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Lower semicontinuity and relaxation results in BV are obtained for multiple integrals

F (u; « ) :=
«

f (x; u(x); ru(x)) dx; u 2 W 1;1( « ; Rd);

where the energy density f satis¯es lower semicontinuity conditions with respect
to (x; u) and is not subjected to coercivity hypotheses. These results call for methods
recently developed in the calculus of variations.

1. Introduction

In this paper we address lower semicontinuity and relaxation properties for multiple
functionals of the form

F (u; « ) :=

Z

«

f (x; u(x); ru(x)) dx;

where « is an open subset of RN , and u(x) is a Rd-valued function de ned on « .
In [31], Serrin considered the scalar-valued case where

f 2 C( « £ R £ RN ; [0; 1)) and f(x; u; ¢) is convex in RN . (1.1)

Among his results we select theorems A and B below.

theorem A (cf. theorem 11 of [31]). Assume that f satis¯es equation (1.1). Let
u 2 BVloc( « ; R), and let fung be a sequence of functions in W 1;1

loc ( « ; R) converging
to u in L1

loc( « ; R). Let ¶ , » be moduli of continuity such that

(i) » (s) 6 Cs for C > 0 and all s > 0 large, and

jf (x; u; ¹ ) ¡ f (x0; u0; ¹ )j 6 ¶ (jx ¡ x0j)(1 + f (x; u; ¹ )) + » (ju ¡ u0j)

for all (x; u), (x0; u0) 2 « £ R, and for all ¹ 2 RN ; or

(ii) jf(x; u; ¹ ) ¡ f (x0; u0; ¹ )j 6 ¶ (jx ¡ x0j + ju ¡ u0j)(1 + f (x; u; ¹ )) for all (x; u),
(x0; u0) 2 « £ R, and for all ¹ 2 RN . Suppose, in addition, that u(x) is
continuous.
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Then Z

«

f (x; u(x); ru(x)) dx 6 lim inf
n ! 1

Z

«

f (x; un(x); run(x)) dx:

Here, ru is the Radon{Nikodym derivative of the distributional derivative Du
of u, with respect to the N -dimensional Lebesgue measure L N . Also, we intend by
modulus of continuity a non-negative increasing continuous function » such that
» (0) = 0.

Theorem B (cf. theorem 12 of [31]). Assume that f satis¯es (1.1) and any one
of the following conditions holds.

(i) f (x; u; ¹ ) ! 1 as j¹ j ! 1 for each (x; u) 2 « £ R.

(ii) f (x; u; ¢) is strictly convex in RN for each (x; u) 2 « £ R.

(iii) The derivatives fx, f¹ and f¹ x exist and are continuous.

Then F (u; « ) is lower semicontinuous in W 1;1
loc ( « ; R) with respect to local conver-

gence in L1.

The prototype of integrands we want to study is represented by f = h(x; u)j ¹ j,
where h > 0, for which conditions (i){(iii) of theorem B may be violated; hence,
in this paper, we will focus our attention mainly on theorem A. Note also that
while conditions (i) and (ii) of theorem A are trivially satis ed when f = f ( ¹ ),
so that L1

loc lower semicontinuity holds in this case only under assumption (1.1),
theorem B is more stringent as it imposes extra conditions on the dependence of f
on the gradient variable ¹ .

It is worth noticing that theorem A requires no coercivity hypothesis, i.e. a con-
dition of the type

f(x; u; ¹ ) > C j ¹ j ¡ 1

C

for some constant C > 0. One of the main purposes of this paper is to try to
understand the deep relation between coercivity (or the lack of it) and lower semi-
continuity. A drawback in theorem A (ii) is that, in practice, one seldom knows
whether the target function u(x) is continuous or not. Important examples of inte-
grands which satisfy conditions (i) and (ii) of theorem A are given by

f = f(x; ¹ ) = h(x)g( ¹ ); f = f (x; u; ¹ ) = h(x; u)g( ¹ );

where h(x) and h(x; u) are uniformly continuous functions bounded away from zero
and g is a non-negative convex function. Conditions (i) and (ii) of theorem A often
appear in the study of lower semicontinuity and relaxation and were exploited by
several authors. Dal Maso [9] obtained an integral representation formula for the
relaxation F(u; « ) with respect to the L1

loc topology of the functional F , namely,

F(u; « ) := inf
fung

flim inf
n! 1

F (un; « ) : un 2 W 1;1
loc ( « ; R); un ! u in L1

loc( « ; R)g;
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under a weak form of condition (ii) in theorem A and assuming coercivity. Let

H(u; « ) :=

Z

«

f (x; u; ru) dx +

Z

«

f 1 (x; u; dC(u))

+

Z

S(u) \ «

³Z u+ (x)

u ¡ (x)

f 1 (x; s; ¸ u) ds

´
dHN¡1(x); (1.2)

where f 1 is the recession function of f , that is,

f 1 (x; u; ¹ ) := lim sup
t ! 1

f (x; u; t¹ )

t
;

C(u) is the Cantor part of Du, and (u + ¡ u¡) is the jump of u across the interface
S(u).

As a corollary of Dal Maso’s general results1, we have the following theorem.

Theorem C (cf. theorem 3.2 of [9]). Assume that « is an open bounded subset of
RN and that f : « £ R £ RN ! [0; 1) is a Borel function such that, for HN a.e.
(x0; u0) 2 « £ R, f (x0; u0; ¢) is continuous in RN , and for each " > 0 there exists
¯ > 0 such that

jf (x; u; ¹ ) ¡ f (x0; u0; ¹ )j 6 "(1 + j ¹ j) (1.3)

for all (x; u) 2 « £ R with jx ¡ x0j + ju ¡ u0j 6 ¯ and for all ¹ 2 RN . Sup-
pose also that for every r > 0 there exist C > 0 and three functions c, a and
A 2 C( « ; [0; 1)) \ L1( « ; [0; 1)), with c(x) > 0 in « , such that

c(x)j¹ j ¡ a(x) 6 f (x; u; ¹ ) 6 Cj ¹ j + A(x) (1.4)

for all (x; u; ¹ ) 2 « £ R £ RN with juj 6 r. Finally, assume that, for HN a.e.
x 2 « and all u 2 R, the function f (x; u; ¢) is convex in RN . Then, for all
u 2 BV( « ; R) \ L 1 ( « ; R), we have

F(u; « ) = H(u; « ): (1.5)

Furthermore, if there exist b 2 L1( « ; [0; 1)), C > 0, ¬ > 1, such that f(x; u; 0) 6
C juj ¬ +b(x) for all (x; u) 2 « £R, then (1.5) holds for all u 2 BV( « ; R)\L ¬ ( « ; R).

Note that (1.5) implies, in particular, that F is L1 lower semicontinuous in W 1;1.
Indeed, as f 1 > 0, it follows that

Z

«

f (x; u(x); ru(x)) dx 6 F(u; « )

for u 2 BV( « ; R). Therefore, Dal Maso’s result extends theorem A (ii) of Serrin
to target functions u of bounded variation, which are not necessarily continuous.
However, the `price’ to pay for this extension is the coercivity and growth assump-
tion (1.4). Dal Maso also established an integral representation result for functionals
that are not necessarily coercive.

1Dal Maso’ s results are given in terms of ¡ -convergence of a family of functionals

Fn (u; « ) :=
«

fn (x; u(x); ru(x)) dx:

We take here fh ² f and refer to [9] for the more general statement of theorems 3.2 and 3.5.
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Theorem D (cf. theorem 3.5 of [9]). Assume that « is bounded, that f is a Borel
function and that f(x; u; ¢) is positively homogeneous of degree one and convex.
Suppose also that there exist ¶ : « £ R ! [0; 1), with ¶ (¢; u) continuous and
¶ (0; u) = 0 for L 1 a.e. u 2 R, and a function P 2 C( « ; [0; 1)) such that

jf (x; u; ¹ ) ¡ f (x0; u; ¹ )j 6 ¶ (jx ¡ x0j; u)(1 + f (x; u; ¹ )); (1.6 a)

0 6 f(x; u; ¹ ) 6 P (u)j¹ j; (1.6 b)

for all x, x0 2 « , u 2 R and ¹ 2 RN . Then (1.5) holds for all u 2 BV( « ; R).

The main di¬erence between hypotheses (1.3) and (1.6a) is that (1.3) is a local
hypothesis in (x; u), while (1.6 a) may be interpreted as a global restriction in u.
The conditions of theorem D are satis ed by

f (x; u; ¹ ) = h(x)B(u)j ¹ j;

where h is a positive bounded uniformly continuous function and B is a non-negative
continuous function. Note also that condition (1.6a) is trivially satis ed when f
does not depend on x, that is, f = f (u; ¹ ). Lower semicontinuity for these integrands
of the form f = f (u; ¹ ) was later studied by De Giorgi et al . [13], who proved the
following result.

Theorem E (cf. theorem 1 of [13]). Assume that f = f (u; ¹ ) is non-negative,
measurable in the variable u, and convex in ¹ . Suppose also that f(u; 0) is lower
semicontinuous and that

lim sup
¹ ! 0

(f (u; 0) ¡ f (u; ¹ )) +

j ¹ j
2 L1

loc(R; R):

Then, for every u 2 W 1;1
loc ( « ; R), the function f (u(x); ru(x)) is measurable and

the functional F (u; « ) is lower semicontinuous in W 1;1
loc ( « ; R) with respect to local

convergence in L1.

Theorem E was extended by De Cicco in [12] to functions of bounded variation.
More precisely, De Cicco showed that when f = f (u; ¹ ) satis es the hypotheses of
theorem E, then the functional H(u) de ned in (1.2) is lower semicontinuous in
BVloc( « ; R) with respect to local convergence in L1. The hypotheses of theorem E
were signi cantly weakened by Ambrosio in [3] (see also [11]), where the sequence
fung is assumed to be bounded in W 1;1( « ; R). This condition is somewhat related
to coercivity, and we will not dwell more on it here.

Unlike the case where f = f (u; ¹ ), without some kind of coercivity, one cannot
expect, in general, lower semicontinuity in the L1 topology for functionals of the
form Z

«

f(x; ru(x)) dx:

Indeed, in [9], Dal Maso, following a counterexample of Aronszajn, constructed a
continuous function ! : « ! R, where « = (0; 1) £ (0; 1) and x = (x1; x2), and a
sequence of functions fung converging to u(x) = x2 in L 1 ( « ; R), such that

Z

«

j(sin !(x); cos !(x)) ¢ ru(x)j dx > lim inf
n ! 1

Z

«

j(sin !(x); cos !(x)) ¢ run(x)j dx:
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Since the target function u(x1; x2) = x2 is continuous,

f (x; ¹ ) = j(sin !(x); cos !(x)) ¢ ¹ j

cannot satisfy either condition (i) or (ii) of theorem A, for in this case we would
obtain a contradiction. This example suggests that, when there is no coercivity,
lower semicontinuity in the L1 topology may fail unless we strengthen (1.1) with
an uniform continuity condition.

We are now ready to present the main result of the paper.

Theorem 1.1. Assume that f : « £R£RN ! [0; 1) is a Borel integrand, f(x; u; ¢)
is convex in RN , and for all (x0; u0) 2 « £ R and " > 0 there exists ¯ > 0 such that

f (x0; u0; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ )) (1.7)

for all (x; u) 2 « £ R with jx ¡ x0j + ju ¡ u0j 6 ¯ and for all ¹ 2 RN . Let
u 2 BVloc( « ; R), and let fung be a sequence of functions in W 1;1

loc ( « ; R) converging
to u in L1

loc( « ; R). Then

H(u; « ) 6 lim inf
n! 1

Z

«

f (x; un(x); run(x)) dx:

The main tool in the proof of theorem 1.1 (and of theorem 1.3 below) is the
blow-up method introduced by Fonseca and M�uller [18,19]. In particular, the blow-
up method applied to the characterization of the bulk energy density reduces the
domain « to a ball and the target function u becomes a piecewise a¯ ne function.
Since a¯ ne functions are locally bounded, in the scalar case we may replace the
truncation used in [18,19], in a vectorial setting, and which required a degenerate
coercivity condition, by a considerably simpler argument.

Theorem 1.1 improves Serrin’s theorem A, not only because continuity of the
target function u is assumed in theorem A (ii), and is not needed here, but also
because condition (1.7) is signi cantly weaker than (ii), as the following result
illustrates.

Corollary 1.2. Let g : RN ! [0; 1) be a convex function and h : « £ R ! [0; 1)
be a lower semicontinuous function. If u 2 BVloc( « ; R) and fung » W 1;1

loc ( « ; R)
converges to u in L1

loc( « ; R), then
Z

«

h(x; u)g(ru) dx 6 lim inf
n ! 1

Z

«

h(x; un)g(run) dx:

This result seems to be new in this generality. Note that conditions (1.3) and (1.4)
in theorem C of Dal Maso imply the validity of (1.7), while f (x; u; ¹ ) = h(x; u)g( ¹ ),
as in corollary 1.2 satis es (1.7), but not, in general, (1.3), (1.6a) and (i), (ii) of
theorem A.

Conditions of the type (1.7) appeared already in the papers of Fonseca and M�uller
[18, 19], Dal Maso and Sbordone [10], and Fusco and Hutchinson [21]. All these
results deal with the vectorial case and require some type of coercivity conditions.

In the special case where

h = h(x) := À A(x) for some measurable set A » « ;
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then h(x)g( ¹ ) satis es (1.7) if and only if L N(@A) = 0 (i.e. if À A(x) has a lower
semicontinuous representative), and thus we recover the condition obtained by
Gangbo [22]. Corollary 1.2 attests to the sharpness of condition (1.7). Indeed, when
N = 1 and « is bounded, Fusco [20] proved that the functional

F (u) :=

Z

«

h(x)ju0(x)j dx; u 2 W 1;1( « ; R);

where h(x) is a bounded non-negative measurable function, is lower semicontinuous
in L1( « ; R) if and only if h(x) is lower semicontinuous.

Theorem 1.3. Assume that « is bounded, f : « £ R £ RN ! [0; 1) is a Borel
integrand, f (x; u; ¢) is convex in RN and there exists a constant C > 0 such that

0 6 f (x; u; ¹ ) 6 C(1 + j ¹ j) for all (x; u; ¹ ) 2 « £ R £ RN : (1.8)

Then F(u; ¢) is the trace of a ¯nite Radon measure on the open subsets of « , and

(i) if f is Carath¶eodory or f (¢; ¢; ¹ ) is upper semicontinuous, then

F(u; « n (S(u) [ M (u))) 6
Z

«

f(x; u; ru) dx;

(ii) if f 1 (¢; ¢; ¹ ) is upper semicontinuous, then

F(u; M (u)) 6
Z

«

f 1 (x; u; dC(u));

(iii) if f 1 (¢; u; ¹ ) is upper semicontinuous, then

F(u; S(u)) 6
Z

S(u) \ «

³Z u+(x)

u¡ (x)

f 1 (x; s; ¸ u) ds

´
dHN¡1(x):

Here, and in what follows, M(u) » « nS(u) is a Borel set such that L N(M(u)) = 0
and C(M (u) \ A) = C(A) for every Borel set A » « . Theorem 1.3 is based on a
recent work by Bouchitt́e et al . [7]. We have thus obtained the following relaxation
result.

