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In this paper, we analytically investigate multi-component Cahn–Hilliard and Allen–Cahn

systems which are coupled with elasticity and uni-directional damage processes. The free

energy of the system is of the form
∫
Ω

1
2
Γ∇c : ∇c + 1

2
|∇z|2 + W ch(c) + W el(e, c, z) dx with

a polynomial or logarithmic chemical energy density W ch, an inhomogeneous elastic energy

density W el and a quadratic structure of the gradient of damage variable z. For the corres-

ponding elastic Cahn–Hilliard and Allen–Cahn systems coupled with uni-directional damage

processes, we present an appropriate notion of weak solutions and prove existence results

based on certain regularization methods and a higher integrability result for strain e.

Key words: Cahn–Hilliard systems; Allen–Cahn systems; Phase separation; Damage;

Elliptic-parabolic systems; Energetic solution; Weak solution; Doubly nonlinear differential

inclusions; Existence results; Rate-dependent systems; Logarithmic-free energy

1 Introduction

Phase separation and damage are common phenomena in many fields, including material

sciences, biology and chemical reactions. Such microstructural processes take place to

reduce the total free energy, which may include bulk chemical energy, interfacial energy

and elastic strain energy.

The knowledge of the mechanisms inducing phase separation and damage processes

is very important for technological applications, as for instance in the area of micro-

electronics, due to the ongoing miniaturization. The materials used in this area are

typically alloys consisting of mixtures of several components (cf. [26]).

Phase separation and damage processes are usually described by two separate models in

the mathematical literature. To describe phase separation processes for alloys, phase-field

models of Cahn–Hilliard and Allen–Cahn type coupled with elasticity are well adapted. On

the other hand, damage processes for standard materials are often modelled as unilateral

processes within a gradient-theory [19]. A phase-field approach which describes both

phase separation and damage processes in a unifying model has been recently introduced

in [27].

* This project is partially supported by the DFG project A 3 ‘Modeling and sharp interface

limits of local and non-local generalized Navier–Stokes–Korteweg Systems.’
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The main objective of this work is to prove under general assumptions existence results

for multi-component systems where Cahn–Hilliard as well as Allen–Cahn equations are

coupled with rate-dependent damage differential inclusions for elastic materials. We are

interested in free energies of the system which may contain a chemical energy of logarithmic

or polynomial type, an inhomogeneous elastic energy and a quadratic term of the gradient

of the damage variable. To this end, we establish some regularization methods which

enable us to show existence results for gradient terms |∇z|p of the damage variable z

in the free energy even if the assumption p > n (n space dimension) is dropped. In

contrast to [27,30], now the physical meaningful term |∇z|2 can be treated (cf. [18,19]). In

addition, we also provide a higher integrability result for strain tensor. As a consequence,

the chemical-free energy may also have a logarithmic structure such that we are not

restricted to polynomial growth as in [27]. We focus on the modelling of rate-dependent

damage processes, but we would like to mention that the results of this work can be

extended to rate-independent systems (i.e. the dissipation potential is homogeneous of

degree one) by some modifications. In the following, we will introduce the model formally.

The elastic material we want to consider in this work is an N component alloy occupying

a bounded Lipschitz domain Ω ⊆ �n. To account for phase separation, deformation and

damage processes in one model, a state at a fixed time point is described by a triple

(u, c, z), where u : Ω → �n denotes the deformation, c : Ω → �N denotes the vector of

chemical concentrations and z : Ω → � denotes the damage variable. The meaning of

the variables and its governing evolutionary process is explained more explicitly below.

The mixture of the alloy is described by a phase field vector c = (c1, . . . , cN), where

element ck for k = 1, . . . , N denotes the concentration of component k. Therefore, we will

restrict the state space for c to the physically meaningful condition
∑N

j=1 cj = 1 in Ω. The

constraint ck > 0, k = 1, . . . , N, in Ω is also used for logarithmic chemical potentials (see

below).

If an alloy is cooled down below a critical temperature then usually there occur spinodal

decomposition and coarsening phenomena. Well established models for describing that

such effects are Cahn–Hilliard and Allen–Cahn equations, which describe mass preserving

and mass non-preserving phase separation in solids (cf. [1, 9, 10, 25, 28]) for modelling

aspects. Analytical investigations of Cahn–Hilliard equations can be found in [4,7,11,20–

22] and that for Allen–Cahn equations in [6,12,13]. The essential difference between these

two equations is that the Cahn–Hilliard equation is a fourth order parabolic evolutionary

equation expressible as a H−1 gradient flow of free energy with respect to c, whereas the

Allen–Cahn equation is a second order parabolic equation arising from an L2 gradient

flow. More precisely,

Allen–Cahn: ∂tc = −�
(

− div(Γ∇c) + W ch
,c (c) + W el

,c (e(u), c, z)
)
,

Cahn–Hilliard: ∂tc = div
(
�∇

(
− div(Γ∇c) + W ch

,c (c) + W el
,c (e(u), c, z)

))
.

(1)

Here W ch denotes the chemical energy density, W el is the elastic energy density, � is the

mobility matrix satisfying
∑N

l=1 �kl = 0 for all k = 1, . . . , N and Γ is the gradient energy

tensor, which is a fourth order symmetric and positive definite tensor, mapping matrices

from �N×n into itself.
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In this work, W ch may be a chemical energy density of polynomial type, i.e. W ch(c) =

W ch,pol(c), or of logarithmic type, i.e. W ch(c) = W ch,log(c) (see (A8)). Note that phase

separation only arises if matrix A in (A8) is non-positive definite, since the first term in

(A8) is convex.

Elastic behaviour is modelled by a deformation variable u so that each material point

x ∈ Ω from the reference configuration is located at x+ u(x). We use the assumption that

strain e is sufficiently small so that we can work with the linearized strain tensor given by

e(u) = 1
2
(∇u + (∇u)t). In this work, we will neglect inertia effects ρü and volume forces l.

Therefore, the momentum balance equation div(σ) + l = ρü from continuum mechanics

becomes a quasi-static force equation, i.e.

div(σ) = 0. (2)

The stress tensor σ is defined by W el
,e , i.e. as a derivative of elastic energy with respect to

strain.

Analytical results for multi-component Cahn–Hilliard equations coupled with elastic

deformations can be found in [20] whereas Allen–Cahn systems with elasticity are, for

instance, studied in [5]. Finite element error estimates of Cahn–Hilliard equations with

logarithmic-free energies and concentration-dependent mobilities are derived in [2]. Recent

numerical results for Cahn–Hilliard and Allen–Cahn equations can be found in [3]. It

turns out that different elastic moduli of phases in the mixture influence the rate of

coarsening and the morphology of phases decisively [14]. Numerical investigations of

elastic Cahn–Hilliard systems are conducted in [23].

The damage process we want to consider in this paper is uni-directional, i.e. it can

only increase in time and the material is not able to heal itself. The phase field variable

z satisfying 0 � z � 1 is interpreted as damage in a way that z(x) = 1 stands for a

non-damaged, and z(x) = 0 for a maximally damaged material point x ∈ Ω. We assume

that the damage in our model is not complete, which means that a maximal damaged part

has still elastic properties. These constraints lead to a differential inclusion formulation

for the evolution of z which relates the derivative of the energy dissipation of the system

depending on the rate of damage with the derivative of free energy with respect to z.

More precisely, we consider the doubly nonlinear differential inclusion (cf. [19]),

0 ∈ ∂ρ(∂tz) − Δz + W el
,z (e(u), z) + ∂I[0,∞)(z). (3)

The energy dissipation density due to damage progression is given by ρ where we assume

the structure

ρ(ż) = −αż +
β

2
|ż|2 + I(−∞,0](ż)

with α, β > 0. Because of the quadratic term β
2

|ż|2, the damage evolution is called rate-

dependent whereas β = 0 would correspond to rate-independent systems. See [15,29,31,32]

for analytical results on rate-independent damage and numerical experiments (without

phase separation). We also refer to [8, 17] for further analytical investigations of damage

models. In comparison to [27] we use a gradient-of-damage theory with the Laplacian Δz

in (3) instead of a p-Laplacian div(|∇z|p−2∇z) with p > n.
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In conclusion, the systems that we would like to consider in this work are governed by

(1), (2) and (3) and can be rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tc = −Sw in ΩT ,

w = �(−div(Γ∇c) + W ch
,c (c) + W el

,c (e(u), c, z)) in ΩT ,

div(σ) = 0 in ΩT ,

∂ρ(∂tz) − Δz + W el
,z (e(u), z) + ∂I[0,∞)(z) � 0 in ΩT ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(S0)

where w denotes chemical potential. Here matrix � denotes the orthogonal projec-

tion of �N onto the tangent space TΣ = {x ∈ �N |
∑N

k=1 xk = 0} of affine plane

Σ := {x ∈ �N |
∑N

l=1 xk = 1}. The operator S determines whether we have an Allen–

Cahn- or a Cahn–Hilliard-type diffusion of the system. More precisely,

Allen–Cahn: S : L2(Ω; �N) → L2(Ω; �N), S(f) := �f,

Cahn–Hilliard: S : H1(Ω; �N) →
(
H1(Ω; �N)

)	
, S(f) := 〈�∇f,∇·〉L2 .

(4)

In the Cahn–Hilliard case, operator S is invertible when restricted to S : Y → D, where

spaces Y and D are defined as follows:

Y :=
{
c ∈ H1(Ω; �N) |

∫
Ω

c = 0,

N∑
k=1

ck = 0
}
,

D :=
{
c	 ∈

(
H1(Ω; �N)

)	 | 〈c	, c〉(H1)	×H1 = 0 for all c = d(x)(1, . . . , 1),

where d ∈ H1(Ω) and for all c = ek, k = 1, . . . N
}

ek : kth unit function. (5)

We need to impose some restrictions on mobility matrix �. We assume that � is

symmetric and positive definite on the tangent space TΣ. In addition, due to constraint∑N
k=1 ck = 1, � has to satisfy the property

∑N
l=1 �kl = 0 for all k = 1, . . . , N. Note that

� = ��.

