Probability in the Engineering and Informational Scienc&§ 2001 199-224 Printed in the US.A.

STOCHASTIC COMPARISONS
OF NONHOMOGENEOUS
PROCESSES

FELIX BELZUNCE

Departmento Estadistica e 1.0.
Universidad de Murcia
30100 Espinardo (Murcia), Spain
E-mail: belzunce@um.es

Rosa E. LiLLo
Departmento Estadistica y Econometria
Universidad Carlos Il de Madrid
28903 Getafe, Madrid, Spain
E-mail: lillo@est.econ.uc3m.es

JosE-MARIA Ruiz
Departmento Estadistica e I.0.
Universidad de Murcia
30100 Espinardo (Murcia), Spain
E-mail: jmruizgo@um.es

MOSHE SHAKED

Department of Mathematics
University of Arizona
Tucson, AZ 85721
E-mail: shaked@math.arizona.edu

The purpose of this article is to describe various conditions on the parameters of
pairs of nonhomogeneous Poisson or pure birth processes under which the corre-
sponding epoch times or interepoch intervals are stochastically ordered in various
sensesWe derive results involving the usual stochastic orttex multivariate haz-

ard rate orderthe multivariate likelihood ratio ordeas well as the dispersive and

the mean residual life ordera sample of applications involving generalized Yule
processedoad-sharing modeJsand minimal repairs in reliability theory illustrate

the usefulness of the new results
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1. INTRODUCTION AND MOTIVATION

Nonhomogeneous Poisson processes arise naturally in many applications of proba-
bility. In reliability theory the times of repair of an item which is being continuously
minimally repaired are the epoch times of a nonhomogeneous Poisson piocess
the study of recordghe times of the consecutive record values of a sequence of
independent and identically distributed nonnegative random variables are the epoch
times of a nonhomogeneous Poisson procEssreforeresults which give stochas-
tic comparisons of the epoch times or of the interepoch times of different nonhomo-
geneous Poisson processes can be useful in reliability theory and in the studies of
progressive records

Roughly speakingthe intensity of a jump of a nonhomogeneous Poisson pro-
cess at any timedepends only oty and not on any other information about the past
or the present of the procestthe intensity of a jump at any timedepends ohand
also on the stat@.e., the number of previous jumpsf the processhut not on any
other information about the past or the present of the pro¢ksea the resulting
process is called nonhomogeneous pure birth prodessently Hu and Par{8]
have used nonhomogeneous pure birth processes to model the epochs in which in-
surance claims occuBther applications of nonhomogeneous pure birth processes
in epidemiology and load sharing are described in Section 5

The purpose of this article is to describe various conditions on the parameters of
pairs of nonhomogeneous Poisson or pure birth processes under which the corre-
sponding epoch or interepoch times are stochastically ordered in various.senses

In Section 2we give the definitions of nonhomogeneous Poisson and pure birth
processesand we describe a useful presentation of pure birth procegéeslso
derive in Section 2 some mathematical formulas that are used later in the.dittiele
main results are given in Sections 3 andVe obtain a large number of stochastic
comparisongin various sense®f epoch times and interepoch intervals of pairs of
nonhomogeneous Poisson and pure birth proceSsmse of the results provide
stochastic comparisons in various senses of vectors of epoch times and interepoch
intervals It is remarkable that some of the stochastic comparison results actually
characterize relationships between the pairs of nonhomogeneous Poisson processes
that are comparedFinally, in Section 5we describe some applications in epidemi-
ology, reliability theory and load sharingOne particular application that we de-
scribe involves the construction of computable upper or lower bounds on various
probabilistic quantities of interest

This article may be contrasted with the work of Shaked and Sz2kli The
work [21] focused on the usual stochastic ordering of epoch times and interepoch
intervals of two point processewhereashere we derive many results that give
finer comparisons in other stochastic ordering sertdewever whereas the results
of [21] apply to general point processé&re we derive results only for nonhomo-
geneous Poisson and pure birth procesBes results ifi21] were mainly applied to
comparisons of replacement and maintenance policies in reliability thieery we
indicate also some other areas of applications of the new retufisct, we show
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that the new results here provide useful bounds in almost any application where
nonhomogeneous pure birth processes are. iSedlly, the methods of proof of the
present article differ from the methods[@&1]: Whereas irf21], most of the basic
results were essentially proven using couplimgre we use more analytical methods
because most of the stochastic orderings that we derive are stronger than the usual
stochastic order and the tool of coupling does not suffice for their derivation

In this article “increasing” and “decreasing” mean “nondecreasing” and “non-
increasing’ respectively Any inverse function that we use is understood to be the
right-continuous one

2. NONHOMOGENEOUS POISSON AND PURE BIRTH PROCESSES

A counting proces$N(t), t = 0} is anonhomogeneous Poisson procesth inten-
sity (or rate functionr = 0 if

(@ {N(t),t= 0} has the Markov property
(b) P{N(t+ At) =n+1|N(t) =n} =r(t)At + o(At),n=1,
(c) P{N(t+ At) >n+1|N(t) =n}=0(At),n=1.

We assume that
f r(uydu=oo forallt=0; (2.1)
t

this ensures thatvith probability 1, the process has ajump after any time poiRor
conveniencgif r(ty) = oo for somet,, then we define (t) = co fort = t,.

A nonnegative functiom which satisfieg2.1) can be interpreted as the hazard
rate function of a lifetime of an itemMore explicitly, if r satisfies(2.1) and we
definef by

f(t) = r(t)exp(—f r(u)du) =r(t)e RO, t=0, (2.2)
0

whereR(t) = fé r (u) du, thenf is a probability density function of a lifetimén fact,
f is the probability density function of the time of the first epoch of the underlying
nonhomogeneous Poisson process

Let0O=Ty=T, =T, = --- be the epoch times of the nonhomogeneous Poisson
processDenote byf, the density function of,,,n = 1. Then

fo(t) = f(1) M t=0,n=1; (2.3)
(n _ l)' b ) 9
thisis Eq (3) in Baxter{4]. Note, in particular thatf, =f. It is worthwhile to mention
that in the monograph by Kamp3], the definition of the epoch times is extended to
the so-called generalized order statistiearious extensions g2.3) can be found
there
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LetX,=T,— T,-1,n =1, be the interepoch intervals of the nonhomogeneous
Poisson proces®enote byg, the density function oX,,n =1. Then g, = f and

n—2 )

(n—2)!

gn(t) = fowr(s) f(s+t)ds t=0,n=2 (2.4)

this is Eq (7) in Baxter[4].

The following extension of the nonhomogeneous Poisson process will also be
studied in this articleLet r,,n = 1, be nonnegative functions that satig®/1). A
counting procesfN(t), t = 0} is anonhomogeneous pure birth procesish inten-
sity (or rate functionsr, = 0 if

(@ {N(t),t= 0} has the Markov property
(b) P{N(t+ At) =n+1|N(t) = n} =ry(t)At + o(At),n=1,
(c) P{N(t+ At) > n+1|N(t) =n}=0(At),n=1.