Corollary 1.4. Under the hypotheses of theorems 1.1 and 1.3, we have that
F(u; « ) = H(u; « ) for all u 2 BV( « ; R).

If we require (1.8) to be satis ed locally u in compact sets of R, i.e. for every
r > 0, there exist C > 0 and A 2 L1( « ; [0; 1)), such that

0 6 f (x; u; ¹ ) 6 C j¹ j + A(x)

for all (x; u; ¹ ) 2 « £ R £ RN with juj 6 r, then it can be shown that corollary 1.4
continues to hold for all u 2 BV( « ; R) \ L 1 ( « ; R). Thus, when (1.3) and (1.4) are
satis ed for all (x0; u0) 2 « £ R (see also x 8), corollary 1.4 improves theorem C,
since conditions (1.3) and (1.4) imply condition (1.7), and corollary 1.4 does not
require any coercivity properties.
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Next we extend theorem E to integrands f = f (x; u; ¹ ), which depend on x. As
we pointed out before, there are already several results in this direction, e.g. due
to Ambrosio [3] and later extended by De Cicco [11] to BV functions, and where
local convergence in L1 is replaced by weak convergence in BV.

Theorem 1.5. Assume that f : « £R£RN ! [0; 1) is a Borel integrand, f(x; u; ¢)
is convex in RN , and for all x0 2 « and " > 0 there exists ¯ > 0 such that

jf (x0; u; ¹ ) ¡ f (x; u; ¹ )j 6 "(1 + f(x; u; ¹ )) (1.9)

for all x 2 « with jx ¡ x0j 6 ¯ and for all (u; ¹ ) 2 R £ RN . Suppose also that
f (x0; ¢; 0) is lower semicontinuous and

lim sup
j ¹ j! 0

(f (x0; u; 0) ¡ f (x0; u; ¹ )) +

j ¹ j
2 L1

loc(R; R):

Then H(u; « ) 6 F(u; « ) for all u 2 BV( « ; R).

Note that in theorem 1.5 we do not require f (x; u; ¢) to be positively homogeneous
of degree one as in theorem D of Dal Maso. The proof of theorem 1.5 relies on the
blow-up method of Fonseca and M�uller [18], and on the original proof of De Giorgi
et al . [13].

Theorem 1.6. Assume that « is bounded and that f : « £ R £ RN ! [0; 1) is
a Borel integrand that satis¯es (1.8), with f (x; u; ¢) convex in RN and f (¢; u; ¹ )
continuous in « . Then F(u; « ) 6 H(u; « ).

We now turn our attention to the vectorial case, and consider non-negative inte-
grands

f : « £ Rd £ RdN ! [0; 1); where d > 1:

The situation is considerably more complicated, even when f (x; u; ¢) is assumed to
be convex, rather than quasiconvex, which is the natural assumption when d > 1
(see [6, 8, 27]). In his book on calculus of variations [2, theorems 4.1.1 and 4.1.2],
Morrey extended Serrin’s theorems A and B to the vectorial case. Several years
later, Eisen [14] studied the case where d > 1 and proved that lemma 4.14 in [27],
which is the core of theorem B, ceases to be true when d > 1, thus placing in
doubt the validity of theorem itself. In addition, he constructed counterexamples
for theorems A (ii) and B (iii). Theorem A (ii) seems to fail in the vectorial case
due mainly to the truncation techniques of the type used in lemma 3 of [31] (see
also [30, pp. 30{31]) and in our theorem 1.1, suitable only for the scalar case. On
the other hand, Serrin’s theorem A (i) continues to hold in the vectorial case, the
validity of condition (i) of theorem B was asserted in [16], while theorem B (ii)
remains open when d > 1. Note that Eisen’s counterexamples were both of the
form

f = f(u; ¹ ) = h(u)g( ¹ ):

Thus we cannot hope to fully extend either theorem E of De Giorgi et al . or our
theorems 1.1 and 1.5 to the vectorial case. However, we can prove the following.
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Theorem 1.7. Let f be a non-negative Borel integrand. Suppose that, for all
(x0; u0) 2 « £ Rd and " > 0, there exist ¯ > 0 and a modulus of continuity » ,
with » (s) 6 C(1 + s) for s > 0 and for some C > 0, such that

f (x0; u0; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ )) + » (ju ¡ u0j) (1.10)

for all x 2 « with jx ¡ x0j 6 ¯ , and for all (u; ¹ ) 2 Rd £ RdN . Assume also that
either

(a) f (x0; u0; ¢) is convex in RdN ; or

(b) f (x0; u0; ¢) is quasiconvex in RdN and

0 6 f (x0; u0; ¹ ) 6 C(j¹ jq + 1) for all ¹ 2 RdN ; (1.11)

where C > 0 and the exponent q > 1 may depend on (x0; u0). In addition, if
q > 1, then assume that

f (x0; u0; ¹ ) > 1

C
j¹ jq ¡ C for all ¹ 2 RdN : (1.12)

Let u 2 BVloc( « ; Rd) and let fung be a sequence of functions in W 1;1
loc ( « ; Rd), which

converges to u in L1
loc( « ; Rd). Then

(i)

Z

«

f (x; u; ru) dx +

Z

«

f 1 (x; u; dC(u)) 6 lim inf
n ! 1

Z

«

f (x; un; run) dx; and

(ii) if f = f(x; ¹ ), then
Z

S(u) \ «

f 1 (x; (u + (x) ¡ u¡(x)) « ¸ u) dHN¡1 6 lim inf
n! 1

Z

«

f (x; run) dx:

Theorem 1.7 improves theorem A (i) of Serrin, since condition (1.10) is signif-
icantly weaker than the corresponding (i). Moreover, theorem 1.7 is also closely
related to a recent result of Acerbi et al . [1] for integrands of the form f = f (x; ¹ ),
convex in ¹ , where condition (1.10) is replaced by the growth condition

c1(j ¹ jp ¡ 1) 6 f(x; ¹ ) 6 C2(j¹ jq + 1);

with

p > q
N ¡ 1

N
:

In the quasiconvex case, we use a result of Ambrosio and Dal Maso [4] for functions
g = g( ¹ ) such that

0 6 g( ¹ ) 6 C(1 + j¹ j):
This growth condition is of vital importance for their argument to work.

When (1.11) and (1.12) hold then, by a recent result of Kristensen [23], we can
approximate f (x0; u0; ¹ ) by an increasing sequence of quasiconvex functions gj( ¹ )
that grow at most linearly, and thus we can still use [4] for each gj. Note that
without (1.12), L1

loc lower semicontinuity may fail even for the simplest case when
f = f ( ¹ ). This has been shown by Mal´y [24] for

f = f( ¹ ) = jdet ¹ j; d = N;
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who constructed a sequence in W 1;N that converges to u(x) = x weakly in W 1;p,
where p < N ¡ 1, and for which lower semicontinuity fails (see also [17]). In [6], Ball
and Murat proved that f( ¹ ) = jdet ¹ j is W 1;p-quasiconvex if and only if p > N . This
implies, in particular, that f ( ¹ ) = jdet ¹ j cannot be approximated from below by an
increasing sequence of functions gj( ¹ ) that grow at most linearly (see also exam-
ple 7.9 in [23]). This is in sharp contrast with the convex case, where it is well known
that this approximation can always be done (see, for example, proposition 9.1).

In theorem 1.7 (ii), we have chosen to restrict ourselves to integrands f of the form
f = f(x; ¹ ) because in this case there is a simple integral representation formula
for the relaxation of F on the jump set S(u), while, when f depends on the full set
of variables and d > 1, the formula is rather complicated (see theorem 1.10 below).

Theorem 1.8. Theorem 1.7 (i) stil l holds if we replace condition (1.10) with the
following.

For all (x0; u0) 2 « £ Rd, either f (x0; u0; ¹ ) ² 0 for all ¹ 2 RdN or, for every
" > 0, there exist C1, C2, ¯ > 0 such that

f (x0; u0; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f(x; u; ¹ )); (1.13)

f (x; u; ¹ ) > C1j¹ j ¡ C2 (1.14)

for all (x; u) 2 « £ Rd with jx ¡ x0j + ju ¡ u0j 6 ¯ and for all ¹ 2 RdN .

Theorem 1.8 was proven by Fonseca and M�uller [19], under somewhat stronger
hypotheses, and in the case where assumption (b) of theorem 1.7 holds with q = 1.
The convex case can be thought of as a natural extension of theorem A(ii) of Serrin
to the vectorial case.

Theorems 1.7 and 1.8 are complemented by the following result.

Theorem 1.9. Assume that the hypotheses of theorem 1.3 are veri¯ed in the vec-
torial case, with f (x; u; ¢) quasiconvex in RdN . Then conditions (i) and (ii) of the-
orem 1.3 continue to hold. Furthermore, if in theorem 1.3 (iii) we assume that
f 1 = f 1 (x; ¹ ), then

F(u; S(u)) 6
Z

S(u) \ «

f 1 (x; (u + (x) ¡ u¡(x)) « ¸ u) dHN¡1(x):

A similar extension holds for theorem 1.6.
To obtain an integral representation formula for the relaxation F over the jump

set S(u) in the vectorial case, we need a di¬erent set of hypotheses.

Theorem 1.10. Assume that f is a non-negative Borel integrand that satis¯es
(1.8). Suppose also that for all x0 2 « and " > 0 there exist two constants ¯ ,
L > 0 such that

f 1 (x0; u; ¹ ) ¡ f 1 (x; u; ¹ ) 6 "(1 + f 1 (x; u; ¹ )) (1.15)

for all x 2 « with jx ¡ x0j 6 ¯ , and for all (u; ¹ ) 2 Rd £ RdN , and

f 1 (x; u; ¹ ) ¡ f (x; u; t¹ )

t
6 "

³
1 +

f (x; u; t¹ )

t

´
(1.16)
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for all x 2 « , with jx ¡ x0j 6 ¯ , and for all (u; ¹ ) 2 Rd £ RdN and t > L. Then

F(u; S(u)) >
Z

S(u) \ «

h(x; u + (x); u¡(x); ¸ u) dHN¡1(x); (1.17)

where

h(x0; ¶ ; ³ ; ¸ ) := inf

»Z

Q̧

f 1 (x0; w(y); rw(y)) dy : w 2 W 1;1(Q ¸ ); wj@Q ¸ = u ¶ ;³ ;¸

¼

(1.18)
and

u ¶ ;³ ;¸ (y) :=

(
¶ if y ¢ ¸ > 0;

³ if y ¢ ¸ 6 0:

Furthermore, if (1.16) is replaced by
f

1 (x; u; ¹ ) ¡ f (x; u; t¹ )

t

6 "

³
1 +

f (x; u; t¹ )

t

´
; (1.160)

and f 1 (¢; u; ¹ ) is upper semicontinuous, then (1.17) is an equality.

Here, and in what follows, Q ¸ := Ŗ ( ¡ 1
2 ; 1

2 )N , where Ŗ denotes a rotation such
that Ŗ eN = ¸ , and Q = ( ¡ 1

2 ; 1
2)N . Also, C will denote a generic constant that

may vary from line to line.
It is not di¯ cult to see that conditions (H2) and (H4) in theorem 4.1.4 of [7]

imply (1.16).
In addition to the novelty of the results in this paper, which signi cantly improve

upon classical theorems in the literature, we would like to close this section pointing
out some aspects of our approach. One of the main tools exploited in the paper is
the blow-up method introduced by Fonseca and M�uller [18, 19]. This method was
 rst used to deal with quasiconvex integrands, since many of the techniques in
convex analysis available for the scalar case could not be easily extended to the
vectorial case. It turns out that blow-up arguments in the scalar case, combined
with some classical methods for convex integrands, may improve and simplify some
important results in the literature. Also, we use the very recent global method
of relaxation introduced by Bouchitt́e et al . [7], to show that the relaxed energy
density may be written in terms of a Dirichlet problem. Most of the proofs are
carried out  rstly for f that grow at most linearly in the gradient variable ¹ . While
this approach is standard in the convex setting, and in the literature there are
several results that allow us to approximate from below convex functions by an
increasing sequence of convex functions that grow at most linearly, it was only very
recently that Kristensen brought this idea to the vectorial setting, exploiting his
approximation result for quasiconvex functions (see [23]; see also [25]).

In the presentation of the paper, and whenever it was possible, we have tried to
treat separately the energies corresponding to the Lebesgue, Cantor and Jump part
of Du, in order to better understand the corresponding scaling and the necessity
and su¯ ciency of our hypotheses. It is interesting to observe that the Lebesgue and
Cantor measures may be treated in a similar fashion and, more importantly, under
the same hypotheses on the integrand f . On the other hand, lower semicontinuity for
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the jump part requires hypotheses and methods which depart from those mentioned
above.

Although the hypotheses on the integrand f are rather mild, they are not by any
means minimal. Indeed, it was not our purpose to obtain necessary conditions for
lower semicontinuity, but, rather, to  nd simple su¯ cient assumptions, which would
be easy to verify in the applications. It seems, however, that lower semicontinuity
of f in the x variable is almost necessary, but it is not clear if it should always
be uniform in ¹ (at least for functionals that are allowed to vanish). Dal Maso’s
example (see [9]),

f (x; ¹ ) = j(sin !(x); cos !(x)) ¢ ¹ j;
certainly seems to imply that it should. The lower semicontinuity of f in the u
variable is not necessary, as proved by theorem D, but in order to drop it, stronger
assumptions on the dependence on x seem to be needed.

2. Proof of theorem 1.1

Throughout this work we will use often truncation arguments, and the result below
will be instrumental.

Proposition 2.1 (Truncation). Let f : « £ R £ RN ! [0; 1) be a Borel integrand
satisfying (1.8). Suppose that there exists a sequence ("k; ¶ k; tk; u0k) 2 R4 such that

"k ! 0 + ; ¶ k ! ¶ 2 [0; 1); tk ! T 2 (0; 1]; u0k ! u0 2 R;

and

lim
k ! 1

1

tk

Z

Q̧

f (x0 + "ky; u0k + ¶ kwk(y); tkrwk(y)) dy =: ` < 1;

where x0 2 « and fwkg » W 1;1(Q ¸ ; R) converges in L1(Q̧ ; R) to a function
w0 2 L 1 (Q ¸ ; R).

Let [ ¶ essinfQ̧ w0; ¶ esssupQ̧ w0] » ( ¬ 1; ¬ 2), for some ¬ 1, ¬ 2 2 R. Then there
exists a new sequence fvkg » W 1;1(Q̧ ; R), converging to w0 in L1(Q ¸ ; R), such
that

lim
k ! 1

1

tk

Z

Q̧

f (x0 + "ky; u0k + ¶ kvk(y); tkrvk(y)) dy 6 `

and
u0k + ¶ kvk(y) 2 [u0 + ¬ 1; u0 + ¬ 2] for L N a.e. y 2 Q ¸ :

Remark 2.2. It is easy to check that the conclusion of proposition 2.1 still holds
if we replace Q ¸ by any bounded open convex subset of RN containing the origin.