We abbreviate DT := (0, T ) × D and (∂Ω)T := (0, T ) × ∂Ω, where D ⊆ ∂Ω with

Hn−1(D) > 0 denotes the Dirichlet boundary. The initial-boundary conditions (IBC) of

our systems are summarized as follows:

c(0) = c0 in Ω, σ · −→ν = 0 on (∂Ω)T \ DT ,

z(0) = z0 in Ω, Γ∇c · −→ν = 0 on (∂Ω)T ,

u = b on DT , ∇z · −→ν = 0 on (∂Ω)T

(IBC)

and in addition for Cahn–Hilliard systems

�∇w · −→ν = 0 on (∂Ω)T , (IBC)

where −→ν is the unit normal on ∂Ω pointing outward and b is the boundary value function

on the Dirichlet boundary D. The initial values are subject to 0 � z0 � 1 and c0 ∈ Σ∩�N
>0

a.e. in Ω. In the following, we assume that b can be suitably extended to a function on

ΩT .
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The paper is organized as follows. In Section 2, we introduce an appropriate notion of

weak solutions for the system (S0). To handle the differential inclusion rigorously, we adapt

the concept of energetic solutions originally introduced in the context of rate-independent

systems (see for instance [29]) to phase separation systems coupled with rate-dependent

damage. This approach was first presented in [27]. The main result and their assumptions

are stated at the end of Section 2.

In Section 3, we prove existence of weak solutions for the regularization of system (S0)

expressed in classical formulation as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tc = −Sw in ΩT ,

w = �(−div(Γ∇c) + W ch,pol
,c (c) + W el

,c (e(u), c, z) + ε∂tc) in ΩT ,

div(σ) + εdiv(|∇u|2∇u) = 0 in ΩT ,

∂ρ(∂tz) − Δz − εdiv(|∇z|p−2∇z) + W el
,z (e(u), z) + ∂I[0,∞)(z) � 0 in ΩT ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(Sε)

where W ch,pol and W el satisfy certain polynomial growth conditions and p > n. The

initial-boundary conditions are

(IBC) with (σ + ε|∇u|2∇u) · −→ν = 0 instead of σ · −→ν = 0. (IBCε)

It turns out that the weak solutions of the regularized system have the following regu-

larities: c ∈ H1(0, T ;L2(Ω; �N)), ∇u ∈ L4(ΩT ; �n×n) and ∇z ∈ Lp(ΩT ; �n) (with p > n

as above). These are constructed by adapting the approximation techniques developed

in [27].

The limit problem ε ↘ 0 for (Sε) corresponding to (S0) with W ch = W ch,pol is solved in

Section 4. The displacement field u obtained in this process has H1(Ω; �n)-regularity in

the first instance. To establish existence results for chemical-free energies of logarithmic

type, we prove a higher integrability result for ∇u in Section 5, which is based on some

ideas of [16, 20, 22].

Finally, Section 6 is devoted to logarithmic-free energies for concentration c. Following

the approach in [20, 22], we use a suitable regularization W ch,δ with polynomial growth

of the logarithmic-free energy density W ch,log to obtain a solution for (S0). Using this

regularization, the chemical component ck becomes strictly positive in the limit.

The notation that we will use throughout this paper is collected in the following:

Spaces and sets.

W 1,r(Ω; �n) standard Sobolev space,

W
1,r
+ (Ω) functions of W 1,r(Ω), which are non-negative almost everywhere,

W
1,r
− (Ω) functions of W 1,r(Ω), which are non-positive almost everywhere,

W
1,r
D (Ω; �n) functions of W 1,r(Ω; �n), which vanish on D ⊆ ∂Ω in the sense of traces,

BR(A) open neighbourhood of A ⊆ �n with thickness R,

QR(x0) open cube {x ∈ �n | ‖x − x0‖∞ < R},
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{f = 0} zero set {x ∈ Ω | f(x) = 0 a.e.} of function f ∈ L1(Ω) defined up to a

set of measure 0 and defined uniquely if f ∈ W 1,p(Ω) for p > n as

W 1,p(Ω) ↪→ C0(Ω),

ΩT set (0, T ) × Ω.

Functions, operations and measures.

[f]+ non-negative part of f, i.e. max{0, f},
IM indicator function of subset M ⊆ X,

χM characteristic function of subset M ⊆ X,

W,e classical derivative of function W with respect to variable e,

〈g	, f〉 dual pairing of g	 ∈ (W 1,r(Ω; �n))	 and f ∈ W 1,r(Ω; �n),

∂ClE generalized Clarke’s sub-differential of E,

dE Gâteaux differential of E,

p	 Sobolev critical exponent np
n−p

for n > p,

diam(Q) diameter of subset Q ⊆ �n,

Hn Hausdorff measure of dimension n,

Ln Lebesgue measure of dimension n.

2 Existence theorem

2.1 Weak formulation

The weak notion, we will derive in this section for the doubly nonlinear differential

inclusion occurring in (S0), is inspired by the concept of energetic solutions for rate-

independent systems (see for instance [29]). In the rate-independent setting, the differential

inclusion is formulated by a global stability condition and an energy inequality. In [27], we

have introduced an approach which uses an energy inequality and a variational inequality

to handle rate-dependence coming from the viscosity term β
2

|ż|2 in the damage dissipation

density function ρ.

The corresponding Gâteaux-differentiable free energy Ẽ : H1(Ω; �n) × H1(Ω; �N) ×
(H1(Ω) ∩ L∞(Ω)) → � and the dissipation functional R̃ : L2(Ω) → � to system (S0) are

given by

Ẽ(u, c, z) :=

∫
Ω

1

2
Γ∇c : ∇c +

1

2
|∇z|2 + W ch(c) + W el(e, c, z) dx,

R̃(ż) :=

∫
Ω

−αż +
β

2
|ż|2 dx,

with viscosity constants α, β > 0. To account for the constraints of z, we extend functionals

Ẽ and R̃ above for analytical reasons by indicator functions:

E(u, c, z) := Ẽ(u, c, z) +

∫
Ω

I[0,∞)(z) dx, R(ż) := R̃(ż) +

∫
Ω

I(−∞,0](ż) dx.

If we equip space H1(Ω) ∩L∞(Ω) with norm ‖ · ‖H1∩L∞ := ‖ · ‖H1 + ‖ · ‖L∞ , the generalized
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sub-differential ∂Cl
z E at point (u, c, z) ∈ H1(Ω; �n) × H1(Ω; �N) × (H1(Ω) ∩ L∞(Ω)) is

∂Cl
z E(u, c, z) =

{
dzẼ(u, c, z) + r ∈ (H1(Ω) ∩ L∞(Ω))	

∣∣∣ r ∈ ∂IH1
+(Ω)∩L∞(Ω)(z)

}
. (6)

The inclusion L1(Ω) ⊂ (H1(Ω) ∩ L∞(Ω))	 will be later used for the construction of a

specific sub-gradient. Using property (6), the differential inclusion in (S0) can be rewritten

in a weaker form as

0 ∈ ∂Cl
z E(u(t), c(t), z(t)) + ∂żR(ż(t)).

The analytical basis for the formulation of a weak solution is the following proposition

(a proof of the related result can be found in [27]).

Proposition 2.1 Let (u, c, w, z) ∈ C2(ΩT ; �n × �N × �N × �) be a smooth solution satisfy-

ing (1) and (2) with the initial-boundary conditions. Then the following two conditions are

equivalent:

(i) 0 ∈ ∂Cl
z E(u(t), c(t), z(t)) + ∂żR(ż(t)) for all t ∈ [0, T ],

(ii) the energy inequality

E(u(t), c(t), z(t)) +

∫ t

0

〈dżR̃(∂tz), ∂tz〉 ds +

∫ t

0

〈Sw(s), w(s)〉ds

� E(u(0), c(0), z(0)) +

∫
Ωt

W el
,e (e(u), c, z) : e(∂tb) dx ds

for all 0 � t � T and the variational inequality

0 �
〈
dzẼ(u(t), c(t), z(t)) + r(t) + dżR̃(∂tz(t)), ζ

〉
for all ζ ∈ H1

−(Ω) ∩ L∞(Ω) and r(t) ∈ ∂IH1
+(Ω)∩L∞(Ω)(z(t)) and for all 0 � t � T .

If one of the two conditions holds then the following energy balance equation is satisfied:

E(u(t), c(t), z(t)) +

∫ t

0

〈dżR̃(∂tz), ∂tz〉 ds +

∫ t

0

〈Sw(s), w(s)〉ds

= E(u(0), c(0), z(0)) +

∫
Ωt

W el
,e (e(u), c, z) : e(∂tb) dx ds.

Remarks for Proposition 2.1. In contrast to [27], the energy inequality in (ii) compares

the energy at the beginning s = 0 with the energy at an arbitrary time s = t instead of

s = t1 with s = t2 for 0 � t1 < t2 � T .

Applying the chain rule on the right-hand side of

E(u(t), c(t), z(t)) − E(u(0), c(0), z(0)) =

∫ t

0

d

dt
Ẽ(u(s), c(s), z(s)) ds

and using (1) and (2) as well as the variational inequality in (ii), the ‘�’-part of the energy

balance can be shown.
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We will see that in our approach the mathematical analysis of (S0) requires several ε-

regularization terms (see (Sε)) to establish energy and variational inequality for differential

inclusion and to handle logarithmic-free energy. A transition to ε ↘ 0 will finally give us

a solution of the limit problem (S0).

Proposition 2.1 can also be formulated for the regularized system (Sε) with the regular-

ized energy

Ẽε(u, c, z) :=

∫
Ω

1

2
Γ∇c : ∇c +

1

2
|∇z|2 + W ch,pol(c) + W el(e, c, z) +

ε

4
|∇u|4 +

ε

p
|∇z|p dx,

Eε(u, c, z) := Ẽε(u, c, z) +

∫
Ω

I[0,∞)(z) dx,

and the initial-boundary conditions (IBCε). Notice that �∂tc = ∂tc because ∂tc(t, x) ∈ TΣ.

We can now give a weak notion of (Sε) and (S0). (The energy densities W ch,pol and W el

will satisfy some polynomial growth conditions, which are specified in the next section.)

