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A theoretical model is developed to predict the maximum spreading of liquid metal
drops when impacting onto dry surfaces under the influence of a vertical magnetic
field. This model, which is constructed based on the energy conversion principle,
agrees very well with the numerical results, covering a wide range of impact speeds,
contact angles and magnetic strengths. When there is no magnetic field, we found
that the maximum spreading factor can be predicted well by an interpolating scheme
between the viscous and capillary effects, as proposed by Laan et al. (Phys. Rev.
Appl., vol. 2 (4), 2014, 044018). However, when gradually increasing the magnetic
field strength, the induced Lorentz forces are dominant over the viscous and capillary
forces, taking the spreading behaviour into the ‘Joule regime’, where the Joule
dissipation is significant. For most situations of practical interest, namely when the
strength of the magnetic field is less than 3 T, all three energy conversion routes are
important. Therefore, we determine the correct scaling behaviours for the magnetic
influence by first equating the loss of kinetic energy to the Joule dissipation in the
Joule regime, then by interpolating it with the viscous dissipation and the capillary
effects, which allows for a universal rescaling. By plotting the numerical results
against the theoretical model, all the results can be rescaled onto a single curve
regardless of the materials of the liquid metals or the contact angles of the surfaces,
proving that our theoretical model is correct in predicting the maximum spreading
factor by constructing a balanced formula between kinetic energy, capillary energy,
viscous dissipation energy and Joule dissipation energy.

Key words: drops and bubbles, magnetohydrodynamics, materials processing flows

1. Introduction

Liquid drops impacting onto a solid surface present very important and fascinating
phenomena, which are also of great importance in many practical processes, such as
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inkjet printing and thermal spraying. In these applications, one of the most important
dynamic behaviours is the maximum spreading of the drops, as shown by Yarin (2006).
This impact behaviour is also key for liquid metal drops in the metallurgical industry
and fusion engineering, where magnetic fields are always applied to control the flow
of the liquid metal (Molokov & Reed 2000). In a fusion device, the divertor, which
consists of a layer of liquid lithium, acts as a kind of plasma-facing component. Under
a large heat flux, this liquid metal film will not be absolutely quiet and events like
the formation of droplets, which would then impact on the dry surface, can occur.
Therefore, the maximum spreading of liquid metal droplets under the influence of a
magnetic field deserves more attention.

When there is no magnetic field, based on the balance between inertial and viscous
and capillary contributions, numerous relations have been proposed to determine the
maximum spreading factor, βmax = Dmax/D0, where Dmax is the maximum spreading
diameter and D0 is the initial droplet diameter, as summarised by Josserand &
Thoroddsen (2016). Although these models differ in their expressions, most of them
are formulated using three impact parameters: the Weber number, We = ρD0V2

0/σ ,
standing for the ratio between the inertial and capillary force, the Reynolds number,
Re=ρD0V0/µ, describing the ratio between the inertial and the viscous force, and the
contact angle θ , which depends on both the surface condition and dynamic behaviour.
Here, ρ and µ are the density and dynamic viscosity of the liquid drop, respectively,
σ is the surface tension, and V0 is the impact velocity. In addition, when an external
magnetic field is imposed, another dimensionless parameter, N = σeB2D0/ρV0, needs
to be considered, describing the ratio between the Lorentz force and the inertial force.
Here, σe is the electrical conductivity and B is the magnetic field intensity.

By solving a detailed energy balance equation, a series of theoretical models have
been established integrating the influence of We, Re and θ (Pasandideh-Fard et al.
1996; Roisman, Rioboo & Tropea 2002; Ukiwe & Kwok 2005; Lee et al. 2016).
However, they are too complicated to be suitable for magnetohydrodynamics (MHD)
problems, because we have to consider all four impact parameters (Re, We, N and θ )
simultaneously during the spreading. Therefore, we turn to another approach, similar
to that proposed by Laan et al. (2014).

