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We propose and analyse a new strategy of shear flow turbulence control that can
be realized by the following steps: (i) imposing specially designed seed velocity
perturbations, which are non-symmetric in the spanwise direction, at the walls of
a flow; (ii) the configuration of the latter ensures a gain of shear flow energy and
the breaking of turbulence spanwise reflection symmetry: this leads to the generation
of spanwise mean flow; (iii) that changes the self-sustained dynamics of turbulence
and results in a considerable reduction of the turbulence level and the production
of turbulent kinetic energy. In fact, by this strategy the shear flow transient growth
mechanism is activated and the formed spanwise mean flow is an intrinsic, nonlinear
composition of the controlled turbulence and not directly introduced in the system.
In the present paper, a weak near-wall volume forcing is designed to impose the
velocity perturbations with required characteristics in the flow. The efficiency of
the proposed scheme has been demonstrated by direct numerical simulation using
plane Couette flow as a representative example. A promising result was obtained:
after a careful parameter selection, the forcing reduces the turbulence kinetic energy
and its production by up to one-third. The strategy can be naturally applied to
other wall-bounded flows, e.g. channel and boundary-layer flows. Of course, the
considered volume force is theoretical and hypothetical. Nevertheless, it helps to gain
knowledge concerning the design of the seed velocity field that is necessary to be
imposed in the flow to achieve a significant reduction of the turbulent kinetic energy.
This is convincing with regard to a new control strategy, which could be based on
specially constructed blowing/suction or riblets, by employing the insight gained by
the comprehension of the results obtained using the investigated methodology in this
paper.
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1. Introduction

Investigations of problems concerned with a reduction of the energetic costs
of moving (airplanes, ships, etc.) bodies in fluids, and also of fluids/fuels being
transported in pipelines, have a century-long history. A wide variety of active and
passive, linear and nonlinear flow control mechanisms for drag reduction have been
suggested, tested, developed and implemented over the years. A comprehensive review
and analysis of the problem can be found in the following publications (Choi, Moin
& Kim 1993; Gad-el-Hak 2000; Bewley 2001; Kim 2003; Dean & Bhushan 2010).
The comprehensive discussion of the subject is presented in the April 2011 issue of
the Philosophical Transactions of the Royal Society A, on the theme: ‘Flow-control
approaches to drag reduction in aerodynamics: progress and prospects’.

It is now well recognized that coherent structures play an important role in
wall-layer dynamics in wall-bounded turbulent flows (Robinson 1991). There is
strong evidence (see e.g. Kim 2011; Garcia-Mayoral & Jimenez 2011 and references
therein) that most high skin–friction regions in near-wall turbulent layers are induced
by nearby streamwise vortices. The ubiquitous structural features in the near-wall
region are streaks: spanwise modulation of the streamwise velocity. It has to be
emphasized that the turbulent plane channel flow was one of the first cases where the
large-scale streaks have been observed (Lee & Kim 1991). Common features of all
drag-reduced flows are weakened near-wall streamwise vortices and streaks. In general,
streamwise vortices are formed and maintained by a self-sustained dynamics of the
turbulence. The latter is supported by the linear/unstable and nonlinear processes
associated also with wall-layer streaks and streamwise-dependent disturbances.

Recently, efforts have been made to control turbulence through different spanwise
wall-based forcing methods (see Karniadakis & Choi (2003) and references therein).
These attempts address the modification of near-wall turbulence by direct creation of
a spanwise flow. There are different ways of transverse flow generation, e.g. by using
the simplified experimental and numerical models of shark-skin riblets (Goldstein,
Handler & Sirovich 1995; Garcia-Mayoral & Jimenez 2011; Strand & Goldstein
2011), wall oscillations (Ricco et al. 2012; Touber & Leschziner 2012) and streamwise
travelling waves (Quadrio, Ricco & Viotti 2009). However, there could be another,
indirect way of a spanwise mean flow generation, for instance, by a week near-wall
forcing that activates the shear flow transient growth mechanism and, finally, results
in the breaking of turbulence spanwise reflection symmetry which in turn, leads to
the turbulence control. The scheme of this control strategy is the following:

(i) a specially designed (non-symmetric in spanwise direction) near-wall weak
forcing generates, so-called, optimal seed velocity perturbations that extract shear
flow energy and undergo substantial transient growth (it is worth noting here that
the perturbations that undergo a maximum energy growth in the characteristic
dynamical time of the flow are called the optimal perturbations; see e.g. Farrell
& Ioannou (1993) and Farrell & Ioannou (2000));

(ii) the amplified non-symmetric velocity perturbations lead to the breaking of the
turbulence spanwise reflection symmetry and the generation of mean spanwise
flow;

(iii) the latter, in turn, changes the balances/statistics of the turbulence and results in
a significant reduction of its level.
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FIGURE 1. The flow geometry in plane Couette flow.