Nonhomogeneous pure birth processes are called “relevation counting processes” in
[14], where some applications of them in reliability theory are descridéten all
ther,’s are identicala nonhomogeneous pure birth process reduces to a nonhomo-
geneous Poisson process

Let0=Ty=T, =T, = ... be the epoch times of the above nonhomogeneous
pure birth process and 1&t, = T,, — T,_1,n = 1, be the corresponding interepoch
intervals We will now describe a useful stochastic representation of these epoch and
interepoch timesConsider a set of independent absolutely continuous nonnegative
random variable$Y,, n = 1}, with corresponding hazard rate functionsn = 1.
Define recursively

Ti=Yy, (2.5)
-rn = [Yn|Yn > -Iﬁnfl]’ n= 2, (26)

wherg for any eventd, the notatiorn Y,|A] stands for the random variab¥g trun-
cated onA (sq the distribution of Y, | A] is the conditional distribution of,, given
A). Also, define

A~

X1 =Yy,
Xn = [Yn - TAn—1|Yn > -rn—l]’ n=2

Then itis easy to verify that the joint distribution of tig’s is the same as the joint
distribution of theT,’s, and that the joint distribution of th¥,’s is the same as the
joint distribution of theX,’s.

Using (2.5) and(2.6), it is easy to derive the density functions of thgs (or,
equivalently of the T,’s). In order to do thatlet k,, denote the density function of
Y., N = 1; that is kn(t) = ry(t) exp[—fyrn(u) du],t = 0. Also, let K, denote the
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survival function ofY,, n = 1; that is K,,(t) = exp[—fgrn(u) du],t= 0. The proba-
bility density functiond,, of the T,’s are then givenrecursively by

fi(t) = ky(t), t=0, (2.7)
f(t)—k(t)f H(‘;) L t=0n=2 2.8)

Also, the probability density functiong, of the X,,'s (or, equivalently of the X,,'s)
are then given by

gl(t) = kl(t)’ t= 07

foa(u)

K (u)
where thd,’'s are defined in2.7) and(2.8).

gn(t) = f k,(u+t) du, t=0,n=2,
0

3. STOCHASTIC COMPARISONS OF EPOCH TIMES
3.1. Epoch Times of Nonhomogeneous Poisson Processes

Consider two nonhomogeneous Poisson processes with intensity funcdaods,
respectivelyand with associated density functigrsee Eq(2.2)] f andg, respec-
tively, associated distribution functiofsandG, respectivelyand associated cumu-
lative hazard function® and S respectivelywhereR(t) = fgr(u) duandS(t) =
Jis(u) du. Let the epoch times of the first nonhomogeneous Poisson process be
denoted byT; ; = T, , = --- and let the epoch times of the other nonhomogeneous
Poisson process be denotedBy = T, , =

In this subsectionwe derive some results which stochastically compare
several sensesectors ofT, ;'s with vectors ofT, ;'s

For the sake of completigmwe start by giving conditions under which the epoch
times of the first process are smaller than the epoch times of the other process in the
usual stochastic ordesenseRecall that a random variable or vecis smaller in
the usual stochastic order than the random variable or v&¥dtoirthe same dimen-
sion) if

Ed(X) = Eh(Y)

for all increasing functiong for which the above expectations exishis relation-
shipis usually denoted by =, Y. If the distribution functions oKX andY areFx and
Fv, respectivelythen this relation will sometimes be denoted By =, Fy. The
following result is essentially not nefgee Remark.2).

TaeorEM 3.1: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier., Fhen, G if and only if

(o Tozseo s Ton) =st(To1, To2s.0, Ton), N=1 (3.1)
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Remark 3.2:Note thatF =4 G in Theorem 3L is equivalent tdR(t) = S(t), t = 0.
Thus Theorem 3L is essentially the same as PropositidhiB[21]. Roughly speak-
ing, inequality(3.1) for n= oo is denoted ih21] asN; =, N,, whereN; andN, are
the underlying nonhomogeneous Poisson processes

We now proceed to comparisons in the sense of the hazard rate Tindarext
result gives conditions under which the epoch times of the first process are smaller
than the epoch times of the other process innhdtivariate hazard rate order.
Shaked and Shanthikumar have given a few equivalent definitions of this order in
different articles see references i20, p. 148]. For the purpose of this artigleve
will use a modification of the definition given in TheorenD41 of [20] (thus inci-
dentally correcting a typographical error theréet X andY be twon-dimensional
nonnegative random vectors with multivariate conditional hazard rate functions
n...(-]-) andA..(-]-) as defined in Theorem.@.2 of [20]. For any vectort =
(ty, t, ..., t,) and any subsét={i4, i,,..., i} C{12,...,n}, lett, denote the vector
(t,,t,,..., 1 ). LetOandedenote respectively vectors of 0's and; 1fee dimensions
of 0 ande can be determined from the conteWhen the multivariate conditional
hazard rate functions of two random vectarandY satisfy

Minwa(Ulsus) = Ay (ulty)

whenevel NJ=,0<s <t =< ue, and0 = s; < ue, (3.2)

wherei € 1 U J (this denotes the complementlaf Jin {1,2,...,n}) ands,; andt,

are possible realizations of the underlying random vecteessay tha is smaller
thanY in the multivariate hazard rate order and we denote iXbsz, Y. If the
distribution functions oKX andY areFy andFy, respectivelythen this relation will
sometimes be denoted By =, Fy. In the univariate cas¢he relationFy =<, Fyis
equivalent to the requirement that/F is an increasing functigrand if the corre-
sponding hazard rate functionsandry exist then the relatiorfry =, Fy is equiv-
alent to the requirement that = ry. It is known (se€[20, Thms 4.C.1 and 4D.1)
that X =, Y = X =4 Y. Thus the next result gives a stronger conclusion than
Theorem 31, but under a stronger assumption

THeorEM 3.3: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier. Thew, & if and only if

(Mo Tozseo s Ton) Sne (T, o200, Ton), D=L

Proor: Fixann=1.Letx..(-|-) be the multivariate conditional hazard rate func-
tions associated witfily 1, Ty 5,..., Ty n) @and letr.|.(-|-) be the multivariate condi-
tional hazard rate functions associated Withy, T, 5, ..., To.n)-

First let us obtain an explicit expression fay (u[t;) in (3.2). SinceT,; =
T2 = - =T, ,as, it follows thatt, in (3.2) can be a realizatioffhistory”) of
observations up to timeonly if | is of the forml = {1,2,..., m} for somem=1, or
| = (i.e, m=0). Then we have
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s(uy ifi=m+1
t p—
U =00 s me,
wherel ={1,2,...,m}; here sis the hazard rate function associated wih
Next, let us obtain an explicit expression faf, _;(u|s ;) in (3.2). SinceTy ; =
T, = .- =T.,as, we see that wheh = {1,2,...,m}, 5, in (3.2) can be a
realization of observations up to timeonly if J is of the formJ ={m + 1, m +
., k} forsomek=m+ 1, orJ= J (i.e.,, k=m). Then we have

r(u ifi=k+1

niluJ(u|S|UJ):{ 0 > K+ 1

wherel = {1,2,...,m} andJ = {m + 1, m+ 2,...,k}; here r is the hazard rate
function associated with.

