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We herein report an experimental study on the morphological evolution of a vortex
ring formed inside a liquid pool after it is impacted and penetrated by a coalescing
drop of the same liquid. The dynamics of the penetrating vortex ring along with the
deformation of the pool surface has been captured using simultaneous high-speed laser
induced fluorescence and shadowgraph techniques. It is identified that the motion of
such a vortex ring can be divided into three stages, during which inertial, capillary
and viscous effects alternatingly play dominant roles to modulate the penetration
process, resulting in linear, non-monotonic and decelerating motion in these three
stages respectively. Furthermore, we also evaluate the relevant time and length scales
of these three stages and subsequently propose a unified description of the downward
motion of the penetrating vortex ring. Finally, we use the experimental data for a
range of drop diameters and impact speeds to validate the proposed scaling.
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1. Introduction
Drop impact on a liquid film of various depths and the subsequent penetration

and mixing is critical in many natural and industrial processes, including, for
example, rainfall on the ocean surface (Prosperetti, Crum & Pumphrey 1989),
inkjet printing (van der Bos et al. 2014), fuel spray in internal combustion engines
(Moreira, Moita & Panao 2010) and spray for cooling, coating and agriculture
(Aziz & Chandra 2000; Gart et al. 2015; Gilet & Bourouiba 2015). Consequently,
drop impact on liquid surfaces has been a major topic in fluid dynamics research,
with recent reviews by Rein (1993), Josserand & Thoroddsen (2016) and Yarin
(2006). Much of these previous studies have focused on events at the air–liquid
interface, such as the transition between bouncing–merging (Rein 1993; Tang et al.
2016, 2018; Weheliye, Dong & Angeli 2017); formation of central jetting (Rein 1993,
1996; Zhao, Brunsvold & Munkejord 2011; Castillo-Orozco et al. 2015; Michon,
Josserand & Séon 2017); onset and dynamics of splashing and crown formation
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(Rein 1993; Weiss & Yarin 1999; Thoroddsen 2002; Yarin 2006; Deegan, Brunet &
Eggers 2007); dynamics of crater formation (Rein 1993; Yarin 2006; Michon et al.
2017); evolution of interfacial gas layer dynamics and bubble entrapment (Thoroddsen,
Etoh & Takehara 2003; Bird et al. 2010; Thoraval et al. 2013; Beilharz et al. 2015;
Murphy et al. 2015; Michon et al. 2017; Tang et al. 2019).

However, the long-term developments occurring under the air–liquid interface,
involving the penetration and mixing of the drop in the impacted pool, are relatively
less explored. Several studies (Chapman & Critchlow 1967; Peck & Sigurdson 1994;
Dooley et al. 1997) have looked into the evolution of the vortex ring created by the
merging of the drop and the impacted liquid pool. For a narrow range of impact
conditions, Peck & Sigurdson (1994) proposed a theoretical model to construct the
topology of the vortex ring. Furthermore, Chapman & Critchlow (1967) and Peck &
Sigurdson (1994) investigated the role of sphericity of the drop on the characteristics
of the vortex ring, and found that spherical droplets, oscillating from oblate to prolate
shape, generate the maximum penetration. Rodriguez & Mesler (1988), however,
reported that the largest penetration of the vortex ring occurred for prolate droplets,
and vice versa. Working with vanishing velocity impacts, Shankar & Kumar (1995)
and Dooley et al. (1997) showed that the penetration process is solely controlled by
the capillarity or surface energy of the droplet, which may not hold for finite impact
velocities. In light of the valuable qualitative and phenomenological understanding
gained on the overall dynamics of the motion of the submerged drop from the above
studies, quantitative evaluation and physical reasoning of its kinematics is nevertheless
not well understood. In response to such a need we report herein an experimental
study to characterize the kinematics of the vortex ring generated by the submerged
drop impacting on a liquid pool, and to identify the various competing factors that
control its motion at different stages of the penetration. By using high-speed laser
induced fluorescence, we have captured the spatial and temporal evolution of the
motion and the overall morphology, and subsequently identified the similarity between
the penetration processes for drops of different sizes and impact velocities. We shall
now present the experimental set-up, followed by an analysis of the data to show that
inertia, capillarity and viscous drag control the drop motion at various stages. Finally,
we shall derive a unified expression to describe the penetration process.

