t r ~u! du and S~t ! [ *0
t s~u! du, re-

spectively, satisfy

S~t !

R~t !
is increasing in t$ 0, (3.6)

then

T1, n #lr T2, n, n $ 1+ (3.7)

Conversely, if (3.7) holds, then F#lr G and (3.6) holds.
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Proof: By ~2+3!, the density function ofT1, n is given by

f1, n~t ! 5 f ~t !
~R~t !!n21

~n 2 1!!
, t $ 0, n $ 1,

wheref is the density function associated withF, and the density function ofT2, n is
given by

f2, n~t ! 5 g~t !
~S~t !!n21

~n 2 1!!
, t $ 0, n $ 1,

whereg is the density function associated withG+ Thus,

f2, n~t !

f1, n~t !
5

g~t !

f ~t !
S S~t !

R~t !
Dn21

+

Now, if F #lr G and~3+6! holds, thenf2, n0f1, n is increasing and we get~3+7!+
Conversely, suppose that~3+7! holds+ Applying ~3+7! with n 5 1, we obtain

F #lr G+ In order to obtain~3+6!, denoteH [ S0R, h[ g0f, andhn [ f2, n0g2, n+ First,
suppose that thehn’s are differentiable+ Then, whenn $ 2, we have

hn
' ~t ! 5 H n22~t !@h '~t !H~t ! 1 ~n 2 1!h~t !H '~t !# , t $ 0+

If H is not increasing, thenH '~t0! , 0 for somet0+ Therefore, for a large enoughn,
we have thathn

' ~t0! , 0, and this contradicts~3+7!+ If the hn’s are not differentiable,
then the above argument can be easily modified to obtain the same result+ n

Remark 3.8:Sengupta and Deshpande@18# and Rowell and Siegrist@16# have shown
that~3+4! n ~3+6! ~in fact, they treated~3+4! and~3+6! as notions of relative aging of
two life distributions!+ Thus, the assumptions in Theorem 3+7 are weaker than the
assumptions in Theorem 3+6+ It is of interest to note that~3+4! does not imply that
F #lr G+ In fact, ~3+4! does not even imply thatF #hr G+ In order to see this, let r
be a decreasing hazard rate function such thatr ~01! . 1 @e+g+, r ~t ! 5 t21# , and let
s~t ! [ 1 ~ i+e+, the hazard rate function of a standard exponential random variable!+
Then, ~3+4! holds, but r ~t ! is not larger than or equal tos~t ! for all t . 0+

Remark 3.9:It is also of interest to note thatF #lr G does not imply~3+6!+ In order
to see it, let F be the uniform distribution on@0,1# and letG be the gamma~2! dis-
tribution+ Then,

g~t !

f ~t !
5 Hte2t, 0 # t # 1

`, t . 1,

and this is increasing int ~ i+e+, F #lr G!+ However, the correspondingS~t !0R~t ! is
positive when 0# t # 1, and it is 0 whent . 1+ Therefore, ~3+6! does not hold+

Before we close this subsection, it is worthwhile to mention that Gupta and
Kirmani @7# showed that ifF andG are distribution functions associated with two
nonhomogeneous Poisson processes as described earlier, thenF #c @#*,#su# G if ,
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and only if, T1, n #c @#*,#su# T2, n, where#c, #*, and#su are the transform orders
described in@20, Sect+ 3+C# + Using the idea of their proof, we also obtain the fol-
lowing result+Recall that two univariate random variablesX andY,with distribution
functionsF andG, respectively, are said to be ordered in the dispersive order~de-
noted byX #disp Y or F #disp G! if F21~b! 2 F21~a! # G21~b! 2 G21~a! when-
ever 0# a # b # 1 ~see@20, Sect+ 2+B# !+ See also Proposition 4+3 in Section 4 for
a simple condition which impliesF #disp G+

Theorem 3.10: Let F and G be distribution functions associated with two non-
homogeneous Poisson processes as described earlier. Then, F #dispG if and only if
T1, n #disp T2, n for all n $ 1+

Proof: Fix ann $ 1, and denote byF1, n andF2, n the distribution functions ofT1, n

andT2, n, respectively+ Recall from~3+3! that

F1, n~t ! 5 cn~F~t !! and F2, n~t ! 5 cn~G~t !!,

wherecn~u! [ Gn~2log~12 u!!, u [ @0,1# + Therefore,

F2, n
21~F1, n~t !! 2 t 5 ~cn~G!!21~cn~F~t !!! 2 t 5 G21~F~t !! 2 t, t $ 0+

Thus, from ~2+B+6! in @20# , it is seen thatF #disp G if and only if T1, n #disp T2, n+
n

3.2. Epoch Times of Nonhomogeneous Pure Birth Processes

In this subsection, we derive stochastic comparison results of epoch times of two
nonhomogeneous pure birth processes+ So, consider two such processes, indexed by
i 5 1,2, parameterized by the sets$ri, n, n $ 1% of hazard rate functions that satisfy
~2+1!+ The corresponding epoch times will be denoted by 0[ Ti,0 # Ti,1 # Ti,2 # {{{+
In the sequel, we will use the representation described in~2+5! and~2+6!; that is, let
$Yi, n, n $ 1%, i 51,2, be two sets of independent absolutely continuous nonnegative
random variables, whereYi, n has the hazard rate functionri, n+ If we define

ZTi,1 5 Yi,1, (3.8)

ZTi, n 5 @Yi, n6Yi, n . ZTi, n21# , n $ 2, (3.9)

then, for i 51,2, the joint distribution of theTi, n’s is the same as the joint distribution
of the ZTi, n’s+