Suppose tha =, G. Sincei in (3.2) must satisfy € U J (i.e,, i > k), we see
that if k > m, then

Ninua(U|suy) =r(u) =0=A;,(ult) ifi=k+1,
Mpua(Ulsuy) = 0= Ay (ulty) ifi>k+1
thus (3.2) holds If k= m(i.e, J = ©), then usingF =, G, we get

Minua(Ulsus) = r(u) =s(u) = Ay, (ult) ifi=k+1,
inus(Ulsuy) = 0= Ay (ult) ifi>k+1;

thus (3.2) holds in this case tao
The necessity part follows froif8.2) with i =1 (then | = J = ). u

The order=,, is not closed under marginalizatigalthough it is closed under
the dynamic conditional marginalization describefllil]). Thus it does not follow
from Theorem 3 thatT, , =y T, for n = 2 under the conditions stated there
However in the following resultit is shown that this indeed happens to be the case

THEOREM 3.4: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, Fhep, G ifand only if T , =,
T nforalln=1

Proor: Recall that andsdenote the hazard rate functiondodindG, respectively
and that the corresponding cumulative hazard functi®rend S are defined by
R(t) = fyr(u)duandS(t) = fé s(u) du, respectivelyThe survival functiorF, ,, of
Tinis given by

Fun() = P(Typ > 1) = il (R(t)

e RO =T (R(t)), t=0, (3.3)

https://doi.org/10.1017/50269964801152058 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964801152058

206 F. Belzunce et al.

wherel, is the survival function of the gamma distribution with scale parameter 1
and shape parametersee for example Gupta and Kirmani7] or Kocha{12]. The
corresponding density functidn , is given by

fLa(t) = ya(RO)r (1), t=0,

wherey, is the density function associated with The corresponding hazard rate
functionrg, is given by

re, (O = (R (t), t=0,
wherer;. is the hazard rate function associated viithSimilarly,
re, (1) =1 (S(t)s(t), t=0.
If F =G, then
re, () = rp (R (t) = rp (S(t)s(t) =re, (1), t=0,

where the inequality follows from(t) = s(t), R(t) = S(t), and the fact that the
hazard rate function of the gamma distribution described is increasing

The necessity part follows from the fact thais the distribution function of ;
andG is the distribution function ot ;. u

Next, we proceed to comparisons in the likelihood ratio order s€Rse fol-
lowing result( Thm. 3.6) gives conditions under which the epoch times of the first pro-
cessare smallerthanthe epoch times of the other processmnuttieariate likelihood
ratio order. This order is defined as followseg e.g., [ 20, Sect 4.E]). Let X andY
be twon-dimensional random vectors with density functiopahdfy, respectively
If (ODanddenote respectively the minimum and the maximum operations

fx (X Oy1, X 0o,y Xy OYa) fy (X Oy, X OYo, .., Xa OYn)
= fX(le XZ""vxn)fY(yb y27---7yr'|)

for all (x4, X5,...,X,) and(yy, Yo,...,¥n) in R", then we denotX =, Y. If the dis-
tribution functions ofX andY areFx andFy, respectivelythen this relation will
sometimes be denoted By =, Fy. In the univariate cas¢he relationFy =<, Fy is
equivalent to the requirement thiat/fy is an increasing functiarit is known (see
[20, Thm. 4.E.4]) thatX =, Y = X =, Y. Thus Theorem 3% gives a stronger
conclusion than Theorem3 but under the additional assumpti@4). The fol-
lowing lemmais used in the proof of Theorem®.3he proof of the lemmais straight-
forward and is therefore omitted

LEmMA 3.5: Let F and G be two distribution functions with associated hazard rate
functions r and s. If F=,,, G and if

s(t) . o

—— isincreasing in &= 0, (3.4)

r(t)
then F=, G.
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THEOREM 3.6: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier.sf FG and if the associated
hazard rate functions r and s satisfy (3.4), then
(Mo, Tz, Ton) =i (T, T2 2500, Ton), N= 1
Proor: First, note that by Lemma.3, we have thaF =, G. Thus the stated result
is true forn=1. Sq letn = 2. The density function ofTy ;, Ty ,..., T1.n) iS given by
Ny n(Xe, Xa, .oy Xn) = F(XDT(X2) <+ (X)) F(X)  fOrx=xo = -+ =X,

wheref is the density function associated wkhSimilarly, the density function of
(T21T22,..., T2 n) is given by

ho n(Xg, X2, .00 Xn) = S(X1)S(X2) -+ S(Xh-1)9(X,) fOrx;=%,=--- =X,

whereg is the density function associated with
Consider nowXy, Xo, ..., Xp) and(ya, ¥a,..., ¥n) such thax; = x, = ... = x,
andy; =y, = --- =y, We want to prove that

r(X, Oy)r(xe 0yz) -+ 1(Xq-1 OYn-2) F (X, Oyn)
X s(Xy Oy1)s(Xz OYz) -+ s(Xn-1 OYn-1)9(Xa OYn)
Zr(X)r(X2) -+ r(Xa-1) F(Xa)s(y1)s(yz) -+ s(Yn-1)9(Yn)- (3.5)
LetE={i=n—-1:x =v;}. Then (3.5) reduces to

(H r(y»s(xi))f(xn Oy g(x, Oy,) = (H r(xi)s<yi>> F(X)9(Yn),

ieE i€eE
and this follows from(3.4) andF =, G. n

Since the orders,, is closed under marginalizatiqeee[20, Thm. 4.E.3(b)]),
we get as a corollarythat if F =, G and if (3.4) holds thenT, , = T, , for all
n = 1. The following theorem is a variation of this corollatythen one com-
pares the following theorem to the above-stated corglitishould be noted that
(3.4) implies (3.6); see Remark 8. It should also be noted th&t = G impliesF
Shr G.
Tueorem 3.7: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier.2f K5 and if the cumulative
hazard functions R and, Sefined by Rt) = fr(u)du and St) = [, s(u) du, re-
spectivelysatisfy

S(t) . -
% is increasing in = 0, (3.6)
then
Ton=yTon nN=01L (3.7)

Conversely, if (3.7) holds, then¥,, G and (3.6) holds.
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Proor: By (2.3), the density function oT, ,, is given by

o (R
fon() =1(t) ———— =11 t=0,n=1
wheref is the density function associated wkhand the density function df, , is
given by
(st
f2 n(t) g(t) ( 1)| 9 t= 0’ n= 17

whereg is the density function associated with Thus

fn® _ 9 ( S(t)>“l
fia(t)  f(O)\RM)/

Now, if F =, G and(3.6) holds thenf, ,/f; ,is increasing and we gé8.7).

Conversely suppose that3.7) holds Applying (3.7) with n = 1, we obtain

F =, G. In order to obtair(3.6), denoteH = /R, h= g/f, andh, =f, /9, n. First,
suppose that thie,’s are differentiableThen whenn = 2, we have

hi(t) = H"2(tH)[h'(t)H(t) + (n = Dh(t)H'(t)], t=0.

If His not increasingthenH’(ty) < 0 for somety. Therefore for a large enough,
we have thah/(t;) < 0, and this contradict€3.7). If the h,’s are not differentiable
then the above argument can be easily modified to obtain the same result®

Remark 3.8:Sengupta and Deshpar|d&] and Rowell and Siegri§i 6] have shown
that(3.4) = (3.6) (in fact, they treated3.4) and(3.6) as notions of relative aging of
two life distributions. Thus the assumptions in Theorem/73are weaker than the
assumptions in Theorem® It is of interest to note that3.4) does not imply that

F =, G. In fact, (3.4) does not even imply thdt <,,, G. In order to see thidetr
be a decreasing hazard rate function suchttt@t) > 1[e.g., r(t) =t~1], and let
s(t) =1 (i.e, the hazard rate function of a standard exponential random vayiable
Then (3.4) holds butr (t) is not larger than or equal &it) for all t > 0.