Remark 2.3. Condition (1.8) can be signi cantly weakened if we specialize the
sequences tk, "k and x0 (see lemma 8.4).

Proof. Take 0 < 2" < minf ¶ essinfQ̧ w0 ¡ ¬ 1; ¬ 2 ¡ ¶ esssupQ̧ w0g, and let k be so

large that ju0 ¡ u0kj < 1
2 ". De ne

Ek := fy 2 Q ¸ : u0k + ¶ kwk(y) 2 [u0 + ¬ 1; u0 + ¬ 2]g;

E +
k := fy 2 Q ¸ : u0k + ¶ kwk(y) > u0 + ¬ 2g;

E¡
k := fy 2 Q ¸ : u0k + ¶ kwk(y) < u0 + ¬ 1g;
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and

vk(y) :=

8
>>>><

>>>>:

wk(y) in Ek;

u0 ¡ u0k + ¬ 2

¶ k
in E +

k ;

u0 ¡ u0k + ¬ 1

¶ k
in E¡

k :

Then vk 2 W 1;1(Q ¸ ; R) and, for k large enough,

¬ 2 > " + ju0 ¡ u0kj + ¶ k esssupQ̧ w0;

¬ 1 + " < ju0 ¡ u0kj + ¶ k essinfQ̧ w0;

)

(2.1)

with
Z

Q̧

jvk(y) ¡ w0(y)j dy

=

Z

Ek

jwk(y) ¡ w0(y)j dy

+

Z

E+
k

³
u0 ¡ u0k + ¬ 2

¶ k
¡ w0(y)

´
dy +

Z

E ¡
k

³
w0(y) ¡ u0 ¡ u0k + ¬ 1

¶ k

´
dy

6 kwk ¡ w0kL1(Q̧ ;R) ! 0

as k ! 1. Moreover,

1

tk

Z

Q̧

f (x0 + "ky; u0k + ¶ kvk(y); tkrvk(y)) dy

=
1

tk

Z

Ek

f (x0 + "ky; u0k + ¶ kwk(y); tkrwk(y)) dy

+
1

tk

Z

E+
k

f (x0 + "ky; u0 + ¬ 2; 0) dy

+
1

tk

Z

E ¡
k

f(x0 + "ky; u0 ¡ ¬ 1; 0) dy:

By (1.8) and (2.1),

0 6 1

tk

Z

E+
k

f (x0 + "ky; u0 + ¬ 2; 0) dy

6 C

tk
L N (E +

k )

6 C

tk
L N (fy 2 Q ¸ : jwk(y) ¡ w0(y)j > "=¶ kg)

6 C¶ k

tk"
jjwk ¡ w0jjL1(Q̧ ;R) ! 0: (2.2)

Similarly, we can show that the integral over E¡
k approaches zero as k ! 1.
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Proof. Proof of theorem 1.1 Without loss of generality, we may assume that f is
continuous, f (x; u; ¢) is convex, f satis es (1.7), (1.8) and, for all (x0; u0) 2 « £ R
and " > 0, there exists ¯ > 0 such that

f (x0; u; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ )) (2.3)

for all (x; u) 2 « £ R with jx ¡ x0j + ju ¡ u0j 6 ¯ and for all ¹ 2 RN .
Indeed, suppose that the conclusion of the theorem is true under these additional

hypotheses. By applying proposition 9.3 to the function f , and noting that (1.7)
and (9.2) are equivalent if f > 1, we may  nd an increasing sequence of non-
negative continuous functions fj convex in ¹ , which satisfy (1.7), (1.8) and (2.3),

and such that f (x; u; ¹ ) + 1 = supj fj(x; u; ¹ ). Let fung » W 1;1
loc ( « ; R) converge to

u 2 BVloc( « ; R) in L1
loc( « ; R), and let A b « . For any  xed j,

lim inf
n! 1

Z

«

f (x; un(x); run(x)) dx > lim inf
n! 1

Z

A

fj(x; un(x); run(x)) dx ¡ L N(A)

> Hj(u; A) ¡ L N(A);

where Hj is the functional given in (1.2) and corresponds to fj . If now we let
j ! 1, and use the Lebesgue monotone convergence theorem and proposition 9.3,
we conclude that

lim inf
n ! 1

Z

«

f (x; un(x); run(x)) dx

>
Z

A

f(x; u; ru) dx +

Z

A

f 1 (x; u; dC(u))

+

Z

S(u) \ A

³Z u+(x)

u¡ (x)

f 1 (x; s; ¸ u) ds

´
dHN¡1

= H(u; A);

where we have used the fact that (f + 1)1 = f 1 . The result now follows by letting
A % « , and using the Lebesgue monotone convergence theorem once again.

Thus, in what follows, f is continuous, veri es (1.7), (1.8) and (2.3), fung »
W 1;1

loc ( « ; R) converges to u 2 BVloc( « ; R) in L1
loc( « ; R) and, without loss of gener-

ality, we may assume that

lim inf
n! 1

Z

«

f (x; un(x); run(x)) dx = lim
n ! 1

Z

«

f (x; un(x); run(x)) dx < 1: (2.4)

Passing to a subsequence if necessary, we may  nd a non-negative Radon measure
· such that

f (x; un(x); run(x)) L N b«
?

* ·

as n ! 1, weakly ? in the sense of measures.

Part 1 (Lebesgue part). We claim that

d ·

d L N
(x0) = lim

" ! 0+

· (Q(x0; "))

"N
> f (x0; un(x0); run(x0)) for L N a.e. x0 2 « ;

(2.5)
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where Q(x0; ") := x0 +"Q. If (2.5) holds, then the conclusion of the theorem follows
immediately. Indeed, let ’ 2 C0( « ; R), 0 6 ’ 6 1. We have

lim
n! 1

Z

«

f (x; un; run) dx > lim inf
n! 1

Z

«

’f(x; un; run) dx

=

Z

«

’ d ·

>
Z

«

’
d ·

d L N
dx

>
Z

«

’f(x; u; ru) dx:

By letting ’ ! 1, and using the Lebesgue dominated convergence theorem, we
obtain the desired result. Thus, to conclude the proof of the theorem in what
concerns the absolutely continuous part, it su¯ ces to show (2.5).

Fix x0 2 « such that

d ·

d L N
(x0) = lim

" ! 0+

· (Q(x0; "))

"N
< 1;

lim
" ! 0+

1

"N + 1

Z

Q(x0;")

ju(x) ¡ u(x0) ¡ ru(x0)(x ¡ x0)j dx = 0:

9
>>=

>>;
(2.6)

Choosing "k ! 0 + such that · (@Q(x0; "k)) = 0, then

lim
k ! 1

· (Q(x0; "k))

"N
k

= lim
k ! 1

lim
n! 1

1

"N
k

Z

Q(x0;"k)

f (x; un; run) dx

= lim
k ! 1

lim
n! 1

Z

Q

f(x0 + "ky; u(x0) + "kwn;k(y); rwn;k(y)) dy;

where

wn;k(y) :=
un(x0 + "ky) ¡ u(x0)

"k
:

Clearly, wn;k 2 W 1;1(Q; R) and, by (2.6),

lim
k ! 1

lim
n ! 1

kwn;k ¡ w0kL1(Q;R) = 0;

where w0(y) := ru(x0)y. By a standard diagonalization argument, we may extract
a subsequence wk := wnk;k that converges to w0 in L1(Q; R) and such that

d ·

d L N
(x0) = lim

k ! 1

Z

Q

f (x0 + "ky; u(x0) + "kwk(y); rwk(y)) dy: (2.7)

Fix " > 0 and let ¯ be provided by (1.7). By proposition 2.1, with

¶ k := "k; tk :² 1; u0k :² u(x0); ¡ ¬ 1 = ¬ 2 := ¯ ;

we may  nd a new sequence fvkg » W 1;1(Q; R), still convergent to w0 in L1(Q; R),
such that

d ·

d L N
(x0) > lim inf

k ! 1

Z

Q

f (x0 + "ky; u(x0) + "kvk(y); rvk(y)) dy;
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and j"kvk(y)j 6 ¯ for L N a.e. y 2 Q. Since "k ! 0, by (1.7), we obtain

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

f (x0; u(x0); rvk(y)) dy:

We can now apply Serrin’s theorem A (i) to the integrand g( ¹ ) := f(x0; u(x0); ¹ ) to
conclude that

(1 + ")
d ·

d L N
(x0) + " > f (x0; u(x0); ru(x0)):

The result follows by letting " ! 0+ .

Part 2 (Cantor part). The proof for the Cantor part is somewhat similar to the
previous one, and we will only indicate the main di¬erences. The inequality (2.5)
is now replaced by

d ·

djC(u)j (x0) > f 1
³

x0; u(x0);
dC(u)

djC(u)j (x0)

´
for C(u) a.e. x0 2 « ;

where (see [2])

dC(u)

djC(u)j (x0) = au(x0) ¸ u(x0); (2.8)

with au(x0) 2 R and ¸ u(x0) 2 SN¡1 := fx 2 RN : jxj = 1g. For simplicity of
the notation, from now on we will write a and ¸ to designate au(x0) and ¸ u(x0),
respectively. It is known (see [4,7,19]) that for C(u) a.e. x0 2 « the following hold:

d ·

djC(u)j
(x0) = lim

"! 0+

· (Q ¸ (x0; "))

jDuj(Q ¸ (x0; "))
< 1; (2.9 a)

lim
"! 0+

1

"N

Z

Q̧ (x0 ;")

ju(x) ¡ u(x0)j dx = 0; (2.9 b)

lim
" ! 0+

jDuj(Q ¸ (x0; "))

"N¡1
= 0; (2.9 c)

lim
" ! 0+

jDuj(Q ¸ (x0; "))

"N
= 1: (2.9 d)

Fix x0 2 « , so that (2.9) holds. By lemma 3.9 in [7] (see also theorem 2.3 in [4]),
there exist "k ! 0 + such that · (@Q ¸ (x0; "k)) = 0, and a non-decreasing function
ª : ( ¡ 1

2 ; 1
2 ) ! R such that the following hold,

ª ( 1
2

¡ 0) ¡ ª ( ¡ 1
2

+ 0) = 1;

Z 1=2

¡1=2

ª (s) ds = 0;

zk(y) :=

³
u(x0 + "ky) ¡ 1

"N
k

Z

Q̧

u(x0 + "kz) dz

´¿
¶ k ! w0(y)

:= ª (y ¢ ¸ )a in L1(Q ¸ ; R);

lim
k ! 1

jDzkj(Q ¸ ) = jDw0j(Q ¸ );

9
>>>>>>>>>=

>>>>>>>>>;

(2.10)
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where, by (2.9), ¶ k := jDuj(Q ¸ (x0; "k))="N¡1
k ! 0 and tk := ¶ k="k ! 1 as

k ! 1. Then

d ·

djC(u)j(x0) = lim
k ! 1

· (Q ¸ (x0; "k))

jDuj(Q ¸ (x0; "k))

= lim
k ! 1

lim
n ! 1

1

jDuj(Q̧ (x0; "k))

Z

Q̧ (x0;"k)

f (x; un; run) dx

= lim
k ! 1

lim
n ! 1

1

tk

Z

Q ¸

f (x0 + "ky; u0n;k + ¶ kwn;k(y); tkrwn;k(y)) dy;

where

wn;k(y) :=
un(x0 + "ky) ¡ u0n;k

¶ k
; u0n;k :=

1

"N
k

Z

Q̧

un(x0 + "kz) dz:

Clearly, wn;k 2 W 1;1(Q ¸ ; R) and, by (2.10), (2.9 b) and the fact that fung converges
to u in L1,

lim
k ! 1

lim
n ! 1

jjwn;k ¡ w0jjL1(Q ¸ ;R) = 0; lim
k ! 1

lim
n ! 1

u0n;k = u(x0):

By a standard diagonalization argument, we may extract two subsequences
fwk := wnk;kg, fu0k := u0nk;kg, which converge to w0 in L1(Q ¸ ; R) and u(x0),
respectively, such that

d ·

djC(u)j
(x0) = lim

k ! 1

1

tk

Z

Q̧

f(x0 + "ky; u0k + ¶ kwk(y); tkrwk(y)) dy: (2.11)

We can now continue as in part (i), using proposition 2.1 and then (1.7) to conclude
that

(1 + ")
d ·

djC(u)j (x0) + " > lim inf
k ! 1

1

tk

Z

Q̧

f (x0; u(x0); tkrvk(y)) dy: (2.12)

Due to the presence of the sequence tk, we cannot apply directly Serrin’s theo-
rem A (i) to the integrand g( ¹ ) := f(x0; u(x0); ¹ ) as we did in part(i). Although
the adaptations to the present setting are quite straightforward, here we present
an alternative proof that can be extended to the vectorial case and to quasiconvex
functions. Assume, for simplicity, that ¸ = eN , and construct a sequence of smooth
functions vh(y) = ·vh(yN ) such that

kvh ¡ w0kL1(Q;R) 6 1

h
and jrvhj(Q) ¡ jDw0j(Q) ! 0

as h ! 1. Since vh depends only on yN , its trace on @Q agrees with the trace of
a function

Ahy + p(y); Ah := (·vh( 1
2 ) ¡ ·vh( ¡ 1

2 )) « eN = rvh(Q);

where p is Q-periodic. Choose open sets « i, i = 1; 2; 3, such that

« 1 b « 2 b « 3 b Q:
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Since g satis es (1.8), by lemma 2.5 of [4], we may  nd a new sequence

vh;k(y) = ’(y)wk(y) + (1 ¡ ’(y))vh(y)

such that

1

tk

Z

« 3

g(tkrwk) dy +
1

tk

Z

Qn « 1

g(tkrvh) dy

+
4C

¯

Z

Q

jwk ¡ vhj dy +
1

k
> 1

tk

Z

Q

g(tkrvh;k) dy;

where ’ is a cut-o¬ function such that ’ ² 1 in a neighbourhood of « 2, ’ ² 0 in a
neighbourhood of RN n « 3, and ¯ < dist( « 2; @« 3). By virtue of the quasiconvexity
of g, together with the growth (1.8) (recall that, in the scalar case, quasiconvexity
is equivalent to convexity), we obtain

1

tk

Z

Q

g(tkrwk) dy + C

³
L N (Q n « 1)

tk
+ jrvhj(Q n « 1)

´

+
4C

¯

Z

Q

jwk ¡ vhj dy +
1

k
> 1

tk
g(tkrvh(Q)):

Letting k ! 1 gives

lim
k ! 1

1

tk

Z

Q

g(tkrwk) dy + C jrvhj(Q n « 1) +
4C

¯

Z

Q

jw0 ¡ vhj dy > g 1 (rvh(Q));

hence, taking the limit as h ! 1, we conclude that

lim
k ! 1

1

tk

Z

Q

g(tkrwk) dy + CjDw0j(Q n « 1) > g 1 (rw0(Q));

where we used the continuity of g 1 (see proposition 9.1), and the fact that
jrvnj(Q) ! jDw0j(Q). If we now let « 1 % Q, we get

lim
k ! 1

1

tk

Z

Q

g(tkrwk) dy > g 1 (a¸ );

thus

(1 + ")
d ·

djC(u)j (x0) + " > f 1
³

x0; u(x0);
dC(u)

djC(u)j (x0)

´
:

It su¯ ces now to let " ! 0+ .

