Proceedings of the Royal Society of Edinburgh, 131A, 519-565, 2001

On lower semicontinuity and relaxation

Irene Fonseca
Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Giovanni Leoni
Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte
Orientale, Alessandria, Italy 15100

(MS received 22 January 1999; accepted 6 April 2000)

Lower semicontinuity and relaxation results in BV are obtained for multiple integrals
F(u,):= / f@,u(z), Vu(z))dz, uweWhi(2;RY),
2
where the energy density f satisfies lower semicontinuity conditions with respect

to (z,u) and is not subjected to coercivity hypotheses. These results call for methods
recently developed in the calculus of variations.

1. Introduction

In this paper we address lower semicontinuity and relaxation properties for multiple
functionals of the form

F(u, ) := /Q flz,u(z), Vu(x)) dz,

where 2 is an open subset of RV, and u(z) is a R%valued function defined on 2.
In [31], Serrin considered the scalar-valued case where

feC(2xRxRY;[0,00)) and f(zx,u,-) is convex in RV, (1.1)
Among his results we select theorems A and B below.

THEOREM A (cf. theorem 11 of [31]). Assume that f satisfies equation (1.1). Let
u € BVioo(2;R), and let {u,} be a sequence of functions in Wli)’cl(ﬁ; R) converging
tow in Li (2;R). Let \, p be moduli of continuity such that

loc

(i) p(s) < Cs for C >0 and all s > 0 large, and

|f(x7u7£) - f(x07u07£)| < )\(|.Z' - x0|)(1 + f(x,u,f)) +p(|u - ’LL()|)
for all (z,u), (x0,up) € 2 xR, and for all £ € RY; or
(i) [f(z,u, &) = f(z0,u0, )| < M|z — @o| + [u—uo|)(1 + f(z,u,)) for all (x,u),

(g, ug) € 2 x R, and for all ¢ € RYN. Suppose, in addition, that u(x) is
continuous.
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Then

/ flz,u(z), Vu(x)) dz < liminf/ flx,un(x), Vuy,(x)) de.
Q Q

n—oo

Here, Vu is the Radon—Nikodym derivative of the distributional derivative Du
of u, with respect to the N-dimensional Lebesgue measure £V . Also, we intend by
modulus of continuity a non-negative increasing continuous function p such that

p(0) = 0.

THEOREM B (cf. theorem 12 of [31]). Assume that f satisfies (1.1) and any one
of the following conditions holds.

(i) f(z,u,&) — 00 as || — oo for each (xz,u) € 2 X R.
(i) f(z,u,-) is strictly conver in RN for each (x,u) € £2 x R.
(iii) The derivatives fy, fe and fen exist and are continuous.

Then F(u,{2) is lower semicontinuous in Wi”cl(ﬁ; R) with respect to local conver-
gence in L'.

The prototype of integrands we want to study is represented by f = h(z,u)[¢],
where h > 0, for which conditions (i)—(iii) of theorem B may be violated; hence,
in this paper, we will focus our attention mainly on theorem A. Note also that
while conditions (i) and (ii) of theorem A are trivially satisfied when f = f(¢),
so that L{ _ lower semicontinuity holds in this case only under assumption (1.1),
theorem B is more stringent as it imposes extra conditions on the dependence of f
on the gradient variable &.

It is worth noticing that theorem A requires no coercivity hypothesis, i.e. a con-
dition of the type

1

for some constant C' > 0. One of the main purposes of this paper is to try to
understand the deep relation between coercivity (or the lack of it) and lower semi-
continuity. A drawback in theorem A (ii) is that, in practice, one seldom knows
whether the target function u(z) is continuous or not. Important examples of inte-
grands which satisfy conditions (i) and (ii) of theorem A are given by

f=f(x,§)=h(x)g(§), f:f(x7u7§):h(x7u)g(£)a

where h(z) and h(z,u) are uniformly continuous functions bounded away from zero
and g is a non-negative convex function. Conditions (i) and (ii) of theorem A often
appear in the study of lower semicontinuity and relaxation and were exploited by
several authors. Dal Maso [9] obtained an integral representation formula for the
relaxation F(u, £2) with respect to the L _topology of the functional F, namely,

loc

Flu,2):= {inf {liminf F(un, 2) : un € WU 2;R), up — uin LL . (2;R)},

n—oo
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under a weak form of condition (ii) in theorem A and assuming coercivity. Let

H(u, ) := /Q flx,u,Vu) dx—|—/ﬁ o (z,u,dC(u))

ut (@)
+/ (/ fw(x,s,yu)ds> dHN (), (1.2)
S(u)n u=(z)

where f°° is the recession function of f, that is,

foo (l‘, u, 5) := lim sup M

)
t—o0 t

C(u) is the Cantor part of Du, and (ut —u™) is the jump of u across the interface
S(u).