Remark 3.9:1tis also of interest to note th&t=,, G does not imply3.6). In order
to see it let F be the uniform distribution of0,1] and letG be the gammg) dis-
tribution. Then

g(t) te™, 0=t=1

f(t) |oo, t>1,

and this is increasing in(i.e.,, F =, G). However the correspondin&(t)/R(t) is
positive when =t =1, and |t is 0 whert > 1. Therefore (3.6) does not hold

Before we close this subsectioih is worthwhile to mention that Gupta and
Kirmani [7] showed that i andG are distribution functions associated with two
nonhomogeneous Poisson processes as described,ghdidf <. [=,,=.,] G if,
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and only if Ty, =c [=.,=su] To.n, Where=., =,, and=g, are the transform orders
described {20, Sect 3.C]. Using the idea of their proofve also obtain the fol-
lowing result Recall that two univariate random variabdandY, with distribution
functionsF andG, respectivelyare said to be ordered in the dispersive ordke-
noted byX =gisp Y OF F =44isp G) if F~2(B) — F *(a) = G"(B) — G *(a) when-
ever 0= o = B =1 (se€[20, Sect 2.B]). See also Propositiongin Section 4 for
a simple condition which implieB =, G.

THEOREM 3.10: Let F and G be distribution functions associated with two non-
homogeneous Poisson processes as described earlier, Fleq, G if and only if
Ty =gisp Iz,nforalln=1.

Proor: Fix ann =1, and denote by, ,, andF, , the distribution functions of; ,
andT,,,, respectivelyRecall from(3.3) that

FLn(t) = ‘I’n(F(t)) and FZ,n(t) = ‘!/n(G(t)),
wherey,(u) =T, (—log(1 — u)), u € [0,1]. Therefore
Foa(Fun() —t= (yn(G) (Yn(F(1) —t=G*(F(1)) —t, t=0.

Thus from (2.B.6) in [20], it is seen thaF =g, G if and only if Ty n =gisp T, n-
|

3.2. Epoch Times of Nonhomogeneous Pure Birth Processes

In this subsectionwe derive stochastic comparison results of epoch times of two
nonhomogeneous pure birth procesSasconsider two such processé@slexed by

i = 1,2, parameterized by the s€ts, ,, n = 1} of hazard rate functions that satisfy
(2.1). The corresponding epoch times will be denoted By Qo =T 1 =T, = ---.

In the sequelwe will use the representation described2rb) and(2.6); that is let
{Yi.n,n=1}, 1 =1,2, be two sets of independent absolutely continuous nonnegative
random variablgsvhereY; , has the hazard rate function,. If we define

-ri,l = VY1, (3.8)
-ri,n:[Yi,n|Yi,n>T-i,n71]a I'IZZ, (39)

then fori =1,2, the joint distribution of thd; ,'s is the same as the joint distribution
of theT; 's.

The first resultwhich we include for the sake of completiagives conditions
under which the epoch times of the two nonhomogeneous pure birth processes are
ordered according to the usual stochastic ar@ieis result may be compared with
Theorem 3L.

THEOREM 3.11: Let the T,'s be the epoch times of the two nonhomogeneous pure
birth processes parameterized by the dets, n = 1} of hazard rate functions. Let
{Y.n,n=1},i =12, be two sets of independent absolutely continuous nonnegative
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random variableswhere Y , has the hazard rate function f. If Y, ; =4 Y, and if
Y1j =n Y,j forj =2, then

(Mo Tizsee, Ton) =t (T, Toz, e, Ton), N= 1 (3.10)

Proor: We will show that(Ty 1, Tr ,..., Ty n) =ct(To1, To2,..., To.n), where thef s
are defined in(3.8)and(3.9). The result then follows from the fact that the joint
distribution of theT; ,'s is the same as the joint distribution of tfi'gn’s. LetK ,
denote the survival function of ; that is K ,(t) = exp[— [y ;. »(u) du], t = 0. We
will apply Theorem 4B.4 in [20]. Note that forj = 2, we have

[-rl,j |fL1 = t1,-|A-1,2 = t2,~~-,-r1,j—1 =t_1] =YYy > ti_1],
and this is stochastically increasing §n, (see[20, Thm. 1.A.11]). Therefore

(TL1, Ti2,..., Ton) is CIS (conditionally increasing in sequenceee[20, p. 117]).
Next, note that

[Ty Tor =t Too=to ..., T 1 =1t4]
=YY > 4]
=al Yol Yo >t 1]
= [T Tor=t, oo =ts,..., Toj 1=t 4],
where the inequalitywhich is equivalent to
Kij(w _ Ka(w
Kij(to1)  Kyj(tioa)’
follows from Yy ; =<, Y,,j. Thus (3.10) follows from Theorem 8.4in[20]. ®

u= tj—l’

Using some general ideas from Shaked and SZ&tlj, it is possible to con-
struct an alternativyealthough lengthiemproof of Theorem 3.1

Proceeding now to comparisons in the sense of the hazard rate stochastic order
we first have the following result which may be compared with Theore3n 3

THEOREM 3.12: Let T ,and Y , be as in Theorer8.11 If Yy ; =, Y, forj =1,
then(Ty 1, Tio,.. o, Ton) =i (T1, To2,.., Ton) foralln =1

Proor: The proof is similar to the proof of Theoren83Fix ann= 1. Letn.|.(-|-)
be the multivariate conditional hazard rate functions associated with
(T11, To2,-.., Ton) @nd leta | (-|-) be the multivariate conditional hazard rate func-
tions associated withiT, 1, T2 2, ..., Tz.n)-

In order to obtain an explicit expression fiy, (ult)) in (3.2), we first note as
in the proof of Theorem .3, thatl must be of the fornh = {1,2,..., m} for somem.
Then we have

Fomea(U) ifi=m+1

Aip(ulty) :{

0 ifi >m+1,
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wherel = {1,2,..,m}. Similarly, in 7;,us(ulsyy) in (3.2), we must havd =
{1,2,...,mfandJ={m+ 1L m+ 2,...,k} for somek = m. Then we have

77i|uJ(l-||S|uJ):{o ifi>k+1

wherel ={1,2,...,m}andJ={m+1, m+2,..., k}. The rest of the proof follows the
lines of the proof of Theorem.3. u

Finally, we obtain a comparison result in the sense of the multivariate likelihood

ratio order The following result extends Theorem63to nonhomogeneous pure
birth processesAt a first glance condition(3.11) in the following theorem looks
restrictive however in many applicationgsee Sect5), the hazard rate functions
ri1,r12,... are proportiongland the hazard rate functiong,, r, »,. .. are also pro-
portional and then(3.11) can often be verified

THEOREM 3.13: LetT ,and Y ,beasin TheoreB.11 If Yy ; =y Yo, ifrp/ry;is
increasing and if

Mo jea(t) = rp (1) =1y jq(t) —ry;(t), t=0, (3.11)
forj=1then(Ty 1, Tio,..., Ton) =i (T2, T2 2,0, To ) foralln = 1.