The first result, which we include for the sake of completion, gives conditions
under which the epoch times of the two nonhomogeneous pure birth processes are
ordered according to the usual stochastic order+ This result may be compared with
Theorem 3+1+

Theorem 3.11: Let the Ti, n’s be the epoch times of the two nonhomogeneous pure
birth processes parameterized by the sets$ri, n, n $ 1% of hazard rate functions. Let
$Yi, n, n $ 1%, i 51,2, be two sets of independent absolutely continuous nonnegative
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random variables, where Yi, n has the hazard rate function ri, n+ If Y1,1 #st Y2,1 and if
Y1, j #hr Y2, j for j $ 2, then

~T1,1,T1,2, + + + ,T1, n! #st ~T2,1,T2,2, + + + ,T2, n!, n $ 1+ (3.10)

Proof: We will show that~ ZT1,1, ZT1,2, + + + , ZT1,n! #st~ ZT2,1, ZT2,2, + + + , ZT2,n!,where the ZTi,n’s
are defined in~3+8!and ~3+9!+ The result then follows from the fact that the joint
distribution of theTi, n’s is the same as the joint distribution of theZTi, n’s+ Let PKi, n

denote the survival function ofYi, n; that is, PKi, n~t ! 5 exp@2*0
t r i, n~u! du# , t $ 0+We

will apply Theorem 4+B+4 in @20# + Note that forj $ 2, we have

@ ZT1, j 6 ZT1,1 5 t1, ZT1,2 5 t2, + + + , ZT1, j21 5 tj21# 5 @Y1, j 6Y1, j . tj21# ,

and this is stochastically increasing intj21 ~see@20, Thm+ 1+A+11# !+ Therefore,
~ ZT1,1, ZT1,2, + + + , ZT1, n! is CIS ~conditionally increasing in sequence; see@20, p+ 117# !+
Next, note that

@ ZT1, j 6 ZT1,1 5 t1, ZT1,2 5 t2, + + + , ZT1, j21 5 tj21#

5 @Y1, j 6Y1, j . tj21#

#st @Y2, j 6Y2, j . tj21#

5 @ ZT2, j 6 ZT2,1 5 t1, ZT2,2 5 t2, + + + , ZT2, j21 5 tj21# ,

where the inequality, which is equivalent to

PK1, j ~u!

PK1, j ~tj21!
#

PK2, j ~u!

PK2, j ~tj21!
, u $ tj21,

follows from Y1, j #hr Y2, j + Thus, ~3+10! follows from Theorem 4+B+4 in @20# + n

Using some general ideas from Shaked and Szekli@21# , it is possible to con-
struct an alternative, although lengthier, proof of Theorem 3+11+

Proceeding now to comparisons in the sense of the hazard rate stochastic order,
we first have the following result which may be compared with Theorem 3+3+

Theorem 3.12: Let Ti, n and Yi, n be as in Theorem3+11+ If Y1, j #hr Y2, j for j $ 1,
then~T1,1,T1,2, + + + ,T1, n! #hr ~T2,1,T2,2, + + + ,T2, n! for all n $ 1+

Proof: The proof is similar to the proof of Theorem 3+3+ Fix ann $ 1+ Let h{6{~{6{!
be the multivariate conditional hazard rate functions associated with
~T1,1,T1,2, + + + ,T1,n! and letl{6{~{6{! be the multivariate conditional hazard rate func-
tions associated with~T2,1,T2,2, + + + ,T2, n!+

In order to obtain an explicit expression forl i 6 I ~u6tI ! in ~3+2!, we first note, as
in the proof of Theorem 3+3, thatI must be of the formI 5 $1,2, + + + ,m% for somem+
Then, we have

l i 6 I ~u6tI ! 5 Hr2,m11~u! if i 5 m1 1

0 if i . m1 1,
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where I 5 $1,2, + + ,m%+ Similarly, in hi 6 I øJ~u6sI øJ! in ~3+2!, we must haveI 5
$1,2, + + + ,m% andJ 5 $m1 1,m1 2, + + + , k% for somek $ m+ Then, we have

hi 6 I øJ~u6sI øJ ! 5 Hr1, k11~u! if i 5 k 1 1

0 if i . k 1 1,

whereI 5 $1,2, + + + ,m% andJ5 $m11,m12, + + + , k%+ The rest of the proof follows the
lines of the proof of Theorem 3+3+ n

Finally,we obtain a comparison result in the sense of the multivariate likelihood
ratio order+ The following result extends Theorem 3+6 to nonhomogeneous pure
birth processes+ At a first glance, condition~3+11! in the following theorem looks
restrictive; however, in many applications~see Sect+ 5!, the hazard rate functions
r1,1, r1,2, + + + are proportional, and the hazard rate functionsr2,1, r2,2, + + + are also pro-
portional, and then~3+11! can often be verified+

Theorem 3.13: Let Ti, n and Yi, n be as in Theorem3+11+ If Y1, j #hr Y2, j , if r 2, j 0r1, j is
increasing, and if

r2, j11~t ! 2 r2, j ~t ! $ r1, j11~t ! 2 r1, j ~t !, t $ 0, (3.11)

for j $ 1, then~T1,1,T1,2, + + + ,T1, n! #lr ~T2,1,T2,2, + + + ,T2, n! for all n $ 1+

Proof: In this proof, we denote by PKi, n andki, n the survival and the density func-
tions of Yi, n, respectively; that is, PKi, n~t ! 5 exp@2*0

t r i, n~u! du# and ki, n~t ! 5
ri, n~t ! exp@2*0

t r i, n~u! du# , t $ 0+
First, note that by Lemma 3+5,we haveY1, j #lr Y2, j , j $1; thus, the stated result

is obvious forn 5 1+ So, let n $ 2+ For i 5 1,2, the density functionhi , n of
~Ti,1,Ti,2, + + + ,Ti, n! is given by

hi, n~x1, x2, + + + , xn! 5 )
j51

n21 ki, j ~xj !