Theory suggests that when the spreading of a droplet falls into the viscous
regime, where viscous dissipation is dominant, a scaling of βmax ∝ Re1/5 is found
by establishing energy conservation between the kinetic and the viscous dissipation
energy (Clanet et al. 2004; Fedorchenko, Wang & Wang 2005). However, an
alternative scaling of βmax ∝ Re1/4 was found by Pasandideh-Fard et al. (1996),
who considered a drop becoming a pancake-shaped droplet at maximum spreading.
Moreover, for the capillary regime, where viscous dissipation is negligible, the kinetic
energy is almost entirely transferred into the surface energy and the maximum
spreading factor obeys βmax ∝We1/2, as found by Collings et al. (1990) and Bennett
& Poulikakos (1993), or βmax ∝We1/4, as found and verified by Clanet et al. (2004)
and Tsai et al. (2011). Nevertheless, both Laan et al. (2014) and Eggers et al. (2010)
found that the former expression of βmax ∝ We1/2 gave a better description of the
spreading. Based on this, Laan et al. (2014) proposed a solution that introduced a
broad cross-over regime between the viscous and capillary regimes by interpolating
between We1/2 and Re1/5. By defining P=We Re−2/5, the interpolated scheme is given
as

βmaxRe−1/5 ∝ fc(P), with fc(P)= P1/2/(A+ P1/2), (1.1)
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Spreading behaviours under a magnetic field

where A is a constant. This interpolated relation between the two scaling laws showed
good agreement with experimental data. However, Laan’s approach did not consider
the wettability of the drop on the surface, and this model was further improved
recently by Lee et al. (2015).

Following the method of Laan et al. (2014), when an external vertical magnetic
field is imposed, we first obtain a relation between βmax and N in the Joule regime, in
which almost all the kinetic energy is transferred into Joule dissipation. In this way,
we suppose βmax ∝ Nα, where α is the power exponent. After that, we establish a
theoretical model to predict the maximum spreading factor by interpolating between
We1/2, Re1/5 and Nα. In addition, we should also consider the influence of wettability
of the dry surface.

As far as the authors know, although the spreading behaviour of liquid metal drops
under the influence of a magnetic field is important in the metallurgical industry and
fusion engineering, no available references have been published until now. The most
similar studies are those of liquid metal droplets impacting onto a thin liquid film
under the influence of a magnetic field (Wang et al. 2014; Tagawa 2005), which can
provide some reference results for us. In the present study, we use direct numerical
simulations to obtain adequate results with different liquid metals, different impact
velocities, different magnetic strengths and different static contact angles. Then, we
compare the scaling law we propose with the numerical results, in order to validate
its correctness. It should be noted that we will not consider the effect of splash, rim
instability or the influence of the surrounding gas; we also assume that the liquid
metal drop will not solidify on the solid surface and its physical properties are
constant. Therefore, when the magnetic field is applied along the impact direction,
the three-dimensional problem can be solved using two-dimensional cylindrical
coordinates.

2. Physical model and numerical methods

Let us consider a spherical droplet of liquid metal impacting onto a dry surface
with a falling velocity V0, which can vary from 0.6 to 6 m s−1, and an applied vertical
magnetic field Bz, which can vary from 0 to 6 T. It should be noted that this parameter
space is much wider than that used in the metallurgic industry and fusion devices,
where B is always smaller than 3 T. The spreading problem is sketched in figure 1,
where −r and −z are the radial and impacting directions. Also, different kinds of
liquid metals are used for the numerical simulations: specifically, liquid GaInSn, liquid
lithium and liquid mercury, whose physical properties are given in table 1. If we fix
the drop diameter at D0 = 2 mm, the impact parameters can be expected to fall into
the ranges We = 20 ∼ 100, Re = 6 × 103 ∼ 1.8 × 104 and N = 0 ∼ 16, which can
provide enough data for our analysis. Moreover, when the liquid drop spreads over
the solid surface, the contact angle θ is also an important factor to determine the
spreading behaviour; therefore, we choose three values of 60◦, 90◦ and 120◦ in the
present study to represent a range of hydrophilic and hydrophobic surfaces. It should
be noted that, in practical applications, the contact angle varies dynamically with the
speed of advance or recession of the free surface; however, to make things simpler, we
use a static contact angle throughout the paper. Consequently, more than three hundred
numerical simulations will be carried out in the following study in order to render a
more comprehensive conclusion.