Proor: In this proof we denote byK; ,, andk; , the survival and the density func-
tions of Y, ,, respectively that is Ki ,(t) = exp[—[ri»(u) du] and k; ,(t) =
Fi.n(t) expl—forin(u) dul, t = 0.

First note that by Lemma.3, we haveY, j =, Y, j, ] = 1; thus the stated result
is obvious forn = 1. Sg, let n = 2. Fori = 1,2, the density functiorh; ,, of
(Ti1, Ti2,-., Tin) is given by

1ok (X)
hi,n(xl,xz,.-.,xn)=jljlm Kin(Xa) forx;=x,=--- =Xx,.

Note that conditior{3.11) can be written as

Ko, (1) Ky joa(t)
K, j+a(H) Ky (t)

Consider now(xq, Xo, ..., X,) and(yi, Yo,..., ¥n) such thatx; = x, = -+ = X,
andy, =y, = ... =y,. We want to prove that

is increasing irt = 0. (3.12)

_]_;[ J+1(X |:| ) k:Ln( n yn) ]___[ K21+1(X D ) k2,n(Xn Dyn)
. %) koY)
1;[ K J+1( ) kl,n( n) H K21+1( ) k2,n(yn)- (313)
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LetE={j=n—1:x =y} Then (3.13) reduces to

11()/1) K2]( ) >
r ( ) kn(XnD n)annDn
(,QE SR VR ) )R Bk Do)
LJ( X;) 2j(yj)
r r = | Kua(Xn)Ka n(Yn),
(EE“( " Kapeatg) 1 Koty )) o)
?(nd this follows from the monotonicity ab ; /r j, from (3.12), and fromY, s:
2]

4. STOCHASTIC COMPARISONS OF INTEREPOCH INTERVALS
4.1. Interepoch Intervals of Nonhomogeneous Poisson Processes

As in Section 3L, consider two nonhomogeneous Poisson processes with intensity
functionsr ands. Denote the associated density functipsse Eq(2.2)] by f andg
and the associated distribution functions Byand G. Finally, let the associated
cumulative hazard functions be denoted®wndS; that is R(t) = fér(u) duand
S(t)= fé s(u)du, t=0. LetTI »be as defined in SectionB The interepoch intervals
will be denoted byXj , = Tin — Tin-,N=1L with T ,=0,i =1,2.

In this subsectioywe derive some results which stochastically compare vectors
of Xy j’s with vectors ofX; ;’s

First, for the sake of completignwve devote some space to a discussion on
comparisons of interepoch intervals in the sense of the usual stochasticTdreer
following result is essentially a restatement of Propositiob03of Shaked and
Szekli[21].

TueoreM 4.1: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described ealiEr=, G, then

(Xp1, X250, X1n) =st(Xo1, X220, X20), N=1 (4.1)

Roughly speakingnequality(4.1) for n = oo is denoted in21] asN; =4, N,
whereN; andN, are the underlying nonhomogeneous Poisson processes

Asimilar result worth mentioning is the following can be proven using Theo-
rem 27 of Shaked and SzeKl21].

THEOREM 4.2: Let r and s be intensity functions associated with two nonhomo-
geneous Poisson processes as described earlier. If

r(uy=s(u+x), u=0,x=0, 4.2)
then
(Xp1, X120 X n) =st(Xo1, X22,..0,X50), N=1

Note that(4.2) holds if F =, G and ifr or sis decreasingji.e., F or G is DFR
(decreasing failure rate Thus Theorem 4 is a stronger result than Theorem 8 of

https://doi.org/10.1017/50269964801152058 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964801152058

NONHOMOGENEOUS PROCESSES 213

Gupta and Kirmani|i7] or Theorem 4 of Kochar{11]. In fact, we have the follow-
ing relationship among the conditions of Theorentsahd 42.

ProrosiTiON 4.3: Let F and G be two distribution functions with respective hazard
rate functions r and s. 1f4.2) holds then F=s, G.

Proor: Condition (4.2) implies thatr (u) = s(u); that is F =,,, G. This, in turn,
impliesF = G and therefore F ~*(a) = G () for all « € (0,1).

Now, (4.2) therefore gives (F ~*(a)) = s(G™(a)) for all « € (0,1), which is
equivalent toF =g, G by (2.B.8) in [20]. u

From Proposition &, it is seen that Theorem2 follows from Theorem 4.
Proposition 43 also strengthens a result of Bartoszev&zand Bagai and Kochar
[1], which is stated as Theoren®13(a) in [20]. This is so because F =,,, G and
if r or sis decreasinghen(4.2) holds

Condition(4.2) defines what can be called a “shifted hazard rate order” in the
spirit of Shanthikumar and Yd@2], who defined a “shifted likelihood ratio ordér
However it should be noted that where@k?2) is the same aX <, [Y — x|Y > x] for
all x = 0, whereX andY have the hazard rates functionands, respectivelythe
condition of Shanthikumar and Yao is the sam@Xs- x| X > x] =, Yforallx= 0.

See als¢13].

We now proceed to a comparison of the interepoch intervals in the sense of the

hazard rate order

THEOREM 4.4: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functions r and s. If F=;,, G and ifF and G are logconvex (i.eDFR), and if (3.4)

holds then X , =, X, , for each n= 1.

Proor: For the purpose of this prooive denote- by F, Gby F,, r byry, shyr,,
and the cumulative hazard functions are denote®byhat is R;(t) = fé ri(u) du,

i =12 Let Gi,n denote the survival function of; ,,,i = 1,2. The stated result is
obvious forn =1, so let us fix am = 2. Then from (2.4), we obtain

Gin(t) = fomr (s) " R ()) F(s+t)ds t=0,i {12} (4.3)

Condition(3.4) means that
ri(t) is TR, (totally positive of order Rin (i, t)

(a nonnegative functioh of two variablesx andy, say is called TR if h(x’,y)/
h(x, y) is increasing iry whenevex =< x’). Condition(3.4) also implies thaR(t)/
Ri(t) is increasing int = 0; that is Ri(t) is TR, in (i, t). Since a product of TP
kernels is TR, we get that

n-2(t)

rA(
(n—2)!

ri(t) is TP, in (i, t).
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The assumptioir, =<, F, implies that
F.(s+1t)is TR in (i,s) and in(i, t).
Finally, the logconvexity of, and ofF, means that
Fi(s+1t)is TR in (s t).
Thus by Theorem 8L of Karlin[10, p. 123], we get thaG; ,(t) is TR, in (i, t); that
iS, X1,n =nr X2.n- u

Next, we discuss the likelihood ratio orddrhe following result gives condi-
tions under which the interepoch intervals of the two processes are comparable in the
multivariate likelihood ratio order

THeOREM 4.5: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding density func-
tions f and g and with corresponding hazard rate functions r and s.3,FG, if f

and/or g are logconvex, if r and/or s are logconvex, and if (3.4) holds, then

(XZL17 X1,27"'7 X:Ln) S|r (X2,17 X2,27"" X2,n)7 n= 1

Proor: First note that by Lemma.3, we haveF =, G.