Definition 2.2 (Weak solution for the regularized system (Sε)) We call a quadruple q =

(u, c, w, z) a weak solution of the regularized system (Sε) with the initial-boundary condi-

tions (IBCε) if the following properties are satisfied:

(i) The components of q are in the following spaces:

u ∈ L∞(0, T ;W 1,4(Ω; �n)), u|DT
= b|DT

,

c ∈ L∞(0, T ;H1(Ω; �N)) ∩ H1(0, T ;L2(Ω; �N)), c(0) = c0, c ∈ Σ a.e. in ΩT ,

z ∈ L∞(0, T ;W 1,p
+ (Ω)) ∩ H1(0, T ;L2(Ω)), z(0) = z0, ∂tz � 0,

and

w ∈ L2(0, T ;H1(Ω; �N)) for C–H systems

w ∈ L2(ΩT ; �N) for A–C systems.

(ii) For all ζ ∈ H1(Ω; �N) and for a.e. t ∈ [0, T ]:

∫
Ω

∂tc(t) · ζ dx =

{∫
Ω

�∇w(t) : ∇ζ dx for C–H systems∫
Ω

�w(t) · ζ dx for A–H systems.
(7)

(iii) For all ζ ∈ H1(Ω; �N) and for a.e. t ∈ [0, T ]:∫
Ω

w(t) · ζ dx =

∫
Ω

�Γ∇c(t) : ∇ζ + �W ch,pol
,c (c(t)) · ζ dx

+

∫
Ω

�W el
,c (e(u(t)), c(t), z(t)) · ζ + ε∂tc(t) · ζ dx. (8)

(iv) For all ζ ∈ W
1,4
D (Ω; �n) and for a.e. t ∈ [0, T ]:∫
Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) + ε|∇u(t)|2∇u(t) : ∇ζ dx = 0. (9)
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(v) For all ζ ∈ W
1,p
− (Ω) and for a.e. t ∈ [0, T ]:∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ +
(
W el

,z (e(u(t)), c(t), z(t)
)

− α + β(∂tz(t)))ζ dx

� −〈r(t), ζ〉, (10)

where r(t) ∈ (W 1,p(Ω))	 satisfies 〈r(t), z(t) − ζ〉 � 0 for all ζ ∈ W
1,p
+ (Ω).

(vi) Energy inequality for a.e. t ∈ [0, T ]:

Eε(u(t), c(t), z(t)) − Eε(u
0, c0, z0) +

∫
Ω

α(z0 − z(t)) dx

+

∫
Ωt

β|∂tz|2 + ε|∂tc|2 dx ds +

∫ t

0

〈Sw(s), w(s)〉 ds

�

∫
Ωt

W el
,e (e(u), c, z) : e(∂tb) dx ds + ε

∫
Ωt

|∇u|2∇u : ∇∂tb dx ds, (11)

where u0 is the unique minimizer of Eε(·, c0, z0) in W 1,4(Ω; �n) with trace u0|D = b(0)|D .

With the help of operator S, the diffusion equation (7) can also be written as∫
Ω

∂tc(t) · ζ dx = −〈Sw(t), ζ〉,

which will be used in the following.

Definition 2.3 (Weak solution for the limit system (S0)) A quadruple q = (u, c, w, z) is

called a weak solution of system (S0) with the initial-boundary conditions if the fol-

lowing properties are satisfied:

(i) The components of q are in the following spaces:

u ∈ L∞(0, T ;H1(Ω; �n)), u|DT
= b|DT

,

c ∈ L∞(0, T ;H1(Ω; �N)), c ∈ Σ a.e. in ΩT ,

z ∈ L∞(0, T ;H1
+(Ω)) ∩ H1(0, T ;L2(Ω)), z(0) = z0, ∂tz � 0

and

w ∈ L2(0, T ;H1(Ω; �N)) for C–H systems

w ∈ L2(ΩT ; �N) for A–C systems.

(ii) For all ζ ∈ L2(0, T ;H1(Ω; �N)) with ∂tζ ∈ L2(ΩT ; �N) and ζ(T ) = 0:

∫
ΩT

(c − c0) · ∂tζ dx dt =

∫ T

0

〈Sw, ζ〉 dt.
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(iii) For all ζ ∈ H1(Ω; �N) ∩ L∞(Ω; �N) and for a.e. t ∈ [0, T ]:∫
Ω

w(t) · ζ dx =

∫
Ω

�Γ∇c(t) : ∇ζ + �W ch
,c (c(t)) · ζ dx

+

∫
Ω

�W el
,c (e(u(t)), c(t), z(t)) · ζ dx.

(iv) For all ζ ∈ H1
D(Ω; �n) and for a.e. t ∈ [0, T ]:∫

Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) dx = 0.

(v) For all ζ ∈ H1
−(Ω) ∩ L∞(Ω) and for a.e. t ∈ [0, T ]:∫

Ω

∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t)) − α + β(∂tz(t)))ζ dx � −〈r(t), ζ〉,

where r(t) ∈ (H1(Ω) ∩ L∞(Ω))	 satisfies 〈r(t), z(t) − ζ〉 � 0 for all ζ ∈ H1
+(Ω) ∩ L∞(Ω).

(vi) Energy inequality for a.e. t ∈ [0, T ]:

E(u(t), c(t), z(t)) +

∫
Ω

α(z0 − z(t)) dx +

∫
Ωt

β|∂tz|2 dx ds +

∫ t

0

〈Sw(s), w(s)〉 ds

� E(u0, c0, z0) +

∫
Ωt

W el
,e (e(u), c, z) : e(∂tb) dx ds,

where u0 is the unique minimizer of E(·, c0, z0) in H1(Ω; �n) with trace u0|D = b(0)|D .

Note that both notions of weak solutions imply chemical mass conservation, i.e.∫
Ω

c(t) dx ≡ const.

2.2 Assumptions and main results

The general setting, the growth assumptions and the assumptions on the coefficient tensors

which are mandatory for the existence theorems are summarized below.

(i) Setting

Space dimension n ∈ �,

Components in the alloy N ∈ � with N � 2,

Regularization exponent p > n,

Viscosity factors α, β > 0,

Domain Ω ⊆ �n bounded Lipschitz domain,

Dirichlet boundary D ⊆ ∂Ω with Hn−1(D) > 0,

Time interval [0, T ] with T > 0
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(ii) Energy densities

Elastic energy density W el ∈ C1(�n×n × �N × �; �+) with

W el(e, c, z) = W el(et, c, z), (A1)

W el(e, c, z) � C(|e|2 + |c|2 + 1), (A2)

η|e1 − e2|2 � (W el
,e (e1, c, z) − W el

,e (e2, c, z)) : (e1 − e2), (A3)

|W el
,e (e1 + e2, c, z)| � C(W el(e1, c, z) + |e2| + 1), (A4)

|W el
,c (e, c, z)| � C(|e|2 + |c|2 + 1), (A5)

|W el
,z (e, c, z)| � C(|e|2 + |c|2 + 1). (A6)

Chemical energy densities W ch,pol,W ch,log ∈ C1(�N; �) with W ch,pol � −C,

|W ch,pol
,c (c)| � C(|c|2	/2 + 1), (A7)

W ch,log(c) = θ

N∑
k=1

ck log ck +
1

2
c · Ac, θ > 0, A ∈ �n×n

sym .

(A8)

(iii) Tensors

Mobility tensor � ∈ �N×N symmetric and positive definite on TΣ and

N∑
l=1

�kl = 0 for all k = 1, . . . , N,

Energy gradient tensor Γ ∈ L(�N×n; �N×n) symmetric and positive definite

fourth order tensor.

Remark 2.4 Due to the effect of damage on the elastic response of the material, W el is

often modelled by the following ansatz:

W el = (Φ(z) + η̃) Ŵ el,

where Φ : [0, 1] → �+ is a continuously differentiable and monotonically increasing

function with Φ(0) = 0 and η̃ > 0 is a small value.

A typically form of the elastically stored energy density Ŵ el is as follows:

Ŵ el(c, e) =
1

2

(
e − e∗(c)

)
: �(c)

(
e − e∗(c)

)
. (12)

Here e∗(c) denotes the eigenstrain, which is usually linear in c, and �(c) ∈ L(�n×n
sym) is a

fourth order stiffness tensor, which is symmetric and positive definite. The elastic energy

density is called homogeneous if the stiffness tensor does not depend on the concentration,

i. e. �(c) = �.

Note that the inhomogeneous elastic energy (12) fits into our setting with the previ-

ous growth assumptions (A1)–(A6). In particular, we are not confined to homogeneous
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elasticity as in [27]. There the more restrictive growth condition |W el
,c (e, c, z)| �

C(|e| + |c|2 + 1) is used instead of (A5).

The main results of this work are summarized in the following theorems.

Theorem 2.5 (Existence theorem – polynomial case) Let the above assumptions be satis-

fied. Then for every

b ∈ W 1,1(0, T ;W 1,∞(Ω; �n)),

c0 ∈ H1(Ω; �N) with c0 ∈ Σ a.e. in Ω,

z0 ∈ H1(Ω) with 0 � z0 � 1 a.e. in Ω,

there exists a weak solution q of the system (S0) with W ch = W ch,pol and the initial-boundary

conditions in the sense of Definition 2.3.

Theorem 2.6 (Existence theorem – logarithmic case) Let the above assumptions be satis-

fied and, in addition, let D = ∂Ω and Γ = γ Id with a constant γ > 0. Then for every

b ∈ W 1,1(0, T ;W 1,∞(Ω; �n)),

c0 ∈ H1(Ω; �N) with c0 ∈ Σ and c0
k > 0 a.e. in Ω for k = 1, . . . , N,

z0 ∈ H1(Ω) with 0 � z0 � 1 a.e. in Ω,

there exists a weak solution q of the system (S0) with W ch = W ch,log and the initial-boundary

conditions in the sense of Definition 2.3. In addition, ck > 0 a.e. in ΩT for k = 1, . . . , N.