By using D0, V0, ρV2
0 and σeV0Bz as typical scales for the length, velocities,

pressure and electric current densities, respectively, the axisymmetric and dimensionless
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B

z, symmetry axis(a) (b)

r

FIGURE 1. Sketches of (a) the physical model at the initial moment and (b) the spreading
of the drop with contact angle.

Liquid ρ (kg m−3) µ (Pa s) σ (N m−1) σe (1�−1 m−1)

GaInSn 6361 2.2× 10−3 0.553 3.27× 106

Lithium 515 5.716× 10−4 0.39 3.626× 106

Mercury 13 610 1.53× 10−3 0.46 1.0× 106

TABLE 1. Properties of the liquids used in the numerical simulations.

continuity and Navier–Stokes equations controlling the spreading problem in
cylindrical coordinates become:

1
r
∂

∂r
(rVr)+ ∂Vz

∂z
= 0, (2.1)

∂Vr

∂t
+ Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− V2

θ

r
=−∂p

∂r
+ 1

Re

(
1Vr − Vr

r2

)
+ κ

We
∂c
∂r
−NVr, (2.2)

∂Vθ
∂t
+ Vr

∂Vθ
∂r
+ Vz

∂Vθ
∂z
+ VθVr

r
= 1

Re

(
1Vθ − Vθ

r2

)
+N

(
∂ϕ

∂r
− Vθ

)
, (2.3)

∂Vz

∂t
+ Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
=−∂p

∂z
+ 1

Re
(1Vz)+ κ

We
∂c
∂z
, (2.4)

where 1 is the Laplace operator, defined as 1V = (∂2V/∂r2) + (1/r)(∂V/∂r) +
(∂2V/∂z2) in cylindrical coordinates, and c is the fraction of the liquid phase for
the surface tension calculation within a continuum approach developed by Brackbill,
Kothe & Zemach (1992). Here, ϕ is the induced electric potential, which is scaled
by V0D0Bz and calculated by solving a Poisson equation:

1ϕ = Vθ
r
+ ∂Vθ
∂r
. (2.5)

Because Vθ , the circumferential velocity, is supposed to be zero in our previous
hypothesis, therefore (2.3) and (2.5) are eliminated. Correspondingly, the Lorentz
force, which also vanishes in the circumferential direction, exists only in the radial
direction, acting counter to the spreading motion, as shown in (2.2).
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FIGURE 2. The convergence study of the spatial resolution, with impact parameters
Re= 2300, We= 43 and θ = 32◦. It is observed that all results agree very well with the
numerical solutions by Bussmann et al. (2000) except the case with a spatial resolution
of D0/1r= 50.

For the numerical approach, we use the open source volume-of-fluid solver Gerris
(Popinet 2009) to simulate the impact event. Gerris solves the incompressible
Navier-Stokes equation within an adaptive mesh framework, and the interface
capturing and reconstructing schemes are physically sound and accurate, rendering
it very appropriate for simulating multiphase flows. With the help of Gerris, there
are some papers that study the drop impact problem (Thoraval et al. 2012; Agbaglah
et al. 2015; Wildeman et al. 2016), presenting very promising results.

In each simulation the axisymmtric drop was set in a domain with a width
of L = 10D0, which is large enough for the drop to spread because the value
of We is not high (We < 100). Furthermore, in order to study the convergence
of the grids, we compute a test case with different spatial resolutions, namely
D0/1r = 50, 100, 200, 400, respectively, where 1r is the minimum mesh size
inside the drop. The test case has also been studied by Bussmann, Chandra &
Mostaghimi (2000), with impact parameters of Re = 2300, We = 43 and θ = 32◦,
and the comparisons between our results and those of Bussmann are plotted in
figure 2, where the squares are the experimental results given by Chandra & Avedisian
(1991). As presented, all the results are in good agreement with those of Bussmann,
except the case solved with D0/1r = 50; however, deviations are observed from
the experimental data, and should be ascribed to the dynamic contact angle in the
experiment. Therefore, for consideration of computational efficiency and accuracy, we
will select D0/1r= 200 across the drop as the spatial discretisation.