Thus, the suggested control strategy proposes a permanent (at each simulation time
step) imposition of helical seed optimal velocity perturbations with special length
scales in the flow that have the potential for quite fast transient growth. Subsequently,
these perturbations effectively induce the helical nature to the turbulence. In this work
the proposed strategy was realized in the example of a weak, helical near-wall forcing
(active control) of plane Couette flow. However, it is obvious that the imposition
of seed perturbations in order to initiate the above-introduced strategy can also be
achieved by a well-designed blowing/suction active control or by passively introducing
wall roughness. This strategy can be naturally extended to any wall-bounded flows.

The outline of the paper is as follows: § 2 provides the details about the numerical
requirements of the numerical simulations performed; § 3 gives the description of the
weak, helical near-wall forcing; the direct numerical simulations (DNS) and analysis
of the results of the flow control are presented in § 4; and, finally, the conclusions are
given in § 5. Furthermore, the validation of numerical simulations of plane Couette
flow is presented in the appendix A.

2. Numerical requirements
The incompressible canonical plane Couette flow with the Reynolds number

Re ≡ Uwh/ν, based on the wall velocity Uw, the channel half-width h, and the
kinematic viscosity ν is considered (see the figure 1). The shear parameter of the
flow is defined as the ratio of the wall velocity to the channel half-width, A≡Uw/h.
The plane Couette flow has a monotonic turbulent velocity profile. We denote by
(x, y, z) the streamwise, wall-normal and spanwise directions respectively. No-slip
boundary conditions are used on the walls. A pseudo-spectral code which was
developed at the Royal Institute of Technology (KTH), Stockholm was used in
our simulations (details of the code can be found in Skote (2001) and Lundbladh,
Henningson & Johansson (2004)). Fourier decomposition in horizontal (x and z)
and Chebyshev discretization in wall-normal (y) directions were applied. Hence, the
spectral methods were used in all spatial directions, which gives a highly accurate
discretization of the governing equations. For further details about the spectral
discretizations and additional references see Canuto et al. (2006). Time integration
was performed using a third-order Runge–Kutta method for the advective and forcing
terms and Crank–Nicolson for the viscous terms. The time step was determined by
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the CFL number and was adjusting itself automatically to the actual flow situation.
All quantities were normalized by Uw and h. The original code was modified to
implement the forcing presented by (3.1)–(3.8).

Simulations at different parameters of the controlled and uncontrolled Navier–Stokes
equations have been performed at Re = 750. The corresponding turbulent Reynolds
number based on friction velocity (uτ = √τw/ρ) and channel half-width was
Reτ = huτ/ν = 52 which is a factor two higher than the lowest Reynolds number
for which turbulence is sustained (Komminaho, Lundbladh & Johansson 1996). The
simulations with two different sizes of computational domains were carried out
at different numbers of grid points. For details of the code validation, numerical
parameters and the convergence tests see the appendix A. The computation domain
size (Lx × Ly × Lz), number of grid points (Nx ×Ny ×Nz), spatial (1x+ ×1y+ ×1z+)
and time resolutions (1tuτ/ν = 1t+), sampling time (tUw/h and tUw/Lx) are given
in table 2. The superscript ‘+’ means the normalization of the quantities with the
kinematic viscosity ν and with the friction velocity uτ . Here we would like to
emphasize that the analysis of our numerical simulations has shown that an increase
in number of modes and size of the simulation domain did not change the results.
As for the time scales, the simulations were performed for long time intervals to
obtain well-converged flow statistics. The numerical experiments were run for a total
of tUw/h= 10 000 time units. The first tUw/h= 3000 (corresponding to tUw/Lx= 118)
time units were used to obtain a fully developed turbulent flow. Then, the forcing was
switched on, and the simulations were run more than tUw/h = 7000 (tUw/Lx = 277)
time units. In wall units, the non-dimensional time step was 1t+ = 0.1 which is
even smaller than that presented in Tsukahara, Kawamura & Shingai (2006). The
integration time is sufficient to get smooth statistics and good integral quantities.
Thus, our numerical simulations are in full agreement with the results published in
the literature on the subject.