Remark 2.7 Note that for Theorem 2.6 the assumptions (A2), (A5) and (A6) can be

replaced by

W el(e, c, z) � C(|e|2 + 1), (A2’)

|W el
,c (e, c, z)| � C(|e|2 + 1), (A5’)

|W el
,z (e, c, z)| � C(|e|2 + 1), (A6’)

for all c ∈ �N with 0 � ck � 1 and
∑N

k=1 ck = 1, all e ∈ �n×n
sym and all z ∈ � with

0 � z � 1.

3 Existence of weak solutions of (Sε)

The proof is based on [27]. Arguments similar to [27] are only sketched.

Since ε > 0 is fixed in this section, we omit the ε-dependence in the notation, e.g. here E
always means Eε and so on. Furthermore, in this section z0 is assumed to be in W 1,p(Ω).

1. Step: constructing time-discrete solutions.

Set u0 to be a minimizer of u �→ E(u, c0, z0) defined on the space W 1,4(Ω) with the

constraint u|D = b(0)|D in the sense of traces.
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Let the closed subspace Qm
M of H1(Ω; �n) × H1(Ω; �N) × W 1,p(Ω) be defined by

Qm
M =

⎧⎨
⎩

u ∈ H1(Ω; �n),

c ∈ H1(Ω; �N),

z ∈ W 1,p(Ω)

∣∣∣∣ u|D = b(mτ)|D,∫
Ω
c − c0 dx = 0 for C-H systems,

0 � z � zm−1
M .

⎫⎬
⎭

Based on the initial triple (u0, c0, z0), we construct (umM, cmM, zmM) for m = 1, . . . ,M recurs-

ively by minimizing the following functional �m
M : Qm

M → �:

�m
M(u, c, z) := Ẽ(u, c, z) + τR̃

(
z − zm−1

M

τ

)
+

τ

2

∥∥∥∥c − cm−1
M

τ

∥∥∥∥2

X

+
ετ

2

∥∥∥∥c − cm−1
M

τ

∥∥∥∥2

L2

, (13)

where X denotes the space D (see (5)) with the scalar-product

(c1 | c2)X :=

∫
Ω

�∇S−1c1 · ∇S−1c2 dx

for Cahn–Hilliard systems and X = L2(Ω; �N) with the scalar-product

(c1 | c2)X :=

∫
Ω

�c1 · c2 dx

for Allen–Cahn systems.

Note that the last regularization term in (13) is not necessary for Allen–Cahn

equations due to the term with the X-norm. To use a uniform approach, we consider

this term in both systems. By direct methods of calculus of variations the triple(
umM, cmM, zmM

)
:= arg min

(u,c,z)∈Qm
M

�m
M(u, c, z)

exists (cf. [27]). Furthermore, we set

wm
M :=

⎧⎨
⎩

−S−1
(

cmM−cm−1
M

τ

)
+ λmM for C–H systems,

−S−1
(

cmM−cm−1
M

τ

)
for A–C systems,

with the Lagrange multiplier λmM (associated with the mass constraint for C–H systems)

given by

λmM := −
∫
Ω

W ch,pol
,c

(
cmM
)

+ W el
,c

(
e(umM), cmM, zmM

)
dx.

We define the time incremental solutions as

qmM :=
(
umM, cmM, wm

M, zmM
)

and introduce the piecewise constant interpolations qM , q−
M, tM, t−M and the linear inter-

polation q̂M as

tM := min{mτ |m ∈ �0 and mτ � t},
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t−M := min{(m − 1)τ |m ∈ �0 and mτ � t},
qM(t) := qmM for t ∈

(
(m − 1)τ, mτ

]
,

q−
M(t) := qmM for t ∈

[
mτ, (m + 1)τ

)
,

q̂M(t) := βqmM + (1 − β)qm−1
M for t ∈

[
(m − 1)τ, mτ

)
and β =

t

τ
− (m − 1).

Due to the minimization properties of (umM, cmM, zmM), we establish the following vari-

ational formulas and energy estimate (cf. [27, Lemma 6.2]).

Lemma 3.1 (Euler–Lagrange equation, energy estimate) The functions qM , q−
M and

q̂M satisfy the following properties for all t ∈ (0, T ):

(i) For all ζ ∈ H1(Ω; �N): ∫
Ω

(∂tĉM(t)) · ζ dx = −〈SwM(t), ζ〉. (14)

(ii) For all ζ ∈ H1(Ω; �N):∫
Ω

wM(t) · ζ dx =

∫
Ω

�Γ∇cM(t) : ∇ζ + �W ch,pol
,c (cM(t)) · ζ dx

+

∫
Ω

�W el
,c (e(uM(t)), cM(t), zM(t)) · ζ + ε∂tĉM(t) · ζ dx. (15)

(iii) For all ζ ∈ W
1,4
D (Ω; �n):∫

Ω

W el
,e (e(uM(t)), cM(t), zM(t)) : e(ζ) + ε|∇uM(t)|2∇uM(t) : ∇ζ dx = 0. (16)

(iv) For all ζ ∈ W 1,p(Ω) with 0 � ζ + zM(t) � z−
M(t):∫

Ω

(ε|∇zM(t)|p−2 + 1)∇zM(t) · ∇ζ + W el
,z (e(uM(t)), cM(t), zM(t))ζ dx

+

∫
Ω

(−α + β(∂tẑM(t)))ζ dx � 0. (17)

(v) Energy estimate:

E(uM(t), cM(t), zM(t)) +

∫ tM

0

∫
Ω

−α∂tẑM +
β

2
|∂tẑM |2 +

ε

2
|∂tĉM |2 dx ds

+

∫ tM

0

1

2
〈SwM(s), wM(s)〉 ds − E(u0, c0, z0)

�

∫ tM

0

∫
Ω

W el
,e (e(u−

M + b − b−
M), c−

M, zM) : e(∂tb) dx ds

+ ε

∫ tM

0

∫
Ω

|∇u−
M + ∇b − ∇b−

M |2∇(u−
M + b − b−

M) : ∇∂tb dx ds. (18)
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2. Step: identifying convergent subsequences.

The energy estimate (v) in Lemma 3.1, growth condition (A4) and the Gronwall

estimation argument lead to a priori estimates for the energy E(uM(t), cM(t), zM(t))

and for ‖∂tẑM‖L2(ΩT ), ‖∂tĉM‖L2(ΩT ) and
∫ T

0
〈SwM(s), wM(s)〉 ds. By standard compactness

arguments and a compactness theorem from Aubin and Lions (cf. [34]), we deduce the

following weak convergence properties (cf. [27]).

Lemma 3.2 There exist a subsequence {Mk} and an element q = (u, c, w, z) satisfying

(i) from Definition 2.2 such that for a.e. t ∈ [0, T ]:

(i) uMk

	
⇀ u in L∞(0, T ;W 1,4(Ω)),

(ii) cMk
, c−

Mk

	
⇀ c in L∞(0, T ;H1(Ω; �N)),

cMk
(t), c−

Mk
(t) ⇀ c(t) in H1(Ω; �N),

cMk
, c−

Mk
→ c a.e. in ΩT ,

ĉMk
⇀ c in H1(0, T ;L2(Ω; �N)),

(iii) zMk
, z−

Mk

	
⇀ z in L∞(0, T ;W 1,p(Ω)),

zMk
(t), z−

Mk
(t) ⇀ z(t) in W 1,p(Ω),

zMk
, z−

Mk
→ z a.e. in ΩT ,

ẑMk
⇀ z in H1(0, T ;L2(Ω))

and

(iv) wMk
⇀ w in L2(0, T ;H1(Ω; �N))

wMk
⇀ w in L2(ΩT ; �N)

for C–H systems,

for A–C systems
as k → ∞.

Exploiting the Euler–Lagrange equations, we can even prove stronger convergence

properties. To proceed, we recall an approximation lemma from [27].

Lemma 3.3 ([27, Lemma 5.2]) Let q � 1, p > n and f, ζ ∈ Lq(0, T ;W 1,p
+ (Ω)) with

{ζ = 0} ⊇ {f = 0}. Furthermore, let {fM}M∈� ⊆ Lq(0, T ;W 1,p
+ (Ω)) be a sequence

with fM(t) ⇀ f(t) in W 1,p(Ω) as M → ∞ for a.e. t ∈ [0, T ]. Then there exist a

sequence {ζM}M∈� ⊆ Lq(0, T ;W 1,p
+ (Ω)) and constants νM,t > 0 such that

(i) ζM → ζ in Lq(0, T ;W 1,p(Ω)) as M → ∞,

(ii) ζM � ζ a.e. in ΩT for all M ∈ �,

(iii) νM,tζM(t) � fM(t) a.e. in Ω for a.e. t ∈ [0, T ] and for all M ∈ �.

If, in addition, ζ � f a.e. in ΩT , then condition (iii) can be refined to

(iii)’ ζM � fM a.e. in ΩT for all M ∈ �.

We are now able to prove strong convergence results by using uniform convexity

estimates.

Lemma 3.4 (Strong convergence of the time incremental solutions) There exists a

subsequence {Mk} such that for a.e. t ∈ [0, T ]:
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(i) uMk
, u−

Mk
→ u in L4(0, T ;W 1,4(Ω; �n)),

uMk
(t), u−

Mk
(t) → u(t) in W 1,4(Ω; �n),

uMk
, u−

Mk
→ u a.e. in ΩT ,

(ii) cMk
, c−

Mk
→ c in L2	 (0, T ;H1(Ω; �N)),

cMk
(t), c−

Mk
(t) → c(t) in H1(Ω; �N),

cMk
, c−

Mk
→ c a.e. in ΩT ,

ĉMk
⇀ c in H1(0, T ;L2(Ω; �N)),

(iii) zMk
, z−

Mk
→ z in Lp(0, T ;W 1,p(Ω)),

zMk
(t), z−

Mk
(t) → z(t) in W 1,p(Ω),

zMk
, z−

Mk
→ z a.e. in ΩT ,

ẑMk
⇀ z in H1(0, T ;L2(Ω))

as k → ∞.

Proof We omit the index k in the proof.

(i) We refer to [27, Lemma 5.9].

(ii) The weak convergence properties for cM , c−
M and ĉMk

follow from Lemma 3.2. It

remains to show strong convergence of ∇cM to ∇c in L2(ΩT ; �N).