PKi, j11~xj !
ki, n~xn! for x1 # x2 # {{{ # xn+

Note that condition~3+11! can be written as

PK2, j ~t ! PK1, j11~t !

PK2, j11~t ! PK1, j ~t !
is increasing int $ 0+ (3.12)

Consider now~x1, x2, + + + , xn! and~ y1, y2, + + + , yn! such thatx1 # x2 # {{{ # xn

andy1 # y2 # {{{ # yn+We want to prove that

)
j51

n21 k1, j ~xj ∧ yj !

PK1, j11~xj ∧ yj !
k1, n~xn ∧ yn! )

j51

n21 k2, j ~xi ∨ yj !

PK2, j11~xj ∨ yj !
k2, n~xn ∨ yn!

$ )
j51

n21 k1, j ~xj !

PK1, j11~xj !
k1, n~xn! )

j51

n21 k2, j ~ yj !

PK2, j11~ yj !
k2, n~ yn!+ (3.13)
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Let E 5 $ j # n 2 1: xj $ yj %+ Then, ~3+13! reduces to

S)
j[E

r1, j ~ yj !
PK1, j ~ yj !

PK1, j11~ yj !
r2, j ~xj !

PK2, j ~xj !

PK2, j11~xj !
Dk1, n~xn ∧ yn!k2, n~xn ∨ yn!

$ S)
j[E

r1, j ~xj !
PK1, j ~xj !

PK2, j11~xj !
r2, j ~ yj !

PK2, j ~ yj !

PK2, j11~ yj !
Dk1, n~xn!k2, n~ yn!,

and this follows from the monotonicity ofr2, j 0r1, j , from ~3+12!, and fromY1, j #lr

Y2, j + n

4. STOCHASTIC COMPARISONS OF INTEREPOCH INTERVALS

4.1. Interepoch Intervals of Nonhomogeneous Poisson Processes

As in Section 3+1, consider two nonhomogeneous Poisson processes with intensity
functionsr ands+ Denote the associated density functions@see Eq+ ~2+2!# by f andg
and the associated distribution functions byF and G+ Finally, let the associated
cumulative hazard functions be denoted byR andS; that is, R~t ! [ *0

t r ~u! du and
S~t ![*0

t s~u! du, t $ 0+ LetTi, n be as defined in Section 3+1+The interepoch intervals
will be denoted byXi, n 5 Ti, n 2 Ti, n21, n $ 1, with Ti,0 [ 0, i 5 1,2+

In this subsection,we derive some results which stochastically compare vectors
of X1, j ’s with vectors ofX2, j ’s+

First, for the sake of completion, we devote some space to a discussion on
comparisons of interepoch intervals in the sense of the usual stochastic order+ The
following result is essentially a restatement of Proposition 3+10 of Shaked and
Szekli@21# +

Theorem 4.1: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier+ If F #disp G, then

~X1,1,X1,2, + + + ,X1, n! #st ~X2,1,X2,2, + + + ,X2, n!, n $ 1+ (4.1)

Roughly speaking, inequality~4+1! for n5` is denoted in@21# asN1 $st-̀ N2,
whereN1 andN2 are the underlying nonhomogeneous Poisson processes+

Asimilar result worth mentioning is the following+ It can be proven using Theo-
rem 2+7 of Shaked and Szekli@21# +

Theorem 4.2: Let r and s be intensity functions associated with two nonhomo-
geneous Poisson processes as described earlier. If

r ~u! $ s~u 1 x!, u $ 0, x $ 0, (4.2)

then

~X1,1,X1,2, + + + ,X1, n! #st ~X2,1,X2,2, + + + ,X2, n!, n $ 1+

Note that~4+2! holds if F #hr G and if r or s is decreasing@i+e+, F or G is DFR
~decreasing failure rate!# + Thus, Theorem 4+2 is a stronger result than Theorem 8 of
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Gupta and Kirmani@7# or Theorem 4+4 of Kochar@11# + In fact, we have the follow-
ing relationship among the conditions of Theorems 4+1 and 4+2+

Proposition 4.3: Let F and G be two distribution functions with respective hazard
rate functions r and s. If~4+2! holds, then F#disp G+

Proof: Condition ~4+2! implies thatr ~u! $ s~u!; that is, F #hr G+ This, in turn,
impliesF #st G and, therefore, F21~a! # G21~a! for all a [ ~0,1!+

Now, ~4+2! therefore givesr ~F21~a!! $ s~G21~a!! for all a [ ~0,1!, which is
equivalent toF #disp G by ~2+B+8! in @20# + n

From Proposition 4+3, it is seen that Theorem 4+2 follows from Theorem 4+1+
Proposition 4+3 also strengthens a result of Bartoszewicz@3# and Bagai and Kochar
@1# , which is stated as Theorem 2+B+13~a! in @20# + This is so because ifF #hr G and
if r or s is decreasing, then~4+2! holds+

Condition~4+2! defines what can be called a “shifted hazard rate order” in the
spirit of Shanthikumar and Yao@22# , who defined a “shifted likelihood ratio order+”
However, it should be noted that whereas~4+2! is the same asX #hr @Y2x6Y. x# for
all x $ 0, whereX andY have the hazard rates functionsr ands, respectively, the
condition of Shanthikumar and Yao is the same as@X2 x6X. x# #lr Y for all x $ 0+
See also@13# +

We now proceed to a comparison of the interepoch intervals in the sense of the
hazard rate order+

Theorem 4.4: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functions r and s. If F#hr G and if OF and OG are logconvex (i.e.,DFR), and if (3.4)
holds, then X1, n #hr X2, n for each n$ 1+

Proof: For the purpose of this proof, we denoteF by F1, G by F2, r by r1, s by r2,
and the cumulative hazard functions are denoted byRi ; that is, Ri ~t ! 5 *0

t r i ~u! du,
i 5 1,2+ Let OGi, n denote the survival function ofXi, n, i 5 1,2+ The stated result is
obvious forn 5 1, so let us fix ann $ 2+ Then, from ~2+4!, we obtain

OGi, n~t ! 5E
0

`

ri ~s!
Ri

n22~s!