3. Model of non-symmetric near-wall weak forcing

The transient growth of perturbations (that is due to the non-normality of the
linearized dynamical operators of the shear flow system) is the basis of the dynamical
activity of smooth shear flows. It is well known that smooth shear flows support a
set of perturbations (called optimal) that undergo large transient growth during the
dynamical time of the turbulence for sufficiently high Reynolds numbers. This time
can be defined by the characteristic time of nonlinear processes and should be O(1/A).
In general, in smooth shear flows a robust growth appears for three-dimensional
perturbations satisfying the following conditions (see Craik & Criminale 1986; Farrell
& Ioannou 1993):

(i) the length scales in streamwise and spanwise directions are of the same order
but larger than the viscous dissipative length scale, `x ' `z� `ν or, in terms of
wavenumbers, kx, kz� kν (here, kν ≡

√
Re≈ 1/`ν);

(ii) the perturbations are tilted with the background shear or, in terms of wavenumbers,
ky/kx < 0. These general conditions encouraged us to implement the following
helical near-wall forcing for the considered flow (see figure 2):

Fx(x, y, z)= A1f (y) ·
N,M∑

n,m=0

Zm · exp(−X2
n − Z2

m) exp

(
− X̂2

n

l2
x

− Ẑ2
m

l2
z

)
, (3.1)
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FIGURE 2. Design of the helical forcing in the xz plane at y = −ypeak = −0.95 and
parameters M = 7, N = 13, a = 1.2221, φ = π/4, `x = `z = 1/

√
10, `y = 0.2, A1 = 0.4

and A2 = 0.008.

Fy(x, y, z)=−A2 · f (y) ·
N,M∑

n,m=0

exp(−X2
n − Z2

m) exp

(
− X̂2

n

l2
x

− Ẑ2
m

l2
z

)
, (3.2)

Fz(x, y, z)=−A1f (y) ·
N,M∑

n,m=0

Xn · exp(−X2
n − Z2

m) exp

(
− X̂2

n

l2
x

− Ẑ2
m

l2
z

)
, (3.3)

where

f (y)= sin(πy) exp

[
−(|y| − ypeak)

2

l2
y

]
, y ∈ [−1, 1] (3.4)

with functions Xn, Zm, X̂, Ẑ on the bottom wall (y=−1):

Xn(a, φ)= x
a
− 2n cos φ, Zm(a, φ)= z

a
− 1− (4m+ 1)(1− sin φ), (3.5)

X̂n(a, φ)= x
a
− (2n+ 1) cos φ, Ẑm(a, φ)= z

a
− (4m+ 2)(1− sin φ), (3.6)

with functions Xn, Zm, X̂, Ẑ on the top wall (y= 1):

Xn(a, φ)= Lx − x
a
− 2n cos φ, Zm(a, φ)= Lz − z

a
− 1− (4m+ 1)(1− sin φ), (3.7)

X̂n(a, φ)= Lx − x
a
− (2n+ 1) cos φ, Ẑm(a, φ)= Lz − z

a
− (4m+ 2)(1− sin φ), (3.8)

where Lx = 2a(N − 1) cos φ and Lz = 4aM(1 − sin φ) are sizes of the simulation
box and N + 1 and M + 1 are numbers of the forcing centres in the streamwise and
spanwise directions, respectively; a and φ define the configuration of the forcing (a
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FIGURE 3. Seed velocity field in the xz plane (y=−ypeak =−0.95): the vector field with
the contours of positive 0.0005 (—) and negative −0.0001 (– – –) spanwise velocity.

defines the size of the forcing ‘cells’ and φ is the forcing orientation in the xz plane,
e.g. at φ = π/4 quasi-equipartition of the forcing in the streamwise and spanwise
directions occurs); lx, ly and lz are the length scales related to the forcing localization
in the streamwise, wall-normal and spanwise directions; A1 and A2 define the forcing
amplitudes in the streamwise/spanwise and wall-normal directions; Xn(a, φ) and
Zm(a, φ) define the location of the forcing symmetry centres and X̂n(a, φ) and
Ẑm(a, φ) define the location of the forcing localization centres in the streamwise
and spanwise directions, respectively; and, finally, ypeak is the location of the forcing
localization centre in the wall-normal direction.

4. Results of numerical study of the flow control
The numerical simulations of the plane Couette flow at a Reynolds number of Re=

750 and different sets of parameters for the non-symmetric near-wall volume forcing
(see (3.1)–(3.8)) were performed. The statistics and instantaneous velocity fields of the
uncontrolled and controlled turbulence were compared. The forcing (figure 2) causes
the generation of a specially designed seed velocity perturbations at each simulation
time step.

