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In this paper, we study the existence, nonexistence and mass concentration of
L2-normalized solutions for nonlinear fractional Schrödinger equations. Comparing
with the Schrödinger equation, we encounter some new challenges due to the
nonlocal nature of the fractional Laplacian. We first prove that the optimal
embedding constant for the fractional Gagliardo–Nirenberg–Sobolev inequality can
be expressed by exact form, which improves the results of [17,18]. By doing this, we
then establish the existence and nonexistence of L2-normalized solutions for this
equation. Finally, under a certain type of trapping potentials, by using some delicate
energy estimates we present a detailed analysis of the concentration behavior of
L2-normalized solutions in the mass critical case.

Keywords: Fractional Schrödinger equation; normalized solutions; mass concentration

2010 Mathematics subject classification: Primary 35J61; 35J20; 35R11; 49J40

1. Introduction and main results

This paper is devoted to the existence, nonexistence and mass concentration of
L2-normalized solutions for a class of Schrödinger equations with the fractional
Laplacian. More precisely, we are concerned with the following stationary (i.e.,
time-independent) fractional Schrödinger equation

(−Δ)su+ V (x)u = μu+ af(u), x ∈ R
N , (1.1)
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where 0 < s < 1, N � 2, V : R
N → R is an external potential function, μ ∈ R and

a > 0 are parameters, and f is a subcritical nonlinearity. The operator (−Δ)s is
the fractional Laplacian of order s, which, for a rapidly decreasing C∞ function u,
may be defined as

(−Δ)su(x) = CN,s P.V.
∫

RN

u(x) − u(y)
|x− y|N+2s

dy = CN,s lim
ε→0+

∫
RN\Bε(x)

u(x) − u(y)
|x− y|N+2s

dy.

(1.2)

The symbol P. V. denotes the Cauchy principal value of the singular integral, and
CN,s is a dimensional constant that depends on N and s, precisely given by CN,s =
(
∫

RN ((1 − cos ζ1)/(|ζ|N+2s)) dζ)−1.
It is well known that equation (1.1) arises from looking for the standing wave type

solutions Ψ(x, t) = e−iμtu(x) for the following time-dependent nonlinear fractional
Schrödinger equation

i
∂Ψ
∂t

= (−�)sΨ + V (x)Ψ − ah(|Ψ|)Ψ, x ∈ R
N , (1.3)

where i is the imaginary unit and Ψ : R
N × [0, ∞) �→ C. Obviously, Ψ solves (1.3) if

and only if the standing wave u(x) satisfies (1.1) with f(u) = h(|u|)u. Here Ψ(x, t)
represents the quantum mechanical probability amplitude for a given unit mass
particle to have position x at time t (the corresponding probability density is |Ψ|2),
under a confinement due to the potential V (x). Equation (1.3) is of particular
interest in fractional quantum mechanics for the study of particles on stochastic
fields modelled by Lévy processes. A path integral over the Lévy flights paths and a
fractional Schrödinger equation of fractional quantum mechanics are formulated by
Laskin [25] from the idea of Feynman and Hibbs’s path integrals. For more physical
background of (1.3), we refer the reader to [6,26] and the references therein.

Note that (−Δ)s on R
N with 0 < s < 1 is a nonlocal operator. The nonlocal

nature of the fractional Laplacian makes it difficult to study. To overcome this
difficulty, Caffarelli and Silvestre [2] introduced the extension method that reduced
this nonlocal problem into a local one in higher dimensions. That is, for a function
u ∈ Hs(RN ), one considers the extension U : R

N × [0, ∞) → R that satisfies{
−div(y1−2s∇U) = 0 in R

N+1
+ ,

U(x, 0) = u on R
N .

Then, it follows from [2] that

(−�)su(x) = −C(N, s) lim
y→0+

y1−2sUy(x, y),

where C(N, s) is an appropriate constant depending on N and s. This extension
method has been applied successfully to study equations involving the fractional
Laplacian, and a series of significant results have been obtained.

Recently, the study on equations with the fractional Laplacian has been attracted
much interest from many mathematicians. Coti Zelati and Nolasco [7] obtained the
existence and regularity of positive stationary solutions for a class of nonlinear
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pseudo-relativistic Schrödinger equations involving the operator (−Δ + d2)1/2 with
d > 0. Cheng [5] proved the existence of ground state solutions for the following
equation

(−Δ)su+ V (x)u = |u|p−1u, x ∈ R
N , (1.4)

where V (x) is an unbounded potential. In (1.4), when V (x) ≡ 1, Dipierro et al.
[13] obtained the existence and symmetry results for solutions, and Felmer et al.
[15] considered the same equation with a more general nonlinearity f(x, u), they
proved the existence, regularity and qualitative properties of ground state solutions.
Secchi [32] obtained the existence of positive solutions for a more general fractional
Schrödinger equation by the variational method. Chen and Zheng [4] studied the
existence and concentration phenomenon for solutions of the following equation

(−ε2Δ)su+ V (x)u = |u|p−1u, x ∈ R
N , (1.5)

under further constraints in the space dimension N and the values of s, by using the
Lyapunov–Schmidt reduction method. Davillá, del Pino and Wei [10] generalized
various existence results already known for (1.5) with s = 1 to the case of fractional
Laplcians. For more results on this direction, see for example, [1,3,14,34–37].

In the aforementioned papers, the frequency μ is seen as a fixed parameter,
and the critical point theory is used to look for solutions. However, nothing can
be given a priori estimate on the L2-norm of solutions. Motivated by the fact
that physicists are often interested in ‘L2-normalized solutions’, that is, solutions
with normalized L2-norm, in this paper, we study the existence, nonexistence and
mass concentration of L2-normalized solutions for equation (1.1). To this aim, we
note that (1.1) is also the Euler–Lagrange equation of the following constrained
minimization problem

e(a) := inf
u∈M

Ea(u), (1.6)

where the energy functional Ea(u) is defined by

Ea(u) :=
∫

RN

(
|(−Δ)s/2u(x)|2 + V (x)|u(x)|2

)
dx− 2a

∫
RN

F (u(x)) dx, u ∈ H.

Here F is the primitive of f , and we define

H :=
{
u ∈ Hs(RN ) :

∫
RN

V (x)|u(x)|2 dx <∞
}

(1.7)

with associated norm ‖u‖2
H =

∫
RN

(|(−Δ)s/2u(x)|2 + V (x)|u(x)|2) dx, and

M :=
{
u ∈ H :

∫
RN

|u(x)|2 dx = 1
}
. (1.8)

Obviously, if ua is a minimizer of (1.6), it is the ‘L2-normalized solution’ of (1.1)
with a suitable Lagrange parameter μa associated with ua. Consequently, in this
paper, we are interested in minimizers of (1.6) under the unit mass constraint (1.8).
Alternatively, one may want to impose the constraint

∫
RN |u(x)|2 dx = K> 0, that

https://doi.org/10.1017/prm.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.41


620 M. Du et al.

is, L2-spheres in Hs(RN ), but this latter case can easily be reduced to the previ-
ous one, by minimizing under the constraint (1.8) but simply replacing a by Ka.
Therefore, we prefer to work with (1.8) instead.

In (1.1), if we set s = 1 and replace μ and a by λ and b, respectively, it reduces
to the following nonlinear Schrödinger equation

− Δu+ V (x)u = λu+ bf(u), x ∈ R
N . (1.9)

There are many works focusing on equation (1.9). We just mention the earlier
work by Floer and Weinstein [16], Oh [29], Rabinowitz [31], Wang [38], del
Pino and Felmer [11], without any attempt to review the references here. When
f(u) = |u|2u andN = 2, we can describe equation (1.9) by the following constrained
minimization problem

êb(u) := inf
u∈M̂

Êb(u), (1.10)

where the energy functional Êb(u) is defined by

Êb(u) :=
∫

R2

(|∇u(x)|2 + V (x)|u(x)|2) dx− b

2

∫
R2

|u(x)|4 dx, u ∈ Ĥ.

Here we define

Ĥ :=
{
u ∈ H1(R2) :

∫
R2
V (x)|u(x)|2 dx <∞

}
,

M̂ :=
{
u ∈ Ĥ :

∫
R2

|u(x)|2 dx = 1
}
.

We note that problem (1.10) is a mass critical problem. It is shown in [9,30] that
attractive Bose–Einstein condensates can be described by the L2-constraint mini-
mizers of (1.10), where b > 0 represents the strengthen of the attractive interaction
among the cold atoms. Assume that

(V1)0 � V (x) ∈ L∞
loc(R

N ), lim
|x|→∞

V (x) = ∞ and inf
x∈RN

V (x) = 0.

In case N = 2, Guo and Seiringer [19] proved the following existence and nonexis-
tence of minimizers for (1.10): there exists a critical value b∗ > 0 such that (1.10)
has at least one minimizer if 0 � b < b∗, and (1.10) has no minimizers if b � b∗.
Furthermore, the critical value b∗ = ‖φ‖2

2. That is, the square of the L2-norm of
the unique (up to translations) positive solution of the famous nonlinear scalar field
equation

−Δu+ u− u3 = 0 in R
2, u ∈ H1(R2).

The limit behaviour of minimizers for (1.10) as b↗ b∗ is also explored
in [19–21].

To our best knowledge, there is no result on the existence, nonexistence and
mass concentration of L2-constraint minimizers of (1.6). In this paper, we shall
fill the gap of information. More precisely, the purpose of this paper is to obtain
the existence and nonexistence of L2-constraint minimizers of (1.6) by applying a
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constrained variational method. Moreover, under a certain type of trapping poten-
tials, by using some delicate energy estimates, we present a detailed analysis of the
concentration behaviour of L2-constraint minimizers for the mass critical case of
(1.6). Actually, we prove that all the mass concentrates at a global minimum point
x0 of the trapping potential V (x).

Before we formulate the main results of this paper, let us first recall some facts
in [17,18] that, up to translations, the fractional Schrödinger equation

(−Δ)su+ u = |u|p−2u, u ∈ Hs(RN ), (1.11)

where 0 < s < 1,N � 1 and 2 < p < 2∗s (2∗s := 2N/(N − 2s) ifN > 2s, and 2∗s := ∞
if N � 2s), has a unique radial positive ground state solution ϕ(x) which can be
taken to be radially symmetric about the origin. Moreover, the function ϕ(x) is
strictly decreasing in |x|, ϕ ∈ H2s+1(RN ) ∩ C∞(RN ), and it satisfies

c1
1 + |x|N+2s

� ϕ(x) � c2
1 + |x|N+2s

for x ∈ R
N ,∣∣∂xj

ϕ(x)
∣∣ � c3

1 + |x|N+2s
for x ∈ R

N and j = 1, · · · , N, (1.12)

with some constant ci > 0, i = 1, 2, 3. Furthermore, every nonnegative optimizer
v ∈ Hs(RN )\{0} for the fractional Gagliardo–Nirenberg–Sobolev inequality∫

RN

|u(x)|p dx � Copt

(∫
RN

|(−Δ)s/2u(x)|2 dx
)(N(p−2)/(4s))

×
(∫

RN

|u(x)|2 dx
)p/2−(N(p−2)/(4s)

(1.13)

is of the form v = βϕ(γ(· + y)) with some β > 0, γ > 0 and y ∈ R
N .