We will give the proof wherf andr are logconvexthe proofs of the other cases
are similarNote that the logconvexity dfandr implies thatf andr are positive over
(0,00). The result is obvious fan = 1; thus let us fix ann = 2. The density function
l1.nOf (Xy1, X12,..., X1.n) IS given by

n—1
lpn(Xgyeeos Xn) = TLr(Xg 4 o %) F (X + o+ +X,), %=0,k=1...,n
j=1

The density functiom, , of (X5,1, X5.2,..., X5,1) is given by

n—1
lon(Xgyee s Xn) = [T S(xe+ - +%)9(X + -+ +X,), X%=0,k=1...,n
j=1

(4.5)
The logconvexity of implies that
f(xOys + -+ + X, Oya) F(x Oy + <o« + %, 0y,)
=f(Xy+ - X)) (Y + - + ) (4.6)

forall x,=0andy,=0,k=1,...,n. Similarly, the logconvexity of implies forj =
1,...,n—1 that

r(xg Oy + - +x0y)r(x, Oy + -+ +x 0y)
=Zr(Xg+ o X))y + - +y;) 4.7)
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forall x,= 0 andy, =0, k=1,...,j. Therefore

ll,n(xlmyl’---vxnDyn)lz,n(xlmyl’---,xnDyn)
n—1
= [Trx Oy + oo 4% 0y) f(x Oyy + -+ + X, Oyp)
j=1
n—1

X H S(x Oy, + -+ +x 0y)g(x Oy, + -+ + %, Oyn)
j=1

nls(x, Oyy + -+ +x 0y)

=11

=1 r(x Oy + -+ + % 0y)

F(Xg+ - +X)r(ys + -+ +y;)

g(XIDy1+ +XnDyn)
f(x g Oys + - +x,0y5)

f(X1+ +Xn)f(yl+ +yn)

"ls(y, ety
Syt )

« gly: + -+ +¥n)
flyr+ - +yn)

= ll,n(xlw-"Xn)lz,n(ylw--,yn),

F(Xg+ - +X)r(ys + -+ +y;)

f(Xg+ - +x)f(yr + - +yn)

where the first inequality follows fron.6) and(4.7), and the second inequality
follows from (3.4) and fromF =,, G (i.e, g/f is increasing This gives the stated
result [ |

Remark 4.6:1In light of the conditions in TheoremB3, the following question is of
interestLetf be a density function of a nonnegative random varigntel letr be the

corresponding hazard rate functiddoes the logconvexity of imply the logcon-

vexity of r, and vice versa? It turns out that neither is the c&ast, consider the
hazard rate function

rit)y=e', t=0.

Here logr is lineat so it is logconvexThe corresponding density function is given
by

f(t) = el*t e, t=0,

and a computation of the second derivative showsfthate is strictly logconcave
(sed14]), and thus it is not logconvein order to see thatf‘is logconvex” does not
imply that “r is logconvex’ consider the hazard rate function

© 1 1 t+2 (=0
r e — = 5 = .
t+3 (t+3)2 (t+3)?
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Thisis indeed a hazard rate function since it is nonnegadive it integrates teo. A
straightforward computation shows tffa€/dt?) logr (t) < 0for0<t < 2y2 — 2.
Thereforer is not logconvexThe corresponding density function is

ft_3(t+2) { t } t=0
O=53 P 3t+3 ) =°

A straightforward computation gives

d? g (1) 2t + 10t% + 13t + 1
~ o _ ,
9 (t+ 3)3(t+ 2)?

dt?
and this is positive for ali = 0. Thus f is logconvex

Since the multivariate likelihood ratio order is closed under marginalization
(se€[20, Thm. 4.E.3(b)]), we get the following result as a corollary of Theorerf.4

CoroLLARY 4.7: Let F and G be distribution functions associated with two non-
homogeneous Poisson processes as described earlier, with corresponding density
functions f and g and with corresponding hazard rate functions r and s=lf,FG,

if f and/or g are logconvex, if r and/or s are logconvex, and if (3.4) holds, then
Xin =y Xznforalln=1

The next result gives different conditions under which the interepoch intervals
of the two processes are comparable in the likelihood ratio order

THEOREM 4.8: Let f and g be density functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functionsrands. If =, G, if fand g are logconvex, and if (3.4) holds, then &,

Xz, for each n= 1.

Proor: First, note that by Lemma.8, we haveF =, G.

As in the proof of Theorem.4, for the purpose of the present proof we denote
f by f,, gbyf,, r byry, sbyr,, and the cumulative hazard functions are denoted by
Ri,i =1,2. Letg; , denote the density function of ,,i = 1,2. The stated result is
obvious forn =1, so let us fix am = 2. From(2.4), we obtain

© Rin—2
0.0 = [ 1o o

fi(s+t)ds t=0,i=12

As in the proof of Theorem.4, we have that

RM2(t)
(n—2)!

ri(t) is TR, in (i,t).

The assumptiofr; =, F, implies that

fi(s+1)is TR, in (i,s) and in(i, t).

https://doi.org/10.1017/50269964801152058 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964801152058

NONHOMOGENEOUS PROCESSES 217

Finally, the logconvexity of, and off, means that
fi(s+1t)is TR, in (s 1).

Thus by Theorem 8L of Karlin [10, p. 123], we get thap; ,(t) is TR, in (i, t); that
iS, x1,n =i Xz,n- u

We close this subsection with a comparison result in the mean residual life
order Recall that two univariate random variablésndY, with distribution func-
tionsF andG, respectivelyare said to be ordered in the mean residual life order
(denoted bX <,y YOrF =, G) if E[X—t|X>t]=E[Y—t|Y>t]forallt's for
which these conditional expectations are defin@dcall also that a distribution
functionF is said to be IMRL(increasing mean residual lifé the mean residual life
at timet, defined as earligor, alternativelyas(f,” F(u) du)/F(t), is increasing in
t, for which the ratio is well defined

THEOREM 4.9: Let F and G be distribution functions associated with two nonhomo-
geneous Poisson processes as described earlier, with corresponding hazard rate
functions r and s, respectively. If£,, G, if F and G are IMRL and if (3.4) holds,

then X, =mn Xz, for each n= 1.

Proor: As inthe proof of Theorem.4, we denotehere Fby F,, GbyF,, r byr,, s
by r,, and the cumulative hazard functions are denote®bhy = 1,2. The stated
resultis obvious fon=1, so letus fixam= 2. The survival functiorG; ,of X; ,,i =
1,2, is givenin(4.3). From Theorem D.3in[20], it is seen that the stated result is
equivalent to

f G n(x) dxis TP, in (i, t);
t

that is to

foo AN F.(u) dudsis TP, in (i, t 4.8
. 0ri(s) =21 ) .. .(u)dudsis TR, in (i, t). (4.8)

Now, from the proof of Theorem .4, we know that(3.4) implies that
r;(s)[R"2(s)/(n—2)!]is TP, in (i,s). The assumptiofr, <., F, means that

Jm F.(u)duis TP, in (i,s) and in(i, t).