Figure 3 shows an xz slice of such a seed velocity field at y = −0.95 and for
contour values of 0.0005 (solid line) and −0.0001 (dashed line) of the spanwise
velocity component. It is obvious that the velocity field presented in figure 3 does
not exactly mimic the forcing design: the continuity equation limits the possible flow
movement. The vector field in the area of the solid contour initiates the breaking
of the spanwise symmetry. The velocity field in the area of the dashed contour is
due to the incompressibility condition (the continuity equation) and is unfavourable
to the spanwise symmetry breaking. Nevertheless, the imposed velocity configuration,
for the set of parameters presented in figure 2 (see the caption for the values of the
parameters), initiates a robust transient growth and the generation of mean spanwise
velocity. That, finally, leads to substantial reduction of the turbulent kinetic energy.

It is well known that Couette flow is spectrally stable, turbulence exhibits a
subcritical nature manifesting itself in the bypass transition to turbulence. The
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FIGURE 4. Contours of spanwise velocity in xy-plane for uncontrolled (a) and controlled
(b) flows. Contours for uz > 0 (—) and uz < 0 (– – –) in the range of [−0.2, 0.2] with
increment 0.02 are presented.

proposed strategy/route of the flow control is based on peculiarities of linear and
nonlinear processes in the framework of the bypass concept. According to this
concept, the self-sustenance of the turbulence is the result of the linear transient
growth of the perturbations’ kinetic energy and positive nonlinear feedback induced
by the flow non-normality, the role of nonlinearity in this case is principally different
from its role in the Kolmogorov theory. The level/balance of turbulence depends
on the nonlinear redistribution process in wavenumber space. One can impact this
process indirectly, causing a change in the spectrum via the near-wall forcing. As a
result the balance between linear and nonlinear processes can be achieved at different
levels (low or high) of the turbulence. So, the imposed and specially designed initial
seed perturbations undergo transient growth and become quite powerful. Consequently,
these perturbations become an active participant of the nonlinear redistribution process,
change it and lead to the balance at a low level of turbulence. It was found that the
production of turbulent kinetic energy and turbulence level at the balance is very
sensitive to the forcing parameters. By the DNS it was shown that the proposed
strategy of the flow control is promising. In this paper, the attention is mainly given
to the results of the numerical simulations that lead to the significant reduction of
the turbulent kinetic energy production.

4.1. Qualitative analysis of the uncontrolled and controlled flows: instantaneous
velocity and vorticity fields

Contours of the spanwise velocity component for the uncontrolled (a) and controlled
(b) turbulence in xy plane are shown in figure 4. The levels of contours are in the
range of [−0.2, 0.2] with increment 0.02. Dashed and solid contours correspond
to the negative and positive spanwise velocities correspondingly. In the case of
uncontrolled turbulence, the contours with different signs are uniformly distributed
in wall-normal direction. As was expected, no preferred direction is observed for
the spanwise velocity: no mean flow in this case. A completely different picture is
observed in figure 4(b). At first, the contours become rare, that indicates a reduction
of the turbulence intensity. Second, the contours with negative values are mainly
located in the upper half of the flow and the contours with the positive values in the
lower half. This means the appearance of the mean flow in the spanwise direction.

Figure 5 displays the isosurfaces of instantaneous fields of the spanwise component
of velocity for uncontrolled (a) and controlled (b) turbulent flows. The figure confirms
the creation of mean spanwise velocity in the latter case showing that the isosurfaces

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.99


A new strategy of turbulence control in shear flows 307

1

0
–1

–6 –3
0

3
6 0

5

10
15

20

25

1

0
–1

–6 –3
0

3
6 0

5

10 x

z

x

z

15

20

25

(b)

(a)

y

y

FIGURE 5. Isosurfaces (uz=−0.13 black and uz= 0.13 white) of spanwise velocity fields
for uncontrolled at t< 3000 (a) and controlled at t> 3000 (b) flows.

with positive and negative signs are populated in the lower and upper half of the
numerical domain, respectively.

The instantaneous velocity (wall-normal and spanwise components) and vorticity
(spanwise component) fields in the xz plane at y = 0 (middle of the channel) are
presented in figures 6 and 7 (in the form of a greyscale coding) for uncontrolled and
controlled flows. In figures 6(a) and 7(a) we see the typical quantitative picture of
the fully developed turbulent Couette flow where the black (minimum amplitudes)
and white (maximum amplitudes) colour distribution is pronounced. As for the
controlled flow the situation is noticeably different. The dominance of grey colour
(intermediate amplitudes) is clearly observed in the plots (figures 6b and 7b) and the
velocity and vorticity fields are significantly smoother, i.e. the level of small-scale
perturbations in the controlled case is remarkably decreased. The reduction of the
turbulent small scales (less dissipation on small scales), actually, indicates an absence
of Kolmogorov’s concept/scheme in the flow: the dynamics of self-sustenance of
turbulence in the flow is now caused by the linear transient growth of the kinetic
energy of the perturbations and positive linear feedback induced by the non-normality
of the flow. The quantitative information about the large scales can be obtained from
the analysis of the two-point correlation functions that will be given in the next
section.