In order to establish the existence and nonexistence of minimizers for the mini-
mization problem (1.6), we need to know the exact value of Copt in (1.13). To this
aim, we first address the fractional Gagliardo-Nirenberg-Sobolev inequality.

Theorem 1.1. For N � 1 and 2 < p < 2∗s, the fractional Gagliardo–Nirenberg–
Sobolev inequality (1.13) is attained at a function Q(x) with the following
properties:

(i) Q(x) is radial, positive, and strictly decreasing in |x|.
(ii) Q(x) belongs to H2s+1(RN ) ∩ C∞(RN ) and satisfies

C1

1 + |x|N+2s
� Q(x) � C2

1 + |x|N+2s
for x ∈ R

N ,

|∂xj
Q(x)| � C3

1 + |x|N+2s
for x ∈ R

N and j = 1, · · · , N,

where Ci (i = 1, 2, 3) are positive constants.
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(iii) Q(x) is a solution of the fractional Schrödinger equation⎧⎪⎨⎪⎩
N(p− 2)

4s
(−Δ)su+

(
1 +

p− 2
4

(
2 − N

s

))
u− |u|p−2u = 0 in R

N

u ∈ Hs(RN ) (1.14)

of minimal L2 norm (the ground state). In addition,

Copt =
p

2‖Q‖p−2
2

. (1.15)

Moreover, every nonnegative optimizer v ∈ Hs(RN ) \ {0} for the fractional
Gagliardo–Nirenberg–Sobolev inequality is of the form

v(x) =
‖(−Δ)s/2v‖N/(2s)

2

‖v‖N/(2s)−1
2 ‖Q‖2

Q

(
‖(−Δ)s/2v‖1/s

2

‖v‖1/s
2

(x+ y)

)
for some y ∈ R

N .

Remark 1.1. Note that, we find the exact value of Copt in (1.15). Moreover, it
follows from scaling arguments that Q(x) = β̃ϕ(γ̃x), where ϕ is the unique radial
positive ground state solution of (1.11), and

β̃ =
(

2N − p(N − 2s)
4s

)1/(p−2)

, γ̃ =
(

2N − p(N − 2s)
N(p− 2)

)1/(2s)

.

Then, every nonnegative optimizer v ∈ Hs(RN ) \ {0} for the fractional Gagliardo–
Nirenberg–Sobolev inequality is of the form v = βϕ(γ(· + y)), where

β =
(

2N − p(N − 2s)
4s

)1/(p−2) ‖(−Δ)s/2v‖N/(2s)
2

‖v‖N/(2s)−1
2 ‖Q‖2

2

,

γ =
(

2N − p(N − 2s)
N(p− 2)

)1/(2s) ‖(−Δ)
s
2 v‖1/s

2

‖v‖1/s
2

.

As a consequence, we conclude the exact values of Copt, β and γ for the fractional
Gagliardo–Nirenberg–Sobolev inequality and improve the results in [17,18].

The proof of Theorem 1.1 is evident from the following considerations: To com-
pute Copt, it suffices to minimize the corresponding ‘Weinstein functional’ (see
[39]):

J(u) =

(∫
RN |(−Δ)s/2u(x)|2 dx

)((N(p−2))/(4s)) (∫
RN |u(x)|2 dx

)p/2−((N(p−2))/(4s))∫
RN |u(x)|p dx

,

(1.16)

where u ∈ Hs(RN ) and u �≡ 0. In § 2, we will show that the minimum is attained
at some function ṽ ∈ Hs(RN )\{0}. By scaling, we can take ‖(−Δ)s/2ṽ‖2 = 1 and
‖ṽ‖2 = 1. Computing the Euler–Lagrange equation leads to (1.14) and (1.15). The
main idea in the proof of Theorem 1.1 comes from [39], in which the author dealt
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with such a problem by working on the radially symmetric subspace H1
r (RN ), which

embeds compactly in Lq(RN ) for 2 < q < ((2N)/(N − 2)) if N � 3 and q > 2 if
N = 2 [40]. In our theorem 1.1, since the embedding Hs

r (R) ↪→ Lq(R), q > 2 is not
compact, we cannot work on the radially symmetric subspace Hs

r (RN ) as in [39].
To overcome this difficulty, we use the concentration-compactness principle of P. L.
Lions [28] (see also [40]).

Throughout this paper, we suppose that f satisfies the following assumptions:
(f1) f ∈ C(R,R), |f(t)| � c1(|t| + |t|p−1) for some c1 > 0 and 2 < p < 2 + 4s/N .
(f2) f ∈ C(R,R), |f(t)| � c2(|t| + |t|p−1) for some c2 > 0 and 2 + 4s/N < p < 2∗s.
(f3) there exist ν > 2 + 4s/N and r0 > 0 such that

0 < νF (t) � tf(t) for all |t| � r0.

By applying directly the fractional Gagliardo–Nirenberg–Sobolev inequality (1.13)
and scaling techniques, we shall establish the following existence and nonexistence
of minimizers for the minimization problem (1.6).

Theorem 1.2. Suppose 0 � V (x) ∈ L∞
loc(R

N ) satisfies lim|x|→∞ V (x) = ∞.

(i) If (f1) holds, then e(a) has at least one minimizer and e(a) > −∞ for each
a > 0.

(ii) If (f2) and (f3) hold, then e(a) has no minimizers and e(a) = −∞ for each
a > 0.

Remark 1.2.

(i) A typical example satisfying the condition (f1) is the power function f(t) =
|t|p−2t with 2 < p < 2 + 4s/N . Another example is f(t) = |t|p−2t− |t|q−2t
with 2 < q < p < 2 + 4s/N .

(ii) A typical example satisfying the conditions (f2) and (f3) is the power function
f(t) = |t|p−2t with 2 + 4s/N < p < 2∗s. Another example is f(t) = |t|p−2t−
|t|q−2t with 2 + 4s/N < q < p < 2∗s.

(iii) For the case of power function f(t) = |t|p−2t with 2 < p < 2∗s, theorem 1.2
gives a complete classification of the existence and nonexistence of minimizers
for (1.6), expect that p = 2 + 4s/N .

It is worth to point out that p = 2 + 4s/N is the so-called mass critical exponent
for (1.6). An interesting question now is whether the same existence or nonexistence
results as theorem 1.2 occur to the mass critical case of (1.6), that is, f(t) ∼ |t|4s/N t.
For this purpose, in order to keep the ideas and the results simple, in the sequel we
only deal with the nonlinearity of the power-type function, that is, f(t) = |t|4s/N t.
In this paper, we shall derive the following existence and nonexistence of minimizers
for (1.6) with f(t) = |t|4s/N t.
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Theorem 1.3. Suppose V (x) satisfies (V1), and let f(t) = |t|4s/N t. Then we have

(i) For all a ∈ [0, a∗), e(a) has at least one minimizer, and e(a) has no minimiz-
ers if a � a∗, where a∗ = ‖Q‖4s/N

2 and Q is the unique radial positive ground
state solution of

(−Δ)su+
2s
N
u− |u|4s/Nu = 0 in R

N , u ∈ Hs(RN ). (1.17)

Moreover, e(a) > 0 for 0 � a < a∗, lima↗a∗ e(a) = e(a∗) = 0 and e(a) = −∞
for a > a∗.

(ii) When a ∈ [0, a∗) is suitably small, e(a) has a unique nonnegative minimizer.

Remark 1.3.

(i) theorems 1.2 and 1.3 provides a complete classification of the existence and
nonexistence of minimizers for (1.6) with f(t) = |t|p−2t, where 2 < p < 2∗s.
We note that, theorem 1.3 also implies that the trap shape does not affect
the critical value a∗.

(ii) In order to prove theorem 1.3, the main difficulty is that we need to esti-
mate the Gagliardo (semi) norm of some trial function, see the forthcoming
estimate (3.19). For this purpose, stimulated by [34] we establish lemma 3.2
to circumvent this obstacle. Moreover, the function Q(x) given by theorem
1.1 is polynomially decay at infinity, which is in contrast to the fact that the
ground state exponentially decays at infinity in s = 1. So, we need to give
more detailed analysis to establish the desired estimates of the trial function.

If ua is a minimizer of (1.6) with f(t) = |t|4s/N t, then we can assume that ua

is nonnegative, due to the fact that Ea(u) � Ea(|u|) for any u ∈ H. Consequently,
without loss of generality, we can restrict the minimization to nonnegative functions.
In view of theorem 1.3 (ii), we know that if f(t) = |t|4s/N t, e(a) defined in (1.6) has
a unique nonnegative minimizer for any a > 0 small enough. So, we may define

a∗ := sup {l > 0 : e(a) has a unique nonnegative minimizer for all a ∈ [0, l)} ,
(1.18)

and 0 < a∗ � a∗. Note that any minimizer ua of (1.6) with f(t) = |t|4s/N t satisfies
the following fractional nonlinear Schrödinger equation:

(−Δ)su+ V (x)u = μau+ a|u|4s/Nu, x ∈ R
N ,

where μa ∈ R is a suitable Lagrange multiplier associated with ua. Now some nat-
ural questions arise: can we show that the Lagrange multiplier μa depends only on
a and is independent of the choice of ua? If so, can we determine the sign of μa?
The following theorem shall give some answers for these questions.
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Theorem 1.4. Suppose V (x) satisfies (V1), and let f(t) = |t|4s/N t. Then we have

(i) For all a ∈ [0, a∗) and for a.e. a ∈ [a∗, a∗), μa depends only on a and is
independent of the choice of ua. Moreover, we have that μa > 0 for any a ∈
[0, a∗) small enough.

(ii) In addition, we assume that
(V2) V (x) is a weak differentiable function such that

(∇V (x), x) � C4V (x) for a.e. x ∈ R
N ,

where C4 > 0 is a constant and (· , ·) is the usual inner product in R
N . Then

μa < 0 for any a sufficiently approaches a∗.

Remark 1.4. The conclusion (i) of theorem 1.4 is similar to the case s = 1. We
also prove a new result for μa in theorem 1.4 (ii).