=s+t
Finally, the assumption thd is IMRL means that
f F.(u)duis TPy in (s t).
u=s+t

Thus (4.8) follows from Theorem &l in Karlin[10, p. 123]. u
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4.2. Interepoch Intervals of Nonhomogeneous Pure Birth Processes

In this subsectionas in Section 2, we consider two nhonhomogeneous pure birth
processedndexed byi = 1,2, parameterized by the sdfs ,, n = 1} of hazard rate
functions that satisfy2.1). The corresponding epochtimesare @, =T, ;=T , =

---, and the interepoch intervals axg, = T, — Ti.n—1,N = 1, with T = 0. Let
{Y.n,n =1}, 1 =1,2, be two sets of independent absolutely continuous nonnegative
random variablesvhereY; , has the hazard rate functiop,. Let'IA'i,n be as in(3.8)
and(3.9), and define

Xi,l = Yi,l’ (4.9)

)zi,n: [Yi,n_-IA—i,n—1|Yi,n>TAi,n—1]’ n=2. (410)
Then fori =A1,2, the joint distribution of theX; ,'s is the same as the joint distribu-
tion of the X; ’s. Let K; ,, denote the survival function of; ,; that is K; ,(t) =
exp[— [, ri.n(u) du]. Let k;, denote the density function of ,; that is k; (t) =

rin(t) exp[—féri,n(u) du],t = 0. Using (4.9) and(4.10) and extendind4.4), it is
easy to see thafor i = 1,2, the density functiof_, of (X 1, Xi »,..., Xi.n) IS given by

Kij

n—1 j _’ <J2XI> n
lin(Xg,. oo Xn) = H fij <2X'>+ ki,n<EXI>,
j=1 = Ki,Hl(Em) =

%=0k=1...,n.  (4.11)

In this subsectionwe obtain stochastic comparison resuits/olving interepoch
intervals in the sense of the usual and the multivariate likelihood ratio orders

The first result gives conditions under which the epoch times of the two non-
homogeneous birth processes are ordered according to the usual stochastic order
This result may be compared with Theorer.4

THEOREM 4.10: Let X , be the interepoch intervals of two nonhomogeneous pure
birth processes as described earlier. If;Y=¢ Y, ; and if

roj(u)=ry;(u+x), u=0,x=0,j=2, (4.12)
then
(Xp1 Xp 250003 X n) =6t (X1, X220, X20), N=1. (4.13)

Proor: The result is obvious when=1. So fix ann= 2. Letx; = x, =0,k =
1,2,...,n.Now, forj =2,...,n, we have

i1 -1
[X1jl X1 = Xgpee, Xpjo1 = X1] = |:Y2Lj — D XY > > Xk:|,
=1 =1

-1
[XZ,j |Xp1 = Xiseons Xojo1 = Xj'—l] = [YZ,j - 2 Xic
k=1

i—1
Yo > > X
k=1
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Denotez = 31} x, andz’ = 31} x(. Itis not hard to see tha#.12) implies that
[Y:LJ - Z|Y1’J' > Z] SS[ [YZ,j - Zl |Y2,j > Z,] (414)

whenever’ =z=0, = 2 (infact, (4.12) and(4.14) are equivalent Thus the stated
result follows from Theorem.B.3 in[20]. u

An alternative proof of Theorem.#0 can be provided using Theoren¥ 2n
[21]; howeverthe present proof is simpler

As a corollary of Theorem.40(see a comment following Theoren®d we see
thatif Yy = Yo1,if Yy j=n Y2;,] =2, andifYyjorY, jare DFRj = 2, then(4.13)
holds

The next result gives conditions under which the interepoch intervals are or-
dered in the multivariate likelihood ratio order

THEOREM 4.11: Let X , be the interepoch intervals of two nonhomogeneous pure
birth processes as described earlier. If\¥s, Yz j, ifro j /ry j isincreasing, if (3.11)
holds, and if i ; Ky j/Ky j+1, andky j, orro j, Kz /Kz, 41, and k ; are logconvex for
allj =1, then

(XZLL Xl,Za"" X:Ln) SIr (X2,1’ X2,2""’X2,n)’ n= 1

The proof of Theorem 41 is a straightforward extension of the proof of Theo-
rem 45, using(4.11) rather thar(4.4) and(4.5); we omit the details

It is worth mentioning thak; ;/K; ;1 is logconvex if and only if; j., —r; j is
increasing

5. SOME APPLICATIONS

In this sectionwe describe some applications of the results of Sections 3 .arttk4

list of applications that we provide is far from exhaustive and is given only as an
indication of the applicability of the mathematical results fact the results of
Sections 3 and 4 provide useful computable bounds in almost any area where non-
homogeneous pure birth processes are .used

5.1. Comparisons of Generalized Yule Birth Processes

A'Yule (or a lineay birth process is a pure birth process with jump intensity from
staten to staten + 1 of the form(n + 1) A, whereA > 0. Let us consider a general-
izationN; = {Ny(t), t = 0} of the Yule process in which the jump intensity at titne
given thatn jumps have occurred already of the form(n + 1) A(t) (depending on
t). LetN, = {N,(t), t = 0} be another such nonhomogeneous Yule process with jump
intensity(n + 1)n(t).

The generalized Yule process is a nonhomogeneous pure birth probassf
the distribution function§ andG, which are associated with the failure rate func-
tions andn of N; andN, described earliesatisfyF <, G (i.e., A(u) = (u) for all
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u=0),then by Theorem 3.1 or 312, itis seen that by timg there are stochastically
at least as many jumps M as there are ii,. This is an intuitively clear result that
can also be proven directliowever if, in addition toA(u) = n(u) (note that then
(3.11) holds tog, we also have tha#/A is increasingthen by Theorem .33, we
obtain the nontrivial fact that the vectors of the firsfjumps are ordered in the
multivariate likelihood ratio order and sharper inequalities lisét e.g., Eq. (5.1)).

If A andn satisfy(4.12) [i.e., A(u) = n(u+ x) for all x= 0 andu = 0], then by
Theorem 410, all the times between births ¥, are stochastically smaller than the
corresponding times between birthsNp.

A generalized Yule process may model the spread of a disedszen is the
number of infectives and(t) is the rate in which infectives pass the disease to new
individuals at timet; this rate in general depends on the calendar tirke-for ex-
ample it may change with the seasons of the yje&dr Consider now two nonhomo-
geneous Yule process&gth ratesA (t) andn(t), which model the spread of a disease
under two different health measures that are expected to control the spread
stochastic inequalities described earlier can direct a health official as to how to fight
the spread of a disease if the official can select between the two measures that control
the spread with respective rate&) andn(t).