4.2. Quantitative analysis of the controlled flow turbulence: one- and two-point
statistics

The statistics of the Reynolds stress tensor components in uncontrolled (dashed lines)
and controlled (solid lines) cases are shown in figure 8. These plots show that the
level of turbulence decreases significantly in the latter case. In addition to u′xu′y the
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FIGURE 6. Instantaneous velocity (uy, uz) fields in the xz plane at y = 0 (a) for
uncontrolled (t= 3000) and (b) controlled turbulent flows (t= 10 000).
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FIGURE 7. Instantaneous vorticity fields (ωz) in the xz plane at y= 0 (a) for uncontrolled
(t= 3000) and (b) controlled turbulent flows (t= 10 000).

new non-diagonal Reynolds stress components (u′xu′z and u′yu′z) appear. Thus in the case
of the controlled flow all terms of Reynolds stress tensor are non-zero.

The maximum values of turbulence quantities in uncontrolled and controlled cases
are given in table 1. Figure 9 shows the deviation of the controlled flow mean
streamwise (1Ux = Ucontr

x − Uturb
x ) and spanwise (1Uz = Ucontr

z − Uturb
z ) velocity

profiles from the profiles of the uncontrolled turbulent flow. The forcing does not
create mean wall-normal flow. Figure 9(a) shows that the maximum deviation of
mean streamwise velocity is quite small in the controlled flow: 1Ux,max ≈ 0.014. For
the uncontrolled turbulent flow, the mean spanwise velocity is zero, consequently, in
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FIGURE 8. Comparison of Reynolds stress tensor components for uncontrolled (– – –)
and controlled (—) turbulent flows.

the controlled case, 1Uz is defined by Ucontr
z , 1Uz =Ucontr

z . One has to note that the
mean spanwise velocity appears with the maximum value Ucontr

z,max ≈ 0.07.
In figure 10 all components of the root-mean-square (r.m.s.) vorticity fluctuations

for uncontrolled and controlled turbulent flows are presented. The limiting value of the
relative streamwise turbulence intensity, ux,rms/Uw, or equivalently ω+z,rms = ωz,rmsν/u2

τ

has been a subject of much debate in the literature. Based on measurements it has

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.99


310 G. Chagelishvili, G. Khujadze, H. Foysi and M. Oberlack

Case u+rms,max u+rms,CL ω+z,max Prmax
x Prz Pin

x Pin
z,max Λ11x

Uncontrolled 2.77 2.11 0.41 4.3 0 0 0 3.93
Controlled 2.36 1.76 0.28 0.29 0.5× 10−4 1× 10−4 4.8× 10−4 2.08

TABLE 1. Peak values of statistically averaged quantities at the simulation box 8π×2×4π
and number of modes 256× 97× 128: turbulence intensity (u+rms), spanwise vorticity (ω+z ),
turbulence kinetic energy production (Prx and Prz), power input (Pin

x and Pin
z ).

0.015(a) (b)
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–0.005

–0.010

–0.015
–0.5 0

y y
0.5 1.0–1.0

0.08

0.05

0

–0.05

–0.08

0

–0.5 0 0.5 1.0–1.0

FIGURE 9. Deviation of the controlled flow mean (a) streamwise, 1Ux, and (b) spanwise,
1Uz, velocity profiles from the profiles of the uncontrolled turbulent flow the mean
spanwise velocity of which is zero and 1Uz =Ucontr

z .

been found that it should be in the range of 0.40–0.41 in the case of fully developed
uncontrolled turbulent plane Couette flow (Komminaho et al. 1996). As one can see
from the dashed line in figure 10(c) the maximum value of ω+z,rms approaches 0.41
which agrees well with the value accepted in the literature. In the case of controlled
flow all components of the r.m.s. vorticity fluctuations (solid lines in figure 10)
undergo significant decay: the maximum of ω+z,rms reduces to 0.24.