3. Results

3.1. Spreading behaviour without a magnetic field
Without a magnetic field, as introduced in § 1, the interpolating scheme of (1.1) can
be used to predict βmax in the cross-over regime where viscous and capillary forces are
both important. As a consequence, part of our numerical results, which are conducted
with fixed θ = 90◦ and different liquid metals, are plotted in figure 3 to verify whether
this interpolating scheme is applicable. In figure 3(a), all the data are observed to fall
onto a single curve with the scaling law interpolated between Re1/5 and We1/2, which
is fitted accurately with (1.1). However, in figure 3(b), the interpolating law between
Re1/5 and We1/4 does not collapse the data points onto a single curve – as was also
found by Eggers et al. (2010).
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FIGURE 3. The maximum spreading factor rescaled by different interpolating scheme
when θ = 90◦. (a) As a function of We Re−2/5. (b) As a function of We Re−4/5. The solid
line is the Padé approximant function fitted with (1.1). It is observed that all data fall
onto a single curve fitted with the scaling law of βmax∝Re1/5fc(We Re−2/5), while contrary
results are found in the scaling law of βmax ∝ Re1/5fc(We Re−4/5).
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FIGURE 4. The maximum spreading factor rescaled with a function of parameter
We Re−2/5 for various contact angles: (a) θ = 60◦, (b) θ = 120◦. It is found that they
conform to the same scaling law of (1.1), although the constant coefficient A is different.
(c) The variation trend of A with different surface wettability, showing that A increases
almost linearly with θ .

However, equation (1.1) does not consider the influence of surface wettability. We
have further investigated this by changing the contact angle to θ = 60◦ and θ = 120◦,
and the results are shown in figure 4(a,b). It is observed that all results still obey
the scaling law of (1.1); however, the fitting constant A is different, indicating that
A is determined by the surface wettability. To investigate this further, we simulate
additional numerical cases with θ = 75◦ and θ = 105◦ to determine the correction
between A and θ ; the result is presented in figure 4(c), where a linear relation is
observed between them.

3.2. Spreading behaviour under a vertical magnetic field
When a vertical magnetic field is applied, the induced Lorentz force, which acts
as a resistance to the spreading, will decrease the maximum spreading radius. The
evolution of the droplet shapes of liquid GaInSn during spreading is presented in
figure 5, respectively without and with magnetic field, with other fixed parameters
of Re= 13 422, We= 96 and θ = 90◦. It is observed that, with N = 0, the spreading
factor gradually increases to βmax≈ 4 while the height of the droplet keeps decreasing.
In contrast, in the case of N = 5.660, the maximum spreading factor decreases to
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FIGURE 5. The evolution of the droplet shapes during the spreading process without and
with magnetic field respectively, with other fixed parameters of Re= 13 422, We= 96 and
θ = 90◦. (a) N = 0, (b) N = 5.660. It is observed that βmax decreases significantly under
the influence of a magnetic field; moreover, the interface of the droplet fluctuates after
attaining the maximum spreading radius.
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FIGURE 6. Spreading behaviours under the influence of different vertical magnetic fields,
the working medium is GaInSn and the fixed parameters are Re = 13 422, We = 96 and
θ = 90◦, while the magnetic intensity is varied from N = 0 to N = 16 for (a,b) or from
N = 5.66 to N = 40.251 for (c). (a) The shape of the drop interface when the maximum
spreading radius occurs. (b) The variation of the maximum spreading factor βmax and
the sum of the vorticities inside the drop at that moment. (c) The time histories of the
spreading with a strong magnetic field, for which it is found that tm converges to D0/2V0
when N is much larger.

βmax≈1.7; thereafter, the interface of the droplet starts to fluctuate while the spreading
radius remains almost unchanged.