2. Experimental set-up

The drop in our experiment was generated by slowly pushing the liquid through
a vertically suspended needle using a syringe pump, as shown in figure 1(a).
When the drop becomes larger than a critical size, it detaches from the needle
tip and subsequently falls downwards to land on the liquid film hosted in a
50 mm× 50 mm× 30 mm rectangular glass chamber. The drop size and impact speed
were modulated by changing the needle diameter and the distance between the film
surface and the needle, respectively. To observe the post-impact motion of the drop
inside the liquid pool, high-speed laser induced fluorescence (LIF) was performed by
doping the drop liquid with a trace amount (<0.01 % mass fraction) of Rhodamine-6G
dye, while leaving the liquid pool un-dyed. A Nd-YLF high-speed (527 nm) laser
along with the required optics was used to create a 500 µm thick laser sheet which
passes through the centre of the liquid reservoir. Using a three-dimensional traverse
system, the needle was precisely positioned such that the drop lands on the liquid
pool where the laser sheet centrally intersects. A synchronized high-speed camera
with a bandpass filter recorded the fluorescence images from the drop. A 550 nm
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FIGURE 1. (Colour online) (a) Experimental set-up. (b) Timing diagram demonstrating
how LIF was captured in every alternate image.

high pass filter was used to capture the fluorescence signal while removing the laser
line (527 nm) and the stray lights from these images. A separate backlight was used
to capture the structure of the dynamics of the pool surface through shadowgraphy.
An external timing unit was used to synchronize the high-speed camera, recording
at 8 kHz framing rate with the laser pulsing at 4 kHz, such that fluorescence was
synchronized with alternate recorded images, while the other half of the images
captured the shadowgraph. Thus, as shown through the timing sequence in figure 1(b),
the effective recording speed for both the LIF images and shadowgraph was 4 kHz.

De-ionized (DI) water (density, ρ = 998 kg m−3, surface tension, σ = 70 mN m−1

and dynamic viscosity, µ = 1 mPa s) was used as liquid for the drop and the pool,
since Rhodamine6G is easily soluble. The amount of dye dissolved in water used
in the experiments is sufficiently small (<0.01 % mass fraction) that no discernible
change was observed in the liquid properties. A large film/pool thickness, H, which
was ten times the drop radius, was used to alleviate effects of the bottom substrate
on the penetration and vortex dynamics. Three different drop diameters (D ≈ 2, 3,
3.5 mm) and a large range of Weber numbers (We), from 5 to 40, were used to cover
a wide range of capillary time (τc ∈[7.7–19.7 ms]) and inertial time (τi ∈[2.4–8.2 ms])
scales. Here, the Weber number is defined as We = ρU2D/σ , where U and D are
the impact velocity and diameter of the drop, which are calculated from shadowgraph
images before the impact. In the following analyses, two fundamental time scales,
namely the inertial time scale of the drop (τi = D/U) and the capillary time scale
of the pool (τc = 2π/ωc) will be used. Here, ωc is the capillary frequency, which for
the deep pool (H�D) can be expressed as ωc =

√
(64σ)/(ρD3) (Pan & Law 2007;

Kundu & Cohen 2008).
It is noted that for impact velocities smaller than a critical value, the impacting drop

can bounce from the liquid surface due to the resistance from the trapped interfacial
gas layer between the drop and film surface (Tang et al. 2016, 2019), while splashing
can occur for a sufficiently large impact velocity (Hsiao, Lichter & Quintero 1988;
Leng 2001). Since we are interested in the motion of vortex ring generated by the
merged drop, unaffected by splashing, our experiments were conducted with impact
velocities that are sufficiently large to induce gas film rupture and the subsequent
merging, but not too large to induce splashing.
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FIGURE 2. (Colour online) (a) Sequence of high-speed LIF images depicting the
penetration process. (b) Penetration history of one experiment (We= 10.2, D= 1.9 mm).
(c) Penetration history for a series of experiments, D ∈ [2, 3, 3.5 mm], We ∈ [8 : 37].