~n 2 2!!
OFi ~s1 t ! ds, t $ 0, i [ $1,2%+ (4.3)

Condition~3+4! means that

ri ~t ! is TP2 ~totally positive of order 2! in ~i, t !

~a nonnegative functionh of two variables, x andy, say, is called TP2 if h~x ', y!0
h~x, y! is increasing iny wheneverx # x '!+ Condition~3+4! also implies thatR2~t !0
R1~t ! is increasing int $ 0; that is, Ri ~t ! is TP2 in ~i, t !+ Since a product of TP2
kernels is TP2, we get that

ri ~t !
Ri

n22~t !

~n 2 2!!
is TP2 in ~i, t !+
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The assumptionF1 #hr F2 implies that

OFi ~s1 t ! is TP2 in ~i,s! and in~i, t !+

Finally, the logconvexity of OF1 and of OF2 means that

OFi ~s1 t ! is TP2 in ~s, t !+

Thus, by Theorem 5+1 of Karlin @10, p+ 123# , we get that OGi, n~t ! is TP2 in ~i, t !; that
is, X1, n #hr X2, n+ n

Next, we discuss the likelihood ratio order+ The following result gives condi-
tions under which the interepoch intervals of the two processes are comparable in the
multivariate likelihood ratio order+

Theorem 4.5: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding density func-
tions f and g and with corresponding hazard rate functions r and s. If F#hr G, if f
and/or g are logconvex, if r and/or s are logconvex, and if (3.4) holds, then

~X1,1,X1,2, + + + ,X1, n! #lr ~X2,1,X2,2, + + + ,X2, n!, n $ 1+

Proof: First, note that by Lemma 3+5, we haveF #lr G+
We will give the proof whenf andr are logconvex; the proofs of the other cases

are similar+Note that the logconvexity off andr implies thatf andr are positive over
~0,`!+ The result is obvious forn51; thus, let us fix ann $ 2+ The density function
l1, n of ~X1,1,X1,2, + + + ,X1, n! is given by

l1, n~x1, + + + , xn! 5 )
j51

n21

r ~x1 1 {{{ 1 xj ! f ~x1 1 {{{ 1 xn!, xk $ 0, k 5 1, + + + , n+

(4.4)

The density functionl2, n of ~X2,1,X2,2, + + + ,X2, n! is given by

l2, n~x1, + + + , xn! 5 )
j51

n21

s~x1 1 {{{ 1 xj !g~x1 1 {{{ 1 xn!, xk $ 0, k 5 1, + + + , n+

(4.5)

The logconvexity off implies that

f ~x1 ∨ y1 1 {{{ 1 xn ∨ yn! f ~x1 ∧ y1 1 {{{ 1 xn ∧ yn!

$ f ~x1 1 {{{ 1 xn! f ~ y1 1 {{{ 1 yn! (4.6)

for all xk $ 0 andyk $ 0, k51, + + + , n+ Similarly, the logconvexity ofr implies, for j 5
1, + + + , n 2 1, that

r ~x1 ∨ y1 1 {{{ 1 xj ∨ yj !r ~x1 ∧ y1 1 {{{ 1 xj ∧ yj !

$ r ~x1 1 {{{ 1 xj !r ~ y1 1 {{{ 1 yj ! (4.7)
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for all xk $ 0 andyk $ 0, k 5 1, + + + , j+ Therefore,

l1, n~x1 ∧ y1, + + + , xn ∧ yn! l2, n~x1 ∨ y1, + + + , xn ∨ yn!

5 )
j51

n21

r ~x1 ∧ y1 1 {{{ 1 xj ∧ yj ! f ~x1 ∧ y1 1 {{{ 1 xn ∧ yn!

3 )
j51

n21

s~x1 ∨ y1 1 {{{ 1 xj ∨ yj !g~x1 ∨ y1 1 {{{ 1 xn ∨ yn!

$ )
j51

n21 s~x1 ∨ y1 1 {{{ 1 xj ∨ yj !

r ~x1 ∨ y1 1 {{{ 1 xj ∨ yj !
r ~x1 1 {{{ 1 xj !r ~ y1 1 {{{ 1 yj !

3
g~x1 ∨ y1 1 {{{ 1 xn ∨ yn!

f ~x1 ∨ y1 1 {{{ 1 xn ∨ yn!
f ~x1 1 {{{ 1 xn! f ~ y1 1 {{{ 1 yn!

$ )
j51

n21 s~ y1 1 {{{ 1 yj !

r ~ y1 1 {{{ 1 yj !
r ~x1 1 {{{ 1 xj !r ~ y1 1 {{{ 1 yj !

3
g~ y1 1 {{{ 1 yn!

f ~ y1 1 {{{ 1 yn!
f ~x1 1 {{{ 1 xn! f ~ y1 1 {{{ 1 yn!