Two-point correlation functions, R11(r1) = u′1(x1)u′1(x1 + r1)/u′1(x1)u′1(x1) (a) and
R11(r3) = u′1(x1)u′1(x1 + r3)/u′1(x1)u′1(x1) (b), for uncontrolled and controlled turbulent
flows are presented in figure 11. (The definition of two-point correlation functions
can be found in appendix A (see (A 2)). The integral length scales in the streamwise
direction in the controlled case become smaller as can be observed from figure 11(a)
(solid line). Concerning the spanwise two-point correlation function in case of
controlled flow only one period of positive–negative regions is observed. This is
expected because of the generation of the mean spanwise velocity. In figure 12 the
streamwise integral length scale (Λ11x =

∫∞
0 R11(r1)dr1) is presented for controlled

flow. The solid line displays the time evolution of Λ11x that converges to the mean
value of Λ11x = 2.08 (dashed line) that is half the value in the case of uncontrolled
flow (see figure 23). As is shown in the appendix A the simulation box used in our
study is adequate to resolve the uncontrolled flow. It can be seen in figure 12 that
the streamwise integral length scale considerably decreases in the controlled flow.
Thus, we can state that the dimension of the simulation box is large enough in the
controlled case too.

Besides the classical term in turbulent kinetic energy production Prx=−u′xu′ydUx/dy,
the additional spanwise component Prz = −u′yu′zdUz/dy, appears due to the forcing.
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FIGURE 10. Root-mean-square of vorticity fluctuations for uncontrolled (– – –) and
controlled (—) flows are presented in plus units (ωi,rms ≡ωi,rmsν/u2

τ ).
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FIGURE 11. The two-point correlation functions for streamwise velocity R11 at y= 0 for
(a) streamwise, r1, and (b) spanwise, r3, separations: uncontrolled (– – –) and controlled
(—) turbulent flows.

Defining the input power in the flow, one has to take into account the following: the
forcing is steady in time, but varies in physical space (see (3.1)–(3.3)). Therefore,
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FIGURE 12. The streamwise integral length scale for the controlled flow: time evolution
of Λ11x (—); time-averaged value Λ11x = 2.08 (– – –).
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FIGURE 13. Time-averaged productions of turbulent kinetic energy. (a) The streamwise
component of production, Prx for the uncontrolled (– – –) and controlled (—) turbulent
flows and input power, Pin

x (– · –). (b) The same quantities for the spanwise components.

motionless fluid particles are influenced by the steady in time force, but moving fluid
particles are influenced by varying forces. This means that the mean input power
on the fluid particles moving with some constant velocity (e.g. mean velocity) is
zero. Consequently, the input power in the flow should be defined by the varying
(fluctuating) part of fluid particle velocity:

Pin = Fxu′x + Fyu′y + Fzu′z ≡ Pin
x + Pin

y + Pin
z . (4.1)

It has to emphasized that Pin
y is negligible. The terms characterizing the energetics

of the control process (as a function of wall-normal coordinate) are presented in
figure 13. Figure 13(a) displays Pin

x (dashed-dotted line) and Prx for the uncontrolled
(dashed line) and controlled (solid line) flows. Figure 13(b) displays the same for
the spanwise components. The figure shows that Pin

x , Pin
z , Prz� Prx and the turbulent

kinetic energy production is substantially reduced in the controlled case (compare
dashed and solid lines in figure 13(a)). This result is confirmed by figures 14 and 15
that display the time evolution of the production of turbulent kinetic energy averaged
in the streamwise and spanwise directions and integrated in the wall-normal direction.
The time region t 6 3000 corresponds to the uncontrolled turbulent flow. The forcing
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FIGURE 14. Time evolution of the production of turbulent kinetic energy (averaged in the
streamwise and spanwise and integrated in the wall-normal directions) for the uncontrolled
(t< 3000) and controlled (t> 3000) turbulent flows: (a) full simulation and (b) enlarged
view of the time interval in the transition region.
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FIGURE 15. Time evolution of the production of turbulent kinetic energy (averaged in the
streamwise and spanwise and integrated in the wall-normal directions) for the uncontrolled
(t< 3000) and controlled (t> 3000) flows at two different locations of the forcing centres
from the wall: ypeak = 0.95 (—) and ypeak = 0.90 (– – –).

was switched on at t = 3000. Hence, t > 3000 corresponds to the controlled flow.
As a result, a reduction of the turbulent production by up to one-third was obtained
(figure 14a). In figure 14(b) the zoomed time interval is shown in the transition
region (from uncontrolled to the controlled case). As we see, the time interval during
which the action of the forcing leads to the substantial reduction of turbulent kinetic
energy production is very small (≈50 time units).