The droplet shapes, at the moment when βmax occurs, are plotted against N in
figure 6(a), as the magnetic intensity is varied from N = 0 to N = 16. In the figure,
the maximum spreading radius is restrained by stronger magnetic fields; the rim
region, which bulges out of the spreading drop, is also narrowed. It is well known
that there are recirculation eddies formed in the rim, even if the drop stops moving
at maximum spreading radius. The maximum spreading radius, as well as the sum of
the vorticities inside the drop at that moment, is shown in figure 6(b). It is observed
that the spreading radius is dramatically reduced by the magnetic field within the
range of smaller N; however, the reducing trend slows when N becomes larger. That
is because, under such a stronger magnetic field, the spreading velocity will be much
slower, and the Lorentz force, whose value has a necessary limit based on the inertia,
will also decrease to maintain this force balance. This variation trend is very similar
to that found in the rising of bubbles (Zhang, Ni & Moreau 2016). Meanwhile, the
evolution of ωsum at that moment obeys a similar law, indicating that vortices are
greatly suppressed by the Lorentz force. In figure 6(c), we also plot the time histories
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FIGURE 7. The influence of vertical magnetic field on different components of energy
consumption; the fixed impact parameters are Re = 13 422, We = 96 and θ = 90◦. (a)
Evolutions of different energies with N = 10.063. (b) The final proportions of different
energies with various values of N.

of the spreading under stronger magnetic field (5.660<N< 40.251), in order to track
the time when maximum spreading is reached, defined as tm. In the figure, it is
observed that, with stronger magnetic field, tm gradually converges to tm = D0/2V0;
the detailed physics of this time scale will be presented in § 3.3.

Furthermore, to study in-depth the influence of a magnetic field on the spreading
behaviour, the energy conversion process during spreading should be investigated.
Under a strong magnetic field, as a result of the Joule dissipation, the initial kinetic
energy will be dissipated in a very short time. Considering that the gravitational
potential energy is negligible during the spreading, the energy conservation equation
can be written as

KE0 + SE0 =KE+ VE+ SE+ JE, (3.1)

where KE is the kinetic energy, VE is the viscous dissipation energy and SE is the
surface energy – the expressions for which can be found in many papers (Bennett &
Poulikakos 1993; Pasandideh-Fard et al. 1996). The subscript 0 indicates the initial
energy before impact. Under an external magnetic field, JE is the Joule dissipation,
taking the form

JE=
∫ t

0

∫
V

V(r, z) · ( j(r, z)× B) dV dt, (3.2)

where j is the induced electric current, given as j = σeV × B.
In particular, considering a test case of N = 10.063, the time histories of different

components of the energy are presented in figure 7(a). As shown in the figure,
the kinetic energy is dissipated rapidly once the impact starts. During the spreading
process, almost all the initial kinetic energy is transferred into Joule dissipation, which
ultimately takes 87 % of the total energy. In contrast, the viscous dissipation effect
and capillary effect are negligible throughout the spreading. To study the influence of
the magnetic strength on energy conversion, the final proportions of different energy
components versus N have been plotted at the time when the maximum spreading
radius is reached, as shown in figure 7(b). It is observed that, with stronger magnetic
field, the proportion of Joule dissipation increases correspondingly, while the other
energies decrease monotonously. Therefore, besides the viscous regime and capillary
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regime in which the viscous force and capillary force dominate respectively, we have
another ‘Joule regime’, in which the Joule dissipation is dominant over the other two
effects, such as for N > 2.515 in figure 7(b).

Consequently, we are able to interpret why βmax becomes smaller with larger N –
because more kinetic energy is dissipated by Joule dissipation, hardly any residual
energy is left for the drop to spread on the surface.

3.3. Scaling law for predicting the maximum spreading factor
To derive the maximal spreading radius under the combination of the viscous,
capillary and Joule effects, according to our routine outline described in § 1, we
will first consider the extreme Joule regime in which the kinetic energy is completely
dissipated by Joule dissipation. Under such circumstances, the initial kinetic energy
is estimated as:

KE0 ∼ ρV2
0 D3

0. (3.3)

According to (3.2), when the drop is at its maximum extension, Joule dissipation
is calculated as

JE=
∫ t

0

∫
V

V(r, z) · ( j(r, z)× B) dV dt= σeVr
2B2

zΩtm, (3.4)

where Ω is the drop volume, scaling as Ω ∼ D3
0, leaving the scale of tm to be

considered further. For hydrodynamic spreading of the droplet, Eggers et al. (2010)
and Josserand & Zaleski (2003) have proved theoretically that in the very first stage
of the impact, the pressure at the centre of the impact is very high, and this strong
pressure gradient drives the liquid to spread. In this pressure-driven stage, the time
scale is t ∼ D0/2V0. After that, the pressure decreases rapidly and the fluid flow
becomes similar to a time-dependent hyperbolic flow, in which the viscous effect and
capillary effect gradually increase until maximum spreading is reached.