Inspired by [19–21], we next focus on the concentration behaviour of nonnegative
minimizers for the mass critical case of (1.6) as a↗ a∗. As for the mass critical
case of equation (1.1), we can rewrite (1.1) as follows

(−Δ)su+ V (x)u = μu+ a|u|4s/Nu, x ∈ R
N . (1.19)

Since e(a∗) = 0, it is easy to see that
∫

RN V (x)|ua(x)|2 dx→ 0 = infx∈RN V (x) as
a↗ a∗, hence this behaviour depends on the behaviour of V near its minima. The
functions ua can be expected to concentrate at the flattest minimum of V . If V has
a unique minimum, |ua(x)|2 converges to a δ-function located at this minimum.

In what follows, we shall suppose that the trapping potential V has n � 1 isolated
minima, and that in their vicinity, V behaves like a power of the distance from
these points. More precisely, we shall assume that there exist n � 1 distinct points
xi ∈ R

N with V (xi) = 0, while V (xi) > 0 otherwise. Moreover, we assume that
there exist qi ∈ (0, 2s) and C > 0 such that

V (x) = h(x)
n∏

i=1

|x− xi|qi with C < h(x) < 1/C for all x ∈ R
N , (1.20)

where limx→xi
h(x) exists for all 1 � i � n. Set q = max{q1, · · · , qn} and let λi ∈

(0, ∞] be given by

λi =

(
q

N

(
N

2s

)−q/(2s)

‖Q‖((4s/N)−2)
2

∫
RN

|x|q|Q(x)|2 dx lim
x→xi

V (x)
|x− xi|q

)1/(q+2s)

.

(1.21)

Define λ = min{λ1, · · · , λn} and let

Z := {xi : λi = λ} (1.22)

denote the locations of the flattest global minima of V (x).
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Theorem 1.5. Suppose V (x) satisfies the above assumption, and let ua be a non-
negative minimizer of (1.6) with f(t) = |t|4s/N t for a↗ a∗. Given a sequence {ak}
with ak ↗ a∗ as k → ∞, then there exists a subsequence, still denoted by {ak}, of
{ak} and an x0 ∈ Z such that

(a∗ − ak)
N

2(q+2s)uak

(
(a∗ − ak)((1)/(q+2s))x+ x0

)
k−→ λ

N/2
0

‖Q‖2
Q(λ0x) strongly in Hs(RN ), (1.23)

where

λ0 =
(
N

2s

)1/(2s)

λ. (1.24)

Remark 1.5.

(i) The proof of Theorem 1.5 follows from optimal energy estimates of e(a).
Motivated by [19], we are able to derive the following optimal energy estimate:

lim
a↗a∗

e(a)
(a∗ − a)q/(q+2s)

=
λ2s

a∗

(
N

2s
+
N

q

)
.

(ii) Note that, the convergence in (1.23) also implies that∫
RN

|ua(x)|2+4s/N dx ≈ N + 2s
N

(a∗ − a)−((2s)/(q+2s))λ
2s
0

a∗
as a↗ a∗

for a minimizer ua.

(iii) Comparing with the case s = 1 in [19], we need to make various modifications
due to the non-locality of the fractional Laplacian operator. On the one hand,
the ground state for (1.11) decays polynomially at infinity, which is in con-
trast to the fact that the ground state for −Δ decays exponentially at infinity.
Consequently, we require the restrict condition for the order qi of the poly-
nomial potential function (1.20). We first have to suppose that q < N + 4s.
Indeed, if q � N + 4s, the integral term of (1.21) makes no sense. In addition,
in order to establish the optimal energy estimates of e(a), we also need to
assume that q < 2s (see the forthcoming estimate (5.3)). For this we assume
that 0 < qi < 2s for i = 1, · · · , n. On the contrary, since the non-locality of
the fractional Laplacian operator, the value λ0 defined by (1.24) is much more
difficult to find for 0 < s < 1 than for s = 1.

Theorem 1.5 gives a detail description of the blow-up behaviour of minimizers as
a↗ a∗ for V (x) satisfying (1.20). As a↗ a∗, a minimizer ua of (1.6) behaves like

ua(x) ≈ λ
N/2
0

‖Q‖2(a∗ − a)((N)/(2(q+2s)))
Q

(
λ0(x− x0)

(a∗ − a)((1)/(q+2s))

)
,

with x0 a minimum point of V (x), and λ0 defined in (1.24). Such a expression can,
in general, hold only for a subsequence. However, if x0 is unique, that is, |Z| = 1,
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it is not necessary to go to a subsequence, and the convergence (1.23) holds for any
sequence. A simplest case of the polynomial potential function (1.20) is

V (x) = h(x)|x− x0|q with C < h(x) < 1/C for all x ∈ R
N , (1.25)

where 0 < q < N + 4s, C > 0 is a constant and limx→x0 h(x) exists, we have the
following corollary.

Corollary 1.6. Suppose V (x) satisfies (1.25), and let ua be a nonnegative
minimizer of (1.6) with f(t) = |t|4s/N t for a↗ a∗. Then we have

lim
a↗a∗

(a∗ − a)((N)/(2(q+2s)))ua((a∗ − a)((1)/(q+2s))x+ x0) =
λ

N/2
0

‖Q‖2
Q(λ0x)

strongly in Hs(RN ), where λ0 is given by (1.24).

Remark 1.6. We note that, the existence range of the order q of the polynomial
potential function (1.25) is sharp. Indeed, if q � N + 4s , then the integral term of
(1.21) makes no sense. Therefore, the order q of (1.25) at most lies in (0, N + 4s).

Furthermore, theorem 1.5 also indicates that symmetry breaking occurs in
the minimizers when the potential V (x) has a symmetry. For example, V (x) =∏n

i=1 |x− xi|q with q ∈ (0, 2s) and the xi arranged on the vertices of a regular
polyhedron centred at the origin. It then follows from theorem 1.5 that all non-
negative minimizers of (1.6) with f(t) = |t|4s/N t can concentrate at any vertex
of this regular polyhedron. This further implies that there exists an ā satisfying
0 < ā < a∗ such that for any a ∈ [ā, a∗), e(a) has (at least) n different nonnegative
minimizers, each of which concentrates at a specific global minimum point xi. How-
ever, e(a) has a unique nonnegative minimizer ua for all a ∈ [0, a∗), where a∗ > 0
is given by (1.18), and then by rotation ua must be n-fold rotational symmetry
with respect to the origin. Therefore, the above arguments yield immediately the
following corollary.

Corollary 1.7. Suppose V (x) =
∏n

i=1 |x− xi|q with q ∈ (0, 2s) and the xi

arranged on the vertices of a regular polyhedron centred at the origin. Let f(t) =
|t|4s/N t, then there exist two positive constant a∗ and ā satisfying 0 < a∗ � ā < a∗

such that

(i) If a ∈ [0, a∗), e(a) has a unique nonnegative minimizer which is n-fold
rotational symmetry with respect to the origin.

(ii) If a ∈ [ā, a∗), e(a) has (at least) n different nonnegative minimizers which is
not n-fold rotational symmetry with respect to the origin.

Finally, we note that symmetry breaking bifurcation of ground states for non-
linear Schrödinger or Gross–Pitaevskii equations have been studied extensively in
the literature, see that is, [22–24]. To the best of our knowledge, there seem few
results concerning the symmetry breaking of L2-normalized solutions for nonlinear
fractional Schrödinger equations.
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The rest of this paper is organized as follows. In § 2, we present some preliminary
results and give the proof of Theorem 1.1. Section 3 is devoted to the proofs of
Theorems 1.2 and 1.3 on the existence and nonexistence of minimizers. In § 4, we
present a detailed description of the Lagrange μa and give the proof of Theorem 1.4.
In § 5, we shall first establish optimal energy estimates of nonnegative minimizers
for the mass critical case of (1.6) as a↗ a∗, and we then make use of the blow-up
analysis and energy methods to complete the proofs of Theorem 1.5 and corollary
1.6. Finally, theorem 1.2 (iv) is proved in the Appendix.

Throughout this paper, we shall make use of the following notations.

• Lq(RN ) with 1 � q � ∞ denotes the usual Lebesgue space with standard norm
‖ · ‖q.

• We denote by ‘→’ strong convergence and by ‘⇀’ weak convergence.

• The letters C, Ci, c and ci will mean different positive constants that may vary
from line to line but remain independent of the relevant quantities.

• For any ρ > 0 and z ∈ R
N , Bρ(z) denotes the ball of radius ρ centred at z, and

for simplicity of notations, we write Bρ := Bρ(0).

2. Fractional Gagliardo–Nirenberg–Sobolev inequality

In this section, we give the proof of Theorem 1.1. First of all, we recall some useful
facts of the fractional order Sobolev space.

For any s ∈ (0, 1), the fractional Sobolev space Hs(RN ) is defined by

Hs(RN ) =
{
u ∈ L2(RN ) :

|u(x) − u(y)|
|x− y|N+2s/2

∈ L2(RN × R
N )
}

=
{
u ∈ L2(RN ) :

∫
RN

(1 + |ξ|2)s|F (u)|2 dξ <∞
}
,

where F is the Fourier transform. The space Hs(RN ) is a Hilbert space endowed
with the inner product and norm

(u, v)Hs =
∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2s

dxdy +
∫

RN

uv dx, ‖u‖Hs = (u, u)1/2
Hs .

Here the term

[u]Hs =
(∫

R2N

|u(x) − u(y)|2
|x− y|N+2s

dxdy
)1/2

is the so-called Gagliardo (semi) norm. Notice that all the functional spaces L2,
Hs, and so on. are set in the whole of R

N unless explicitly mentioned. Let S be
the Schwartz space of rapidly decaying C∞ functions in R

N . Indeed, the fractional
Laplacian (−Δ)s can be viewed as a pseudo-differential operator of symbol |ξ|2s,
as stated in the following
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Lemma 2.1 (See [12]). Let s ∈ (0, 1) and let (−Δ)s : S → L2(RN ) be the fractional
Laplacian operator defined by (1.2). Then, for any u ∈ S ,

(−Δ)su = F−1(|ξ|2sF (u)) for ξ ∈ R
N .

The following identity (propositions 3.4 and 3.6 of [12]) yields the relation
between the fractional operator (−Δ)s and the fractional Laplacian Sobolev space
Hs(RN ),

[u]2Hs = 2C−1
N,s

∫
RN

|ξ|2s|Fu|2 dξ = 2C−1
N,s

∫
RN

|(−Δ)s/2u(x)|2 dx.