A comparison of a nonhomogeneous Yule prodéseéwith intensitiesr; ,(t) =
(n+ 1)A(t)) with a standard Yule proce$s (with intensitiesr, (t) = (n + 1),
independent ot) can provide computable upper or lower bounds on various
probabilistic quantities of interest that are associated WjthThis is based on the
fact that the interepoch interval$, 1, X, 5, ..., X5, ... Of the standard Yule pro-
cessN, are independent exponential random variables with rat2s,...,ny,...,
and the epoch times; , are sums of these independexXy;’s. For example
suppose that we have under study a nonhomogeneous Yule pildcassabove
and suppose thak(t) is bounded from below by some constanti.e., A(t) = 7
for all t = 0). Define N, as the standard Yule process with the associated
rate n. Then by Theorem 31 or 312 and Theorem .40, we get(Ty4,...,
Tin) <et (To1,.--, Ton) @Nd (Xy1,..., X1n) =gt (Xa1,-..,Xz.n), and therefore
Ed(Tig,..., Ton) = Ed(Tog,..., Ton) @ndEd(Xy1,..., Xen) = Ed(Xo1,..., Xon)
for any increasing functiogh for which the expectations exidtor examplesince
ET,,=n"*ZL.i "% we can bouncET, , from above by

n
ETon=nt> it
i=1

Another useful example of a bound of this type is based on Theor&mf4
Bunge and Nagaraj@]. The authors give an explicit expression for the expected
value of the waiting time until theth record occurswhen the arrival process is a
standard Yule procesi§ in a particular application the arrival process is a nonhomo-
geneougrather than standaydule process and its associated rafe¢) is bounded
from below then the explicit expression in Theoreni 4f Bunge and Nagara[#]
provides an upper bound for the expected value of the waiting time untiitthe
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record occurs in that particular applicatidmother reference in which one can find

explicit expressions of probabilistic quantities of interest that are associated with a

standard Yule process is the article by Brown e{d]. When the rate\(t) that is

associated with the nonhomogeneous Yule process is bounded from below or from

above then these explicit expressions can be used as bounds for the corresponding

probabilistic quantities that are associated with the nonhomogeneous Yule process

In fact, Brown et al [5] study a Yule process with immigratidne., the intensity is

of the form(n + 1)y + 6); this process can be used to obtain bounds for a nonhomo-

geneous pure birth process with intensities of the fogth) = (n + 1) A(t) + u(t).
Consider again the nonhomogeneous Yule probesgth intensitiesr; ,(t) =

(n+ 1)A(t) and the standard Yule procels with intensitiesr, ,(t) = (n+ 1)n

that we described earlidf, in addition toA(t) = n, we also have that(t) is de-

creasingthenn/A(t) is increasingand by Theorem.33 we have(T, 5,..., Ty n) =i

(T2,1,- .-, T2.n). Then for examplewe have

E[d)(Tl,lv---,T:Ln)“'O = Tl,j Stjl7j = 17---9n]
= E[¢(T2,1’-~-’T2,n)|tjos T;=t,ji=1...,n] (5.1)

for all increasing functiongp, whenevert® < t*,j = 1,...,n (see Thm4.E.1 in
[20]). Such an inequality does not follpuwn general from the weaker condition
(To1,--+5 Tan) =at(T21,--., T2.n). In the next paragraplve describe a practical ap-
plication of (5.1).

When A(t) = 5 and A(t) is decreasingall the conditions of Theorem.%1
hold. In order to see jtwe first note that3.11) obviously holds becausg(t) = 7.
If k,; denotes the exponential density with rgig then it is easy to verify
thatr, j, Ky /K3 11, andk; ; are all logconvexThus from Theorem 411, we
obtain(Xy1,..., Xyn) =i (Xa.1,..., X2.n), WhereX, 1,..., X, are independent ex-
ponential random variableas described earliefhis stochastic inequality is use-
ful in situations where benefits are derived during any interepoch time interval
(such benefits can béor instancethe rates in which a working component yields
revenug. For example suppose that the benefit from a realization,..., X,)
of (Xy1,...,X1n) IS d(Xq,..., Xp), but that the benefits are derived only during
an initial period of length, in any interepoch intervalThen the expected ben-
efit from the first n interepoch intervals of the nonhomogeneous Yule process
is E[¢p(Xp1,-.-» Xen)[ Xei = to,i = 1,...,n], provided the expectation exists
When ¢ is increasing this expectation is bounded from above by
E[¢(X2,l,...,X2’n)|X2’i = to,i = 1,..., n]; this follows from (Xl,l,...,Xl,n) =i
(X2,1,..., X5, n) and from Theorem £.1 in [20]. The latter expectation is not hard
to compute becausk, ,..., X, , are independent exponential random variables

5.2. Comparisons of Load-Sharing Models

Considem items that share a lodd,(t) at timet. Acommon mode(see Schechner
[17]) is to assume that the failure rate of each item is thgh)/n. After i items have
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already failed each of the remaining — i items has a load ,(t)/(n —i). If we
denotery ;(t) = L,(t)/(n—i + 1), then it is seen that the failure tim@g; = T, , =
-- =T, ,are the epoch times of a nonhomogeneous pure birth prdoetds, be a

second load function shared hysimilar items

If L1(u) = L,(u) for all u= 0, then by Theorem 3L1 or 312, it is seen that by
timet, there are stochastically at least as many failures in the first model as there are
in the secondThis is an intuitively clear result that can also be proven directly
However if, in addition toL;(u) = L,(u) (note that theri3.11) holds tog, we also
have that ,/L, is increasingthen by Theorem 3L3, we obtain the nontrivial fact
that the vectors of the failure times are ordered in the multivariate likelihood ratio
order and sharper inequalities hold

If L1(u) = Ly(u+x) forall x=0andu= 0, then by Theorem 410, all the times
between failures in the first model are stochastically smaller than the corresponding
times between failures in the second model

If the loadL, is constant then some probabilistic quantities of interest can be
computed explicitlyThus whenL(t) is bounded from below or from abowee can
use the load-sharing model associated with a constairt order to bound some
probabilistic quantities of interest involving the model associated Wwith). For
example Eq. (4.9) of [15] gives an explicit expression for the mean lifetime of
a single member in a load-sharing model with a consttantf L,(u) = L, for all
u = 0 then using Theorems.21, 3.12, and 410, we see that4.9) of [15] provides
an upper bound on the corresponding expectation in the model associated with

Aload-sharing model with a constanbften describes the strength of a bundle
of fibers If the load on the bundle varies with tinje.g., the load may be different
during the day than during the nighthen the general modeéh whichL depends on
t, applies

5.3. Comparisons of Benefits Between Times of Minimal Repair

The repair times of an item that is continuously minimally repaired are the epoch
times of a nonhomogeneous Poisson process whose intensity function is the hazard
rate function of the lifetime distribution of the itersee for example Shaked and
Szekli[21].

Suppose that an engineer has to decide which of two items that are continuously
minimally repaired is to be used@he selected iterfwhich may befor example a
computeya car or an airplangcan then be used until its next failuléwe denote
by X a generic intrafailure intervathen it can be assumed that the benefit derived
from the item is an increasing functia X) of the length of the intervakee e.g.,

a discussion in Shaked and SzdgHiil, p. 1093)). If the choice of the engineer is
between théth interval of either of the two item$hen Theorems.4—48 can direct
the engineer in higher choice For exampleif the item is going to be used for the
whole duration of the intrafailure interyahen under the conditions of Theorem 4
or 4.2, we haveE[ ¢ (Xy ;)] = E[¢(X2,)], and thus the second item is preferafie
the item can be used only after some fixten-in time %, then under the conditions
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of Theorem 44, we haveE[ ¢ (Xy; — Xo)| X1i > Xol = E[(Xai — Xo) | Xa,i > Xol,

for any fixedx,, and thusagain the second item is preferaklley (1.B.5) in [20]).

Finally, if the item is going to be used only for a fixed subinteryal, x, ] say of the
intrafailure interval then under the conditions of Theorenb4r 48, we have
E[p(X1i — Xo)[Xo < Xyi = X1] = E[@(Xzi — Xo)[Xo < Xz; = X4], for any fixed
Xo < X1, and thus the second item is preferatidg (1.C.4) in [20]).
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