When imposing the magnetic field, the first pressure-driven stage should still keep a
time scale of t∼D0/2V0 because the pressure gradient is very strong and the Lorentz
force, which is dependent on the spreading velocity, is still increasing. However, in
the second stage, with a rapidly decaying pressure, the inertial force of the liquid is
almost balanced by the Lorentz force, and the spreading decelerates according to

DVr

Dt
=− 1

ρ
( j × B) · er =−(σeB2

z/ρ)Vr, (3.5)

where er is the radial direction vector. Clearly, the Lorentz force acts on a time scale
of

τ = ρ/(σeB2
z ). (3.6)

We now compare the time scale with the characteristic time of T0 =D0/V0, that is

τ

T0
= ρV0

σeB2
z D0
= 1

N
. (3.7)

In the Joule regime, where N is much larger, it is easy to deduce τ/T0 � 1. It
means the kinetic energy will be dissipated by the Joule effect within a very short
time after the pressure drops. Under such circumstances, the time is ignored in this
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Numerical results
Fit curve
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FIGURE 8. A test of the scaling law of (3.8) in the Joule regime, using βmax calculated
from our numerical simulations within fixed Re= 13 422, We= 96, θ = 90◦ and varied N
from 2.515–15.723. It is observed that all results collapse onto a single curve fitting with
βmax ∼N−1/2, indicating that (3.8) is totally applicable in the Joule regime.

stage. Therefore, tm will converge to the first stage, given as tm∼D0/2V0. This is also
validated in our numerical simulations, as described previously in figure 6(c).

Therefore, the average radial velocity scales as Vr ∼DmaxV0/D0. Taking all of them
into (3.4), and supposing KE0 = JE, by which the kinetic energy is balanced by the
Joule dissipation, we finally obtain

ρV2
0 D3

0 ∼ σeD2
maxD

2
0B2

z V0⇒ βmax = Dmax

D0
∼N−1/2. (3.8)

To validate the correctness of this scaling law in the Joule regime, we present the
evolution of βmax from our numerical results with Re = 13 422, We = 96, θ = 90◦
and N > 2.515, and plot the comparative results in figure 8. We observe that the
numerical results are predicted accurately by the scaling law (3.8), which shows a
positive correction between βmax and N−1/2 in the Joule regime.

After obtaining βmax∝N−1/2 in the Joule regime, we should consider a more general
situation in which all the viscous, capillary and Joule effects can be condensed into
one scaling relation depending on the group of variables {Re1/5, We1/2, N−1/2, θ}.
Although (1.1) is proved to be effective by constructing an interpolating scheme in
the cross-over regime between the viscous and capillary regimes, it will be much
more difficult to put N−1/2 in, because there will be three variables contained in the
interpolation function. Moreover, if the contact angle is also taken into consideration
for a more universal scaling law, things will become even more complex.

Alternatively, we can define a new variable, β0, which represents the maximal
spreading factor without magnetic field, namely under N = 0. In this way, the
viscosity effect, the capillary effect and the influence of wettability are all integrated
into β0, which can be calculated by (1.1). Consequently, the problem of constructing
an interpolation scheme is simplified into interpolating between β0 and N−1/2 scaling.
To test this possibility, we adopt an approach similar to Eggers et al. (2010) and
Laan et al. (2014) by constructing a function

βmax ∝N−1/2fc(β
2
0 N), (3.9)

where fc is a function of the parameter β2
0 N; we also introduce the impact parameter

L= β2
0 N to identify the relative influence between the three effects. According to this

function, we plot all numerical results obtained with θ = 90◦, as shown in figure 9(a).
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FIGURE 9. The rescaled maximum spreading ratio as a function of β2
0 N, with the solid

line showing the interpolating function (3.10) fitted to the numerical results. (a) The
numerical results obtained within fixed θ of 90◦ when using different liquid metals as
working medium. (b) The numerical results obtained within different θ of 60◦, 90◦ and
120◦. It is observed that no matter what liquid metal we use, and no matter what contact
angle we set, all results collapse onto the single curve given by (3.10).