As a consequence, the norms on Hs(RN )

u �→ ‖u‖Hs ,

u �→
(
‖u‖2 + ‖(−Δ)s/2u‖2

2

)1/2

,

u �→
(
‖u‖2 +

∫
RN

|ξ|2s|û(ξ)|2 dξ
)1/2

,

are all equivalent.
For the reader’s convenience, we review the main embedding results for this class

of fractional Sobolev spaces.

Lemma 2.2 (See [4,12]). Let s > 0, then the following imbeddings are continuous:

(i) Hs(RN ) ↪→ Lr(RN ), 2 � r � ((2N)/(N − 2s)), if N > 2s,

(ii) Hs(RN ) ↪→ Lr(RN ), 2 � r <∞, if N = 2s,

(iii) Hs(RN ) ↪→ Cj
b (RN ), if N < 2(s− j) for some nonnegative integer j, where

Cj
b (RN ) =

{
u ∈ Cj(RN ) : DKu is bounded on R

N for |K| � j
}
.

Moreover, Hs(RN ) ↪→ Lr(RN ) is locally compact whenever q ∈ [1, 2∗s).

One major tool in the proof of Theorem 1.1 is the following concentration
compactness principle, originally proved by P. L. Lions [28].

Lemma 2.3 (See [15,32]). Assume that {un} is bounded in Hs(RN ) and it satisfies

lim
n→∞ sup

y∈RN

∫
Bρ(y)

|un(x)|2 dx = 0,

where ρ > 0. Then un → 0 in Lr(RN ) for 2 < r < 2∗s.

Applying lemma 2.3 and the idea of [39, theorem B], we now prove theorem 1.1.
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Proof of Theorem 1.1. First of all, we define

α := inf
u∈Hs(RN )\{0}

J(u),

where J(u) is given by (1.16). Note that if we set uλ,μ = μu(λx), then

J(uλ,μ) = J(u),

‖uλ,μ‖2
2 = λ−Nμ2‖u‖2

2,

‖(−Δ)s/2uλ,μ‖2
2 = λ2s−Nμ2‖(−Δ)s/2u‖2

2.

Let {un} ⊂ Hs(RN ), with un �≡ 0, be a minimizing sequence, that is, 0 < α =
lim

n→∞ J(un) <∞. Since J(|u|) � J(u), without loss of generality, we can assume

that un � (�≡)0.
Choosing λn = ‖un‖s

2

/‖(−Δ)s/2un‖s
2 and μn = ‖un‖Ns/2−1

2

/‖(−Δ)s/2un‖Ns/2
2 ,

we obtain a sequence vn(x) = uλn,μn
n (x) such that

‖vn‖2
2 = 1, ‖(−Δ)s/2vn‖2

2 = 1 and lim
n→∞ J(vn) = α. (2.1)

By (2.1), we deduce that limn→∞ ‖vn‖p
p = 1/α. Then lemma 2.3 implies that there

exist a sequence {yn} ⊂ R
N and ρ, δ > 0 such that

∫
Bρ(yn)

|vn|2 dx � δ > 0. (2.2)

Set ṽn(·) := vn(· + yn). Hence ‖ṽn‖2
2 = 1, ‖(−Δ)s/2ṽn‖2

2 = 1 and limn→∞ J(ṽn) =
α. Since {ṽn} is a bounded sequence in Hs(RN ), we may assume, going if necessary
to a subsequence,

⎧⎪⎨⎪⎩
ṽn ⇀ ṽ weakly in Hs(RN ),
ṽn → ṽ strongly in L2

loc(R
N ),

ṽn → ṽ a.e. on R
N .

Furthermore, it follows from (2.2) that ṽ �≡ 0. Denote w̃n := ṽn − ṽ, we have

‖ṽ‖2
2 + lim

n→∞ ‖w̃n‖2
2 = 1 and ‖(−Δ)s/2ṽ‖2

2 + lim
n→∞ ‖(−Δ)s/2w̃n‖2

2 = 1.
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This, together with Brezis–Lieb Lemma and Young inequality, implies that

1
α

= lim
n→∞ ‖ṽn‖p

p = lim
n→∞ ‖w̃n‖p

p + ‖ṽ‖p
p

� 1
α

(
lim

n→∞ ‖(−Δ)s/2w̃n‖((N(p−2))/(2s))
2 ‖w̃n‖p−N(p−2)

2s
2

+‖(−Δ)s/2ṽ‖((N(p−2))/(2s))
2 ‖ṽ‖p−((N(p−2))/(2s))

2

)
� θ

α

(
lim

n→∞ ‖(−Δ)s/2w̃n‖p
2 + ‖(−Δ)s/2ṽ‖p

2

)
+

1 − θ

α

(
lim

n→∞ ‖w̃n‖p
2 + ‖ṽ‖p

2

)
� θ

α

((
‖(−Δ)s/2ṽ‖2

2

)p/2

+
(
1 − ‖(−Δ)s/2ṽ‖2

2

)p/2
)

+
1 − θ

α

(
(‖ṽ‖2

2)
p/2 + (1 − ‖ṽ‖2

2)
p/2
)

� θ

α
+

1 − θ

α
=

1
α
,

where θ = N(p− 2)/(2sp). Since ṽ �≡ 0, we obtain ‖(−Δ)s/2ṽ‖2 = 1, ‖ṽ‖2 = 1, and
α = J(ṽ). Hence, the minimizer ṽ ∈ Hs(RN ) satisfies the Euler–Lagrange equation:

d

dε

∣∣∣∣
ε=0

J(ṽ + εψ) = 0 for all ψ ∈ C∞
0 (RN ).

Taking into account that ‖ṽ‖2 = 1 and ‖(−Δ)s/2ṽ‖2 = 1, we have

N(p− 2)
4s

(−Δ)sṽ +
(

1 +
p− 2

4

(
2 − N

s

))
ṽ − αp

2
|ṽ|p−2ṽ = 0 in R

N .

Let Q(x) = (αp/2)1/(p−2)ṽ(x), then Q(x) satisfies (1.14), and (1.15) holds.
Note that Q ∈ Hs(RN ) is also a nonnegative minimizer for J(u). By [17,18], we

know that Q(x) = βϕ(γ(x+ y0)) with some β > 0, γ > 0 and y0 ∈ R. Here ϕ is the
unique radial positive ground state solution of (1.11). Without loss of generality,
we may assume that y0 = 0.

It then follows from the properties of ϕ that the conclusions (i) and (ii) hold.
Moreover, it is easy to verify that every nonnegative optimizer v ∈ Hs(RN ) \ {0}
for the fractional Gagliardo–Nirenberg–Sobolev inequality is of the form

v(x) =
‖(−Δ)s/2v‖N/(2s)

2

‖v‖N/(2s)−1
2 ‖Q‖2

Q

(
‖(−Δ)

s
2 v‖1/s

2

‖v‖1/s
2

(x+ y)

)
for some y ∈ R

N .

This completes the proof of Theorem 1.1. �

3. Existence and nonexistence of minimizers

In this section, we study the existence and nonexistence of minimizers for (1.6) and
give the proofs of Theorems 1.2 and 1.3. For this we need the following compactness
result, see for example [5].
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Lemma 3.1. Suppose 0 � V (x) ∈ L∞
loc(R

N ) satisfies lim|x|→∞ V (x) = ∞. Then for
all 2 � r < 2∗s, the embedding H ↪→ Lr(RN ) is compact, where H is given in (1.7).

By applying directly the fractional Gagliardo–Nirenberg–Sobolev inequality
(1.13) and recalling techniques, we are now ready to give the proof of Theorem
1.2.

Proof of Theorem 1.2. (i) From (f1) we see that

|F (t)| � c1
2
|t|2 +

c1
p
|t|p, ∀t ∈ R. (3.1)

For any a > 0 and u ∈ M, by (3.1) and (1.13), we have

Ea(u) =
∫

RN

|(−Δ)s/2u|2 dx+
∫

RN

V (x)|u|2 dx− 2a
∫

RN

F (u) dx

�
∫

RN

|(−Δ)s/2u|2 dx+
∫

RN

V (x)|u|2 dx− c1a− 2c1a
p

∫
RN

|u|p dx

�
∫

RN

|(−Δ)s/2u|2 dx− c1a− c1a

‖Q‖p−2
2

×
(∫

RN

|(−Δ)s/2u|2 dx
)((N(p−2))/(4s))

. (3.2)

Since 2 < p < 2 + 4s/N , we see that

0 <
N(p− 2)

4s
< 1.

Thus e(a) is bounded from below on M; that is, e(a) is well defined.
Let {un} ⊂ H be a minimizing sequence satisfying

∫
RN |un(x)|2 dx =

1 and limn→∞Ea(un) = e(a). Because of (3.2), we infer that both∫
RN |(−Δ)s/2un|2 dx and

∫
RN V (x)|un|2 dx are uniformly bounded in n. By

the compactness of lemma 3.1, we can extract a subsequence such that

un ⇀ u0 weakly in H, un → u0 strongly in Lq(RN ) with 2 � q < 2∗s,

for some u0 ∈ H. Then we conclude that
∫

RN |u0(x)|2dx = 1 and Ea(u0) =
e(a), by weak lower semicontinuity. This implies the existence of minimizers
for all a > 0.

(ii) By (f3) and (f4) , we see that there exist constants C1, C2 > 0 such that

F (t) � C1|t|ν − C2|t|2 for all t ∈ R. (3.3)

https://doi.org/10.1017/prm.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.41


Normalized solutions for fractional Schrödinger equations 633

For any a > 0, choose û ∈ C∞
0 (RN ) ∩M and set ûτ (x) := τN/2û(τx) for

τ � 1, then ûτ ∈ M and

Ea(ûτ ) = τ2s

∫
RN

|(−Δ)s/2û|2 dx+
∫

RN

V (x/τ)|û|2 dx− 2a
∫

RN

F (ûτ ) dx

� τ2s

∫
RN

|(−Δ)s/2û|2 dx+
∫

RN

V (x/τ)|û|2 dx− 2aC1τ
((N(ν−2))/(2))

×
∫

RN

|û|ν dx+ 2aC2 → −∞ as τ → ∞,

since ν > 2 + 4s/N . It then follows that

e(a) � lim
τ→∞Ea(uτ ) = −∞.

This implies the nonexistence of minimizers for all a > 0. This completes the
proof.

�

Let η : R
N → R be a smooth function such that η(x) = 1 for |x| � τ1, η(x) = 0

for |x| � 2, 0 � η � 1 and |∇η| � 2. Then, we define

Qτ (x) = η(x/τ)Q(x), x ∈ R
N , (3.4)

for any τ > 0, where Q(x) is given in theorem 1.1. In order to prove theorem 1.3,
we will estimate the Gagliardo (semi) norm of Qτ . In the setting of the fractional
Laplacian, this estimate is more delicate than in the case of the Laplacian, due to
the nonlocal nature of the operator −(Δ)s. For this purpose, inspired by the proof
of [34, proposition 21], we establish the following lemma.