By the compact embedding H1(Ω; �N) ↪→ L2	/2+1(Ω; �N) and Lemma 3.2, we get

‖cM(t)−c(t)‖L2	/2+1(Ω;�N ) → 0 as M → ∞ for a.e. t ∈ [0, T ]. The boundedness property

ess supt∈[0,T ]‖cM(t) − c(t)‖L2	/2+1(Ω;�N ) < C for all M ∈ � and Lebesgue’s convergence

theorem yield cM → c as M → ∞ in L2	/2+1(ΩT ; �N). Testing (15) with ζ = cM(t)

and ζ = c(t) gives after integration from t = 0 to t = T :∫
ΩT

�Γ∇cM : ∇cM dxdt =

∫
ΩT

wM · cM − �W ch,pol
,c (cM) · cM dxdt

−
∫
ΩT

�W el
,c (e(uM), cM, zM) · cM + ε∂tĉM · cM dxdt,∫

ΩT

�Γ∇cM : ∇cdxdt =

∫
ΩT

wM · c − �W ch,pol
,c (cM) · cdxdt

−
∫
ΩT

�W el
,c (e(uM), cM, zM) · c + ε∂tĉM · cdxdt.

Passing to M → ∞ and comparing the right sides of the equations show∫
ΩT

�Γ∇cM : ∇cM dxdt →
∫
ΩT

�Γ∇c : ∇cdxdt.

By using the properties �∇cM = ∇cM and �∇c = ∇c, we eventually obtain∫
ΩT

Γ∇cM : ∇cM dx dt →
∫
ΩT

Γ∇c : ∇cdx dt.

We end up with ∫
ΩT

Γ (∇cM − ∇c) : (∇cM − ∇c) dx dt → 0.

Therefore, ∇cM → ∇c in L2(ΩT ; �N) since Γ is positive definite.

(iii) Applying Lemma 3.3 with f = z and fM = z−
M and ζ = z gives an approximation
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sequence {ζM} ⊆ Lp(0, T ;W 1,p
+ (Ω)) with the properties:

ζM → z in Lp(0, T ;W 1,p(Ω)), (19a)

0 � ζM � z−
M for all M ∈ �. (19b)

The estimate

Cuc|∇zM − ∇z|p � (|∇zM |p−2∇zM − |∇z|p−2∇z) · ∇(zM − z)

where Cuc > 0 is a constant, and equation (17) tested with ζ = ζM(t)− zM(t) (possibly

due to (19b)) yields:

Cuc

∫
ΩT

ε|∇zM − ∇z|p dxdt +

∫
ΩT

|∇zM − ∇z|2 dxdt

�

∫
ΩT

(
(ε|∇zM |p−2 + 1)∇zM − (ε|∇z|p−2 + 1)∇z

)
· ∇(zM − z) dxdt

�

∫
ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(zM − ζM) dxdt

+

∫
ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(ζM − z) − (ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

�

∫
ΩT

(W el
,z (e(uM), cM, zM) − α + β∂tẑM)(ζM − zM) dxdt

+

∫
ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(ζM − z) − (ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

� ‖W el
,z (e(uM), cM, zM) − α + β∂tẑM‖L2(ΩT )︸ ︷︷ ︸

bounded

‖ζM − zM‖L2(ΩT )

+ (ε‖∇zM‖p−1
Lp(ΩT ) + ‖∇zM‖Lp/(p−1)(ΩT ))︸ ︷︷ ︸

bounded

‖∇ζM − ∇z‖Lp(ΩT )

−
∫
ΩT

(ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

Due to (19a) and zM
	
⇀ z in L∞(0, T ;W 1,p(Ω)) as well as zM → z in L2(ΩT ), each

term on the right-hand side converges to 0 as M → ∞. �

3. Step: establishing a precise energy inequality.

In this step we establish an asymptotic energy inequality, which is sharper than the

energy inequality in (18). Note that compared with (18), the factor 1/2 in front of

〈SwM(s), wM(s)〉 is missing. To simplify notation, we omit the index k in the following.

Lemma 3.5 For every t ∈ [0, T ]:

E(uM(t), cM(t), zM(t)) +

∫ tM

0

∫
Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 dx ds

+

∫ tM

0

〈SwM(s), wM(s)〉 ds − E(u0, c0, z0)
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�

∫ tM

0

∫
Ω

W el
,e (e(u−

M + b − b−
M), c−

M, zM) : e(∂tb) dx ds

+ ε

∫ tM

0

∫
Ω

|∇u−
M + ∇b − ∇b−

M |2∇(u−
M + b − b−

M) : ∇∂tb dx ds + κM

with κM → 0 as M → ∞.

Proof Applying the estimate �m
M(qmM) � �m

M(um−1
M + bmM − bm−1

M , cmM, zmM) for m = 1 to tM
τ

yields (cf. [27, Lemma 6.10]):

E(uM(t), cM(t), zM(t)) − E(u0, c0, z0)

� ε

∫ tM

0

∫
Ω

|∇(u−
M + b(s) − b−

M)|2∇(u−
M + b(s) − b−

M) : ∇∂tb(s) dx ds

+

∫ tM

0

∫
Ω

W el
,e (e(u−

M + b − b−
M), c−

M, z−
M) : e(∂tb) dx ds

+

∫ tM

0

∫
Ω

W el
,c (e(u−

M + bM − b−
M), ĉM, z−

M) · ∂tĉM dx ds︸ ︷︷ ︸
(	)1

+

∫ tM

0

∫
Ω

Γ∇ĉM : ∇∂tĉM + W ch,pol
,c (ĉM) · ∂tĉM dx ds︸ ︷︷ ︸

(	)2

+

∫ tM

0

∫
Ω

W el
,z (e(u−

M + bM − b−
M), cM, ẑM)∂tẑM dx ds︸ ︷︷ ︸

(		)1

+

∫ tM

0

∫
Ω

ε|∇ẑM |p−2∇ẑM · ∇∂tẑM + ∇ẑM · ∇∂tẑM dx ds︸ ︷︷ ︸
(		)2

. (20)

The elementary inequalities

(|∇ẑM |p−2∇ẑM − |∇zM |p−2∇zM) · ∇∂tẑM � 0 and (∇ẑM − ∇zM) · ∇∂tẑM � 0

and (17) tested with ζ := −∂tẑM(t)τ lead to the following estimate:

(		)1 + (		)2

� −
∫ tM

0

∫
Ω

−α∂tẑM + β|∂tẑM |2 dx ds

+

∫ tM

0

∫
Ω

(W el
,z (e(u−

M + bM − b−
M), cM, ẑM) − W el

,z (e(uM), cM, zM))∂tẑM dx ds︸ ︷︷ ︸
=:κ3

M

.
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Furthermore,

(	)1 �

∫ tM

0

∫
Ω

W el
,c (e(uM), cM, zM) · ∂tĉM dx ds

+

∫ tM

0

∫
Ω

(W el
,c (e(u−

M + bM − b−
M), ĉM, z−

M) − W el
,c (e(uM), cM, zM)) · ∂tĉM dx ds︸ ︷︷ ︸

=:κ1
M

.

Using the elementary estimate Γ (∇ĉM − ∇cM) : ∇∂tĉM � 0 gives

(	)2 �

∫ tM

0

∫
Ω

Γ∇cM : ∇∂tĉM + W ch,pol
,c (cM) · ∂tĉM dx ds

+

∫ tM

0

∫
Ω

(W ch,pol
,c (ĉM) − W ch,pol

,c (cM)) · ∂tĉM dx ds︸ ︷︷ ︸
=:κ2

M

.

Hence, applying equation (15) with ζ = ∂tĉM(t) and (14) with ζ = wM(t) by noticing

�∂tĉM(t) = ∂tĉM(t) shows

(	)1 + (	)2 � −
∫ tM

0

〈SwM(s), wM(s)〉 ds −
∫ tM

0

∫
Ω

ε|∂tĉM |2 dx ds + κ1
M + κ2

M.

Lebesgue’s generalized convergence theorem, growth conditions (A5)–(A7) and Lemma

3.4 show κM := κ1
M + κ2

M + κ3
M → 0 as M → ∞. We would like to emphasize that we

need the boundedness of ∇uM in L4(ΩT ; �n×n) and the boundedness of ∂tĉM and ∂tẑM
in L2(ΩT ) with respect to M. �

4. Step: passing to M → ∞.

Using Lemmas 3.2 and 3.4 and (14), (15) and (16) we establish (ii), (iii) and (iv) of

Definition 2.2. Moreover, Lemma 3.5 implies

E(uM(t), cM(t), zM(t)) +

∫
Ωt

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 dx ds

+

∫ t

0

〈SwM(s), wM(s)〉 ds − E(u0, c0, z0)

�

∫ tM

0

∫
Ω

W el
,e (e(u−

M + b − b−
M), c−

M, zM) : e(∂tb) dx ds

+ ε

∫ tM

0

∫
Ω

|∇u−
M + ∇b − ∇b−

M |2∇(u−
M + b − b−

M) : ∇∂tb dx ds + κM.

The energy estimate (vi) from Definition 2.2 follows from above by using the known

convergence properties and weak semi-continuity arguments.

It remains to show (v) of Definition 2.2. To proceed, we cite the following lemma

from [27] which provides a tool to drop a restriction on the space of test-functions for

a variational inequality of a specific form.
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Lemma 3.6 ([27, Lemma 5.3]) Let f ∈ Lp(Ω; �n), g ∈ Lp(Ω) and z ∈ W 1,p(Ω) with

z � 0, f · ∇z � 0 and {f = 0} ⊇ {z = 0} a.e. Furthermore, we assume that∫
Ω

f · ∇ζ + gζ dx � 0 for all ζ ∈ W
1,p
− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then ∫
Ω

f · ∇ζ + gζ dx �

∫
{z=0}

[g]+ζ dx for all ζ ∈ W
1,p
− (Ω).

We are now able to prove the remaining property.