Part 3 (Jump part). To complete the proof of theorem 1.1, it remains to show
that

d ·

dHN¡1bS(u)
(x0) >

Z u+(x0)

u ¡ (x0)

f 1 (x0; s; ¸ ) ds for HN¡1 a.e. x0 2 S(u);
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where ¸ = ¸ u(x0) is the normal to S(u). It is known that (see [7]), for HN¡1 a.e.
x0 2 S(u),

d ·

dHN¡1bS(u)
(x0) = lim

"! 0+

· (Q̧ (x0; "))

"N¡1
< 1;

lim
" ! 0+

1

"N

Z

Q
+
¸ (x0;")

ju(x) ¡ u+ (x0)j dx = 0;

lim
" ! 0+

1

"N

Z

Q¡
¸ (x0 ;")

ju(x) ¡ u¡(x0)j dx = 0;

9
>>>>>>>=

>>>>>>>;

(2.13)

where

Q +
¸ (x0; ") := fx 2 Q̧ (x0; ") : (x ¡ x0) ¢ ¸ > 0g;

Q¡
¸ (x0; ") := fx 2 Q̧ (x0; ") : (x ¡ x0) ¢ ¸ < 0g:

Fix x0 2 S(u) such that (2.13) holds, and choose a sequence "k ! 0 + with
· (@Q ¸ (x0; "k)) = 0. Then

d ·

dHN¡1bS(u)
(x0) = lim

k ! 1

· (Q̧ (x0; "k))

"N¡1
k

= lim
k ! 1

lim
n ! 1

1

"N¡1
k

Z

Q̧ (x0;"k)

f (x; un; run) dx

= lim
k ! 1

lim
n ! 1

Z

Q̧

"kf

³
x0 + "ky; wn;k(y);

1

"k
rwn;k(y)

´
dy;

where wn;k(y) := un(x0+"ky). Clearly, wn;k 2 W 1;1(Q̧ ; R) and, by (2.13), together
with the fact that un converges to u in L1,

lim
k ! 1

lim
n ! 1

kwn;k ¡ w0kL1(Q̧ ;R) = 0; where w0(y) :=

(
u+ (x0) if y ¢ ¸ > 0;

u¡(x0) if y ¢ ¸ 6 0:

As before, by a standard diagonalization argument, we may extract a subsequence
fwk := wnk;kg converging to w0 in L1(Q ¸ ; R), with

d ·

dHN¡1bS(u)
(x0) = lim

k ! 1

Z

Q̧

"kf

³
x0 + "ky; wk(y);

1

"k
rwk(y)

´
dy: (2.14)

Fix " > 0. By (2.3), for each u1 2 [u¡(x0); u + (x0)], there is ¯ u1 > 0 such that

f (x0; u; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ ))

for all jx ¡ x0j 6 ¯ u1 , ju ¡ u1j 6 ¯ u1 and for all ¹ 2 RN . Since
[

u1 2 [u¡ (x0);u+ (x0)]

B(u1; ¯ u1 ) ¼ [u¡(x0); u + (x0)];

we may  nd a  nite subcovering

M[

i= 1

B(ui; ¯ i) ¼ [u¡(x0); u + (x0)]:
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Set ¯ := minf ¯ 1; : : : ; ¯ M ; ¯ + ; ¯ ¡g, where ¯ § are provided by (2.3) corresponding to
the points (x0; u§(x0)), respectively. Then

f (x0; u; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ )) (2.15)

for all jx ¡ x0j 6 ¯ , u 2 [u¡(x0) ¡ ¯ ; u + (x0) + ¯ ] and for all ¹ 2 RN .
By proposition 2.1, with

¶ k :² 1; tk := 1="k; u0k :² 0; ¬ 1 = u¡(x0) ¡ ¯ ; ¬ 2 := u + (x0) + ¯ ;

there exists a new sequence vk 2 W 1;1(Q ¸ ; R), convergent to w0 in L1(Q ¸ ; R), such
that vk(y) 2 [u¡(x0) ¡ ¬ 1; u + (x0) + ¬ 2] and, by (2.14) and (2.15), we have

(1 + ")
d ·

dHN¡1bS(u)
(x0) > lim inf

k ! 1

Z

Q̧

"kf

³
x0; vk(y);

1

"k
rvk(y)

´
dy:

Since h(u; ¹ ) := f (x0; u; ¹ ) is continuous, by an approximation result due to Ambro-
sio [3], we can write

h(u; ¹ ) = sup
i2 N

[ai(u) + bi(u) ¢ ¹ ] + ;

where the functions ai : R ! R and bi : R ! RN are bounded and continuous. It
is not di¯ cult to see that

h 1 (u; ¹ ) = sup
i

[bi(u) ¢ ¹ ]+ :

Therefore (see [12, lemma 6]),

Z u+ (x0)

u ¡ (x0)

h 1 (s; ¸ ) ds = sup
j 2 N

sup

» jX

i = 1

Z u+(x0)

u ¡ (x0)

Ái(s)[bi(s) ¢ ¸ ] + ds :

Ái 2 C 1
0 ((u¡(x0);u+ (x0)); [0; 1]);

jX

i= 1

Á 6 1

¼
:

(2.16)

Fix j 2 N, Á1; : : : ; Áj , as in (2.16), and let ’ 2 C 1
0 (Q ¸ ; [0; 1]). We have

(1 + ")
d ·

dHN¡1bS(u)
(x0)

> lim inf
k ! 1

jX

i = 1

Z

Q̧

’(y)"kÁi(vk(y))

µ
ai(vk(y)) +

1

"k
bi(vk(y)) ¢ rvk(y)

¶+

dy

> lim inf
k ! 1

jX

i = 1

Z

Q̧

’(y)Ái(vk(y))[bi(vk(y)) ¢ rvk(y)]+ dy;

where we have used the inequality ( ¬ +  ) + > ( ) + ¡ j¬ j for ¬ ;  2 R, the Lebesgue
dominated convergence theorem, and the fact that

"kjai(vk(y))j 6 kaikL1 (R)"k ! 0:
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By a result of De Cicco [12, theorem 1], we have

(1 + ")
d ·

dHN¡1bS(u)
(x0) >

jX

i = 1

Z

S(w0)

’(y)

Z u+(x0)

u ¡ (x0)

Ái(s)[bi(s) ¢ ¸ ] + dsdHN¡1(y)

and, taking ’ % 1, we obtain

(1 + ")
d ·

dHN¡1bS(u)
(x0) >

jX

i = 1

Z

S(w0)

Z u+(x0)

u ¡ (x0)

Ái(s)[bi(s) ¢ ¸ ] + dsdHN¡1(y)

=

jX

i = 1

Z u+(x0)

u¡ (x0)

Ái(s)[bi(s) ¢ ¸ ]+ ds:

In view of (2.16), the proof is concluded by taking the supremum over all j 2 N,
Á1; : : : ; Áj , and letting " ! 0 + .

3. Proof of theorem 1.3

Part 1 (Lebesgue part). Assume  rst that f is Carath́eodory. Consider

F : BV ( « ; R) £ A( « ) ! [0; 1];

where A( « ) stands for the family of open subsets of « . It can be proved that F(u; ¢)
is the restriction to A( « ) of a Radon measure, F(¢; A) is L1(A) lower semicontinuous
and

0 6 F(u; A) 6 C( L N (A) + jDuj(A)):

For a proof, we refer to lemma 4.1.2 of [7] (see also [5,19]). Let

F1(u; A) := F(u; A) + jDuj(A):

By theorem 3.7 of [7], we have

dF1(u; ¢)
d L N

(x0) =
dF(u; ¢)

d L N
(x0) + jru(x0)j

= f1(x0; u(x0); ru(x0)) for L N a.e. x0 2 « ;

where

f1(x0; u0; ¹ ) := lim sup
" ! 0+

1

"N
inffF1(v; Q(x0; ")) : v 2 BV(Q(x0; "));

vj@Q(x0;") = u0 + ¹ ¢ (x ¡ x0)g:

Thus the proof of part (i) is completed, provided we show that

f1(x0; u0; ¹ ) 6 f (x0; u0; ¹ ) + j¹ j

for L N a.e. x0 2 « and for all (u0; ¹ ) 2 R £ RN . Clearly,

f1(x0; u0; ¹ ) 6 lim sup
" ! 0+

1

"N
F(u0 + ¹ ¢ (x ¡ x0); Q(x0; ")) + j¹ j

6 lim sup
" ! 0+

1

"N

Z

Q(x0;")

f (x; u0 + ¹ ¢ (x ¡ x0); ¹ ) dx + j¹ j:
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Since f is Carath́eodory, by the Scorza{Dragoni theorem, for each i 2 N, there exists
a compact set Ki » « , with L N( « nKi) 6 1=i, such that f : Ki£R£RN ! [0; 1] is
continuous. Let K ¤

i be the set of Lebesgue points of À Ki , and set ! := [1
i (Ki\K ¤

i ).
Then

L N( « n !) 6 L N ( « n Ki) 6 1

i
! 0 as i ! 1:

If x0 2 !, then x0 2 Ki \ K ¤
i for some index i. Since g(x) := f(x; u0 + ¹ (x ¡ x0); ¹ )

is continuous over Ki, given ¯ > 0, there exists ² > 0 such that g(x) 6 g(x0) + ¯
for all x 2 Ki with jx ¡ x0j 6 ² . Therefore, by (1.8), we have

f1(x0; u0; ¹ ) ¡ j ¹ j 6 (f (x0; u0; ¹ ) + ¯ ) lim sup
" ! 0+

L N (Q(x0; ") \ Ki)

"N

+ C(1 + j ¹ j) lim sup
"! 0+

L N(Q(x0; ") n Ki)

"N

= f (x0; u0; ¹ ) + ¯ ;

where we have used the fact that x0 is a Lebesgue point of À Ki . Letting ¯ ! 0 + ,
we obtain the desired inequality. The argument for the case where f (¢; ¢; ¹ ) is upper
semicontinuous is very similar to the one used in theorem 1.3 (ii) below, and there-
fore we omit the details.

Part 2 (Cantor part). By lemma 3.9 of [7], for C(u) a.e. x0 2 « , there exists a
double-indexed sequence ft

(k)
" ; u

(k)
" g such that, for every k,

t(k)
" ! 1; "t(k)

" ! 0 + ; u(k)
" ! u(x0) as " ! 0+ (3.1)

and

dF1(u; ¢)
djC(u)j

(x0)

=
dF(u; ¢)
djC(u)j (x0) + jaj

= lim
k ! 1

lim sup
"! 0+

1

kN¡1"N t
(k)
"

inffF1(v; Q(k)
¸ (x0; ")) : v 2 BV(Q(k)

¸ (x0; "));

vj
@Q

(k)
¸ (x0 ;")

= u(k)
" + t(k)

" a¸ ¢ (x ¡ x0)g;

where

dC(u)

djC(u)j
(x0) = a¸ ; a = a(u; x0) 2 R;

¸ = ¸ (u; x0) 2 SN¡1; Q(k)
¸ (x0; ") := x0 + "Q(k)

¸ ;

with

Q(k)
¸ := R ¸ (( ¡ 1

2k; 1
2k)N¡1 £ ( ¡ 1

2 ; 1
2 ));
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where Ŗ denotes a rotation such that Ŗ eN = ¸ . Take x0 2 « , so that all the
limits above exist and are  nite. Then

dF(u; ¢)
djC(u)j (x0) + jaj

6 lim
k ! 1

lim sup
" ! 0+

1

kN¡1"N t
(k)
"

F1(u(k)
" + t(k)

" a¸ ¢ (x ¡ x0); Q(k)
¸ (x0; "))

6 lim
k ! 1

lim sup
" ! 0+

1

kN¡1"N t
(k)
"

£
Z

Q
(k)
¸ (x0 ;")

f (x; u(k)
" + t(k)

" a¸ ¢ (x ¡ x0); t(k)
" a¸ ) dx + jaj:

(3.2)

By proposition 9.1, (9.1) and (1.8),

f (x; u
(k)
" + t

(k)
" a¸ (x ¡ x0); t

(k)
" a¸ )

t
(k)
"

6 f 1 (x; u(k)
" + t(k)

" a¸ ¢ (x ¡ x0); a¸ ) +
f (x; u

(k)
" + t

(k)
" a¸ ¢ (x ¡ x0); 0)

t
(k)
"

6 f 1 (x; u(k)
" + t(k)

" a¸ ¢ (x ¡ x0); a¸ ) +
C

t
(k)
"

:

Therefore, by (3.1) and (3.2),

dF(u; ¢)
djC(u)j (x0)

6 lim
k ! 1

lim sup
" ! 0+

1

kN¡1"N

Z

Q
(k)
¸ (x0 ;")

f 1 (x; u(k)
" + t(k)

" a¸ ¢ (x ¡ x0); a¸ ) dx

= lim
k ! 1

lim sup
" ! 0+

1

kN¡1

Z

Q
(k)
¸

f 1 (x0 + "y; u(k)
" + "t(k)

" a¸ ¢ y; a̧ ) dy:

Since the function f 1 (¢; ¢; a̧ ) is upper semicontinuous, given ¯ > 0, there exists
² > 0 such that f 1 (x; u; a̧ ) 6 f 1 (x0; u(x0); a¸ ) + ¯ for all jx ¡ x0j 6 ² and
ju ¡ u(x0)j 6 ² . By (3.1), for each  xed k, if " is small enough, then

x0 + "y 2 B(x0; ² ) and u(k)
" + "t(k)

" a¸ ¢ y 2 [u(x0) ¡ ² ; u(x0) + ² ]

for all y 2 Q
(k)
¸ . Hence

Z

Q
(k)
¸

f 1 (x0 + "y; u(k)
" + "t(k)

" a¸ ¢ y; a¸ ) dy 6 (f 1 (x0; u(x0); a¸ ) + ¯ )kN¡1

and, in turn,

dF(u; ¢)
djC(u)j (x0) 6 f 1 (x0; u(x0); a¸ ) + ¯ :

We now let ¯ ! 0 + .
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Part 3 (Jump part). By theorem 3.7 of [7], for HN¡1 a.e. x0 2 S(u),

dF1(u; ¢)
dHN¡1bS(u)

(x0)

=
dF(u; ¢)

dHN¡1bS(u)
(x0) + ju + (x0) ¡ u¡(x0)j

= lim sup
" ! 0+

inffF1(v; Q ¸ (x0; ")) : v 2 BV(Q ¸ (x0; ")); vj@Q ¸ (x0;") = w0g
"N¡1

;

where ¸ = ¸ u(x0) is the normal to S(u) and

w0(x) :=

(
u + (x0) if (x ¡ x0) ¢ ¸ > 0;

u¡(x0) if (x ¡ x0) ¢ ¸ 6 0:

Take x0 2 S(u), so that all the limit above exists and is  nite. Then

dF(u; ¢)
dHN¡1bS(u)

(x0) + ju + (x0) ¡ u¡(x0)j

6 lim sup
"! 0+

F(w0; Q ¸ (x0; "))

"N¡1
+ ju+ (x0) ¡ u¡(x0)j:

In what follows we assume for simplicity that x0 = 0 and ¸ = eN , and we set

un;"(xN ) :=

8
>>><

>>>:

u+ (x0) if xN > "=2n;

(u + (x0) ¡ u¡(x0))(n=")xN

+ 1
2 (u + (x0) + u¡(x0)) if ¡ "=2n 6 xN 6 "=2n;

u¡(x0) if xN 6 ¡ "=2n:

Clearly, kun;" ¡ w0kL1(Q̧ (x0 ;")) ! 0 as n ! 1; thus

F(w0; Q̧ (x0; ")) 6 lim inf
n ! 1

Z

Q̧ (x0;")

f (x; un;"(xN); 0; : : : ; 0; u0
n;"(xN)) dx

and, by a standard diagonalization argument,

dF(u; ¢)
dHN¡1bS(u)

(x0)

6 lim
"! 0+

lim inf
n ! 1

1

"N¡1

Z

Q̧ (x0;")

f (x; un;"(xN ); 0; : : : ; 0; u0
n;"(xN )) dx

6 lim inf
k ! 1

Z

Q̧

"kf

³
x0 + "ky; vk(yN ); 0; : : : ; 0;

1

"k
v0

k(yN )

´
dy;

where

vk(yN ) =

8
>>><

>>>:

u + (x0) if yN > 1=2nk;

(u + (x0) ¡ u¡(x0))nkyN

+ 1
2 (u + (x0) + u¡(x0)) if ¡ 1=2nk 6 yN 6 1=2nk;

u¡(x0) if yN 6 ¡ 1=2nk;
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and nk ! 1 as k ! 1. By proposition 9.1, (9.1) and (1.8), we have

"kf (x0 + "ky; vk(yN ); 0; : : : ; 0; (1="k)v0
k(yN ))

6 f 1 (x0 + "ky; vk(yN ); 0; : : : ; 0; v0
k(yN )) + "kf(x0 + "ky; vk(yN); 0)

6 f 1 (x0 + "ky; vk(yN ); 0; : : : ; 0; v0
k(yN )) + C"k:

Therefore, Fubini’s theorem yields

dF(u; ¢)
dHN¡1bS(u)

(x0)

6 lim inf
k ! 1

Z

Q

f 1 (x0 + "ky; vk(yN ); 0; : : : ; 0; v0
k(yN)) dy

= lim inf
k ! 1

nk

Z

Q0

³Z 1=2nk

¡1=2nk

f 1 (x0 + "ky; vk(yN ); (u + (x0) ¡ u¡(x0))eN ) dyN

´
dy0;

(3.3)

where Q0 is the unit cube in RN¡1, and where we have used the fact that f 1 is
positively homogeneous in ¹ . Following [5], we now introduce the Yosida transforms

f¶ (x; u; ¹ ) := supff 1 (x0; u; ¹ ) ¡ ¶ jx0 ¡ xj : x0 2 « g (3.4)

for ¶ > 0. For ¶ 6 ² and by (1.8), it follows that

0 6 f 1 (x; u; ¹ ) 6 f² (x; u; ¹ ) 6 f¶ (x; u; ¹ ) 6 C j¹ j: (3.5)

We claim that

lim
¶ ! 1

f¶ (x; u; ¹ ) = f 1 (x; u; ¹ ): (3.6)

Indeed, let ¶ > 1 and choose x ¶ such that

f¶ (x; u; ¹ ) 6 f 1 (x ¶ ; u; ¹ ) ¡ ¶ jx ¶ ¡ xj +
1

¶
:

By (3.5),

f 1 (x; u; ¹ ) 6 f ¶ (x; u; ¹ ) 6 f ¶ (x; u; ¹ ) + ¶ jx¶ ¡ xj 6 f 1 (x¶ ; u; ¹ ) +
1

¶
: (3.7)

Since the right-hand side is bounded by Cj ¹ j+ 1 and f ¶ > 0, it follows that x ¶ ! x
as ¶ ! 1. If we now let ¶ ! 1 in (3.7), and use the fact that f 1 (¢; u; ¹ ) is upper
semicontinuous, we obtain (3.6).

Next we show that f¶ is Lipschitzian. Fix " > 0, x; x1 2 « , and  nd x" such that

f ¶ (x; u; ¹ ) 6 f 1 (x"; u; ¹ ) ¡ ¶ jx" ¡ xj + "

6 f 1 (x"; u; ¹ ) ¡ ¶ jx" ¡ x1j + ¶ jx ¡ x1j + "

6 f¶ (x1; u; ¹ ) + ¶ jx ¡ x1j + ":

If we now let " ! 0, we obtain

f ¶ (x; u; ¹ ) ¡ f¶ (x1; u; ¹ ) 6 ¶ jx ¡ x1j
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and, in a similar way,

f¶ (x1; u; ¹ ) ¡ f¶ (x; u; ¹ ) 6 ¶ jx ¡ x1j:

We conclude that

jf ¶ (x; u; ¹ ) ¡ f¶ (x1; u; ¹ )j 6 ¶ jx ¡ x1j (3.8)

for all x; x1 2 « , u 2 R, ¹ 2 RN .
Fix ¶ > 0. By (3.3), (3.5) and the fact that f¶ is Lipschitzian, we have

dF(u; ¢)
dHN¡1bS(u)

(x0)

6 lim inf
k ! 1

nk

Z

Q 0

³Z 1=2nk

¡1=2nk

f 1 (x0 + "ky; vk(yN ); (u+ (x0) ¡ u¡(x0))eN ) dyN

´
dy0

6 lim inf
k ! 1

nk

Z

Q 0

³Z 1=2nk

¡1=2nk

f¶ (x0 + "ky; vk(yN); (u + (x0) ¡ u¡(x0))eN ) dyN

´
dy0

6 lim inf
k ! 1

nk

Z

Q 0

³Z 1=2nk

¡1=2nk

f¶ (x0; vk(yN ); (u + (x0) ¡ u¡(x0))eN) + ¶ "kjyj dyN

´
dy0

= lim inf
k ! 1

nk

Z 1=2nk

¡1=2nk

f¶ (x0; vk(yN ); (u + (x0) ¡ u¡(x0))eN) dyN :

A simple change of variables now yields

dF(u; ¢)
dHN¡1bS(u)

(x0) 6 1

u + (x0) ¡ u¡(x0)

Z u+(x0)

u¡ (x0)

f¶ (x0; s; (u + (x0) ¡ u¡(x0))eN) ds:

Letting ¶ ! 1, by (3.5), (3.6) and the Lebesgue dominated convergence theorem,
we obtain

dF(u; ¢)
dHN¡1bS(u)

(x0)

6 lim
¶ ! 1

1

u + (x0) ¡ u¡(x0)

Z u+ (x0)

u ¡ (x0)

f¶ (x0; s; (u+ (x0) ¡ u¡(x0))eN ) ds

=

Z u+ (x0)

u ¡ (x0)

f 1 (x0; s; eN) ds;

where we have used again the fact that f 1 is positively homogeneous in ¹ .

4. Proof of theorem 1.5

Part 1 (Lebesgue part). We claim that g(x) := f (x; u(x); ru(x)) 2 L1
loc( « ; R).

To show this, it is clearly enough to prove that
Z

Q(x0;¯ )

g(x) dx < 1

https://doi.org/10.1017/S0308210500000998 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000998


544 I. Fonseca and G. Leoni

for any x0 2 « and ¯ > 0 su¯ ciently small. Let ¯ > 0 correspond to " = 1
2

in (1.9).
Then

1 > lim
n! 1

Z

«

f (x; un(x); run(x)) dx

> 2
3

lim inf
n ! 1

Z

Q(x0;¯ )

f (x0; un(x); run(x)) dx ¡ 1
3
¯ N :

The functional

F0(v; A) :=

Z

A

f (x0; v; rv) dx +

Z

A

f 1 (x0; v; dC(v))

+

Z

S(v) \ A

³Z v+(x)

v ¡ (x)

f 1 (x0; s; ¸ u) ds

´
dHN¡1

satis es all the conditions of theorem 2 in [12], and

F0(un; A) =

Z

A

f (x0; un(x); run(x)) dx;

since un 2 W 1;1
loc ( « ; R); thus, taking A := Q(x0; ¯ ),

1 > lim
n ! 1

Z

«

f (x; un(x); run(x)) dx

> 2
3 F0(u; Q(x0; ¯ )) ¡ 1

3 ¯ N

> 1

3

Z

Q(x0 ;̄ )

g(x) dx ¡ 2
3
¯ N ; (4.1)

where we have used (1.9) a second time. Therefore, the claim is proved.
Let « (u) be the set of Lebesgue points of g. Since g 2 L1

loc( « ; R), we have
that L N( « n « (u)) = 0. We now proceed essentially as in the proof of theorem 1.1,
starting from (2.4) up to (2.6), where, without loss of generality, we may also assume
that x0 2 « (u). Fix " > 0 and let ¯ > 0 be such that (1.9) holds. Choose "k ! 0 +

such that · (@Q(x0; "k)) = 0, "k 6 ¯ , and

d ·

d L N
(x0) = lim

k ! 1
lim

n ! 1

1

"N
k

Z

Q(x0;"k)

f(x; un; run) dx

> 1

1 + "
lim inf
k ! 1

lim inf
n! 1

1

"N
k

Z

Q(x0 ;"k)

f (x0; un; run) dx ¡ "

1 + "
: (4.2)

For  xed k, again by theorem 2 in [12], applied this time to F0(¢; Q(x0; "k)), we
obtain

lim inf
n! 1

1

"N
k

Z

Q(x0;"k)

f (x0; un(x); run(x)) dx > 1

"N
k

Z

Q(x0 ;"k)

f (x0; u(x); ru(x)) dx
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(recall that f 1 > 0) and, consequently,

d ·

d L N
(x0) > 1

1 + "
lim inf
k ! 1

1

"N
k

Z

Q(x0;"k)

f (x0; u; ru) dx ¡ "

1 + "

> 1 ¡ "

1 + "
lim inf
k ! 1

1

"N
k

Z

Q(x0;"k)

f (x; u; ru) dx ¡ 2"

1 + "

=
1 ¡ "

1 + "
f (x0; u(x0); ru(x0)) ¡ 2"

1 + "
;

where we have used (1.9) and the fact that x0 2 « (u). We now let " ! 0+ .

Part 2 (Cantor part). By (4.1), the function

h(x) := f 1
³

x; u(x);
dC(u)

djC(u)j
(x)

´
2 L1

loc( « ; jC(u)j);

thus, by the Lebesgue{Besicovitch di¬erentiation theorem,

lim
" ! 0+

1

jC(u)j(Q ¸ (x0; "))

Z

Q̧ (x0;")

h djC(u)j = h(x0)

for jC(u)j a.e. x0 2 « . Moreover, it is known that, for C(u) a.e. x0 2 « ,

lim
" ! 0+

jC(u)j(Q ¸ (x0; "))

jDuj(Q ¸ (x0; "))
= 1;

hence

lim
"! 0+

1

jDuj(Q ¸ (x0; "))

Z

Q̧ (x0;")

h(x) djC(u)j(x) = h(x0) (4.3)

for jC(u)j a.e. x0 2 « . Let M1(u) be the set of all points of « that satisfy (4.3). Then
jC(u)j( « n M1(u)) = 0. We now proceed as in the proof of part (ii) of theorem 1.1
up to (2.10), with the only di¬erence being that we impose the further restriction
that x0 2 M1(u), to obtain

d ·

djC(u)j (x0) = lim
k ! 1

lim
n ! 1

1

jDuj(Q ¸ (x0; "k))

Z

Q̧ (x0;"k)

f (x; un; run) dx:

The remaining part of the proof follows an argument similar to that of part (ii)
above after (4.2), except that the integral is now averaged over Q̧ (x0; "k), and we
use (4.3) at the end. We omit the details.

Part 3 (Jump part). It su¯ ces to use arguments similar to those of parts (i)
and (ii) above.

5. Proof of theorem 1.6

Part 1 (Lebesgue part). Fix n 2 N. Applying the Scorza{Dragoni theorem to the
function f : « £ [ ¡ n; n] £ RN ! [0; 1) for each i 2 N, there exists a compact set
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Ki;n » R, with L 1([ ¡ n; n] n Ki;n) 6 1=(i2n), such that f : « £ Ki;n £ RN ! [0; 1)
is continuous. Let K ¤

i;n be the set of Lebesgue points of À Ki;n , and set

! :=

1[

n

1[

i

(Ki;n \ K ¤
i;n):

Then

L 1(R n !) 6
1X

n= 1

L 1([¡ n; n] n Ki;n) 6 1

i
! 0 as i ! 1;

and so jDuj(A) = 0 (see, for example, lemma 1 in [11]), where

A := fx 2 « n S(u) : u(x) 2 R n !g:

Fix x0 2 « n S(u). If x0 2 A, then, up to a set of N -dimensional Lebesgue measure
zero, we may assume that ru(x0) = 0, so that, as in the proof of theorem 1.3 (i),
we have

f1(x0; u(x0); 0) = lim
" ! 0+

1

"N
F(u(x0); Q(x0; "))

6 lim sup
"! 0+

1

"N

Z

Q(x0;")

f (x; u(x0); 0) dx

= f (x0; u(x0); 0);

where we have used the fact that f (¢; u(x0); 0) is continuous. If x0 2 ( « n S(u)) n A
and ru(x0) = 0, then we proceed as above. If x0 2 ( « n S(u)) n A and ru(x0) 6= 0,
then set

¸ :=
ru(x0)

jru(x0)j
; ¹ := ru(x0); w0(x) := u(x0) + ¹ (x ¡ x0):

Find n 2 N such that kw0kL1 (Q̧ (x0 ;1)) 6 n and let i 2 N be such that u(x0) 2
Ki;n \ K ¤

i;n. Since g(x) := f(x; w0(x); ¹ ) is continuous over w¡1
0 (Ki;n), given ¯ > 0,

there exists ² > 0 such that g(x) 6 g(x0)+ ¯ for all x 2 w¡1
0 (Ki;n) with jx ¡ x0j 6 ² .

Therefore, as in proof of theorem 1.3 (i), and by (1.8),

f1(x0; u(x0); ¹ ) ¡ j ¹ j

= lim
" ! 0+

1

"N
F(u(x0); Q(x0; "))

6 (f (x0; u(x0); ¹ ) + ¯ ) lim sup
" ! 0+

L N (Q ¸ (x0; ") \ w¡1
0 (Ki;n))

"N

+ C(1 + j¹ j) lim sup
" ! 0+

L N(Q ¸ (x0; ") n w¡1
0 (Ki;n))

"N

6 f (x0; u(x0); ¹ ) + ¯ ; (5.1)
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since, by the co-area formula (see [32, theorem 2.7.1]), we have

lim sup
"! 0+

L N (Q ¸ (x0; ") n w¡1
0 (Ki;n))

"N

= 1 ¡ lim inf
" ! 0+

L N (Q ¸ (x0; ") \ w¡1
0 (Ki;n))

"N

= 1 ¡ lim inf
" ! 0+

1

j¹ j"N

Z

Q̧ (x0;") \ w ¡ 1
0 (Ki;n)

jDw0(x)j dx

= 1 ¡ lim inf
" ! 0+

1

j¹ j"N

Z

Ki;n

HN¡1(w¡1
0 (s) \ Q ¸ (x0; ")) ds:

For simplicity, we assume that x0 = 0, u(x0) = 0, ¸ = eN , so that

w¡1
0 (s) \ Q ¸ (x0; ") =

(
"[ ¡ 1

2
; 1

2
]N¡1 £ fsg if jsj 6 1

2
"j¹ j;

; if jsj > 1
2"j¹ j;

thus

lim sup
"! 0+

L N (Q ¸ (x0; ") n w¡1
0 (Ki;n))

"N
= 1 ¡ lim inf

" ! 0+

L 1([ ¡ 1
2 "j ¹ j; 1

2"j ¹ j] \ Ki;n)

j ¹ j"
= 0;

where we have used the fact that u(x0) is a Lebesgue point of À Ki;n . By letting
¯ ! 0 + in (5.1), we obtain the desired inequality.