Lemma 3.2. Let s ∈ (0, 1) and N � 2. Then the following estimate holds true:∫
R2N

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy �
∫

R2N

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy +O(τ−4s)

as τ → ∞, where Qτ is given in (3.4).

Proof. We first show that the following assertions hold true:

(a) for any x ∈ R
N and y ∈ Bc

τ , with |x− y| � τ/2,

|Qτ (x) −Qτ (y)| � Cτ−N−2s|x− y|; (3.5)

(b) for any x, y ∈ Bc
τ ,

|Qτ (x) −Qτ (y)| � Cτ−N−2s min{1, |x− y|} (3.6)
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for any τ � 2 and for some constant C > 0. In fact, let us start by proving assertion
(a). For this let x ∈ R

N and y ∈ Bc
τ with |x− y| � τ/2, and let ξ be any point on

the segment joining x and y. Then we have

ξ = tx+ (1 − t)y for some t ∈ [0, 1],

so that

|ξ| = |y + t(x− y)| � |y| − t|x− y| � τ − t(τ/2) � τ/2.

This and theorem 1.1 imply that |∇Qτ (ξ)| � Cτ−N−2s, and so, by a first-order
Taylor expansion,

|Qτ (x) −Qτ (y)| � Cτ−N−2s|x− y|,

which proves (3.5). Now, we show (b). For this let x, y ∈ Bc
τ . If |x− y| � 1, then (b)

follows from (a) since τ � 2, so we may suppose |x− y| > 1. Then, from theorem
1.1, we deduce that

|Qτ (x) −Qτ (y)| � |Q(x)| + |Q(y)| � Cτ−N−2s,

and this completes the proof of (3.6).
Now we introduce the notation

D := {(x, y) ∈ R
2N : x ∈ Bτ , y ∈ Bc

τ and |x− y| > τ/2}

and

E := {(x, y) ∈ R
2N : x ∈ Bτ , y ∈ Bc

τ and |x− y| � τ/2}.

By (3.4), we have∫
R2N

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy =
∫

Bτ×Bτ

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy

+ 2
∫

D

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy + 2
∫

E

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy

+
∫

Bc
τ×Bc

τ

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy. (3.7)

By (3.4) and (3.6), we obtain∫
Bc

τ×Bc
τ

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
B2τ×RN

min{1, |x− y|2}
|x− y|N+2s

dxdy = O(τ−N−4s), (3.8)
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while, by (3.5),∫
E

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
x∈Bτ , y∈Bc

τ

|x−y|�τ/2

|x− y|2
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
|x|�τ

dx
∫
|ξ|�τ/2

1
|ξ|N+2s−2

dξ = O(τ−N−6s+2), (3.9)

as τ → ∞.
Now, in (3.7) it remains to estimate the integral on D, that is,∫

D

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy. (3.10)

For this, recalling that Qτ (x) = Q(x) for any x ∈ Bτ thanks to (3.4), we note that
for any (x, y) ∈ D,

|Qτ (x) −Qτ (y)|2 = |(Q(x) −Q(y)) + (Q(y) −Qτ (y))|2

� |Q(x) −Q(y)|2 + |Q(y) −Qτ (y)|2
+ 2|Q(x) −Q(y)||Q(y) −Qτ (y)|

so that∫
D

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy �
∫

D

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy +
∫

D

|Q(y) −Qτ (y)|2
|x− y|N+2s

dxdy

+ 2
∫

D

|Q(x) −Q(y)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy. (3.11)

Hence, in order to estimate (3.10), we bound the last two terms in the right-hand
side of (3.11). By theorem 1.1, we yield∫

D

|Q(y) −Qτ (y)|2
|x− y|N+2s

dxdy � 4
∫

D

|Q(y)|2
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
x∈Bτ , y∈Bc

τ

|x−y|>τ/2

1
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
|x|�τ

dx
∫
|ξ|>τ/2

1
|ξ|N+2s

dξ = O(τ−N−6s),

(3.12)

as τ → ∞. In order to estimate the last term in the right-hand side of (3.11), first
of all we note that, once more by theorem 1.1,

|Q(x)Q(y)| � Cτ−N−2s for any (x, y) ∈ D.
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As a consequence, by (3.4) we infer that∫
D

|Q(x)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy

� 2
∫

D

|Q(x)||Q(y)|
|x− y|N+2s

dxdy � Cτ−N−2s

∫
D

1
|x− y|N+2s

dxdy

� Cτ−N−2s

∫
|x|�τ

dx
∫
|ξ|>τ/2

1
|ξ|N+2s

dξ = O(τ−4s), (3.13)

as τ → ∞. On the contrary, again by (3.4) and theorem 1.1,∫
D

|Q(y)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy

� 2
∫

D

|Q(y)|2
|x− y|N+2s

dxdy � Cτ−2N−4s

∫
D

1
|x− y|N+2s

dxdy

� Cτ−2N−4s

∫
|x|�τ

dx
∫
|ξ|>τ/2

1
|ξ|N+2s

dξ = O(τ−N−6s), (3.14)

as τ → ∞. Putting together (3.13) with (3.14), we infer that∫
D

|Q(x) −Q(y)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy

�
∫

D

|Q(x)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy +
∫

D

|Q(y)||Q(y) −Qτ (y)|
|x− y|N+2s

dxdy

= O(τ−4s), (3.15)

as τ → ∞.
Finally, by (3.7)–(3.9), (3.11), (3.12) and (3.15), we obtain∫

R2N

|Qτ (x) −Qτ (y)|2
|x− y|N+2s

dxdy =
∫

Bτ×Bτ

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy

+ 2
∫

D

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy +O(τ−4s)

�
∫

R2N

|Q(x) −Q(y)|2
|x− y|N+2s

dxdy +O(τ−4s),

as τ → ∞. This completes the proof of Lemma 3.2. �

Remark 3.1. Note that, it is interesting to observe that the energy interaction
outside Bτ ×Bτ is not negligible. Indeed, while the contributions in (3.8), (3.9),
(3.12) and (3.15) are all O(τ−4s), the integral in D provides a relevant part that
needs to be taken into account in the full energy.
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Now we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3.

(i) Motivated by the proof of [19, theorem 1], we divide our proof into three
parts. We first show that (1.6) admits at least one minimizer for all 0 � a <

‖Q‖4s/N
2 . If u ∈ H and

∫
RN |u(x)|2 dx = 1, we observe from (1.13) and the

nonnegativity of V (x) that

Ea(u) =
∫

RN

|(−Δ)s/2u(x)|2 dx+
∫

RN

V (x)|u(x)|2 dx

− Na

N + 2s

∫
RN

|u(x)|2+4s/N dx

�
(

1 − a

‖Q‖4s/N
2

)∫
RN

|(−Δ)s/2u(x)|2 dx, (3.16)

which implies that Ea(u) is bounded from below. Let {un} ⊂ H be a
sequence satisfying ‖un‖2 = 1 and limn→∞Ea(un) = e(a). In view of (3.16),
both

∫
RN |(−Δ)s/2un|2 dx and

∫
RN V (x)|un|2 dx are bounded uniformly with

respect to n. According to lemma 3.1, we may assume, passing if necessary
to a subsequence,

un ⇀ u weak in H, un → u strongly in Lq(RN ) with 2 � q < 2∗s,

for some u ∈ H. We then deduce that
∫

RN |u(x)|2 dx = 1 and Ea(u) = e(a),
by weak lower semicontinuity. This implies the existence of minimizers for all
0 � a < ‖Q‖4s/N

2 .
We next prove that there is no minimizer for (1.6) as soon as a � ‖Q‖4s/N

2 .
Choose a nonnegative cut-off function η ∈ C∞

0 (RN ) such that η(x) = 1 for
|x| � 1, η(x) = 0 for |x| � 2, 0 � η � 1 and |∇η| � 2. For x0 ∈ R

N , τ > 0
and R > 0, let

u(x) = AR,τ
τN/2

‖Q‖2
η

(
x− x0

R

)
Q(τ(x− x0)), (3.17)

where AR,τ > 0 is chosen so that
∫

RN |u(x)|2dx = 1. By scaling, AR,τ depends
only on the product Rτ and limRτ→∞AR,τ = 1. In fact, according to the
polynomial decay of Q, we have

1
A2

R,τ

=
1

‖Q‖2
2

∫
RN

η2
( x

Rτ

)
Q2(x) dx = 1 +O((Rτ)−N−4s) as Rτ → ∞.

(3.18)
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For example, in the following, we could set R = 1. Using (1.13), lemma 3.2
and the polynomial decay of Q, we also obtain∫

RN

|(−Δ)s/2u(x)|2 dx− Na

N + 2s

∫
RN

|u(x)|2+4s/N dx

� τ2s

‖Q‖2
2

[∫
RN

|(−Δ)s/2Q|2 dx

− Na

(N + 2s)‖Q‖4s/N
2

∫
RN

|Q|2+((4s)/(N)) dx+O(τ−4s)

]
as τ → ∞.

(3.19)

Since ‖(−Δ)s/2Q‖2
2 = ((N)/(N + 2s))‖Q‖2+((4s)/(N))

2+((4s)/(N)), we further have

(3.19) =
Nτ2s

(N + 2s)‖Q‖2
2

[(
1 − a

‖Q‖4s/N
2

)∫
RN

|Q|2+((4s)/(N)) dx+O(τ−4s)

]
as τ → ∞. (3.20)

On the contrary, since the function x �→ V (x)η((x− x0)/R) is bounded and
has compact support, it follows from [27] that

lim
τ→∞

∫
RN

V (x)|u(x)|2 dx = V (x0) for a.e. x0 ∈ R
N . (3.21)

For a > ‖Q‖4s/N
2 , it follows from (3.20) and (3.21) that

e(a) � lim
τ→∞Ea(u) = −∞.

This implies that for any a > ‖Q‖4s/N
2 , e(a) is unbounded from below, and

nonexistence of minimizers is, therefore, proved.
We finally deal with the case a = ‖Q‖4s/N

2 . Combining (3.20) and (3.21), we
infer that e(a) � V (x0). This holds for almost every x0; taking the infimum
over x0 yields e(a) � 0. We further use (3.16) to derive that e(a) = 0. Suppose
now that there exists a minimizer u at a = ‖Q‖4s/N

2 . As pointed out in the
Introduction, we can assume u to be nonnegative. We would then have∫

RN

V (x)|u(x)|2 dx = inf
x∈RN

V (x) = 0

and ∫
RN

|(−Δ)s/2u(x)|2 dx =
Na

N + 2s

∫
RN

|u(x)|2+((4s)/(N)) dx.