Lemma 3.7 We have∫
Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t)) − α + β(∂tz(t)))ζ dx

� −〈r(t), ζ〉, (21)

for all ζ ∈ W
1,p
− (Ω) and for a.e. t ∈ [0, T ], where r(t) ∈ L1(Ω) ⊆ (W 1,p(Ω))	 is given

by

r(t) := −χ{z(t)=0}[W
el
,z (e(u(t)), c(t), z(t))]+. (22)

Proof First of all, we take any test-function ζ ∈ Lp(0, T ;W 1,p
− (Ω)) with

{ζ = 0} ⊇ {z = 0}. Lemma 3.3 gives a sequence {ζM} ⊆ Lp(0, T ;W 1,p
− (Ω)) with

ζM → ζ in Lp(0, T ;W 1,p(Ω)) and 0 � νζM(t) � −zM(t), where ν depends on M and t.

Therefore, (17) holds for ζ = ζM(t). Integration from 0 to T and passing to M → ∞
gives ∫

ΩT

(ε|∇z|p−2 + 1)∇z · ∇ζ + (W el
,z (e(u), c, z) − α + β(∂tz))ζ dxdt � 0.

In other words, ∫
Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + W el
,z (e(u(t)), c(t), z(t))ζ dx

+

∫
Ω

(−α + β(∂tz(t)))ζ dx � 0

holds for every ζ ∈ W
1,p
− (Ω) with {ζ = 0} ⊇ {z(t) = 0} and a.e. t ∈ [0, T ]. To

finish the proof, we need to extend the variational inequality to the whole space

W
1,p
− (Ω).
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Setting f = (ε|∇z(t)|p−2 +1)∇z(t) and g = W el
,z (e(u(t)), c(t), z(t))−α+β(∂tz(t)), Lemma

3.6 shows for every ζ ∈ W
1,p
− (Ω)∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t)) − α + β(∂tz(t)))ζ dx

�

∫
{z(t)=0}

[W el
,z (e(u(t)), c(t), z(t)) − α + β(∂tz(t))]

+ζ dx

�

∫
{z(t)=0}

[W el
,z (e(u(t)), c(t), z(t))]+ζ dx.

Now variational inequality (21) follows by setting

r(t) := −χ{z(t)=0}[W
el
,z (e(u(t)), c(t), z(t))]+. �

Remark 3.8 Lemma 3.7 gives more information than (v) from Definition 2.2. It

provides a special choice for r(t) given by (22).

4 Existence of weak solutions of (S0) – polynomial case

In this section we show that an appropriate subsequence of regularized solutions qε for

ε ∈ (0, 1] of Definition 2.2 converges in ‘some sense’ to q, which satisfies the limit equations

given in Definition 2.3. Besides this the initial damage profile z0 in this section is in H1(Ω).

We approximate z0 ∈ H1(Ω) by a sequence {z0
ε } in W 1,p(Ω) such that z0

ε → z0 in H1(Ω)

as ε ↘ 0.

Using the energy inequality and Gronwall’s inequality, we establish again the following

energy estimate.

Lemma 4.1 We have

Eε(uε(t), cε(t), zε(t)) +

∫ t

0

∫
Ω

−α∂tzε + β|∂tzε|2 + ε|∂tcε|2 dx ds +

∫ t

0

〈Swε(s), wε(s)〉 ds

� C(Eε(u
0
ε , c

0, z0
ε ) + 1)

for a.e. t ∈ [0, T ] and every ε ∈ (0, 1].

Since Eε(u
0
ε , c

0, z0
ε ) � Eε(u

0
1, c

0, z0
ε ) � E1(u

0
1, c

0, z0
ε ), the left-hand side is also uniformly

bounded with respect to a.e. t ∈ [0, T ] and every ε ∈ (0, 1]. By using standard compactness

theorems and uniform convexity properties of W el (see (A3)), we obtain the following

convergence properties (cf. [27]).

Lemma 4.2 (Convergence properties of qε) There exists a subsequence {εk} with εk ↘ 0 as

k → ∞ and an element q = (u, c, w, z) satisfying (i) of Definition 2.3 such that for a.e.

t ∈ [0, T ]
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(i) uεk → u in L2(0, T ;H1(Ω; �n)),
3

√
εk∇uεk → 0 in L∞(0, T ;L4(Ω; �n×n)),

uεk (t) → u(t) in H1(Ω; �n),

uεk → u a.e. in ΩT ,

u0
εk

→ u0 in H1(Ω; �n),
3

√
εk∇u0

εk
→ 0 in L4(Ω; �n×n),

(ii) cεk
	
⇀ c in L∞(0, T ;H1(Ω; �N)),

εk∂tcεk → 0 in L2(ΩT ; �N),

cεk (t) ⇀ c(t) in H1(Ω; �N),

cεk → c a.e. in ΩT ,

(iii) zεk
	
⇀ z in L∞(0, T ;H1(Ω)),

p−1
√
εk∇zεk → 0 in L∞(0, T ;Lp(Ω; �n)),

zεk (t) ⇀ z(t) in H1(Ω),

zεk → z a.e. in ΩT ,

zεk ⇀ z in H1(0, T ;L2(Ω))

as k → ∞. We, in addition, obtain for Cahn–Hilliard systems

wεk ⇀ w in L2(0, T ;H1(Ω; �N))

and for Allen–Cahn systems

wεk ⇀ w in L2(ΩT ; �N),

cεk ⇀ c in H1(0, T ;L2(Ω; �N))

as k → ∞.

As before, we will omit index k in subscripts below.

Remark 4.3 We would like to mention that the arguments in [27, Lemma 6.14] cannot

be adapted to prove strong convergence properties of ∇cε and ∇zε due to more generous

growth condition (A5) as well as the use of Lemma 3.3 where the compact embedding

W 1,p(Ω) ↪→ C0,α(Ω) for p > n with α > 0 and α < 1 − n
p

is exploited.

We are now able to establish existence of weak solutions of (S0) in the polynomial case.

Proof of Theorem 2.5 Whenever we refer in the following to (7)–(11) the functions u, c, w, z

and r are substituted by uε, cε, wε, zε and rε. Moreover, Lemma 4.2 is used without mention

in the following.

(i) Let ζ ∈ L2(0, T ;H1(Ω; �N)) with ∂tζ ∈ L2(ΩT ; �N) and ζ(T ) = 0. Integration from

t = 0 to t = T of (7) and integration by parts yield

∫
ΩT

(cε − c0) · ∂tζ dx ds =

∫ T

0

〈Swε, ζ〉 ds.

Passing to ε ↘ 0 shows (ii) of Definition 2.3.
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(ii) Let ζ ∈ L2(0, T ;H1(Ω; �N)) ∩ L∞(ΩT ; �N). Integration from t = 0 to t = T of (8)

and passing to ε ↘ 0 yield∫
ΩT

w · ζ dx ds =

∫
ΩT

�Γ∇c : ∇ζ + (�W ch,pol
,c (c) + �W el

,c (e(u), c, z)) · ζ dx ds.

Note that ∣∣∣∣
∫
ΩT

ε∂tcε · ζ dx ds

∣∣∣∣ � ε‖∂tcε‖L2(ΩT ;�N )‖ζ‖L2(ΩT ;�N ) → 0

as ε ↘ 0. This shows (iii) of Definition 2.3 with W ch
,c = W ch,pol

,c .

(iii) Let ζ ∈ W
1,4
D (Ω; �n) be arbitrary. Passing to ε ↘ 0 in (9) yields for a.e. t ∈ [0, T ]∫

Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) dx = 0, (23)

by noticing ∣∣∣∣
∫
Ω

ε|∇uε(t)|2∇uε(t) : ∇ζ dx

∣∣∣∣ � ε‖∇uε(t)‖3
L4(Ω)‖ζ‖L4(Ω) → 0.

A density argument shows that (23) also holds for all ζ ∈ H1
D(Ω; �n). Therefore, (iv)

of Definition 2.3 is shown.

(iv) The characteristic functions χ{zε=0} are bounded in L∞(ΩT ) with respect to ε ∈ (0, 1].

We select a subsequence such that χ{zεk=0}
	
⇀ χ in L∞(ΩT ) as k → ∞. In the following,

we will omit index k in the notation. Integrating (10) from t = 0 to t = T and passing

to ε ↘ 0 show∫
ΩT

∇z · ∇ζ + (W el
,z (e(u), c, z) − α + β(∂tz))ζ dx �

∫
ΩT

χ[W el
,z (e(u), c, z)]+ζ dx ds (24)

for all ζ ∈ Lp(0, T ;W 1,p
− (Ω)) ∩ L∞(ΩT ). We also used the fact that∣∣∣∣

∫
ΩT

ε|∇zε|p−2∇zε · ∇ζ dx ds

∣∣∣∣ � ε‖∇zε‖p−1
Lp(ΩT )‖∇ζ‖Lp(ΩT ) → 0.

It follows that∫
Ω

∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t)) − α + β(∂tz(t)))ζ dx

�

∫
Ω

χ(t)[W el
,z (e(u(t)), c(t), z(t))]+ζ dx

for all ζ ∈ H1
−(Ω) ∩ L∞(Ω) and a.e. t ∈ [0, T ]. Set r := −χ[W el

,z (e(u), c, z)]+. For every

ξ ∈ L∞([0, T ]) with ξ � 0 a.e. on [0, T ] and every ζ ∈ H1
+(Ω) ∩ L∞(Ω) we also have

0 �

∫ T

0

(∫
Ω

rε(t)(ζ − zε(t)) dx

)
ξ(t) dt =

∫
ΩT

rε(ζ − zε)ξ dxdt
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→
∫
ΩT

r(ζ − z)ξ dxdt =

∫ T

0

(∫
Ω

r(t)(ζ − z(t)) dx

)
ξ(t) dt.

This shows
∫
Ω
r(t)(ζ − z(t)) dx � 0 for a.e. t ∈ [0, T ]. Hence, we obtain inequalities

(v) of Definition 2.3.

(v) Weakly semi-continuity arguments lead to

lim inf
ε↘0

(
Eε(uε(t), cε(t), zε(t)) +

∫
Ωt

α|∂tzε| + β|∂tzε|2 + ε|∂tcε|2 dx ds +

∫ t

0

〈Swε, wε〉 ds

)

� E(u(t), c(t), z(t)) +

∫
Ωt

α|∂tz| + β|∂tz|2 +

∫ t

0

〈Sw,w〉 ds.