3. Results
3.1. General dynamics

The motion of a merged drop during a typical impact process is illustrated through a
series of fluorescence images, shown in figure 2(a), which demonstrate several notable
characteristics. Specifically, at the very early stage of the impact, when the drop starts
penetrating into the stagnant liquid pool, a vortex ring is generated around the outer
periphery of the drop due to the large shear rate (figure 2a, t= 5 ms), and becomes
larger as the drop penetrates into the pool. As the rear end of the drop falls below
the liquid surface, a crater is developed on the surface of the pool, which pushes the
drop downwards until the crater on the liquid surface reaches a maximum depth and
subsequently starts relaxing (figure 2a, t = 20 ms) to regain its original unperturbed
state. The spread of the vortex ring then becomes smaller as the vortices approach
each other and continue the penetration.

Among the various dynamic and characteristic analyses that can be performed
on this process, here we are mostly interested in the overall downward motion
and penetration of the vortex ring. Specifically, the primary quantity of interest is
the penetration depth, h, which is the distance between the bottom-most point of
the vortex ring, marked by the dye, and the unperturbed liquid surface, as defined
in figure 2(a). The temporal evolution of h is plotted for a typical experiment in
figure 2(b), from which we can clearly identify three distinct stages of the penetration
process. Here, t= 0 is the instant when the drop touches the unperturbed liquid pool.
At the early stage immediately after the impact, a steady increase of h(t) with almost
a constant slope is observed. The motion in this stage I, termed ‘Rapid penetration’,
is primarily controlled by the impact inertia and as such the slope is almost constant.
On the other hand, far from impact in stage III of ‘Deceleration’, we observe a
monotonic penetration process with steady deceleration, marked by a continuous
decay in the slope, caused by the viscous effect. Interestingly, at the intermediate or
transitional period between stages I and III, the drop motion shows a non-monotonic
penetration process, in that h(t) first increases and then slightly decreases with
time, exhibiting an oscillatory motion. Such a behaviour in this stage II, termed as
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FIGURE 3. (Colour online) (a) Inertial stage: normalized penetration history at early stage
of penetration. (b) Schematic of the radial flow in liquid pool induced by the penetrating
drop.

‘Non-monotonic propagation’, is caused by the crater on the pool surface created by
the impact. Evolution of the penetration depth is compared for various D and We in
figure 2(c), which does not show any similarity between different stages in different
experiments, suggesting that the three stages are characterized by different length and
time scales. We now explore the varying extent of influence of these three major
effects, i.e. impact inertia, viscous drag and capillarity, in the drop motion in these
stages and show how their influence can be scaled.

3.2. Inertial effect
Immediately after impact, penetration is dominated by the impact inertia of the drop.
At this stage the drop kinetic energy is dominant, and the flow induced in the pool
is mostly radial in nature with minimal dissipation. Recognizing that the Reynolds
number of the drop is high and that the capillary disturbance of the pool surface is
minimal, we expect viscous and capillary effects to be weak during this stage. Also,
the Froude number (U/

√
gD/2) for our experiments is greater than unity, showing

a negligible effect of gravity. Thus, the penetration at this stage is controlled by the
impact inertia. This is also evident from the linear nature of the penetration history
in stage I, shown in a non-dimensional plot (figure 3a), where t is normalized by the
inertial time scale, τi, and h(t) is normalized by the drop diameter, D. In figure 3(a),
we notice that for a wide range of D and We, the normalized penetration histories
collapse to a linear fit until t/τi ≈ 1, beyond which they diverge, confirming the
dominant role of impact inertia in stage I. Moreover, the slope of the normalized data
is close to 1/2, which suggests that the penetration velocity, Up(= dh/dt), defined as
the velocity at which the coalesced drop front is moving inside the pool, is half of
the impact velocity, Up ≈ U/2. This loss in kinetic energy can be attributed to the
motion induced in the pool, due to the drop impact. Using energy budget analyses
for the unmerged drop, Tran et al. (2013) and Tang et al. (2016) showed that the
kinetic energy of the induced flow (Ek,l) in the pool is approximately 3/4 of the
initial drop kinetic energy, Ek,0 = (1/12)πρD3U2

∼ U2. Considering the drop kinetic
energy after the impact is Ek,p ∼U2

p , the energy balance before and after the impact,
i.e. Ek,0 = Ek,p + Ek,l, results in Ek,p ≈ (1/4)Ek,0 or Up ≈ (1/2)U. Note that this result
can alternatively be obtained by following Wagner’s theory in the context of a drop
impacting a shallow pool, as shown in Purvis & Smith (2005). Finally, from our