This is a contradiction since for the first inequality u would have the compact
support, while for the second one it has to be equal to the translation and
scaling of Q.
Moreover, by (3.16) we see that e(a) > 0 for 0 � a < a∗ = ‖Q‖4s/N

2 . We have
already shown that e(a∗) = 0 and e(a) = −∞ for a > a∗, hence it remains
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to show that lima↗a∗ e(a) = 0. This follows easily from (3.20) and (3.21), by
first taking a↗ a∗, followed by τ → ∞. This implies that lim supa↗a∗ e(a) �
V (x0) which, after taking the infimum over x0, yields the result.

(ii) The proof is similar to that of [20, theorem 1.1], and we write out the details
in the Appendix for the reader’s convenience. This completes the proof of
Theorem 1.3.

�

4. Some properties of the Lagrange multiplier µa

In this section, we always assume that f(t) = |t|4s/N t. For any a ∈ [0, a∗), let

Λa := {ua : ua is a minimizer of e(a) in (1.6)} . (4.1)

If ua ∈ Λa, as illustrated in the Introduction, we may assume that ua � 0 and ua

satisfies (1.19), where μa is a Lagrange multiplier associated with ua. The aim of
this section is to present a detailed description of the Lagrange μa. For this, we first
study some properties of e(a), upon which we give the proof Theorem 1.4. Inspired
by [21], in the following, we give our result on the smoothness of e(a) with respect
to a.

Lemma 4.1. Suppose V (x) satisfies (V1). Then for a ∈ (0, a∗), the left and right
derivative of e(a) always exist in [0, a∗) and satisfy

e′−(a) = −αa

2
and e′+(a) = −γa

2

where

αa := inf
{∫

RN

|ua|2+((4s)/(N)) dx : ua ∈ Λa

}
,

γa := sup
{∫

RN

|ua|2+((4s)/(N)) dx : ua ∈ Λa

}
, (4.2)

and Λa is given by (4.1).

Proof. Since V (x) satisfies (V1), from the definition of e(a) one can infer that e(a)
is decreasing in a ∈ [0, a∗) and satisfies

0 � inf
x∈RN

V (x) � e(a) � e(0) = μ1 for all a ∈ [0, a∗),

where (1.13) is used in the above inequality and μ1 is the first eigenvalue of (−Δ)s +
V (x) in H. Moreover, by (1.13), we have∫

RN

|ua|2+((4s)/(N)) dx � (N + 2s)e(a)
N(a∗ − a)

� (N + 2s)μ1

N(a∗ − a)
for a ∈ [0, a∗). (4.3)
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For any a1, a2 ∈ [0, a∗), we obtain

e(a1) � e(a2) +
N(a2 − a1)
N + 2s

∫
RN

|ua1 |2+((4s)/(N)) dx, ∀ua1 ∈ Λa1 , (4.4)

e(a2) � e(a1) +
N(a1 − a2)
N + 2s

∫
RN

|ua2 |2+((4s)/(N)) dx, ∀ua2 ∈ Λa2 , (4.5)

and hence lim
a2→a1

e(a2) = e(a1). This implies that

e(a) ∈ C([0, a∗), R
+). (4.6)

Furthermore, it follows from (4.4) and (4.5) that

N(a2 − a1)
N + 2s

∫
RN

|ua1 |2+((4s)/(N)) dx � e(a1) − e(a2)

� N(a2 − a1)
N + 2s

∫
RN

|ua2 |2+((4s)/(N)) dx. (4.7)

Set 0 < a1 < a2 < a∗, it then follows from (4.7) that

− N

N + 2s

∫
RN

|ua2 |p dx � e(a2) − e(a1)
a2 − a1

� − N

N + 2s

∫
RN

|ua1 |p dx, ∀uai
∈ Λai

, i = 1, 2. (4.8)

This implies that

− N

N + 2s
inf

ua2∈Λa2

∫
RN

|ua2 |p dx � e(a2) − e(a1)
a2 − a1

� − N

N + 2s
γa1 . (4.9)

By (4.3) and lemma 3.1, there exists ū ∈ H such that for all a2 ↘ a1,

ua2 ⇀ ū weakly in H, ua2 → ū strongly in Lq(RN ) with 2 � q < 2∗s .

It then follows from (4.6) that

e(a1) = lim
a2↘a1

e(a2) = lim
a2↘a1

Ea2(ua2) � Ea1(ū) � e(a1),

which yields that for all a2 ↘ a1,

ua2 → ū ∈ H and ū ∈ Λa1 .

We thus deduce from (4.9) that

− N

N + 2s

∫
RN

|ū|2+((4s)/(N)) dx � lim inf
a2↘a1

e(a1) − e(a2)
a2 − a1

� lim sup
a2↘a1

e(a1) − e(a2)
a2 − a1

� − N

N + 2s
γa1 . (4.10)
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On the contrary, from (4.2), we see that∫
RN

|ū|2+((4s)/(N)) dx � γa1 .

Therefore, all inequalities in (4.10) are indeed identities, from which we obtain

e′+(a1) = − N

N + 2s
γa1 .

Similarly, if a2 < a1 < a∗, letting a2 → a−1 and repeating the above arguments, one
can infer that

e′−(a1) = − N

N + 2s
αa1 .

This completes the proof of Lemma 4.1. �

Remark 4.1. Lemma 4.1 implies that if e(a) has a unique nonnegative mini-
mizer, then e(a) ∈ C1([0, a∗), R

+). However, this is true generally for a ∈ [0, a∗),
where a∗ > 0 is given by (1.18), in view of the possible multiplicity of nonnegative
minimizers as a↗ a∗, see corollary 1.7.

Now we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4.

(i) By (4.7), we have

|e(a1) − e(a2)| � N

N + 2s
|a2 − a1|max

×
{∫

RN

|ua1 |2+((4s)/(N)) dx,
∫

RN

|ua2 |2+((4s)/(N)) dx
}

� N

N + 2s
max{γa1 , γa2}|a2 − a1| for all a1, a2 ∈ [0, a∗),

where γai
(i = 1, 2) are given by (4.2). This implies that e(a) is locally Lips-

chitz continuous in [0, a∗). It then follows from Rademacher’s theorem that
e(a) is differential for a.e. a ∈ [0, a∗). Moreover, from lemma 4.1 and remark
4.1, we see that

e′(a) exists for all a ∈ [0, a∗) and a.e. a ∈ [a∗, a∗),

and e′(a) = − N

N + 2s

∫
RN

|u|2+4s/N dx, ∀u ∈ Λa, (4.11)

and hence all minimizers of e(a) have the same L2+((4s)/(N))(RN )-norm. Tak-
ing each nonnegative function ua ∈ Λa, where a ∈ [0, a∗) such that e′(a)
satisfies (4.11), then ua satisfies (1.19) for a suitable Lagrange multiplier
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μa ∈ R associated with ua. We can easily conclude from (1.19) and (4.11)
that

μa = e(a) − 2sa
N + 2s

∫
RN

|ua|2+((4s)/(N)) dx = e(a) +
2sa
N

e′(a), (4.12)

which implies that μa depends only on a and is independent of the choice
of ua. Therefore, for any given a ∈ [0, a∗) and a.e. a ∈ [a∗, a∗), all minimizer
of e(a) satisfy equation (1.19) with the same Lagrange multiple μa. Moreover,
it follows from (4.3) and (4.12) that

μa → μ1 as a↘ 0,

which implies that μa > 0 for any a ∈ [0, a∗) small enough.

(ii) Now, we suppose that the assumptions of (V1) and (V2) are satisfied, it
remains to show that there exists a0 ∈ [0, a∗) such that μa < 0 for a ∈
[a0, a

∗). Since ua satisfies equation (1.19),∫
RN

|(−Δ)s/2ua|2 dx+
∫

RN

V (x)u2
a dx = μa + a

∫
RN

|ua|2+((4s)/(N)) dx.

(4.13)
Moreover, ua satisfies the following Pohozaev identity [33]:

N − 2s
2

∫
RN

|(−Δ)s/2ua|2 dx+
1
2

∫
RN

(∇V (x), x)u2
a dx+

N

2

∫
RN

V (x)u2
a dx

=
Nμa

2
+

N2a

2N + 4s

∫
RN

|ua|2+((4s)/(N)) dx,

which, together with (4.13) and (V2), implies that

μa =
1
2s

∫
RN

(∇V (x), x)u2
a dx+

∫
RN

V (x)u2
a dx

− 2as
N + 2s

∫
RN

|ua|2+((4s)/(N)) dx

� C

∫
RN

V (x)u2
a dx− 2as

N + 2s

∫
RN

|ua|2+((4s)/(N)) dx, (4.14)

where C is a positive constant. Since e(a∗) = 0, it is easy to see that∫
RN

V (x)|ua(x)|2 dx→ 0 as a↗ a∗. (4.15)

Now, we claim that

lim inf
a↗a∗

∫
RN

|ua|2+((4s)/(N)) dx � σ > 0. (4.16)

Assume by contradiction, there exists a subsequence {ak} with ak ↗ a∗ as
k → ∞, such that

lim
k→∞

∫
RN

|uak
|2+((4s)/(N)) dx = 0, (4.17)
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which together with e(a∗) = 0 and (4.15), implies that

lim
k→∞

∫
RN

|(−�)s/2uak
|2 dx = 0. (4.18)

It then follows from (4.15) and (4.18) that

uak

k−→ 0 strongly in H,
which contradicts with ‖uak

‖2
2 = 1. Hence, (4.16) holds. Combining (4.14),

(4.15) and (4.16) gives

lim sup
a↗a∗

μa � − 2sa∗

N + 2s
σ < 0.

Consequently, there exists a0 ∈ [0, a∗) such that μa < 0 for a ∈ [a0, a
∗). This

completes the proof of Theorem 1.4.

�

5. Mass concentration

In this section, we analyse the limit behaviour of nonnegative minimizers for (1.6)
with f(t) = |t|4/N t as a↗ a∗, in the case that the trapping potential V (x) satisfies
(1.20). In this case, note from theorem 1.3 that there exist minimizers for (1.6), if
and only if 0 � a < a∗. In the following, we shall derive refined estimates on e(a).

Lemma 5.1. Assume that V (x) satisfies (1.20), then there exists two positive
constants C1 < C2, independent of a, such that

C1(a∗ − a)((q)/(q+2s)) � e(a) � C2(a∗ − a)((q)/(q+2s)) for 0 � a � a∗, (5.1)

where q = max{q1, · · · , qn} > 0 .