Testing (9) with ζ = u0
ε − b(0) and (iv) of Definition 2.3 with ζ = u0 − b(0) yield

ε

∫
Ω

|∇u0
ε |4 dx = ε

∫
Ω

|∇u0
ε |2∇u0

ε : ∇b(0) dx

−
∫
Ω

W el
,e (e(u0

ε ), c
0, z0

ε ) : e(u0
ε − b(0)) dx

→ −
∫
Ω

W el
,e (e(u0), c0, z0) : e(u0 − b(0)) dx = 0

as ε ↘ 0.

Therefore, we can pass to the limit ε ↘ 0 in (11) and obtain (vi) from Definition 2.3. �

5 Higher integrability of the strain tensor

To prove existence results for chemical-free energies of logarithmic type, a higher integ-

rability result for the strain tensor based on [20, 22] will be established. We adapt the

higher integrability result for solutions of the elliptic equation of the form{
div(W el

,e (e(u), c)) = 0 on ΩT ,

W el
,e (e(u), c) · −→ν = σ	 · −→ν on (∂Ω)T

}

to our setting with the non-constant Dirichlet boundary data b and the additional damage

variable z in (S0). In the following, we will use the assumption D = ∂Ω.

The proof of the higher integrability result is based on the following special cases of

Sobolev–Poincaré inequalities and on a reverse Hölder inequality.

Theorem 5.1 (Sobolev–Poincaré-type inequalities) Let 1 � p < n. There exists a constant

C > 0 such that

(i) for all rectangles Q ⊆ �n and all u ∈ W 1,p(Q):

(
−
∫
Q

|u − −
∫
Q

u|p	
) 1

p	

� C

(
−
∫
Q

|∇u|p
) 1

p

(diamQ),
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(ii) for all rectangles Q =
∏n

i=1(ai, bi) ⊆ �n and all u ∈ W 1,p(Q) with u = 0 on

{(x1, . . . , xn−1, an) | ai � xi � bi, i = 1, . . . , n − 1} ⊆ ∂Q (in the sense of traces):

(
−
∫
Q

|u|p	
) 1

p	

� C

(
−
∫
Q

|∇u|p
) 1

p

(diamQ).

Theorem 5.1 can be obtained by considering the corresponding inequalities on the unit

cube (0, 1)n (for instance, the case 1 < p < n was proven by Sobolev [35], while Nirenberg

[33] gave a proof to p = 1) and then using a scaling argument.

Theorem 5.2 (Reverse Hölder inequality, see [24]) Let Q ⊆ �n be a cube, g ∈ L
q
loc(Q) for

some q > 1 and g � 0. Suppose that there exist a constant b > 0 and a function f ∈ Lr
loc(Q)

with r > q and f � 0 such that

−
∫
QR (x0)

gq dx � b

(
−
∫
Q2R (x0)

g dx

)q

+ −
∫
Q2R (x0)

fq dx

for each x0 ∈ Q and all R > 0 with 2R < dist(x0, ∂Q). Then g ∈ Ls
loc(Q) for s ∈ [q, q + ε)

with some ε > 0 and(
−
∫
QR (x0)

gs dx

) 1
s

� c

((
−
∫
Q2R (x0)

gq dx

) 1
q

+

(
−
∫
Q2R (x0)

fs dx

) 1
s

)

for all x0 ∈ Q and R > 0 such that Q2R(x0) ⊆ Q. The positive constants c, ε > 0 depend on

b, q, n and r.

Theorem 5.3 (Higher integrability) Let b ∈ W 1,∞(Ω; �n), z ∈ L∞(Ω) with 0 � z � 1 a.e.

in Ω and c ∈ Lμ(Ω; �N) for some μ > 4. Then there exists some p ∈ (2, μ/2] such that for

all u ∈ H1(Ω; �n) which satisfy u|D = b|D and∫
Ω

W el
,e (e(u), c, z) : e(ζ) dx = 0 for all ζ ∈ H1

D(Ω; �n), (25)

we obtain u ∈ W 1,p(Ω; �n) and

‖∇u‖Lp(Ω;�n×n) � C(‖∇u‖L2(Ω;�n×n) + ‖c‖2
L2p(Ω;�N ) + 1). (26)

The positive constants p and C are independent of u, c, z.

Proof The proof is based on [20, Lemma 4.4 and Theorem 4.3] and uses a cov-

ering argument. However, due to the non-constant boundary condition, we need to

apply a more general Sobolev–Poincaré inequality (see Theorem 5.1 (ii)) than given

in [20].

(i) Higher integrability at the boundary.

Let x0 ∈ ∂Ω. Then there exist an R0 > 0 and a bi-Lipschitz function τ : Q → �n
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with the open cube Q := QR0
(0) such that x0 ∈ τ(Q) and

τ(Q+) ⊆ Ω,

τ(Q−) ⊆ �n \ Ω,

where Q+ := {x ∈ Q | xn > 0} and Q− := {x ∈ Q | xn < 0}. Define the transformed

functions ũ, b̃ ∈ H1(Q+; �n), c̃ ∈ H1(Q+) and z̃ ∈ L∞(Q+) as

(ũ, b̃, c̃, z̃)(x) := (u, b, c, z)(τ(x)).

To proceed, let y0 ∈ Q and R < 1
2
dist(y0, ∂Q) and define for each R′ > 0 the sets

Q±
R′(y0) := {x ∈ QR′(y0) | xn � 0}.

We distinguish the following three cases:

Case 1. We first consider the case Q+
R (y0)� ∅ and Q−

3
2R

(y0)� ∅.

The bi-Lipschitz continuity of τ ensures

dist(τ(∂Q+
2R(y0)) ∩ Ω, τ(∂Q+

R (y0)) ∩ Ω) > RC1,

where C1 > 0 is independent of R and y0. Let ξ ∈ C∞
0 (Ω) be a cutoff function with

the following properties:

(a) ξ = 0 in Ω \ τ(Q2R(y0)),

(b) 0 � ξ � 1 in Ω,

(c) ξ ≡ 1 in τ(QR(y0)) ∩ Ω,

(d) |∇ξ| � 2
C1
R−1.

Testing (25) with ζ = ξ2(u − b), using the computation

e(ζ) = ξ2e(u) − ξ2e(b) + ξ((u − b)(∇ξ)t + ∇ξ(u − b)t),

and (A1), we obtain∫
Ω

ξ2W el
,e (e(u), c, z) : e(u) dx

=

∫
Ω

ξ2W el
,e (e(u), c, z) : e(b) dx − 2

∫
Ω

ξW el
,e (e(u), c, z) : ((u − b)(∇ξ)t) dx. (27)

By (A3), (A4) and (A2) we also have the estimates

η|e(u)|2 � W el
,e (e(u), c, z) : e(u) + C(|c|2 + 1)|e(u)|,

|W el
,e (e(u), c, z) : ((u − b)(∇ξ)t| �

C

R
(|e(u)| + |c|2 + 1)|u − b|,

|W el
,e (e(u), c, z) : e(b)| � (|e(u)| + |c|2 + 1)|e(b)|.

Therefore, (27) can be estimated by

η

∫
Ω

ξ2|e(u)|2 dx � C

∫
Ω

ξ2(|c|2 + 1)|e(u)| dx +
C

R

∫
Ω

ξ(|e(u)| + |c|2 + 1)|u − b| dx

+ C

∫
Ω

ξ2(|e(u)| + |c|2 + 1)|e(b)| dx.
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Young’s inequality yields

c1

∫
Ω

ξ2|e(u)|2 dx � C

∫
Ω

ξ2(|c|4 + 1) dx +
C

R2

∫
Ω

|u − b|2 dx. (28)

We choose μ = −
∫
Q+

2R (y0)
ũ dx. The calculation e(ξ(u − μ)) = ξe(u) + 1

2
((u − μ)(∇ξ)t +

∇ξ(u − μ)t) leads to∫
Ω

|e(ξ(u − μ))|2 dx � 2

(∫
Ω

ξ2|e(u)|2 dx +

∫
Ω

|u − μ|2|∇ξ|2 dx

)
. (29)

Combining (28) and (29), applying Korn’s inequality for H1-functions with zero

boundary values and using (a) and (b) gives∫
Ω

|∇(ξ(u − μ))|2 dx � C

∫
τ(Q+

2R (y0))

(|c|4 + 1) dx +
C

R2

∫
τ(Q+

2R (y0))

|u − b|2 dx

+
C

R2

∫
τ(Q+

2R (y0))

|u − μ|2 dx.

Because of ∇(ξ(u − μ)) = ξ∇u + (u − μ)(∇ξ)t we derive by (a) and (c) the following

type of Caccioppoli-inequality:∫
τ(Q+

R (y0))

|∇u|2 dx � C

∫
τ(Q+

2R (y0))

(|c|4 + 1) dx +
C

R2

∫
τ(Q+

2R (y0))

|u − b|2 dx

+
C

R2

∫
τ(Q+

2R (y0))

|u − μ|2 dx.

Integral transformation by τ implies∫
Q+

R (y0)

|∇ũ|2 dx � C

∫
Q+

2R (y0)

(|c̃|4 + 1) dx +
C

R2

∫
Q+

2R (y0)

|ũ − b̃|2 dx

+
C

R2

∫
Q+

2R (y0)

|ũ − μ|2 dx.