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.503


Kinematics of vortex ring generated by a drop upon impacting a liquid pool 847

0.6
0.4
0.2

0
-0.2

Ds

Ds

Up

(d
h/

dt
)/

U

0.6
0.4
0.2

0
-0.2(d

h/
dt

)/
U

We: 10.2, D: 1.9 mm

We: 36.9, D: 3.0 mm

We: 10.2, D: 1.9 mm
We: 36.9, D: 3.0 mm

Up,0/U t0/†i

0.2

0.1

0
10 20 30

2.5

2.0

1.5

1.0

0.5

D
s/

D

0 5 10 15 20 25 30 35

0 5 10 15 20
t/†i

25 30 35

1.0

0.8

0.6

0.4

0.2

0

h¡

h = (h - h0)/h√
¡

t = (t - t0)/†√
¡

¡
0.2 0.4 0.6

log(t + 1)
0.8 1.0

We, D (mm)
8.8, 2.1
16.8, 2.0
19.3, 2.1
17.3, 3.0

36.9, 3.0
40.3, 2.9
10.3, 3.5

22.8, 3.0
25.8, 3.0

16.8, 3.5
16.8, 3.6
20.9, 3.5
24.8, 3.6

(a) (b)

(c) (d)

FIGURE 4. (Colour online) (a) Normalized penetration velocity dhp/dt as a function
of normalized time, t/τi. Inset: zoomed view of stage III showing the deceleration. (b)
Drop far from the pool surface: assuming spherical geometry and defined diameter (Ds).
(c) Normalized Ds of the penetrating drop as a function of normalized time. Ds becomes
constant at the late stage of penetration. (d) (h− h0)/hv as a function of ln[(t− t0)/τv + 1]
for a wide range of We and D.

knowledge of the penetration speed for the inertial controlled stage I, the equation of
motion in non-dimensional form can be expressed as

h(t)
D
=

1
2

t
τi
, for 0 6

t
τi
6 1. (3.1)

3.3. Viscous drag
During the late stage of the penetration, when the vortex ring is sufficiently far away
from the liquid surface, it continues to move down with a steady deceleration, as seen
in stage-III of figure 2(b). This deceleration in the late stage is also clearly visible if
we plot the instantaneous normalized penetration velocity for two typical experiments
(figure 4a). The penetration process in this stage almost resembles the motion of a
sphere in a stagnant liquid, with the notable exception of the presence of a toroidal
vortex ring (figure 4b). However, it is interesting to note that Ds, the virtual diameter
of the sphere encompassing the vortex ring, remains almost constant at this stage, as
shown for two different experiments in figure 4(c). Moreover, mixing of the dye with
the surrounding liquid via the vortex is still not significant, and thus entrainment of the
dye-free water from the pool is neglected here. The motion of the vortex ring, then,
is modelled as a spherical mass moving through a stagnant liquid (figure 4b), and we
can write m(dUp/dt)=−FD =−CDAcs(ρU2

p/2), where m= (πρD3
s/6) is the mass of

the fictitious sphere encompassing the vortex ring, Up= dh/dt the penetration velocity,
FD the drag force, CD the drag coefficient and Acs = πD2

s/4 the cross-sectional area.
By integrating the expression twice with the boundary conditions, h(t = t0)= h0 and
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Up(t= t0)=Up,0, we find

h(t)− h0

hv
= ln

[
t− t0

τv
+ 1
]
, (3.2)

where, hv = (4Ds)/(3CD) and τv = (4Ds)/(3CDUp,0). It can be seen that hv(∼Ds) and
τv(∼ Ds/Up,0) are the effective length and time scales for this stage. In the current
experiments, τv ranges from 46.1 to 120.5 ms. We identify t0 as the time when the
penetration velocity dh/dt attains a local maximum and the subsequent penetration
process displays a monotonic decrease in dh/dt, as shown in figure 4(a). Subsequently,
the t0, h0 and Up,0 values are extracted from individual experiments. The effective
Reynolds number (Re = ρUpDs/µ) at this stage is approximately 103–104, and for
which the drag coefficient CD, for flow over a smooth sphere, has a value close
to 0.5 (NASA 1999; Kundu & Cohen 2008). Alternatively, a ‘best-fit’ value of CD

for each condition can also be obtained by comparing the experimental data with
the theoretical prediction in (3.2). These individual ‘best-fit’ CD values are also
found to have values close to 0.5 (details in supplementary material available online
at https://doi.org/10.1017/jfm.2019.503). Consequently, we use CD = 0.5 for all the
experimental conditions and plot (h − h0)/hv as a function of ln[(t − t0)/τv + 1] in
figure 4(d), which shows very close resemblance with the scaling. It is noted that
(3.2) represents an exact solution, which does not require any proportionality constant,
as supported by the near-unity slope in figure 4(d). In passing, we further note that
for the current experiments (Dsg)/(2CDU2

p) is less than unity, suggesting that the
gravity effect is negligible compared to that of viscous drag.