Figure 15 compares the time evolution of the production for two different locations
of the forcing centre in the wall-normal direction. The figure shows that the shift
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FIGURE 16. Time evolution of the production of turbulent kinetic energy for the
uncontrolled (t < 3000) and controlled (t > 3000) flows at three different cases: with
`y = 0.2, A1 = 0.4, A2 = 0.008 (—); with `y = 0.1, A1 = 0.4, A2 = 0.008 (– – –); with
`y = 0.1, A1 = 0.8, A2 = 0.032 (– · –).

of the forcing location from the wall (from ypeak = 0.95 to ypeak = 0.90) remarkably
reduces the control of the flow. As is outlined in the comparison of figures 2 and 3,
the continuity equation restricts the flow motion and the velocity field introduced by
the forcing does not mimic the forcing design exactly: there appear the areas of the
velocity field that are unfavourable to the spanwise symmetry breaking (the areas
inside the dashed contours in figure 3). Apparently these areas are minimal at about
ypeak = 0.95. Figure 16 shows that the decrease of the localization length scale (`y)
along the wall-normal direction by a factor of two eliminates the efficiency of the
control process (see the dashed line). Doubling the forcing amplitude achieves only
a slight improvement in the control efficiency (see the dotted line). As we can see,
obtaining the optimal geometry of the forcing requires delicate adjustment of the
parameters that have to be fixed to obtain the substantial reduction of the turbulent
kinetic energy production.

5. Conclusions

The aim of this study was to propose and analyse a new strategy/route of flow
control imposing specially designed seed perturbations that have the potential for
transient growth and lead to the generation of helical turbulence, which has non-zero
streamwise vorticity with simultaneous creation of spanwise mean flow.

Taking into account the feature of the subcritical turbulence (see § 4) and definition
of optimal perturbations (see the beginning of § 3) the model of near-wall body forcing
with non-zero helicity was constructed and a DNS was performed to evaluate the
efficiency of the proposed scheme on the example of plane Couette flow. The results
are promising and encouraging: the applied forcing considerably reduces the kinetic
energy production in comparison with the uncontrolled turbulent flow. Of course, the
considered volume force is hypothetical. However, it helps to gain knowledge about
the design of the seed velocity field, which, when permanently imposed in the flow
(at each simulation time step) leads to a substantial reduction of the turbulent kinetic
energy. The observed results support the vitality of the proposed control strategy and
initiate further investigations. It is obvious that the imposition of the needed/helical
seed velocity perturbations can also be achieved by manipulation of the boundaries via
an implementation of properly designed blowing/suction or riblets. This is principally
not a difficult, but quite laborious issue and requires a separate investigation.
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Lx × Ly × Lz Nx ×Ny ×Nz 1x+ ×1y+ ×1y+ 1t+ tUw/Lx tUw/h

8π× 2× 4π 256× 97× 128 3.4× 0.03− 1.6× 3.4 0.1 118+ 277 3000+ 7000
8π× 2× 4π 512× 257× 256 1.7× 0.004− 0.6× 1.7 0.06 158+ 39.5 4000+ 1000
16π× 2× 8π 512× 257× 256 3.4× 0.004− 0.6× 3.4 0.06 59.4+ 19.8 3000+ 1000

TABLE 2. Computational parameters of the main simulations.
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Appendix. Validation of the DNS of plane Couette flow
In the following we give a detailed description of the parameters of the performed

simulations. The results of convergence tests are given and discussed. In table 2 the
important parameters of the performed DNS are summarized.

The turbulent mean velocity profiles in outer (a) and plus units (b) are plotted
in figure 17. (The superscript ‘+’ means the normalization of quantities with the
kinematic viscosity ν and with the friction velocity uτ .) As we see from figure 17(a),
the profile from the present DNS collapses to that obtained by Tsukahara et al.
(2006). A logarithmic region can be observed figure 17(b) where the same profile
is presented but in plus units (solid line) and compared with the classical log law
(dashed line). The log region is a well-defined borderline between fully developed
turbulent and transitional flows. Consequently, the plane Couette flow studied in the
paper is fully developed turbulent flow. The comparison of the DNS result with the
theoretical one (log law) gives a well-acknowledged value of the von Karman constant
κ = 0.41 that agrees with those found by others in plane Couette flow simulations
and experiments (see the papers by Tsukahara et al. (2006) and Komminaho et al.
(1996) and references therein).