Part 2 (Cantor part). The proof for the Cantor part is very similar to the previous
one (see also the proof of theorem 1.3 (ii)), and therefore we omit the details.

Part 3 (Jump part). The proof follows the same arguments of the proof of theo-
rem 1.3 (iii).

Remark 5.1. In the proof of theorem 1.6, we have used the fact that f (¢; u; ¢) is
continuous. Indeed, it is well known that the convexity of f (x; u; ¢) together with
the growth condition (1.8) imply that

jf (x; u; ¹ ) ¡ f (x; u; ¹ 0)j 6 C j¹ ¡ ¹ 0j

for all (x; u) 2 « £ R and all ¹ , ¹ 0 2 RN , and thus for  xed (x0; u; ¹ 0) 2 « £ R £ Rn

we have

jf(x; u; ¹ ) ¡ f (x0; u; ¹ 0)j 6 jf (x; u; ¹ ) ¡ f (x; u; ¹ 0)j + jf(x; u; ¹ 0) ¡ f (x0; u; ¹ 0)j
6 Cj ¹ ¡ ¹ 0j + jf (x; u; ¹ 0) ¡ f (x0; u; ¹ 0)j:

It now su¯ ces to let (x; ¹ ) ! (x0; ¹ 0) and use the continuity of f(¢; u; ¹ 0).

6. Proof of theorem 1.7

Part 1 (Lebesgue part). We proceed as in the proof of theorem 1.1 (i) up to (2.7),
where instead of using the truncated sequence, we apply condition (1.10) to get

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

f (x0; u(x0); rwk(y)) dy ¡
Z

Q

» ("kjwk(y)j) dy:
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By Fatou’s lemma, and since » is continuous with » (0) = 0, we have

C ¡ lim sup
k ! 1

Z

Q

» ("kjwk(y)j) dy

= lim inf
k ! 1

Z

Q

[C(1 + "kjwk(y)j) ¡ » ("kjwk(y)j)] dy

>
Z

Q

lim inf
k ! 1

[C(1 + "kjwk(y)j) ¡ » ("kjwk(y)j)] dy = C;

and so Z

Q

» ("kjwk(y)j) dy ! 0 as k ! 1:

Thus

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

f (x0; u(x0); rwk(y)) dy: (6.1)

If g( ¹ ) := f(x0; u(x0); ¹ ) is convex, then we may apply Serrin’s theorem A (i), which
continues to hold in the vectorial case. If g is quasiconvex and q = 1 in (1.11), then
we apply a result of Ambrosio and Dal Maso [4] (see also [19]) to conclude that

(1 + ")
d ·

d L N
(x0) + " > f (x0; u(x0); ru(x0)):

It is now su¯ cient to let " ! 0 + to obtain the desired result. When q > 1 and g is
quasiconvex in (1.11), then we can apply an approximation result of Kristensen [23,
proposition 1.9] to write

f (x0; u(x0); ¹ ) = sup
j

gj( ¹ );

where gj( ¹ ) is quasiconvex, gj( ¹ ) 6 gj + 1( ¹ ) and gj( ¹ ) = ajj ¹ j + bj for j ¹ j large, say
j ¹ j > rj. From (6.1) and for any  xed j, applying [4], we have

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

gj(rwk(y)) dy > gj(ru(x0));

and then let j ! 1.

Part 2 (Cantor part). We proceed as in theorem 1.1 (ii) until (2.11), where (2.8)
should now be written as

dC(u)

djC(u)j
(x0) = au(x0) « ¸ u(x0); (6.2)

with au(x0) 2 Rd and ¸ u(x0) 2 SN¡1, and where we have used Alberti’s result [2].
By (2.11) and (1.10),

(1 + ")
d ·

djC(u)j(x0) + " > lim
k ! 1

»
1

tk

Z

Q̧

f (x0; u(x0); tkrwk(y)) dy

¡ 1

tk

Z

Q ¸

» (ju(x0) ¡ u0k + ¶ kwk(y)j) dy

¼
:

(6.3)
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As » (s) 6 C(1 + s) for all s > 0 and for some C > 0, wk converges to w0 in
L1(Q ¸ ; Rd), u0k converges to u(x0), ¶ k ! 0, and tk ! 1 as k ! 1, we have

1

tk

Z

Q̧

» (ju(x0) ¡ u0k + ¶ kwk(y)j) dy ! 0;

and thus

(1 + ")
d ·

djC(u)j
(x0) + " > lim

k ! 1

1

tk

Z

Q̧

f (x0; u(x0); tkrwk(y)) dy: (6.4)

If g is quasiconvex and q = 1 in (1.11), then we can proceed as in theorem 1.1 (ii)
starting from (2.12). When g( ¹ ) := f (x0; u(x0); ¹ ) is convex, or g is quasiconvex
q > 1 in (1.11), then we use proposition 9.1 below or proposition 1.9 of [23], to
deduce from (6.3) and (6.4)

(1 + ")
d ·

djC(u)j (x0) + " > lim
k ! 1

1

tk

Z

Q̧

gj(tkrwk(y)) dy:

Proceeding as in the case q = 1, we obtain

d ·

djC(u)j (x0) > g 1
j (a « ¸ ):

Since the function hj(t) := gj(ta « ¸ ) is convex, by proposition 9.1 and (9.1), we
have, for t > 1,

d ·

djC(u)j (x0) > gj(ta « ¸ )

t
¡ gj(0)

t
; t > 1:

As f(x0; u(x0); 0) = supj gj(0) 6 C , letting j ! 1 yields

d ·

djC(u)j (x0) > f(x0; u(x0); ta « ¸ )

t
¡ C

t
:

We now let t ! 1.

Remark 6.1. Note that when (1.12) holds, then

f 1 (x0; u0; ¹ ) =

(
+1 if ¹ 6= 0;

0 if ¹ = 0:

Part 3 (Jump part). We proceed as in theorem 1.1 (iii) up to (2.14). By (2.14)
and (1.10),

(1 + ")
d ·

dHN¡1bS(u)
(x0) + " > lim

k ! 1

Z

Q̧

"kf

³
x0;

1

"k
rwk(y)

´
dy:

Now we continue exactly as in the proof of the Cantor part in theorem 1.7,
starting from (6.4), with the vector a in place of u + (x0) ¡ u¡(x0).
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7. Proof of theorems 1.8{1.10

Proof of theorem 1.8 (Lebesgue part). We proceed as in theorem 1.1 (i) until (2.7).
If f(x0; u(x0); ¹ ) ² 0 for all ¹ , then there is nothing to prove. Thus we assume
that (1.13) and (1.14) hold, we  x " > 0 and let ¯ > 0 be given by (1.13) and (1.14).

Step 1. We  rst prove the theorem under the additional hypothesis that there
exists M > 0 such that

0 6 f (x; u; ¹ ) 6 M(1 + ¹ ) (7.1)

for all x 2 « with jx ¡ x0j 6 ¯ , u 2 Rd and ¹ 2 RdN . As in [18, proposition 2.6], we
may  nd wk 2 C 1

0 (RN ; Rd), with wk ! w0 in L1, w0(x) := ru(x0)x, such that,
by (2.7), (1.14), and for k su¯ ciently large,

d ·

d L N
(x0) >

Z

Q\ fjwkj6 ¯ ="kg
f (x0 + "ky; u(x0) + "kwk(y); rwk(y)) dy

> C1

Z

Q \ fjwkj6 ¯ ="kg
jrwk(y)j dy ¡ C2;

thus there exists a constant K > 0 such that
Z

Q\ fjwkj6 ¯ ="kg
jrwk(y)j dy 6 K: (7.2)

In order to truncate wk,  x sk > kw0kL1 (Q;Rd) + 1, Lk > sk and construct a

smooth cut-o¬ function gk : Rd ! Rd such that

gk(u) =

(
u if juj 6 sk;

0 if juj > Lk;

with jgk(u)j 6 juj and jDgk(u)j 6 CLk=(Lk ¡ sk) for all u 2 Rd. De ne

vk(y) := gk(wk(y))

and

Ek := fy 2 Q : jwk(y)j < skg;

E +
k := fy 2 Q : jwk(y)j > Lkg;

E¡
k := fy 2 Q : sk 6 jwk(y)j 6 Lkg:

Then
Z

Q

jvk(y) ¡ w0(y)j dy

=

Z

Ek

jwk(y) ¡ w0(y)j dy +

Z

E
+
k

jw0(y)j dy +

Z

E ¡
k

jgk(wk(y)) ¡ w0(y)j dy

6 kwk ¡ w0kL1(Q;Rd) + kw0kL1 (Q;Rd) L N(E¡
k [ E +

k ) +

Z

E ¡
k

jwk(y)j dy

6 2kwk ¡ w0kL1(Q;Rd) + 2kw0kL1 (Q;Rd) L N (E¡
k [ E +

k ) ! 0 as k ! 1;
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since

0 6 L N(E¡
k [ E +

k )

= L N(fy 2 Q : jwk(y)j > skg)

6 L N(fy 2 Q : jwk(y) ¡ w0(y)j > 1g)

6 kwk ¡ w0kL1(Q;Rd): (7.3)

Moreover,

Z

Q

f (x0 + "ky; u(x0) + "kvk(y); rvk(y)) dy

=

Z

Ek

f (x0 + "ky; u(x0) + "kwk(y); rwk(y)) dy

+

Z

E+
k

f(x0 + "ky; u(x0); 0) dy

+

Z

E ¡
k

f(x0 + "ky; u(x0) + "kvk(y); rvk(y)) dy: (7.4)

We claim that the last two integrals are in nitesimal as k ! 1. Indeed, by (7.1)
and (7.3),

0 6
Z

E+
k

f (x0 + "ky; u(x0); 0) dy 6 M L N(E +
k ) ! 0;

while, from (7.1) and the co-area formula,

Z

E ¡
k

f (x0 + "ky; u(x0) + "kvk(y); rvk(y)) dy

6 M

Z

E ¡
k

(1 + jrgk(wk)rwkj) dy

6 M

³
L N(E¡

k ) +
CLk

Lk ¡ sk

Z

E ¡
k

jrwkj dy

´

= M

³
L N(E¡

k ) +
CLk

Lk ¡ sk

Z Lk

sk

HN¡1(fy 2 Q : jwk(y)j = tg) dt

´
:

(7.5)

By theorem 7.10 of [29] and (7.2), for L 1 a.e. L 6 ¯ ="k, we have

lim
s! L

1

L ¡ s

Z L

s

HN¡1(fy 2 Q : jwk(y)j = tg) dt = HN¡1(fy 2 Q : jwk(y)j = Lg):

(7.6)
Moreover, by lemma 2.6 in [18] and (7.2), for any 0 < ¬ <  < ¯ ="k, we obtain

essinfL 2 ( ¬ ; ) LHN¡1(fy 2 Q : jwk(y)j = Lg) 6 K

log( =¬ )
:
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Set ¬ := ¯ ="
1=4
k and  := ¯ ="

1=2
k , and  nd Lk 2 ( ¯ ="

1=4
k ; ¯ ="

1=2
k ) such that (7.6)

holds and

LkHN¡1(fy 2 Q : jwk(y)j = Lkg) 6 2K

log(1="
1=4
k )

:

Choose sk > 1
2Lk so that

Lk

Lk ¡ sk

Z Lk

sk

HN¡1(fy 2 Q : jwk(y)j = tg) dt 6 2K

log(1="
1=4
k )

+
1

k
:

Then the integral on the right-hand side of (7.5) approaches zero as k ! 1, and
so, from (7.4),

d ·

d L N
(x0) > lim inf

k ! 1

Z

Q

f (x0 + "ky; u(x0) + "kvk(y); rvk(y)) dy:

Since "k ! 0, by (1.13), we obtain

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

f (x0; u(x0); rvk(y)) dy:

We can now continue as in the proof of theorem 1.7 (i), and the result is established
if f satis es (7.1).

Step 2. In the general case, let Á 2 C 1
0 (Rd; R) be a cut-o¬ function, with

0 6 Á 6 1, and such that Á ² 1 on B(u(x0); 1
2
¯ ), Á ² 0 outside B(u(x0); ¯ ).

From (2.7),

d ·

d L N
(x0) > lim inf

k ! 1

Z

Q

Á(u(x0) + "kwk(y))

£ f(x0 + "ky; u(x0) + "kwk(y); rwk(y)) dy;

and by (1.13),

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

Á(u(x0) + "kwk(y))f (x0; u(x0); rwk(y)) dy:

If f (x0; u(x0); ¢) is convex (respectively, quasiconvex with q > 1 in (1.11)), we use
proposition 9.1 (respectively, proposition 1.9 of [23]) to approximate f (x0; u(x0); ¹ )
by an increasing sequence gj( ¹ ) of convex (respectively, quasiconvex) functions such
that

0 6 gj( ¹ ) 6 Cj(j¹ j + 1): (7.7)

If f (x0; u(x0); ¢) is quasiconvex with q = 1 in (1.11), we simply take

gj( ¹ ) ² f (x0; u(x0); ¹ ) for all j:

For any  xed j,

(1 + ")
d ·

d L N
(x0) + " > lim inf

k ! 1

Z

Q

Á(u(x0) + "kwk(y))gj(rwk(y)) dy;
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and fj(x; u; ¹ ) := Á(u)gj( ¹ ) satis es (7.1). Moreover, by (7.7), equation (7.2) contin-
ues to hold, provided we replace ¯ with 1

2
¯ . Finally, equation (1.13) is still satis ed

at the point (x0; u(x0)). Therefore, we can apply the  rst part of the proof to get

d ·

d L N
(x0) > Á(u(x0))gj(ru(x0)) = gj(ru(x0)):

It su¯ ces to take the supremum in j.

Proof of theorem 1.8 (Cantor part). We proceed as in theorem 1.1 (ii) until (2.11).
We can now truncate the sequence wk using an argument similar to that of the
Lebesgue part of theorem 1.8 (note that the only property of w0(y) that has been
used is the fact that it is bounded), and then continue as in the Cantor part of
theorem 1.7, using (1.13) in place of (1.11). We omit the details.