5 l1, n~x1, + + + , xn! l2, n~ y1, + + + , yn!,

where the first inequality follows from~4+6! and ~4+7!, and the second inequality
follows from ~3+4! and fromF #lr G ~ i+e+, g0f is increasing!+ This gives the stated
result+ n

Remark 4.6:In light of the conditions in Theorem 4+5, the following question is of
interest+ Let f be a density function of a nonnegative random variable, and letr be the
corresponding hazard rate function+ Does the logconvexity off imply the logcon-
vexity of r, and vice versa? It turns out that neither is the case+ First, consider the
hazard rate function

r ~t ! 5 et, t $ 0+

Here, log r is linear, so it is logconvex+ The corresponding density function is given
by

f ~t ! 5 e11t2et
, t $ 0,

and a computation of the second derivative shows thatf here is strictly logconcave
~see@14# !, and thus it is not logconvex+ In order to see that “f is logconvex” does not
imply that “r is logconvex,” consider the hazard rate function

r ~t ! 5
1

t 1 3
2

1

~t 1 3!2 5
t 1 2

~t 1 3!2 , t $ 0+
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This is indeed a hazard rate function since it is nonnegative, and it integrates tò +A
straightforward computation shows that~d20dt2! log r ~t ! , 0 for 0, t , 2!2 2 2+
Therefore, r is not logconvex+ The corresponding density function is

f ~t ! 5
3~t 1 2!

~t 1 3!3 expH t

3~t 1 3!
J , t $ 0+

A straightforward computation gives

d2

dt2 log f ~t ! 5
2t 3 1 10t 2 1 13t 1 1

~t 1 3!3~t 1 2!2 ,

and this is positive for allt $ 0+ Thus, f is logconvex+

Since the multivariate likelihood ratio order is closed under marginalization
~see@20, Thm+ 4+E+3~b!# !,we get the following result as a corollary of Theorem 4+5+

Corollary 4.7: Let F and G be distribution functions associated with two non-
homogeneous Poisson processes as described earlier, with corresponding density
functions f and g and with corresponding hazard rate functions r and s. If F#hr G,
if f and/or g are logconvex, if r and/or s are logconvex, and if (3.4) holds, then
X1, n #lr X2, n for all n $ 1+

The next result gives different conditions under which the interepoch intervals
of the two processes are comparable in the likelihood ratio order+

Theorem 4.8: Let f and g be density functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functions r and s. If F#hr G, if f and g are logconvex, and if (3.4) holds, then X1, n #lr

X2, n for each n$ 1+

Proof: First, note that by Lemma 3+5, we haveF #lr G+
As in the proof of Theorem 4+4, for the purpose of the present proof we denote

f by f1, g by f2, r by r1, s by r2, and the cumulative hazard functions are denoted by
Ri , i 5 1,2+ Let gi, n denote the density function ofXi, n, i 5 1,2+ The stated result is
obvious forn 5 1, so let us fix ann $ 2+ From ~2+4!, we obtain

gi, n~t ! 5E
0

`

ri ~s!
Ri

n22~s!

~n 2 2!!
fi ~s1 t ! ds, t $ 0, i 5 1,2+

As in the proof of Theorem 4+4, we have that

ri ~t !
Ri

n22~t !

~n 2 2!!
is TP2 in ~i, t !+

The assumptionF1 #lr F2 implies that

fi ~s1 t ! is TP2 in ~i,s! and in~i, t !+
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Finally, the logconvexity off1 and off2 means that

fi ~s1 t ! is TP2 in ~s, t !+

Thus, by Theorem 5+1 of Karlin @10, p+ 123# , we get thatgi, n~t ! is TP2 in ~i, t !; that
is, X1, n #lr X2, n+ n

We close this subsection with a comparison result in the mean residual life
order+ Recall that two univariate random variablesX andY, with distribution func-
tions F andG, respectively, are said to be ordered in the mean residual life order
~denoted byX #mrl Yor F #mrl G! if E @X2 t 6X . t # # E @Y2 t 6Y. t # for all t’s for
which these conditional expectations are defined+ Recall also that a distribution
functionF is said to be IMRL~increasing mean residual life! if the mean residual life
at timet, defined as earlier, or, alternatively, as~*t

` OF~u! du!0 OF~t !, is increasing in
t, for which the ratio is well defined+

Theorem 4.9: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functions r and s, respectively. If F#mrl G, if OF and OG are IMRL, and if (3.4) holds,
then X1, n #mrl X2, n for each n$ 1+

Proof: As in the proof of Theorem 4+4,we denote, here, F by F1,G by F2, r by r1, s
by r2, and the cumulative hazard functions are denoted byRi , i 5 1,2+ The stated
result is obvious forn51, so let us fix ann$ 2+ The survival function OGi, n of Xi, n, i 5
1,2, is given in~4+3!+ From Theorem 1+D+3 in @20# , it is seen that the stated result is
equivalent to

E
t

`

OGi, n~x! dx is TP2 in ~i, t !;

that is, to

E
s50

`

ri ~s!
Ri

n22~s!