From the figure, we observe this approach indeed succeeds in collapsing all data
points for different liquid metals and impact velocities onto a single curve. It indicates
that (3.9) is applicable in describing the maximum spreading radius in the cross-over
regime between the viscous, capillary and Joule regimes.

To make (3.9) more quantitative, we also adopt the Padé approximant by
constructing the formulation of fc(L), equation (3.9) is transformed to

βmaxN1/2 = L1/2/(1+ BL1/2), L= β2
0 N, (3.10)

where B is the fitting constant, and fc(L) satisfies limL→0 βmax = β0, limL→∞ βmax ∝
N−1/2.

The fit of (3.10) agrees excellently with the numerical results, as shown in
figure 9(a), where the determination coefficient R2 is 0.988, indicating that (3.10)
is very effective in predicting the maximum spreading radius in the cross-over
regime.

Moreover, as we stated, the influence of θ is included in β0, so (3.10) should
be applicable for different contact angles. To validate this, all numerical results,
calculated with θ = 60◦, θ = 90◦ and θ = 120◦ respectively, are plotted in figure 9(b)
with the formulation of (3.9). From the figure, it is observed that all the data are
collapsed onto a single curve, which can be fitted well by the scaling law of (3.10).
Therefore, the analytical solution, which is based on the energy conservation principle,
describes the spreading behaviour very well with various liquids, impact velocities,
external magnetic fields and contact angles.

Regarding the influence of a dynamic contact angle θd in practical droplet spreading
problems, we think it can be divided into two aspects: (i) The influence of θd on β0.
According to Pasandideh-Fard et al. (1996), it is less accurate to predict βmax by using
a constant equilibrium contact angle instead of using θd. However, this discrepancy
between the two results will be very limited when the two contact angles are close.
Also, Laan et al. (2014) have proved that (1.1) fits very well with the experimental
results, where the contact angle is definitely dynamic. (ii) The influence of θd on N−1/2.
As presented in the derivation of (3.8), tm is almost dependent on the first pressure-
driven stage, in which the influence of θd is also limited. Therefore, our model should
be applicable in practical situations even if the contact angle is dynamic.
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4. Conclusion

In summary, we show that a universal analytical solution can be used to describe
the maximum spreading of fluids when an external vertical magnetic field is imposed.
This scaling law can deal with the cross-over regime between the viscous, capillary
and Joule regimes, which covers most of the practical situations in the metallurgical
industry or fusion devices. To obtain this scaling relation, we take three steps: first,
with our numerical results, we verify the correctness of the solution given by Laan
et al. (2014), who developed an interpolating scheme between viscous and capillary
regimes without a magnetic field, scaling as βmax ∝ Re1/5 and βmax ∝ We1/2; second,
by conserving the balance between kinetic energy and Joule dissipation when Joule
dissipation is dominant over the viscous and capillary effects, we derive a relation
between βmax and N, scaling as βmax ∝ N−1/2; finally, we construct an interpolating
scheme integrating the influence of the viscous, capillary and Joule effects, which
can be expressed by a group of variables {Re1/5,We1/2, N−1/2, θ}. However, to make
things clearer and more direct, we define a new impact parameter β0 to describe the
maximum spreading factor without a magnetic field. Subsequently, only two impact
parameters are considered in our model, with which we give a scaling law of βmax ∝
N−1/2fc(β

2
0 N).

Furthermore, the accuracy and validity of the scaling law is validated by fitting
it with our numerical results, and very good agreement is observed between them
regardless of the impact conditions and magnetic intensities. The comparison shows
that the analytic relation can be approximated with an Padé approximant, scaling as
βmaxN1/2=L1/2/(1+BL1/2). More generally, the results of this study may be used over
a wide range of applications in industry and fusion engineering, for which the control
of drop impacting under the influence of a magnetic field is of great importance.
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