3.4. Capillary effect
Capillary effect of the pool surface plays a critical role in the intermediate stage,
which is marked by the non-monotonic changes in h versus t (figure 2b). This
oscillation is caused by the formation (and relaxation) of the crater on the pool
surface (figure 2a, t > 5 ms) due to the impact. The crater eventually reaches a
maximum depth due to the capillary effect, and then the highly distorted pool surface
retracts to attain its original shape (figure 5a). The formation and retraction of the
crater induce an additional downward and upward motion respectively, in the pool,
which periodically accelerates and decelerates the penetration of the vortex ring visible
through oscillations in stage II, as seen in figure 2(b). The primary two parameters,
which characterize the formation and relaxation of the pool surface, are the maximum
crater depth Hmd and the time tmd taken (after the initial contact between the drop
and the pool surface) to create this maximum crater depth. In figure 5(b), we plot
tmd normalized by the capillary time scale of the pool surface, τc, and it is found to
be almost constant (figure 5b) for all the experiments across different drop sizes and
impact velocities. This confirms that the process is controlled by capillarity and the
effects of inertia are minimal. On the other hand, if plotted with We in figure 5(c),
the non-dimensional Hmd, normalized by D, displays a power law dependence with an
exponent close to 0.5, i.e. Hmd/D∼We1/2 (figure 5c). Such a power law dependence
can be explained by an energy balance assuming that the kinetic energy of the
penetrating drop, Ek,p =πρD3U2

p/12, has been converted to the surface energy of the
crater, Es,H , and we have already shown that Up = 1/2U. Furthermore, we assume
that the crater has a hemispherical shape, shown in figure 5(d), whose surface area
is AHd ≈ 2πH2

md. This leads to Es,H = σAHd ≈ 2σπH2
md, or Hmd/D ∼ We1/2, which is
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FIGURE 5. (Colour online) (a) Shadowgraph image: formation and relaxation of the
crater. The dark region is the crater. The maximum crater depth, Hmd is also identified.
(b) Non-dimensional crater formation time as a function of We for three different drop
diameters. (c) Non-dimensional maximum crater depth as a function of We in log–log
scale. (d) Schematic of the crater formation.

closely supported by the experimental data shown in figure 5(c). The scalings of Hmd
and tmd confirm that the crater formation process is capillarity driven. It is also noted
that for the present experiments, the Bond number, Bo = [(ρg)/(σk2)] is less than
unity, suggesting that the capillary wave is stronger than the gravity wave and as
such the latter has been neglected.

To evaluate the effect of crater formation on the penetration of the vortex ring, we
first formulate the crater formation process, which can be expressed as a capillary
wave moving through the surface of the pool. The beginning of crater formation is
marked by the instant when the rear end of the drop (outside the pool), moving with
velocity U, reaches the unperturbed liquid surface, i.e. at t= τi, which also represents
the end of stage I. Since the crater formation is a capillary driven process, its effect
on the penetration velocity of the drop can be expressed as Uc=Up cos[ωc(t− τi)] and
its effect on the penetration depth as hp,c= (Up/ωc) sin[ωc(t− τi)]. The influence of the
capillary wave, as manifested by the formation and relaxation of the crater, will be felt
by the vortex ring, as long as it is in close vicinity to the pool surface. Although one
can expect that the transition to the next stage will occur between 1/4 of the capillary
period when the capillary deformation is maximum, and 1/2 of the capillary period
when the pool surface reaches its initial state during the retraction process, the exact
duration of the capillary effect on penetration, i.e. duration of stage II, is difficult to
ascertain simply from scaling. However, as shown in figure 4(c), from experiments we
can identify t= t0, beyond which the penetration velocity monotonically decreases due