~n 2 2!!
E

u5s1t

`

OFi ~u! du dsis TP2 in ~i, t !+ (4.8)

Now, from the proof of Theorem 4+4, we know that ~3+4! implies that
ri ~s!@Ri

n22~s!0~n 2 2!!# is TP2 in ~i,s!+ The assumptionF1 #mrl F2 means that

E
u5s1t

`

OFi ~u! du is TP2 in ~i,s! and in~i, t !+

Finally, the assumption thatFi is IMRL means that

E
u5s1t

`

OFi ~u! du is TP2 in ~s, t !+

Thus, ~4+8! follows from Theorem 5+1 in Karlin @10, p+ 123# + n
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4.2. Interepoch Intervals of Nonhomogeneous Pure Birth Processes

In this subsection, as in Section 3+2, we consider two nonhomogeneous pure birth
processes, indexed byi 5 1,2, parameterized by the sets$ri, n, n $ 1% of hazard rate
functions that satisfy~2+1!+The corresponding epoch times are 0[Ti,0# Ti,1# Ti,2#
{{{, and the interepoch intervals areXi, n 5 Ti, n 2 Ti, n21, n $ 1, with Ti,0 [ 0+ Let
$Yi, n, n $ 1%, i 51,2, be two sets of independent absolutely continuous nonnegative
random variables, whereYi, n has the hazard rate functionri, n+ Let ZTi, n be as in~3+8!
and~3+9!, and define

ZXi,1 5 Yi,1, (4.9)

ZXi, n 5 @Yi, n 2 ZTi, n216Yi, n . ZTi, n21# , n $ 2+ (4.10)

Then, for i 51,2, the joint distribution of theXi, n’s is the same as the joint distribu-
tion of the ZXi, n’s+ Let PKi, n denote the survival function ofYi, n; that is, PKi, n~t ! 5
exp@2*0

t r i, n~u! du# + Let ki, n denote the density function ofYi, n; that is, ki, n~t ! 5
ri, n~t ! exp@2*0

t r i, n~u! du# , t $ 0+ Using ~4+9! and ~4+10! and extending~4+4!, it is
easy to see that, for i 51,2, the density functionl i, n of ~Xi,1,Xi,2, + + + ,Xi, n! is given by

l i, n~x1, + + + , xn! 5 )
j51

n21

ri, jS(
l51

j

xlD PKi, jS(
l51

j

xlD
PKi, j11S(

l51

j

xlD
ki, nS(

l51

n

xlD,
xk $ 0, k 5 1, + + + , n+ (4.11)

In this subsection, we obtain stochastic comparison results, involving interepoch
intervals, in the sense of the usual and the multivariate likelihood ratio orders+

The first result gives conditions under which the epoch times of the two non-
homogeneous birth processes are ordered according to the usual stochastic order+
This result may be compared with Theorem 4+2+

Theorem 4.10: Let Xi, n be the interepoch intervals of two nonhomogeneous pure
birth processes as described earlier. If Y1,1 #st Y2,1 and if

r1, j ~u! $ r2, j ~u 1 x!, u $ 0, x $ 0, j $ 2, (4.12)

then

~X1,1,X1,2, + + + ,X1, n! #st ~X2,1,X2,2, + + + ,X2, n!, n $ 1+ (4.13)

Proof: The result is obvious whenn 5 1+ So fix ann $ 2+ Let xk
' $ xk $ 0, k 5

1,2, + + + , n+ Now, for j 5 2, + + + , n, we have

@X1, j 6X1,1 5 x1, + + + ,X1, j21 5 xj21# 5 FY1, j 2 (
k51

j21

xk*Y1, j . (
k51

j21

xkG,
@X2, j 6X2,1 5 x1

' , + + + ,X2, j21 5 xj21
' # 5 FY2, j 2 (

k51

j21

xk
'*Y2, j . (

k51

j21

xk
'G +
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Denotez5 (k51
j21 xk andz'5 (k51

j21 xk
' + It is not hard to see that~4+12! implies that

@Y1, j 2 z6Y1, j . z# #st @Y2, j 2 z' 6Y2, j . z' # (4.14)

wheneverz'$ z$ 0, j $ 2 ~ in fact, ~4+12! and~4+14! are equivalent!+Thus, the stated
result follows from Theorem 4+B+3 in @20# + n

An alternative proof of Theorem 4+10 can be provided using Theorem 2+7 in
@21#; however, the present proof is simpler+

As a corollary of Theorem 4+10~see a comment following Theorem 4+2!,we see
that if Y1,1 #st Y2,1, if Y1, j #hr Y2, j , j $ 2, and ifY1, j or Y2, j are DFR, j $ 2, then~4+13!
holds+

The next result gives conditions under which the interepoch intervals are or-
dered in the multivariate likelihood ratio order+

Theorem 4.11: Let Xi, n be the interepoch intervals of two nonhomogeneous pure
birth processes as described earlier. If Y1, j #hr Y2, j , if r 2, j 0r1, j is increasing, if (3.11)
holds, and if r1, j PK1, j 0 PK1, j11, andk1, j , or r2, j , PK2, j 0 PK2, j11, and k2, j are logconvex for
all j $ 1, then

~X1,1,X1,2, + + + ,X1, n! #lr ~X2,1,X2,2, + + + ,X2, n!, n $ 1+

The proof of Theorem 4+11 is a straightforward extension of the proof of Theo-
rem 4+5, using~4+11! rather than~4+4! and~4+5!; we omit the details+

It is worth mentioning that PKi, j 0 PKi, j11 is logconvex if and only ifri, j11 2 ri, j is
increasing+

5. SOME APPLICATIONS

In this section,we describe some applications of the results of Sections 3 and 4+ The
list of applications that we provide is far from exhaustive and is given only as an
indication of the applicability of the mathematical results+ In fact, the results of
Sections 3 and 4 provide useful computable bounds in almost any area where non-
homogeneous pure birth processes are used+

5.1. Comparisons of Generalized Yule Birth Processes

A Yule ~or a linear! birth process is a pure birth process with jump intensity from
staten to staten 1 1 of the form~n 1 1!l, wherel . 0+ Let us consider a general-
izationN1 5 $N1~t !, t $ 0% of the Yule process in which the jump intensity at timet,
given thatn jumps have occurred already, is of the form~n11!l~t ! ~depending on
t !+ Let N25 $N2~t !, t $ 0% be another such nonhomogeneous Yule process with jump
intensity~n 1 1!h~t !+