Figure 18 demonstrates the grid convergence showing the production of turbulent
kinetic energy as a function of the wall-normal coordinate for two different resolutions
(a) and simulation domains (b). These plots show good convergence of the simulations
for both cases and, consequently, the lower resolution and smaller box are sufficient
to obtain physically reliable results. It has to be emphasized that the resolution of our
simulations is the same as published in the literature and must be enough to resolve
all relevant scales of the flow (Komminaho et al. 1996; Tsukahara et al. 2006). Thus,
we can state that the size of the box of 8π× 2× 4π is totally adequate for obtaining
accurate quantitative data for the flow. To be more precise, once the statistically steady
state is reached, the right- and left-hand sides of following equation

τ+total = 1=−u′xu′y
+ + dUx

+

dy+
(A 1)

must be balanced (well-known characteristic of the turbulent plane Couette flow). Here
τtotal is the total shear stress, the distribution of which is given in figure 19 together
with Reynolds shear stress and streamwise mean velocity derivative. The dashed line
in the figure shows the total shear stress: τ+total = 1 as was expected from the theory.
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FIGURE 17. (a) Mean velocity profiles in outer units from the presented DNS of
uncontrolled flow (—) compared with Tsukahara et al. (2006) data (– – –). (b) The same
profile in plus units (—) and log-law Ux = 1/κln(y+)+ 5.1 (– – –).
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FIGURE 18. (a) Production of turbulent kinetic energy for 256× 97× 128 (—) and 512×
257× 256 (– – –) number of modes at the simulation box 8π× 2× 4π. (b) Comparison
of production for different simulation domains 8π× 2× 4π (– - –), 16π× 2× 8π (—) at
the number of modes 512× 257× 256.

The effect of the simulation box size can be most clearly seen on the two-point
correlation functions defined as follows:

Rij(ri)= u′i(xi)u′j(xi + ri)

u′i(xi)u′j(xi)
, i, j= 1, 2, 3 (A 2)

where r1, r2, r3 are the separations between two different points in streamwise,
wall-normal and spanwise directions correspondingly. In figure 20 we present
two-point correlation functions for streamwise, wall-normal and spanwise components
of velocity, R11,R22,R22 at y= 0 (centre of the channel) for the turbulent uncontrolled
case calculated only for the half of the simulation box. In figure 20(a) one can

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.99


A new strategy of turbulence control in shear flows 317

1.0

0.8

0.6

St
re

ss
es

0.4

0.2

0
–1.0 –0.5 0 0.5 1.0

y

FIGURE 19. Reynolds (u′xu′y
+) (– – –) and total shear (τ+total) (—) stresses. Wall-normal

derivative of the streamwise mean velocity (dUx
+
/dy+) (– - –).
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FIGURE 20. Two-point correlation functions for streamwise, R11 (—), wall-normal, R22
(– · –), and spanwise, R33 (– – –), velocities in the middle of channel versus r1 (a) and
r3 (b) for simulation box 8π× 2× 4π.

observe that R11(r1) decreases gradually to zero in the middle of the box, indicating
that its length is enough to obtain the random meandering of the large structures
within the computational domain. As for R22 and R33, they decay even faster then
R11. Figure 20(b) displays the same two-point correlation functions but measured in
the spanwise direction. As we see, the positive–negative regions of the correlation
function appear which means that more than one long wavelength is captured in this
direction. Figure 21 shows the two-point correlation function R11 versus r1 (a) and
r3 (b) for different length of simulation boxes. The two-point correlation function for
the small box (dashed line) follows those for the large box (solid line).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.99


318 G. Chagelishvili, G. Khujadze, H. Foysi and M. Oberlack

1.00

0.80

0.60

0.40

0.20

0.05

1.0

0.6

0.8

0.4

0.2

0

–0.2

0 2420161284 0 12108642

(a) (b)

FIGURE 21. Two-point correlation functions for streamwise velocity R11 at y= 0 for (a)
streamwise, r1, and (b) spanwise, r3, separations at different simulation domains: 16π×
2× 8π (—); 8π× 2× 4π (– – –).
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FIGURE 22. Streamwise two-point correlation functions, R11, for different time realizations
(– – –) and averaged over a long period of time (—).

We can see from figure 22 that R11(r1) calculated at different time realizations
fluctuate considerable. The solid line on this plot shows the average of R11(r1) over a
long period of time. Thus, in order to determine the R11(r1) curve and integral length
scales, we need to run the simulations for a very long time. Figure 23 represents the
streamwise integral length scale (Λ11x) that is defined as follows

Λ11x =
∫ ∞

0
R11(r1)dr1. (A 3)

The time evolution of Λ11x(t) (solid curve) converges to the value Λ11x = 3.93.
To summarize, these numerical tests allow us to consider the resolution used in our

study to be adequate, the box size used to be large enough and the integration time
to be sufficient to give good statistics and integral quantities.
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FIGURE 23. Streamwise integral length scale: time evolution of Λ11x (—); time-averaged
value Λ11x = 3.93 (– – –).
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