Conditions Q−
3
2R

(y0) � ∅ and D = ∂Ω imply that ũ − b̃ vanishes on ∂
(
Q+

2R(y0)
)

∩
�n−1 × {0}. Therefore, we obtain by applying both variants of the Poincaré–Sobolev

inequality in Theorem 5.1 for p = 2n/(n + 2):∫
Q+

R (y0)

|∇ũ|2 dx � C

∫
Q+

2R (y0)

(|c̃|4 + 1) dx +
C

R2
Ln(Q+

2R(y0))
− 2

n diam(Q+
2R(y0))

2

×

⎡
⎣(∫

Q+
2R (y0)

|∇ũ − ∇b̃| 2n
n+2 dx

) n+2
n

+

(∫
Q+

2R (y0)

|∇ũ| 2n
n+2 dx

) n+2
n

⎤
⎦ . (30)

Note that if n = 1, we cannot apply Theorem 5.1 because of p = 2n/(n + 2) < 1. In

this case, we can work with inequalities in Theorem 5.1 where p is substituted by 1

and p	 is substituted by 2. However, we will only treat the more delicate case n � 2 in

the following.
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The estimates diam(Q+
2R(y0)) � CR and Ln(Q+

2R(y0)) � Rn (because of Q+
R (y0) � ∅)

show

Ln(Q+
2R(y0))

− 2
n diam(Q+

2R(y0))
2 � C. (31)

Now dividing (30) by Ln(QR(y0)) and using (31) and

1

R2

1

Ln(Q2R(y0))
� C

(
1

Ln(Q2R(y0))

) n+2
n

gives

1

Ln(QR(y0))

∫
Q+

R (y0)

|∇ũ|2 dx �
C

Ln(Q2R(y0))

∫
Q+

2R (y0)

(|c̃|4 + 1) dx

+ C

(
1

Ln(Q2R(y0))

∫
Q+

2R (y0)

|∇ũ| 2n
n+2 dx

) n+2
n

+ C

(
1

Ln(Q2R(y0))

∫
Q+

2R (y0)

|∇b̃| 2n
n+2 dx

) n+2
n

.

Observe that (
1

Ln(Q2R(y0))

∫
Q+

2R (y0)

|∇b̃| 2n
n+2 dx

) n+2
n

� ‖∇b‖2
L∞(Ω).

Define the following functions on Q:

g(x) :=

{
|∇ũ(x)| 2n

n+2 for x ∈ Q+,

0 for x ∈ Q \ Q+

and

f(x) :=

{
C(|c̃|4 + ‖∇b‖2

L∞(Ω) + 1)
n

n+2 for x ∈ Q+,

0 for x ∈ Q \ Q+.

We eventually get

−
∫
QR (y0)

g
n+2
n dx � −

∫
Q2R (y0)

f
n+2
n dx + C

(
−
∫
Q2R (y0)

g dx

) n+2
n

. (32)

Case 2. Assume Q+
R (y0)� ∅ and Q−

3
2R

(y0) = ∅.

The bi-Lipschitz continuity of τ implies

dist(τ(∂Q 3
2R

(y0)), τ(∂QR(y0))) > RC1,

where C1 > 0 is independent of R and y0. Therefore, we can choose a cutoff function

ξ ∈ C∞
0 (Ω), which satisfies
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(a) ξ = 0 in Ω \ τ(Q 3
2R

(x0)),

(b) 0 � ξ � 1 in Ω,

(c) ξ ≡ 1 in τ(QR(x0)),

(d) |∇ξ| � 2
C1
R−1.

Testing (25) with ξ = ζ2(u − μ) and μ := −
∫
Q 3

2
R
(x0)

ũ dx yields as in the previous case

∫
τ(QR (x0))

|∇u|2 dx � C

∫
τ(Q 3

2
R
(x0))

(|c|4 + 1) dx +
C

R2

∫
τ(Q 3

2
R
(x0))

|u − μ|2 dx.

Consequently,

−
∫
QR (x0)

|∇ũ|2 dx � C−
∫
Q 3

2
R
(x0)

(|c̃|4 + 1) dx + C

⎛
⎝−
∫
Q 3

2
R
(x0)

|∇ũ| 2n
n+2 dx

⎞
⎠

n+2
n

.

Therefore, inequality (32) is also satisfied in this case.

Case 3. Assume Q+
R (y0) = ∅.

In this case, inequality (32) trivially holds.

In all three cases, the reverse Hölder inequality (see Theorem 5.2) shows g ∈ Ls
loc(Q)

for all s ∈
[
n+2
n
, n+2

n
+ ε
)

and some ε > 0 depending on R0 and n.

(ii) Higher integrability in the interior.

This case follows with much less effort and is only sketched here.

Let x0 ∈ Ω be arbitrary and R > 0 such that Q2R(x0) ⊆ Ω. We take a cutoff function

ξ ∈ C∞
0 (Ω) with

(a) ξ = 0 in Ω \ Q2R(x0),

(b) 0 � ξ � 1 in Ω,

(c) ξ ≡ 1 in QR(x0),

(d) |∇ξ| � 2
R
.

Testing (25) with ξ = ζ2(u−μ) and μ = −
∫
Q2R (x0)

u dx yields with the same computation

as in case (i):∫
QR (x0)

|∇u|2 dx � C

∫
Q2R (x0)

(|c|4 + 1) dx +
C

R2

∫
Q2R (x0)

|u − μ|2 dx.

The Poincaré–Sobolev inequality implies

−
∫
QR (x0)

|∇u|2 dx � C−
∫
Q2R (x0)

(|c|4 + 1) dx + C

(
−
∫
Q2R (x0)

|∇u| 2n
n+2 dx

) n+2
n

.

Applying Theorem 5.2 with g = |∇u| 2n
n+2 , q = n+2

n
and f = C(|c|4 + 1)

n
n+2 finishes the

proof. �

6 Existence of weak solutions of (S0) – logarithmic case

The challenge here is to establish the integral equation (iii) in Definition 2.3 because the

derivative of the logarithmic-free chemical energy (A8) becomes singular if one of the

ck ’s approaches 0. We only sketch the proof in this section since all essential ideas can
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be found in [20, 22]. We use the regularization method suggested in [16] and also used

in [20, 22].

The energy gradient tensor is assumed to be of the form Γ = γ Id with a constant

γ > 0. Define a C2(�N) regularization with the regularization parameter δ > 0 as

W ch,δ(c) := θ

N∑
k=1

φδ(ck) +
1

2
c · Ac,

with

φδ(x) :=

{
x log(x) for d � δ,

x log(δ) − δ
2

+ x2

2δ
for x < δ.

Elliott and Luckhaus [16] showed that the regularization W ch,δ is uniformly bounded

from below.

Lemma 6.1 (cf. [16]) There exist constants δ0 > 0 and C > 0 such that

W ch,δ(c) � −C for all c ∈ Σ, δ ∈ (0, δ0).

Let qδ denote a weak solution in the sense of Definition 2.3 with the free chemical

energy W ch = W ch,δ . By applying Lemma 6.1 and using Gronwall’s inequality in the

energy inequality (vi) of Definition 2.3, we can show a priori estimates analogous as in

Section 4 except the a priori estimate of wδ .

In the Allen–Cahn case, we have ∂tcδ = −�wδ and consequently the boundedness of

cδ in L2(Ω; �N) and wδ ∈ TΣ pointwise lead to boundedness of wδ in L2(Ω; �N).

In the case of Cahn–Hilliard systems, we can use the following lemma.

Lemma 6.2 ([20, Lemma 4.3]) There exists a constant C > 0 such that for all δ ∈ (0, δ0)∫ T

0

(
−
∫
Ω

�W ch,δ
,c (cδ(t)) dx

)2

dt < C.

The proof of this lemma is similar to [20, Lemma 4.3], since all arguments can be adapted

to our case. Therefore, we will omit the proof.

This lemma and the integral equation∫
Ω

wδ(t) dx =

∫
Ω

�W ch,δ
,c (cδ(t)) + �W el

,c (e(uδ(t)), cδ(t), zδ(t)) dx

together with the already known boundedness properties show∫ T

0

(
−
∫
Ω

wδ(t) dx

)2

dt < C

for constant C > 0. Therefore, wδ is bounded in L2(0, T ;H1(Ω)) by Poincaré’s inequality.
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In conclusion, we can extract a subsequence {qδk} such that we have the same convergence

properties as in Lemma 4.2. As before, we will omit subscript k.

Proof of Theorem 2.6 The remaining crucial step is to show that the limit c satisfies

ck > 0 a.e. on ΩT for all k = 1, . . . , N and W ch,δ
,c (cδ) → W ch,log

,c (c) in L1(ΩT ) as ε ↘ 0.

To this end, we need an additional boundedness property.

Lemma 6.3 There exists constants q > 1 and C > 0 such that for all δ ∈ (0, δ0) and all

k = 1, . . . , N

‖(φδ)′(ckδ)‖Lq(ΩT ) < C.

We omit the proof of this lemma, since by utilizing Theorem 5.3 the arguments are

analogous to [20, Lemma 4.5].

Note that

lim
δ↘0

(φδ)′(ckδ) =

{
log(ck) + 1 if limδ↘0 c

k
δ = ck > 0,

∞ otherwise

holds pointwise a.e. on ΩT and for all k = 1, . . . , N. Together with Lemma 6.3, we obtain

ck > 0 a.e. on ΩT

and

(φδ)′(ckδ) → log(ck) + 1 a.e. on ΩT .

This and Lemma 6.3 further show

(φδ)′(ckδ) → log(ck) + 1 in L1(ΩT )

by Vitali’s convergence theorem. Finally, we can pass to δ ↘ 0 in equation∫
ΩT

wδ · ζ dxdt =

∫
ΩT

γ∇cδ : ∇ζ + �W ch,δ
,c (cδ) · ζ + �W el

,c (e(uδ), cδ , zδ) · ζ dxdt

and obtain (iii) from Definition 2.3.

The remaining properties can be easily established as in Section 4. Hence, Theorem 2.6

is proven. �

7 Conclusion

Materials, which enable the functionality of technical products, change the micro-structure

over time. Phase separation and coarsening phenomena take place and the complete failure

of electronic devices often results from micro-cracks in solder joints.

https://doi.org/10.1017/S095679251200037X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251200037X


210 C. Heinemann and C. Kraus

In this work, we have investigated mathematical models describing both phenomena,

phase separation and damage processes, in a unifying approach. The main aim has been

to prove existence of weak solutions for elastic Cahn–Hilliard and Allen–Cahn systems

coupled with damage phenomena under mild assumptions where the free energy contains

• a chemical potential of polynomial or logarithmic type,

• an inhomogeneous elastic energy, e.g. W el(e, c, z) = 1
2
(z + ε)�(c)(e − e	(c)) : (e − e	(c)),

• a quadratic gradient term of the damage variable.

To this end, several approximation results have been established, as well as different

variational techniques, regularization methods and higher integrability results for the

strain have been applied.
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