The generalized Yule process is a nonhomogeneous pure birth process+ Thus, if
the distribution functionsF andG, which are associated with the failure rate func-
tionsl andh of N1 andN2 described earlier, satisfyF #hr G ~ i+e+, l~u! $ h~u! for all
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u$ 0!, then, by Theorem 3+11 or 3+12, it is seen that by timet, there are stochastically
at least as many jumps inN1 as there are inN2+ This is an intuitively clear result that
can also be proven directly+ However, if , in addition tol~u! $ h~u! ~note that then
~3+11! holds too!, we also have thath0l is increasing, then by Theorem 3+13, we
obtain the nontrivial fact that the vectors of the firstn jumps are ordered in the
multivariate likelihood ratio order and sharper inequalities hold~see, e+g+,Eq+ ~5+1!!+

If l andh satisfy~4+12! @i+e+, l~u! $ h~u1 x! for all x $ 0 andu $ 0# , then by
Theorem 4+10, all the times between births inN1 are stochastically smaller than the
corresponding times between births inN2+

A generalized Yule process may model the spread of a disease, wheren is the
number of infectives andl~t ! is the rate in which infectives pass the disease to new
individuals at timet; this rate, in general, depends on the calendar timet—for ex-
ample, it may change with the seasons of the year@2# + Consider now two nonhomo-
geneousYule processes,with ratesl~t ! andh~t !,which model the spread of a disease
under two different health measures that are expected to control the spread+ The
stochastic inequalities described earlier can direct a health official as to how to fight
the spread of a disease if the official can select between the two measures that control
the spread with respective ratesl~t ! andh~t !+

A comparison of a nonhomogeneous Yule processN1 ~with intensitiesr1,n~t ! 5
~n 1 1!l~t !! with a standard Yule processN2 ~with intensitiesr2, n~t ! 5 ~n 1 1!h,
independent oft ! can provide computable upper or lower bounds on various
probabilistic quantities of interest that are associated withN1+ This is based on the
fact that the interepoch intervalsX2,1,X2,2, + + + ,X2, n, + + + of the standard Yule pro-
cessN2 are independent exponential random variables with ratesh,2h, + + + , nh, + + + ,
and the epoch timesT2, n are sums of these independentX2, i ’s+ For example,
suppose that we have under study a nonhomogeneous Yule processN1 as above
and suppose thatl~t ! is bounded from below by some constanth ~i+e+, l~t ! $ h
for all t $ 0!+ Define N2 as the standard Yule process with the associated
rate h+ Then by Theorem 3+11 or 3+12 and Theorem 4+10, we get ~T1,1, + + + ,
T1, n! #st ~T2,1, + + + ,T2, n! and ~X1,1, + + + ,X1, n! #st ~X2,1, + + + ,X2, n!, and, therefore,
Ef~T1,1, + + + ,T1, n! # Ef~T2,1, + + + ,T2, n! andEf~X1,1, + + + ,X1, n! # Ef~X2,1, + + + ,X2, n!
for any increasing functionf for which the expectations exist+ For example, since
ET2, n 5 h21 (i51

n i 21, we can boundET1, n from above by

ET1, n # h21 (
i51

n

i 21+

Another useful example of a bound of this type is based on Theorem 4+1 of
Bunge and Nagaraja@6# + The authors give an explicit expression for the expected
value of the waiting time until thenth record occurs, when the arrival process is a
standard Yule process+ If in a particular application the arrival process is a nonhomo-
geneous~rather than standard! Yule process and its associated ratel~t ! is bounded
from below, then the explicit expression in Theorem 4+1 of Bunge and Nagaraja@6#
provides an upper bound for the expected value of the waiting time until thenth

220 F. Belzunce et al.

https://doi.org/10.1017/S0269964801152058 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964801152058


record occurs in that particular application+Another reference in which one can find
explicit expressions of probabilistic quantities of interest that are associated with a
standard Yule process is the article by Brown et al+ @5# +When the ratel~t ! that is
associated with the nonhomogeneous Yule process is bounded from below or from
above, then these explicit expressions can be used as bounds for the corresponding
probabilistic quantities that are associated with the nonhomogeneous Yule process+
In fact, Brown et al+ @5# study a Yule process with immigration~i+e+, the intensity is
of the form~n11!h 1 u!; this process can be used to obtain bounds for a nonhomo-
geneous pure birth process with intensities of the formrn~t ! 5 ~n 1 1!l~t ! 1 µ~t !+

Consider again the nonhomogeneous Yule processN1 with intensitiesr1, n~t ! 5
~n 1 1!l~t ! and the standard Yule processN2 with intensitiesr2, n~t ! 5 ~n 1 1!h
that we described earlier+ If , in addition tol~t ! $ h, we also have thatl~t ! is de-
creasing, thenh0l~t ! is increasing, and by Theorem 3+13,we have~T1,1, + + + ,T1, n! #lr

~T2,1, + + + ,T2, n!+ Then, for example, we have

E @f~T1,1, + + + ,T1, n!6 tj0 # T1, j # tj
1, j 5 1, + + + , n#

# E @f~T2,1, + + + ,T2, n!6 tj0 # T2, j # tj
1, j 5 1, + + + , n# (5.1)

for all increasing functionsf, whenevertj0 , tj
1, j 5 1, + + + , n ~see Thm+ 4+E+1 in