Proof of theorem 1.9. The proofs of parts (i) and (ii) of theorem 1.3 and of the  rst
part of theorem 1.6 continue to hold. We observe that in theorem 1.3 (ii), since a« ¸
has rank one, the function g(t) = f 1 (x; u; ta « ¸ ) is convex and thus we can still
use proposition 9.1 and (9.1).

If f 1 = f 1 (x; ¹ ), then the proof of theorem 1.3 (iii) is still valid with some
obvious modi cations.

Proof of theorem 1.10. We proceed as in theorem 1.1 (iii) until (2.14). Fix " > 0
and let k be so large that "k < minf ¯ ; 1=Lg, where ¯ and L are provided by (1.15),
(1.16). Then, by (1.16) and (1.15), in this order,

d ·

dHN¡1bS(u)
(x0)

= lim
k ! 1

Z

Q̧

"kf

³
x0 + "ky; wk(y);

1

"k
rwk(y)

´
dy

> 1

1 + "
lim inf
k ! 1

Z

Q ¸

f 1 (x0 + "ky; wk(y); rwk(y)) dy ¡ "

1 + "

> 1

(1 + ")2
lim inf
k ! 1

Z

Q̧

f 1 (x0; wk(y); rwk(y)) dy ¡ "

(1 + ")2
¡ "

1 + "

> 1

(1 + ")2
lim sup

k ! 1

Z

Q̧

f 1 (x0; vk(y); rvk(y)) dy ¡ "

(1 + ")2
¡ "

1 + "
; (7.8)

where we have used lemma 2.6 and remark 2.7(1) of [7] to obtain a new sequence
vk 2 W 1;1(Q ¸ ; Rd) that converges to w0 in L1(Q ¸ ; Rd) and such that vj@Q ¸ = w0.
It now follows from (7.8) and the de nition of the function h in (1.18) that

d ·

dHN¡1bS(u)
(x0) > 1

(1 + ")2
h(x0; u + (x0); u¡(x0); ¸ ) ¡ "

(1 + ")2
¡ "

1 + "
;

and we obtain the  rst part of the theorem upon letting " ! 0 + .
We  rst prove the reverse inequality to (1.17) under the additional coercivity

assumption that there exists C > 0 such that

f (x; u; ¹ ) > C j ¹ j for all (x; u; ¹ ) 2 « £ Rd £ RdN : (7.9)
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Fix "0 > 0, and de ne

u0(x) :=

(
u+ (x0) if y ¢ ¸ > 0;

u¡(x0) if y ¢ ¸ 6 0:

By lemma 4.1.3 and (3.17) of [7], for HN¡1 a.e. x0 2 S(u),

dF(u; ¢)
dHN¡1bS(u)

(x0)

= lim sup
" ! 0+

1

"N¡1
inf

»Z

Q̧ (x0 ;")

f (x; v(x); rv(y)) dy :

v 2 W 1;1(Q̧ (x0; "); Rd); vj@Q ¸ (x0;") = u0(¢ ¡ x0)

¼

= lim sup
" ! 0+

inf

»Z

Q̧

"f

³
x0 + "y; w(y);

1

"
rw(y)

´
dy :

w 2 W 1;1(Q ¸ ; Rd); wj@Q ¸ = u0

¼

6 1

1 ¡ "0
lim sup

"! 0+

inf

»Z

Q̧

f 1 (x0 + "y; w(y); rw(y)) dy :

w 2 W 1;1(Q ¸ ; Rd); wj@Q ¸ = u0

¼
+

"0

1 ¡ "0

6 1

1 ¡ "0
lim sup

"! 0+

Z

Q̧

f 1 (x0 + "y; w1(y); rw1(y)) dy +
"0

1 ¡ "0
;

for any w1 2 W 1;1(Q ¸ ; Rd), with w1j@Q ¸ = u0, and where we have used (1.160). We
now take w1 in the previous inequality such that

Z

Q ¸

f 1 (x0; w1(y); rw1(y)) dy 6 h(x0; u + (x0); u¡(x0); ¸ u(x0)) + "0: (7.10)

By (3.5), (3.6) and the Lebesgue dominated convergence theorem,

lim
¶ ! 1

Z

Q̧

f¶ (x0; w1(y); rw1(y)) dy =

Z

Q̧

f 1 (x0; w1(y); rw1(y)) dy; (7.11)

where the Yosida transforms f¶ were introduced in (3.4); thus, for  xed ¶ su¯ ciently
large, by (7.10), and by (7.11),

Z

Q̧

f¶ (x0; w1(y); rw1(y)) dy 6 h(x0; u+ (x0); u¡(x0); ¸ u(x0)) + 2"0: (7.12)

Consequently, also from (3.5) and (3.8),

dF(u; ¢)
dHN¡1bS(u)

(x0) 6 1

1 ¡ "0
lim sup

" ! 0+

Z

Q̧

f¶ (x0 + "y; w1(y); rw1(y)) dy +
"0

1 ¡ "0

6 1

1 ¡ "0
lim sup

" ! 0+

³Z

Q̧

f¶ (x0; w1(y); rw1(y)

´
dy + "¶ ) +

"0

1 ¡ "0

6 1

1 ¡ "0
(h(x0; u + (x0); u¡(x0); ¸ u(x0)) + 2"0) +

"0

1 ¡ "0
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by (7.12). Letting "0 ! 0 + in the previous inequality yields the desired result
when (7.9) holds.

In the general case, it su¯ ces to consider the family of perturbed energy densities

f» (x; u; ¹ ) := f (x; u; ¹ ) + » j¹ j; » > 0:

Then, since F 6 F » , it follows that

dF(u; ¢)
dHN¡1bS(u)

(x0)

6 dF » (u; ¢)
dHN¡1bS(u)

(x0)

6 inf

»Z

Q̧

f 1 (x0; w(y); rw(y)) dy

+ »

Z

Q̧

jrw(y)j dy : w 2 W 1;1(Q̧ ; Rd); wj@Q ¸ (x0 ;") = u0

¼

6
Z

Q̧

f 1 (x0; w1(y); rw1(y)) dy + »

Z

Q̧

jrw1(y)j dy

for any  xed w1 2 W 1;1(Q̧ ; Rd), such that w1j@Q ¸ (x0;") = u0. Letting » ! 0 +

yields
dF(u; ¢)

dHN¡1bS(u)
(x0) 6

Z

Q̧

f 1 (x0; w1(y); rw1(y)) dy;

and since w1 is arbitrary, by taking the in mum over all functions w1, we obtain

dF(u; ¢)
dHN¡1bS(u)

(x0) 6 h(x0; u + (x0); u¡(x0); ¸ u(x0)):

8. Further results

As in theorems C and D of Dal Maso [9], some of our results continue to hold if the
regularity conditions on the integrand f are required everywhere except at most on
`small’ sets. In order to establish the main result of this section, theorem 8.5, we
 rst prove three lemmas.

Lemma 8.1. Let N0 be a Borel subset of « £R, with HN (N0) = 0, let u 2 BV( « ; R),
and de¯ne

A := fx 2 « n (S(u) [ M(u)) : (x; u(x)) 2 N0g;

B := fx 2 M (u) : (x; u(x)) 2 N0g;

where M(u) » « n S(u) is a Borel set such that

L N(M(u)) = 0 and C(M (u) \ A) = C(A)

for every Borel set A » « . Then

(i) L N(A) = 0;
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(ii) jC(u)j(B) = 0:

Proof. (i) If L N (A) > 0, then, by corollary 1 in x 2.4.1 of [15], we obtain

0 = HN (N0) > HN(f(x; u(x)) : x 2 Ag) > HN (A) = L N(A) > 0;

which is clearly a contradiction.
(ii) Let

G + := f(x; s) 2 « £ R : s < u+ (x)g;

G§ := f(x; s) 2 « £ R : u¡(x) 6 s 6 u + (x)g:

Then À G+
2 BVloc( « £R) (see [26]), and for any Borel set K » « £ R and D » « ,

we have

jDÀ G+
j(K) = HN(K \ G§);

Z

D£R
jDÀ G+

j =

Z

D

j ± (u)j; (8.1)

where ± (u) := (Du; ¡ L N) (see [9, lemma 2.2]). Take K := B £ R. If x 2 M (u),
then u + (x) = u¡(x), and thus

jDÀ G+ j(K) = HN(f(x; u(x)) : x 2 Bg) 6 HN(N0) = 0:

In turn, by (8.1), Z

B

j± (u)j = 0:

Since j± (u)j coincides with jDuj on M (u) (recall that L N (M(u)) = 0), it follows
that jDuj(B) = 0.

The following lemma is a generalization of theorem 3 in x 2.4.3 of [15]

Lemma 8.2. Let h 2 L1
loc( « ; R), let · be a positive Radon measure, and de¯ne

B0 :=

»
x0 2 « : lim sup

" ! 0+

1

· (Q ¸ (x0; "))

Z

Q̧ (x0;")

jh(x)j dx > 0

¼
; (8.2)

where in the lim sup we consider only those " > 0 such that · (@Q ¸ (x; ")) = 0. Then
· s(B0) = 0, where

· :=
d ·

d L N
L N + · s:

Proof. Without loss of generality, we can assume that « is bounded, h > 0 and
h 2 L1( « ; R). Given ² > 0, there exists ¯ > 0 such that

Z

U

h(x) dx < ² whenever L N(U ) < ¯ :

Let E be a Borel set such that L N(E) = 0 and · s(X) = · s(X \ E) for every
Borel set X » « . Since · s(X) = · s(X \ E), we consider B0

0 = B0 \ E. Clearly,
L N(B0

0) = 0, and

B 0
0 =

[

r 2 Q+

Br; where Br :=

»
x0 2 E : lim sup

" ! 0+

1

· (Q ¸ (x0; "))

Z

Q̧ (x0 ;")

h(x) dx > r

¼
:
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We claim that · (Br) = 0, from what will follow that · (B 0
0) = 0. Let U be an

open set such that Br » U and L N (U ) < ¯ . Fix » > 0 and consider

F »
1 :=

»
Q̧ (x; ") : x 2 Br ; 0 < " < » ; · (@Q ¸ (x; ")) = 0;

Q ¸ (x; ") » U;

Z

Q̧ (x;")

h(y) dy > r· (Q ¸ (x; "))

¼

and consider the Borel sets

U » :=
[

fQ̧ (x; ") : Q̧ (x; ") 2 F »
1 g; U0 :=

\

» >0

U » :

Since Br » U0, it su¯ ces to prove that · (U0) = 0. Fix a compact set K » U0,
» 0 > 0, and let

F » 0

2 := fQ ¸ (x; ") : x 2 Br ; 0 < " < » ; · (@Q ¸ (x; ")) = 0; Q ¸ (x; ") » U » 0 n Kg:

Then U » 0 admits a  ne covering

U » 0 :=

³ [

Q̧ (x;") 2 F»0
1

Q ¸ (x; ")

´
[

³ [

Q̧ (x;") 2 F»0
2

Q ¸ (x; ")

´
;

and, by Morse’s version of Besicovitch’s covering theorem (see [28, theorem 5.11]),
we may  nd a subcovering of U » 0 such that

U » 0 :=

³[

i 2 I

Qi

´
[

³ [

j 2 I

Qj

´
[ N; K »

³ [

i 2 I

·Qi

´
[ N;

I and J are countable, Qi 2 F » 0

1 , Qj 2 F » 0

2 , the sets ·Qi and ·Qj are mutually
disjoint, and · (N) = 0. Then

² >

Z

U

h(x) dx >
X

i 2 I

Z

Qi

h(x) dx > r
X

i 2 I

· (Qi) = r
X

i 2 I

· ( ·Qi) > r· (K):

By letting ² ! 0, we obtain · (K) = 0, and by the inner regularity of · , we conclude
that · (U0) = 0.

Remark 8.3. Since, for · s a.e. x0 2 « ,

lim
" ! 0+

· (Q̧ (x0; "))

"N
= 1;

it is clear that if x0 2 B0, then · s a.e. x0 is not a Lebesgue point for jhj, otherwise

lim sup
" ! 0+

1

· (Q ¸ (x0; "))

Z

Q̧ (x0;")

jh(x)j dx = lim sup
" ! 0+

"N

· (Q ¸ (x0; "))
jh(x0)j = 0:

Using lemma 8.2, it is possible in some cases to weaken (1.8) in proposition 2.1.
Indeed, assume that, for L 1 a.e. u 2 R,

f (¢; u; 0) 2 L1
loc( « ; R): (8.3)
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Then there exists a countable set R0 := frjgj , dense in R, such that f(¢; rj ; 0) 2
L1

loc( « ; R) for all j. Let « j be the set of Lebesgue points of f(¢; rj ; 0) and set
Aj := « n « j . Then

L N ([ 1
j = 1Aj) = 0:

Let Bj be the set of points corresponding to the set B0 in lemma 8.2 when
h := f (¢; rj; 0) and · := jDuj. Then

jDsuj([ 1
j = 1Bj) = 0:

Lemma 8.4. Proposition 2.1 is stil l valid, provided we replace (1.8) by (8.3), and
we take

x0 2 « n
³ 1[

i;j = 1

Aj [ Bi

´
; tk :=

(
1 if x0 2

T1
j = 1 « j ;

jDuj(Q ¸ (x0; "k))="N
k otherwise;

where jDuj(@Q ¸ (x0; "k)) = 0, tk ! T 2 (0; 1] and u0 + ¬ 1, u0 + ¬ 2 2 R0.

Proof. The only change is in (2.2). Considering  rst the case where

x0 2 « n
³ 1[

j = 1

Aj

´
=

1\

j = 1

« j ;

then tk = 1 and (2.2) becomes

0 6
Z

E+
k

f (x0 + "ky; u0 + ¬ 2; 0) dy

=
1

"N
k

Z

Q̧ (x0;"k) \ (x0 + "kE+
k )

f (x; u0 + ¬ 2; 0) dx

6 1

"N
k

Z

Q̧ (x0;"k)

jf (x; u0 + ¬ 2; 0) ¡ f (x0; u0 + ¬ 2; 0)j dx

+ f (x0; u0 + ¬ 2; 0)L N (E +
k ):

Since x0 is a Lebesgue point for f (x; u0 + ¬ 2; 0) (recall that u0 + ¬ 2 2 R0 and that
x0 2

T1
j = 1 « j), the  rst integral on the right-hand side approaches zero as k ! 1.

Moreover, L N(E +
k ) ! 0 as before.

If x0 2 « n (
S1

i= 1 Bi) and x0 =2
T1

j = 1 « j , then (2.2) may be estimated as follows,

0 6 lim
k ! 1

1

tk

Z

E
+
k

f (x0 + "ky; u0 + ¬ 2; 0) dy

6 lim
k ! 1

1

jDuj(Q(x0; "k))

Z

Q(x0 ;"k)

f (x; u0 + ¬ 2; 0) dx = 0;

where we have used the fact that tk = jDuj(Q̧ (x0; "k))="N
k and the de nition of

Bj as in (8.3), with h := f(¢; rj ; 0).

We are now ready to state the main result of this section.

Theorem 8.5. Assume that f : « £ R £ RN ! [0; 1) is a Borel integrand,
f (x; u; ¢) is convex in RN , and f satis¯es (8.3). Suppose also that (1.7) holds for all
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(x0; u0) 2 ( « £ R) n N0, where N0 is a Borel subset of « £R. Let u 2 BVloc( « ; R),
and let fung be a sequence of functions in W 1;1

loc ( « ; R) converging to u in L1
loc( « ; R).