Proof. Since e(a) is decreasing and bounded uniformly for 0 � a � a∗, it suffices to
consider the case when a is close to a∗. Let us start with the lower bound. From
(1.13), we deduce that for any γ > 0 and u ∈ M,

Ea(u) �
∫

RN

V (x)|u(x)|2 dx+
N(a∗ − a)
N + 2s

∫
RN

|u(x)|2+((4s)/(N)) dx

= γ +
∫

RN

[
(V (x) − γ)|u(x)|2 +

N(a∗ − a)
N + 2s

|u(x)|2+((4s)/(N))

]
dx

� γ − 2s
(N + 2s)(a∗ − a)((N)/(2s))

∫
RN

[γ − V (x)]1+((N)/(2s))
+ dx, (5.2)

where [ · ]+ = max{0, ·} denotes the positive part. For small enough γ, the set

{x ∈ R
N : V (x) < γ}

is contained in the disjoint union of n ball of radius at most Mγ1/q, centred at
the minima xi, for a suitable constant M > 0. Moreover, V (x) � (|x− xi|/M)q on
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these balls. Thus∫
RN

[γ − V (x)]1+((N)/(2s))
+ dx � n

∫
RN

[γ − (|x|/M)q]1+((N)/(2s))
+ dx

� Cγ1+((N)/(2s))+((N)/(q)),

where C > 0 is a suitable constant. The lower bound in (5.1), therefore, follows from
(5.2) by taking γ to be equal to ([(N + 2s)q/(4Cs(q + 1)]2s/N (a∗ − a))q/(q+2s).

Next, we shall prove the upper bound in (5.1). Similarly to the proof of Theorem
1.2, we use a trial function of the form (3.17). Choose x0 ∈ Z, where Z is defined
in (1.22) and fix R > 0 small enough so that

V (x) � C|x− x0|q for |x− x0| � 2R,

in which case, we infer that∫
RN

V (x)|u(x)|2 dx � Cτ−qA2
R,τ

∫
RN

|x|q|Q(x)|2 dx,

where the constant AR,τ > 0 satisfies (3.18). From the estimates (3.18)–(3.20), we
thus conclude that for large τ ,

e(a) � Nτ2s(a∗ − a)
(N + 2s)‖Q‖4

2

∫
RN

|Q(x)|2+((4s)/(N)) dx

+ Cτ−q

∫
RN

|x|q|Q(x)|2 dx+O(τ−2s). (5.3)

By taking τ = (a∗ − a)−((1)/(q+2s)), we obtain the desired upper bound of e(a). This
completes the proof of the lemma. �

Let ua be a nonnegative minimizer of (1.6). The following estimates on the
L2+((4s)/(N))(RN ) norm of ua is a simple consequence of lemma 5.1.

Lemma 5.2. Assume that ua is a minimizer of (1.6) with V (x) satisfying (1.20),
then there exists a positive constant K, independent of a, such that

0 < K(a∗ − a)−((2s)/(q+2s)) �
∫

RN

|ua(x)|2+((4s)/(N)) dx

� 1
K

(a∗ − a)−((2s)/(q+2s)) for 0 � a < a∗. (5.4)

Proof. By (3.16) and (1.13), we have

e(a) � N(a∗ − a)
N + 2s

∫
RN

|ua(x)|2+((4s)/(N)) dx.

Then, the upper bounded in (5.4) follows immediately from lemma 5.1.
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To show the lower bound in (5.4), we pick a 0 < b < a and employ that

e(b) � Eb(ua) = e(a) +
a− b

2

∫
RN

|ua(x)|2+((4s))/(N)) dx.

By applying lemma 5.1, the above inequality implies that there exist two positive
constant C1 < C2 such that for any 0 < b < a < a∗,

1
2

∫
RN

|ua(x)|2+((4s)/(N)) dx � e(b) − e(a)
a− b

� C1(a∗ − b)q/(q+2s) − C2(a∗ − a)q/(q+2s)

a− b
. (5.5)

With b = a− γ(a∗ − a), we can write the right side of (5.5) as

(a∗ − a)−2s/(q+2s)C1(1 + γ)q/(q+2s) − C2

γ
.

The last fraction is positive for γ large enough. For a close to a∗, this then
gives the desired lower bound. For smaller a, we can simply use the fact
that

∫
RN |ua(x)|4 dx �

∫
RN |u0(x)|4 dx for any 0 � a � a∗, which follows from

the bounds e(a) � Ea(u0) and e(0) � E0(ua). This completes the proof of the
lemma. �

In the sequel, we will complete the proofs of Theorem 1.5 and corollary 1.6.

Proof of Theorem 1.5. Let ua be a nonnegative minimizer of (1.6), and we now
define

ε := (a∗ − a)((1)/(q+2s)) > 0. (5.6)

From the fractional Gagliardo–Nirenberg–Sobolev inequality (1.13), we deduce that

e(a) �
(
1 − a

a∗
)∫

RN

|(−Δ)sua|2 dx+
∫

RN

V (x)|ua|2 dx,

and it thus follows from lemma 5.1 that∫
RN

|(−Δ)sua|2d x � Cε−2s and
∫

RN

V (x)|ua|2 dx � Cεq. (5.7)

For 1 � i � n, we define the L2(RN )-normalized functions

wi
a(x) := εN/2ua(εx+ xi). (5.8)

It follows from (5.7) and lemma 5.2 that

0 < K �
∫

RN

|wi
a|2+((4s)/(N)) dx � 1

K
,

∫
RN

|(−Δ)swi
a|2 dx � C (5.9)

and also ∫
RN

V (εx+ xi)|wi
a|2 dx � Cεq. (5.10)

In particular, the functions wi
a are bounded uniformly in Hs(RN ).
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For any γ > 0, by (5.7), we obtain∫
{V (x)�γεq}

|ua|2 dx � 1
γεq

∫
RN

V (x)|ua|2 dx � C

γ
.

For ε small enough, that is, for a sufficiently close to a∗, the set {x ∈ R
N : V (x) �

γεq} is contained in n disjoint balls with radius at most Cγ1/qε, for some C > 0,
centred at the points xi . We thus conclude from the above inequality that

C

γ
�
∫
{V (x)�γεq}

|ua|2 dx = 1 −
∫
{V (x)�γεq}

|ua|2 dx

� 1 −
n∑

i=1

∫
{|x−xi|�Cγ1/qε}

|ua(x)|2 dx = 1 −
n∑

i=1

∫
{|x|�Cγ1/q}

|wi
a(x)|2 dx,

which implies that

1 �
n∑

i=1

∫
{|x|�Cγ1/q}

|wi
a(x)|2 dx � C

γ
. (5.11)

Using the fact that the functions wi
a are uniformly bounded in Hs(RN ), up to a

subsequence {ak}, satisfying ak ↗ a∗ as k → ∞, we can deduce that for suitable
functions wi

0 ∈ Hs(RN ),

wi
a ⇀ wi

0 weakly in Hs(RN ), 1 � i � n, (5.12)

wi
a → wi

0 strongly in Lr({|x| � Cγ1/q}) for any 2 � r < 2∗s . (5.13)

Therefore, from (5.11), we deduce that

1 �
n∑

i=1

∫
{|x|�Cγ1/q}

|wi
0(x)|2 dx � C

γ
.

Since this bound holds for any γ > 0, we finally yield that
n∑

i=1

‖wi
0‖2

2 = 1. (5.14)

Since ua is a nonnegative minimizer of (1.6), it satisfies the following Euler–
Lagrange equation

(−Δ)sua(x) + V (x)ua(x) = μaua(x) + au1+4s/N
a (x) in R

N , (5.15)

where μa ∈ R is a suitable Lagrange multiplier and satisfies

μa = e(a) − 2as
N + 2s

∫
RN

|ua|2+((4s/(N)) dx

The functions wi
a in (5.8) are thus nonnegative solutions of

(−Δ)swi
a(x) + ε2sV (εx+ xi)wi

a(x) = ε2sμaw
i
a(x) + awi

a(x)1+4s/N in R
N ,
(5.16)

It follows from lemma 5.2 that ε2sμa is uniformly bounded as a↗ a∗, and strictly
negative for a close to a∗. Passing if necessary to a subsequence of {ak}, still denoted
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by {ak}, we can assume that lima↗a∗ ε2sμa = −β2s < 0 for some β > 0. By passing
to the weak limit (5.12), we see that the nonnegative functions wi

0 satisfy

(−Δ)swi
0(x) = −β2swi

0(x) + a∗wi
0(x)

1+4s/N in R
N . (5.17)

Using the maximum principle, either wi
0 = 0 identically, or otherwise wi

0 > 0 for
all x ∈ R

N . In the latter case, a simple rescaling together with the uniqueness of
positive ground state solutions of (1.17) up to translations allows us to deduce that

wi
0(x) = (Nβ2s/(2sa∗))N/(4s)Q((Nβ2s/(2s))1/2s(x− yi)), (5.18)

for some yi ∈ R
N . Therefore, either wi

0 = 0 or ‖wi
0‖2

2 = 1. Because of (5.14), we see
that exactly one wi

0 is of form (5.18), which all the others are zero.
Let 1 � j � n be such that ‖wj

0‖2
2 = 1. From the norm preservation, we infer

that wj
a converges to wj

0 strongly in L2(RN ) and, in fact, strongly in Lr(RN ) for
2 � r < 2∗s because of Hs(RN ) boundedness. Moreover, since wj

a and wj
0 satisfy

(5.16) and (5.17), respectively, a simple analysis shows that wj
a converges to wj

0

strongly in Hs(RN ). By going to a subsequence, if necessary, we can also assume
that the convergence holds pointwise almost everywhere.

To complete the proof of Theorem 1.5, we calculate from (5.8) that

e(a) = Ea(ua) =
1
ε2s

[∫
RN

|(−Δ)s/2wj
a(x)|2 dx− Na∗

N + 2s

∫
RN

|wj
a(x)|2+((4s)/(N)) dx

]
+

Nεq

N + 2s

∫
RN

|wj
a(x)|2+((4s)/(N)) dx+

∫
RN

V (εx+ xi)|wj
a(x)|2 dx.