@20# !+ Such an inequality does not follow, in general, from the weaker condition
~T1,1, + + + ,T,1n! #st ~T2,1, + + + ,T2, n!+ In the next paragraph, we describe a practical ap-
plication of~5+1!+

When l~t ! $ h and l~t ! is decreasing, all the conditions of Theorem 4+11
hold+ In order to see it, we first note that~3+11! obviously holds becausel~t ! $ h+
If k2, j denotes the exponential density with ratejh, then it is easy to verify
that r2, j , PK2, j 0 PK2, j11, and k2, j are all logconvex+ Thus, from Theorem 4+11, we
obtain~X1,1, + + + ,X1, n! #lr ~X2,1, + + + ,X2, n!, whereX2,1, + + + ,X2, n are independent ex-
ponential random variables, as described earlier+ This stochastic inequality is use-
ful in situations where benefits are derived during any interepoch time interval
~such benefits can be, for instance, the rates in which a working component yields
revenue!+ For example, suppose that the benefit from a realization~x1, + + + , xn!
of ~X1,1, + + + ,X1, n! is f~x1, + + + , xn!, but that the benefits are derived only during
an initial period of lengtht0 in any interepoch interval+ Then, the expected ben-
efit from the first n interepoch intervals of the nonhomogeneous Yule process
is E @f~X1,1, + + + ,X1, n!6X1, i # t0, i 5 1, + + + , n# , provided the expectation exists+
When f is increasing, this expectation is bounded from above by
E @f~X2,1, + + + ,X2, n!6X2, i # t0, i 5 1, + + + , n#; this follows from ~X1,1, + + + ,X1, n! #lr

~X2,1, + + + ,X2, n! and from Theorem 4+E+1 in @20# + The latter expectation is not hard
to compute becauseX2,1, + + + ,X2, n are independent exponential random variables+

5.2. Comparisons of Load-Sharing Models

Considern items that share a loadL1~t ! at timet+ A common model~see Schechner
@17# ! is to assume that the failure rate of each item is thenL1~t !0n+After i items have
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already failed, each of the remainingn 2 i items has a loadL1~t !0~n 2 i !+ If we
denoter1, i ~t ! 5 L1~t !0~n2 i 11!, then it is seen that the failure timesT1,1 # T1,2 #
{{{ # T1, n are the epoch times of a nonhomogeneous pure birth process+ Let L2 be a
second load function shared byn similar items+

If L1~u! $ L2~u! for all u $ 0, then, by Theorem 3+11 or 3+12, it is seen that by
time t, there are stochastically at least as many failures in the first model as there are
in the second+ This is an intuitively clear result that can also be proven directly+
However, if , in addition toL1~u! $ L2~u! ~note that then~3+11! holds too!, we also
have thatL20L1 is increasing, then, by Theorem 3+13, we obtain the nontrivial fact
that the vectors of then failure times are ordered in the multivariate likelihood ratio
order, and sharper inequalities hold+

If L1~u! $ L2~u1x! for all x$ 0 andu$ 0, then, by Theorem 4+10, all the times
between failures in the first model are stochastically smaller than the corresponding
times between failures in the second model+

If the loadL2 is constant then some probabilistic quantities of interest can be
computed explicitly+Thus,whenL1~t ! is bounded from below or from above,we can
use the load-sharing model associated with a constantL2 in order to bound some
probabilistic quantities of interest involving the model associated withL1~t !+ For
example, Eq+ ~4+9! of @15# gives an explicit expression for the mean lifetime of
a single member in a load-sharing model with a constantL2+ If L1~u! $ L2 for all
u $ 0 then, using Theorems 3+11, 3+12, and 4+10, we see that~4+9! of @15# provides
an upper bound on the corresponding expectation in the model associated withL1+

A load-sharing model with a constantL often describes the strength of a bundle
of fibers+ If the load on the bundle varies with time~e+g+, the load may be different
during the day than during the night!, then the general model, in whichL depends on
t, applies+

5.3. Comparisons of Benefits Between Times of Minimal Repair

The repair times of an item that is continuously minimally repaired are the epoch
times of a nonhomogeneous Poisson process whose intensity function is the hazard
rate function of the lifetime distribution of the item, see, for example, Shaked and
Szekli@21# +

Suppose that an engineer has to decide which of two items that are continuously
minimally repaired is to be used+ The selected item~which may be, for example, a
computer, a car, or an airplane! can then be used until its next failure+ If we denote
by X a generic intrafailure interval, then it can be assumed that the benefit derived
from the item is an increasing functionf~X ! of the length of the interval~see, e+g+,
a discussion in Shaked and Szekli@21, p+ 1093# !+ If the choice of the engineer is
between thei th interval of either of the two items, then Theorems 4+1–4+8 can direct
the engineer in his0her choice+ For example, if the item is going to be used for the
whole duration of the intrafailure interval, then under the conditions of Theorem 4+1
or 4+2, we haveE @f~X1, i !# # E @f~X2, i !# , and thus the second item is preferable+ If
the item can be used only after some fixedburn-in time x0, then under the conditions
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of Theorem 4+4, we haveE @f~X1, i 2 x0!6X1, i . x0# # E @f~X2, i 2 x0!6X2, i . x0# ,
for any fixedx0, and thus, again, the second item is preferable~by ~1+B+5! in @20# !+
Finally, if the item is going to be used only for a fixed subinterval, @x0, x1# say, of the
intrafailure interval, then under the conditions of Theorem 4+5 or 4+8, we have
E @f~X1, i 2 x0!6x0 , X1, i # x1# # E @f~X2, i 2 x0!6x0 , X2, i # x1# , for any fixed
x0 , x1, and thus the second item is preferable~by ~1+C+4! in @20# !+
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