(i) If either HN (N0) = 0 or N0 = M0 £ R with L N (M0) = 0, then
Z

«

f (x; u(x); ru(x)) dx 6 lim inf
n! 1

Z

«

f (x; un(x); run(x)) dx:

(ii) If either HN (N0) = 0 or N0 = M0 £ R with HN¡1(M0) < 1, then
Z

«

f 1 (x; u(x); dC(u(x))) 6 lim inf
n ! 1

Z

«

f (x; un(x); run(x)) dx:

(iii) If N0 = M0 £ R and either HN (N0) = 0 or HN¡1(M0) = 0 and we assume
that for all (x0; u0) 2 ( « £ R) n N0 and " > 0 there exists ¯ > 0 such that

f (x0; u; ¹ ) ¡ f (x; u; ¹ ) 6 "(1 + f (x; u; ¹ )) (8.4)

for all (x; u) 2 « £ R with jx ¡ x0j + ju ¡ u0j 6 ¯ and for all ¹ 2 RN , then

Z

S(u) \ «

³Z u+(x)

u¡ (x)

f 1 (x; s; ¸ u) ds

´
dHN¡1(x)

6 lim inf
n! 1

Z

«

f(x; un(x); run(x)) dx:

Proof. (i) We proceed as in theorem 1.1 (i) starting from (2.4). If HN(N0) = 0, then
in (2.6) we take x0 2 « nA, where A is the set given in lemma 8.1 (i), otherwise take
x0 2 « n M0. Using the notation introduced in lemma 8.1 and thereafter, we may
assume, in addition, that x0 is also a Lebesgue point for all the functions f(¢; rj ; 0),
precisely

x0 2 « n
³ 1[

j = 1

Aj

´
:

We can now continue with the same argument as in the proof of the Lebesgue part
in theorem 1.1, except that we invoke lemma 8.4 instead of proposition 2.1 to justify
the truncation step.

(ii) If HN(N0) = 0, then take x0 2 « nB, where B is the set given in lemma 8.1 (ii),
otherwise take x0 2 « n M0. As before, let Bj be the set introduced in lemma 8.2
and corresponding to f(¢; rj ; 0) 2 L1

loc( « ; R) (see (8.2)). Since

jC(u)j
³ 1[

j = 1

Bj

´
= 0;

we may assume that x0 2 « n (
S1

j = 1 Bj). Now we continue as in theorem 1.1 (ii),
using lemma 8.4 in place of proposition 2.1, but now in order to apply lemma 2.5
of [4] we  rst need to approximate g( ¹ ) := f(x0; u(x0); ¹ ) from below by a non-
decreasing sequence of convex functions that grow at most linearly. This can be
done by virtue of proposition 9.1.
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(iii) Since N0 = M0 £ R and HN = HN¡1 £ L 1 on S(u) £ R, it follows that
HN¡1(M0 \ S(u)) = 0. Moreover, by lemma 8.2,

HN¡1

³
S(u) \

³ 1[

j = 1

Bj

´´
= 0:

Take

x0 2 S(u) n
³

M0 [
1[

j = 1

Bj

´
:

We pursue the proof of the jump part as in theorem 1.1 (iii), using lemma 8.4 instead
of proposition 2.1, but now in order to apply the density result of Ambrosio, we
 rst need to approximate h(u; ¹ ) := f (x0; u; ¹ ) from below by a non-decreasing
sequence of continuous functions that grow at most linearly. For this purpose, we
invoke proposition 9.3 below.

Remark 8.6. The hypothesis placed on part (iii) above, i.e. in the jump part,
ensuring that the set N0 is of the form N0 = M0 £ R, is used heavily to apply the
compactness argument leading to (2.15).

Remark 8.7. Theorems 1.3, 1.7 and 1.8 may be improved similarly to theorem 8.5
versus theorem 1.1. We leave this to the interested reader.

Remark 8.8. As in theorem D of [9], in the special case where f (x; u; 0) ² 0,
condition (1.9) can be weakened as follows.

Assume that there exists a set P0 » R with L 1(P0) = 0 such that, for all x0 2 «
and " > 0, there exists ¯ > 0 such that

jf (x0; u; ¹ ) ¡ f (x; u; ¹ )j 6 "(1 + f(x; u; ¹ )) (1.90)

for all x 2 « with jx ¡ x0j 6 ¯ and for all (u; ¹ ) 2 (R n P0) £ RN .
The proof of theorem 1.5 should now be modi ed accordingly, using the fact that,

if A := fx 2 « n S(u) : u(x) 2 P0g, then ru ² 0 for L N a.e. x 2 A and jC(u)j = 0
a.e. x 2 A. We omit the details.

9. Approximation of convex functions

Let g : RN ! [0; 1) be a convex function. Then

t 7! g(t¹ ) ¡ g(0)

t

is increasing, and we de ne the recession function

g 1 ( ¹ ) := lim
t ! 1

g(t¹ )

t
= sup

t>0

g(t¹ ) ¡ g(0)

t
:

Proposition 9.1. Let g : RN ! [0; 1) be a convex function. Then

g(t¹ )

t
6 g 1 ( ¹ ) +

g(0)

t
(9.1)

for t > 0, and there exists an increasing sequence fgjgj of non-negative convex
functions such that

https://doi.org/10.1017/S0308210500000998 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000998


Lower semicontinuity and relaxation 561

(i) g( ¹ ) = supj gj( ¹ ) for all ¹ 2 RN ;

(ii) g 1 ( ¹ ) = supj g 1
j ( ¹ ) for all ¹ 2 RN ;

(iii) gj is Lipschitz continuous with Lipschitz constant j;

(iv) if g( ¹ ) > C(j ¹ j ¡ 1) for some C > 0, then gj satis¯es the same growth condition
for j > [C] + 1:

Proof. Inequality (9.1) follows immediately from the de nition of the g 1 . De ne

gj( ¹ ) := sup
j ¹ ¤j6j

( ¹ ¤ ¢ ¹ ¡ g ¤ ( ¹ ¤ ));

where g ¤ is the Young{Fenchel conjugate of g. Since g is convex, g = g ¤ ¤ ; hence
g( ¹ ) = supj gj( ¹ ). Also, gj are convex and

gj( ¹ ) > ¡ g ¤ (0) > inf g > 0:

This proves (i).
Since g( ¹ ) > gj( ¹ ) for each j, it follows that g 1 ( ¹ ) > supj g 1

j ( ¹ ). Conversely,
and by (9.1),

g(t¹ )

t
= sup

j

gj(t¹ )

t

= sup
j

µ
gj(t¹ ) ¡ gj(0)

t
+

gj(0)

t

¶

6 sup
j

g 1
j ( ¹ ) + sup

j

gj(0)

t

= sup
j

g 1
j ( ¹ ) +

g(0)

t
:

Letting t ! 1, we conclude that g 1 (t) 6 supj g 1
j ( ¹ ).

Property (iii) is straightforward. We prove (iv). If g( ¹ ) > C(j¹ j ¡ 1), then

g ¤ ( ¹ ¤ ) 6 [C(j ¢ j ¡ 1)]¤ ( ¹ ¤ );

hence

gj( ¹ ) = sup
j ¹ ¤ j6j

( ¹ ¤ ¢ ¹ ¡ g ¤ ( ¹ ¤ )) > sup
j ¹ ¤ j6j

( ¹ ¤ ¢ ¹ ¡ [C(j ¢ j ¡ 1)]¤ ( ¹ ¤ )):

Since

[C(j ¢ j ¡ 1)] ¤ ( ¹ ¤ ) =

(
C if j ¹ ¤ j 6 C;

1 otherwise;

we conclude that if j > [C ] + 1, then

gj( ¹ ) > sup
j ¹ ¤j6C

( ¹ ¤ ¢ ¹ ¡ C) = C(j¹ j ¡ 1):
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The last proposition of this section uses a corollary of Lindel�of’s theorem, which
allows us to select a countable collection of functions yielding the supremum func-
tion of a non-countable family. For convenience, we include the proof below.

Lemma 9.2. Let X be a ¼ -compact metric space, let G » C(X ; R), and let f(x) :=
supg 2 G g(x), for all x 2 X . Then there exists a countable collection fgngn2 N » G
such that

f (x) = sup
n

gn(x) for all x 2 X:

Proof. It is clear that f is lower semicontinuous. Therefore, for every x 2 X, there
exist 0 < r(x) < 1 and g1

x 2 G such that

f(y) > f (x) ¡ 1
2 for all y 2 B(x; r1(x)); g1

x(x) > f (x) ¡ 1
2 :

Let » 1(x) < r(x) be such that

jg1
x(y) ¡ g1

x(y0)j 6 1
2 for all y; y0 2 B(x; » 1(x)):

Since fB(x; » 1(x))gx 2 X is an open covering of X , by Lindel�of’s theorem, we may
extract a countable subcovering fB(x1

n; » 1
n)g. Recursively, we may  nd an open

covering of X , fB(x; » k(x))gx 2 X , » k(x) < 1=2k, and functions gk
x 2 G such that,

for all x 2 X ,

f (y) > f (x) ¡ 1

2k
for all y 2 B(x; » k(x));

gk
x(x) > f (x) ¡ 1

2k
;

jgk
x(y) ¡ gk

x(y0)j 6 1

2k
for all y; y0 2 B(x; » k(x)):

Again by Lindel�of’s theorem, X is covered by a countable family fB(xk
n; » k

n)g. We
claim that

f (x) = sup
m;k

gk
xk

m
(x):

Let x 2 X , k 2 N, and choose n 2 N such that x 2 B(xk
n; » k

n). Then

f (x) > gk
xk

n
(x) > gk

xk
n
(xk

n) ¡ 1

2k
> f (xk

n) ¡ 2

2k
> inf

B(x;1=2k)
f ¡ 2

2k
:

As f is lower semicontinuous, lim inf" ! 0 infB(x;") f = f(x), and we conclude that

f(x) 6 lim inf
k ! 1

inf
B(x;1=2k)

f ¡ 2

2k
6 lim inf

k ! 1
gk

xk
n

(x) 6 sup
m;k

gk
xk

m
(x) 6 f (x):

Proposition 9.3 (cf. [10]). Let A be an open set of RN and let

h : A £ R £ RN ! [0; 1)

be a function convex in the ¹ variable, and such that, for every (x0; u0) 2 A £ R
and " > 0, there exists ¯ > 0 such that

h(x; u; ¹ ) > (1 ¡ ")h(x0; u0; ¹ ) (9.2)
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for all (x; u) 2 A £ R with jx ¡ x0j 6 ¯ , ju ¡ u0j 6 ¯ and for all ¹ 2 RN . Then there
exists an increasing sequence fhjgj of non-negative continuous functions, convex
in the ¹ variable, satisfying (9.2) and such that

(i) h(x; u; ¹ ) = supj hj(x; u; ¹ ) for all (x; u; ¹ ) 2 A £ R £ RN ;

(ii) h 1 (x; u; ¹ ) = supj h 1
j (x; u; ¹ ) for all (x; u; ¹ ) 2 A £ R £ RN ;

(iii) hj(x; u; ¹ ) 6 Cj(j¹ j + 1) for all (x; u; ¹ ) 2 A £ R £ RN and for some Cj > 0;

(iv) for every (x0; u0) 2 A £ R and " > 0, there exists ¯ j > 0 such that

hj(x; u; ¹ ) > (1 ¡ ")hj(x0; u; ¹ );

hj(x; u; ¹ ) > (1 ¡ ")hj(x; u0; ¹ )

for all (x; u) 2 A £ R with jx ¡ x0j 6 ¯ j , ju ¡ u0j 6 ¯ j , and for all ¹ 2 RN .

Proof. Let G be the class of all continuous functions g : A £ R £ RN ! [0; 1),
convex in the ¹ variable, and such that

(1) g(x; u; ¹ ) 6 h(x; u; ¹ ) for all (x; u; ¹ ) 2 A £ R £ RN ;

(2) for every (x0; u0) 2 A £ R and " > 0, there exists ¯ > 0 such that

g(x; u; ¹ ) > (1 ¡ ")g(x0; u0; ¹ )

and

g(x; u; ¹ ) > (1 ¡ ")g(x0; u; ¹ );

g(x; u; ¹ ) > (1 ¡ ")g(x; u0; ¹ )

for all (x; u) 2 A £ R with jx ¡ x0j 6 ¯ , ju ¡ u0j 6 ¯ , and for all ¹ 2 RN ;

(3) there exists C > 0 such that

g(x; u; ¹ ) 6 C(j ¹ j + 1) for all (x; u; ¹ ) 2 A £ R £ RN :

Clearly, G 6= ;, as 0 2 G . Following [10], we claim that

h(x0; u0; ¹ ) = sup
g 2 G

g(x0; u0; ¹ ) for all (x0; u0; ¹ ) 2 A £ R £ RN : (9.3)

By de nition of G , it follows immediately that h > supg 2 G g. Conversely,  x
(x0; u0) 2 A £ R, " > 0, and let ¯ be such that (9.2) is satis ed. Consider two
cut-o¬ functions ’ 2 C 1

0 (A), Á 2 C 1
0 (R), with 0 6 ’ 6 1, 0 6 Á 6 1, ’ ² 1 on

B(x0; 1
2
¯ ), ’ ² 0 outside B(x0; ¯ ) and, similarly, Á ² 1 on B(u0; 1

2
¯ ), Á ² 0 outside

B(u0; ¯ ). We can write
h(x0; u0; ¹ ) = sup

j
hj( ¹ );

where hj are convex functions satisfying the properties stated in proposition 9.1.
Consider

h"
j(x; u; ¹ ) := (1 ¡ ")’(x)Á(u)hj( ¹ ):
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Clearly, h"
j 2 G (in particular, property 1 follows from (9.2)). Letting j ! 1, we

get
(1 ¡ ")h(x0; u0; ¹ ) = sup

j
h"

j(x0; u0; ¹ ) 6 sup
g 2 G

g(x0; u0; ¹ );

hence the claim follows by letting " ! 0 + .
By lemma 9.2 and (9.3), there exists a sequence hj in G such that h(x; u; ¹ ) =

supj hj(x; u; ¹ ) for all (x; u; ¹ ) in A £ R £ RN . Due to the stability properties of
the class G , we can assume that the sequence fhjgj increasing. Indeed, it is easy
to see that if g1, g2 2 G , then g1 _ g2 2 G (while, in general, g1 ^ g2 =2 G , since
we may loose convexity). This proves (i). Clearly, properties (iii) and (iv) follow
immediately from the de nition of G .

Property (ii) follows easily from proposition 9.1, (9.1) and the fact that clearly
h 1 (x; u; ¹ ) > supj h 1

j (x; u; ¹ ). Indeed,

h(x; u; t¹ )

t
= sup

j

µ
hj(x; u; t¹ ) ¡ hj(x; u; 0)

t
+

hj(x; u; 0)

t

¶

6 sup
j

h 1
j (x; u; ¹ ) +

h(x; u; 0)

t
;

so letting t ! 1 we obtain (ii).
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