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.503


850 A. Saha, Y. Wei, X. Tang and C. K. Law

to a pure viscous effect without any effect of capillary oscillation in the pool surface.
Thus, we use t = t0 as the end of stage II, where the capillary effect on penetration
is important. Although capillarity has a strong effect on the drop motion in stage II,
the viscous effect is equally important, as evident from the increasing mean position
of the drop during this stage (figure 2b). It is noted that the relative contributions
from the viscous and capillary effects to propagation during this stage are comparable
(shown in supplementary materials), and hence the viscous term cannot be neglected.
Recognizing that stage II includes both viscous and capillary effects, the equation of
motion for this stage can be expressed as

h(t)
D
=

1
2
+
τc

τi

1
4π

sin
[

2π
t− τi

τc

]
+

hv
D

ln
[

t− τi

τv
+ 1
]
. (3.3)

4. Summary
In the present study we have explored the motion of a coalesced drop, after

it impacts a liquid pool, to understand the controlling mechanisms that guide its
motion inside the pool. Analysing the kinematics of the vortex ring through the
high-speed laser induced fluorescence images, we identified three distinct stages of
penetration, namely, rapid penetration, non-monotonic propagation and deceleration.
Detailed analysis of each of these stages showed various extents of influence of
the inertial, capillary and viscous effects. Specifically, at the very early stage of
motion following the impact, penetration is dominated by the impact inertia and
as such the vortex ring moves at a near-constant velocity. At the late stage of the
penetration, the motion is controlled by viscous drag, which continuously decelerates
the vortex ring. In the intermediate stage, characterized by non-monotonic motion,
both capillary and viscous effects are important. The capillarity causes perturbation
in the pool surface through crater formation, which drives a wave-like motion in the
pool liquid affecting the penetration. Each of these effects at the individual stages are
subsequently characterized and scaled with relevant quantities, which are supported
by the experimental results. Since a kinematic equation of motion has been derived
for each of these effects, we can now combine them to derive a piecewise kinematic
equation for the entire penetration process. Recognizing that in stages I and III,
inertia and viscous drag are respectively the sole dominant processes, in stage II both
capillary and viscous effects are important and that the end of stages I and II are
marked by t= τi and t= t0, we can write

h(t)
D
=



1
2

t
τi

: 0 6 t 6 τi

1
2
+
τc

τi

1
4π

sin
[

2π
t− τi

τc

]
+

hv
D

ln
[

t− τi

τv
+ 1
]
: τi < t 6 t0

h0

D
+

hv
D

ln
[

t− t0

τv
+ 1
]

: t> t0,

(4.1)

which describes the kinematics of the entire penetration process. It is noted that τi and
τv are the characteristic time scales for stages I and III, respectively, while in stage II
τi, τc and τv are all important. Similarly, three different length scales, D, h0 and hv are
relevant at different stages. Owing to the presence of multiple length and time scales
at different stages of this multiscale process, defining a single length or time scale is
not appropriate.
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FIGURE 6. (Colour online) Comparison of experiments and scaling: penetration depth as
function of time for a wide range of conditions.

We next compare the experimental data with the theoretical expression (4.1) in
figure 6, where h is plotted versus t in dimensional space for three different D and
different We. It is seen that by changing the drop diameter, D, we are modulating
both τi and τc, while by changing the Weber number, We, we are modulating the
ratio between them. Thus, the nine sets of experimental data presented in figure 6,
represent nine different combinations of inertial (τi) and capillary (τc) conditions.
The comparison shows a remarkable agreement between the experimental results and
theoretical predictions, hence suggesting that the simple theory captures the physics
controlling the penetration process. We recognize that while in experiments the
transition from one stage to another occurs gradually over a finite time, the kinematic
equations developed for the three stages are piecewise in nature, with a sharp instant
transition. This introduces discrepancies between the model and the experiments near
the transitions. Furthermore, for completeness we have also evaluated dh/dt for these
nine conditions, which also show three stages of propagation (see supplementary
material). The values of t0 and h0 for these nine conditions are also reported in the
supplementary material.

We conclude the present study by stating that, although the results are highly
repeatable, we have considered only impacts for which the drop aspect ratio is
relatively close to unity and the impact speed does not cause splashing. It is
anticipated that non-sphericity in shape and splashing will significantly affect the
initial vortex formation and the subsequent penetration, which require further studies.
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