The term in square brackets is nonnegative and can be ignored for a lower bound
of e(a). The L2+((4s)/(N))(RN ) norm of wj

a converges to the one of wj
0, and from

Fatou’s lemma it follows that

lim inf
ε→0

ε−q

∫
RN

V (εx+ xi)|wj
a(x)|2 dx � κj

∫
RN

|x|q|wj
0(x)|2 dx

where κj = limx→xj
V (x)|x− xj |−q ∈ (0, ∞]. Moreover, since Q(x) ia a radially

symmetric decreasing function and decays polynomially as |x| → ∞, we then
conclude that∫

RN

|x|q|wj
0(x)|2 dx =

1
(N/(2s))q/2sβq‖Q‖2

2

∫
RN

|x+ yj |q|Q(x)|2 dx

� 1
(N/(2s))q/2sβq‖Q‖2

2

∫
RN

|x|q|Q(x)|2 dx (5.19)

Moreover, the last equality of (5.19) holds if and only if yj = 0. We thus derive
from (5.18) and (5.19) that

lim inf
a↗a∗

e(a)
(a∗ − a)q/(q+2s)

� N

N + 2s
‖wj

0‖2+((4s)/(N))
2+((4s)/(N)) + κj

∫
RN

|x|q|wj
0(x)|2 dx

� N

a∗

(
1
2s
β2s + λ2s+q

j

1
qβq

)
(5.20)
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where λj is defined in (1.21), and we have used that ‖Q‖2
2 = ((N)/(N + 2s))

‖Q‖2+((4s)/(N))
2+((4s)/(N)). Take the infimum of (5.20), which is achieved for β = λj . We then

obtain that

lim inf
a↗a∗

e(a)
(a∗ − a)q/(q+2s)

� N(q + 2s)
2sqa∗

λ2s, (5.21)

where λ = minj λj is as before.
The limit in (5.21) actually exists, and is equal to the right side. To see this, we

can simply take

u(x) =
(N/2s)N/4sβN/2

εN/2‖Q‖2
Q

(
(N/2s)1/2sβ

x− xj

ε

)
as a trial function for Ea, and minimizes over 1 � j � n and β > 0. The result is
that

lim
a↗a∗

e(a)
(a∗ − a)q/(q+2s)

=
N(q + 2s)

2sqa∗
λ2s. (5.22)

From the equality (5.22), we can draw several conclusions. First, the j defined
above is such that λj = λ, that is, xj ∈ Z. Second, β is unique (i.e., independent
of the choice of the subsequence) and equal to the expression minimizing (5.20),
that is, β = λ. Finally, yj = 0, since the inequality (5.19) is strict for yj �= 0. We,
therefore, have

wj
a(x) = εN/2ua(εx+ xj) → λN/2 (N/(2s))N/(4s)

‖Q‖2
Q
(
λ (N/(2s))1/2s

x
)

as a↗ a∗,

strongly in Hs(RN ), where xj ∈ Z. This completes the proof of Theorem 1.5. �

Proof of Corollary 1.6. The proof is almost the same to the proof of Theorem 1.5,
and we only need to modify the proof of the upper estimate of (5.1).

For this purpose, we take a new trial function

u(x) =
τN/2

‖Q‖2
Q(τ(x− x0)) for any τ > 0.

Then
∫

RN |u(x)|2 dx = 1, it follows from (1.13) that∫
RN

|(−Δ)s/2u(x)|2 dx− Na

N + 2s

∫
RN

|u(x)|2+((4s)/(N)) dx

=
τ2s

‖Q‖2
2

(∫
RN

|(−Δ)s/2Q|2 dx− Na

(N + 2s)‖Q‖4s/N
2

∫
RN

|Q|2+((4s)/(N)) dx

)

=
Nτ2s

(N + 2s)‖Q‖2
2

(
1 − a

‖Q‖4s/N
2

)∫
RN

|Q|2+((4s)/(N)) dx (5.23)
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Moreover, by the polynomial decay of Q(x), we have∫
RN

h(x)|x− x0|q|u(x)|2 dx � τ−q

C‖Q‖2
2

∫
RN

|x|q|Q(x)|2 dx � C1

τ q
. (5.24)

It then follows from (5.23) and (5.24) that

e(a) � C2(a∗ − a)τ2s +
C1

τ q
.

By taking τ = (a∗ − a)−((1)/(q+2s)), the above inequality implies the desired upper
estimate of (5.1). This completes the proof of Corollary 1.6. �

Appendix A Proof of Theorem 1.3 (ii)

In this appendix, we always assume that V (x) satisfies condition (V1). Define

μ1 = inf
{∫

RN

(|(−Δ)s/2u|2 + V (x)u2) dx : u ∈ H and
∫

RN

u2 dx = 1
}
. (A.1)

Usually, μ1 is called the first eigenvalue of (−Δ)s + V (x) in H. Furthermore, from
lemma 3.1, we can easily know that μ1 is simple and can be attained by positive
function φ1 ∈ H. Here, φ1 > 0 is called the first eigenfunction of (−Δ)s + V (x) in
H. We now define

μ2 = inf
{∫

RN

(|(−Δ)s/2u|2 + V (x)u2) dx : u ∈ Z and
∫

RN

u2 dx = 1
}
. (A.2)

where

Z = span{φ1}⊥ =
{
u : u ∈ H,

∫
RN

uφ1 dx = 0
}
.

It is known that μ2 > μ1 and

H = span{φ1} ⊕ Z. (A.3)

Then, we have the following lemma, its proof is somewhat standard, and we omit
here.

Lemma A.1. Suppose V (x) satisfies (V1). Then we have

(i) ker((−�)s + V (x) − μ1) = span{φ1};
(ii) φ1 �∈ ((−�)s + V (x) − μ1)Z;

(iii) Im((−�)s + V (x) − μ1) = ((−�)s + V (x) − μ1)Z is closed in H∗;

(iv) codim Im((−�)s + V (x) − μ1) = 1.

where H∗ denotes the dual space of H.

Inspired by [8, theorem 3.2], we have the following lemma. For the sake of
completeness, we give a short proof here.
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Lemma A.2. Define the following C1 functional F : H× R
2 → H∗

F (u, μ, a) = ((−�)s + V (x) − μ)u− au1+((4s)/(N)). (A.4)

Then, there exist δ > 0 and a unique function (u(a), μ(a)) ∈ C1(Bδ(0); Bδ(μ1, φ1))
such that ⎧⎪⎨⎪⎩

μ(0) = μ1, u(0) = φ1;
F (u(a), μ(a), a) = 0;
‖u(a)‖2

2 = 1.
(A.5)

Proof. Let g ∈ Z × R
3 → H∗ be defined by

g(z, τ, t, a) := F ((1 + t)φ1 + z, μ1 + τ, a).

Then g ∈ C1(Z × R
3, H∗) and{

g(0, 0, 0, 0) = F (φ1, μ1, 0) = 0,
gt(0, 0, 0, 0) = Fu(φ1, μ1, 0)φ1 = ((−Δ)s + V (x) − μ1)φ1 = 0.

(A.6)

Moreover, for any (ẑ, τ̂) ∈ Z × R, we obtain

g(z,τ)(0, 0, 0, 0)(ẑ, τ̂) = Fu(φ1, μ1, 0)ẑ + Fμ(φ1, μ1, 0)τ̂

= ((−Δ)s + V (x) − μ1)ẑ − τ̂φ1. (A.7)

Then, by lemma A.1 and (A.7), g(z,τ)(0, 0, 0, 0) : Z × R → H∗ is an isomorphism.
Hence, it follows from the implicit function theorem that there exist δ1 > 0 and a
unique function (z(t, a), τ(t, a)) ∈ C1(Bδ1(0, 0); Bδ1(0, 0)) such that⎧⎪⎨⎪⎩

g(z(t, a), τ(t, a), t, a) = F ((1 + t)φ1 + z(t, a), μ1 + τ(t, a), a) = 0,
z(0, 0) = 0, τ(0, 0) = 0,
zt(0, 0) = −g−1

z,τ (0, 0, 0, 0) · gt(0, 0, 0, 0) = 0.
(A.8)

Now, set

u(t, a) = (1 + t)φ1 + z(t, a), (t, a) ∈ Bδ1(0, 0),

and let us define

f(t, a) = ‖u(t, a)‖2
2 = (1 + t)2 +

∫
RN

z2(t, a) dx, (t, a) ∈ Bδ1(0, 0).

It follows from (A.8) that

f(0, 0) = 1, ft(0, 0) = 2 + 2
∫

RN

zt(0, 0)z(0, 0) dx = 2.

Then, by applying implicit function theorem again, there exist 0 < δ < δ1 and a
unique function t = t(a) ∈ C1(Bδ(0); Bδ(0)) such that

f(t(a), a) = ‖u(t(a), a)‖2
2 = f(0, 0) = 1, a ∈ Bδ(0).
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This, together with (A.8), implies that for a ∈ Bδ(0), there exists a unique function

(u(a) := u(t(a), a), μa := μ1 + τ(t(a), a)) ∈ C1(Bδ(0); Bδ(φ1, μ1))

such that (A.5) holds, and the proof is, therefore, complete. �

We are now ready to show the uniqueness of nonnegative minimizers of (1.6) with
f(t) = |t|4s/N t.

Proof of Theorem 1.3 (ii). Let ua be a nonnegative minimizer of e(a) with a ∈
[0, a∗). We can easily see that

e(0) = μ1 and e(a) � e(0) = μ1, (A.9)

where μ1 is the first eigenvalue of (−Δ)s + V (x). Since ua is a minimizer of (1.6),
it satisfies the following Euler–Lagrange equation

(−Δ)sua(x) + V (x)ua(x) − μaua(x) − au1+4s/N
a (x) = 0 in R

N ,

where μa ∈ R is a suitable Lagrange multiplier associated with ua, that is,

F (ua, μa, a) = 0 where F (·) is defined by (A.4). (A.10)

since

μa = e(a) − 2sa
N + 2s

∫
RN

|ua|2+((4s)/(N)) dx,

it then follows from (A.9), (4.3) and (4.6) that there exists a1 > 0 small such that

|μa − μ1| � |e(a) − μ1| + 2sa
N + 2s

∫
RN

|ua|2+((4s)/(N)) dx � δ for 0 � a < a1,

(A.11)
where δ > 0 is as in lemma A.2. On the contrary, since

E0(ua) = e(a) +
Na

N + 2s

∫
RN

|ua|2+((4s)/(N)) dx→ e(0) = μ1 as a↘ 0,

i.e. {ua} is a nonnegative minimizing sequence of e(0) = μ1 as a↘ 0. Note that μ1

is a simple eigenvalue, we can easily yield from lemma 3.1 that

ua → φ1 in H for all a↘ 0.

This implies that there exists a2 > 0 such that

‖ua − φ1‖H < δ for 0 � a < a2. (A.12)

Then using (A.10)−(A.12) and lemma A.2, we obtain that

μa = μ(a), ua = u(a) for 0 � a < min{a1, a2},
that is, e(a) has a unique nonnegative minimizer u(a) if a > 0 is small. �
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