As a corollary of Dal Maso’s general results!, we have the following theorem.

THEOREM C (cf. theorem 3.2 of [9]). Assume that {2 is an open bounded subset of
RN and that f : 2 x R x RN — [0,00) is a Borel function such that, for HY a.e.
(zg,u0) € 2 X R, f(x0,uo,) is continuous in RN, and for each ¢ > 0 there exists
0 > 0 such that

|f(.l‘,u,§)—f(l‘0,U(),f)| <5(1_|_|€|) (13)
for all (z,u) € 2 x R with |z — x| + |u — ug| < & and for all ¢ € RN. Sup-
pose also that for every r > 0 there exist C > 0 and three functions ¢, a and
A€ C(£2;]0,00)) N L($2;]0,00)), with c(x) > 0 in 2, such that

c()[¢] — a(x) < flx,u,§) < Cl¢]+ A(z) (1.4)

for all (z,u,&) € 2 x R x RN with |u| < r. Finally, assume that, for HY a.e.
r € 2 and all w € R, the function f(x,u,-) is convex in RN. Then, for all
u € BV(£2;R) N L*(§2;R), we have

F(u, ) = H(u, 2). (1.5)
Furthermore, if there exist b € L*(£2;[0,00)), C > 0, a > 1, such that f(x,u,0) <
Clu|*+b(z) for all (x,u) € 2XR, then (1.5) holds for allu € BV(Q,R)DLO‘(Q,R).

Note that (1.5) implies, in particular, that F is L! lower semicontinuous in W11,
Indeed, as f*° > 0, it follows that

/Q flz,u(z), Vu(x)) dz < F(u, 2)

for u € BV(£2;R). Therefore, Dal Maso’s result extends theorem A (ii) of Serrin
to target functions u of bounded variation, which are not necessarily continuous.
However, the ‘price’ to pay for this extension is the coercivity and growth assump-
tion (1.4). Dal Maso also established an integral representation result for functionals
that are not necessarily coercive.

IDal Maso’s results are given in terms of I'-convergence of a family of functionals

Fr(u, 2) / fn(z,u(z), Vu(z)) dz.

We take here f;, = f and refer to [9] for the more general statement of theorems 3.2 and 3.5.
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THEOREM D (cf. theorem 3.5 of [9]). Assume that £2 is bounded, that f is a Borel
function and that f(z,u,-) is positively homogeneous of degree one and conver.

Suppose also that there exist A : 2 x R — [0,00), with A(-,u) continuous and
A0,u) =0 for L! a.e. uw € R, and a function P € C(§2;[0,00)) such that

|f(x,u,§) - f(,l‘(),u,f)| < )\(|.7J - x0|,u)(1 + f(x,u,{)), (1.6&)
0 < flz,u,8) < P, (1.60)

for all x, zo € 2, u € R and £ € RN. Then (1.5) holds for all u € BV(£2;R).

The main difference between hypotheses (1.3) and (1.6a) is that (1.3) is a local
hypothesis in (z,u), while (1.6a) may be interpreted as a global restriction in w.
The conditions of theorem D are satisfied by

f(@,u,8) = h(z)B(u)lg],

where h is a positive bounded uniformly continuous function and B is a non-negative
continuous function. Note also that condition (1.6a) is trivially satisfied when f
does not depend on z, that is, f = f(u, ). Lower semicontinuity for these integrands
of the form f = f(u,£) was later studied by De Giorgi et al. [13], who proved the
following result.

THEOREM E (cf. theorem 1 of [13]). Assume that f = f(u,£) is non-negative,
measurable in the variable u, and conver in &. Suppose also that f(u,0) is lower
semicontinuous and that

limsup (f(u70) — f(u7§))+

€ Li,.(R;R).
£—0 €]

Then, for every u € Wi)’cl(Q;R), the function f(u(z), Vu(zx)) is measurable and
the functional F'(u, $2) is lower semicontinuous in W) . (£2;R) with respect to local
convergence in L'.

Theorem E was extended by De Cicco in [12] to functions of bounded variation.
More precisely, De Cicco showed that when f = f(u,&) satisfies the hypotheses of
theorem E, then the functional H(u) defined in (1.2) is lower semicontinuous in
BV, (£2; R) with respect to local convergence in L. The hypotheses of theorem E
were significantly weakened by Ambrosio in [3] (see also [11]), where the sequence
{u,} is assumed to be bounded in W1(2;R). This condition is somewhat related
to coercivity, and we will not dwell more on it here.

Unlike the case where f = f(u,§), without some kind of coercivity, one cannot
expect, in general, lower semicontinuity in the L' topology for functionals of the
form

/Q flz, Vu(z))dz.

Indeed, in [9], Dal Maso, following a counterexample of Aronszajn, constructed a
continuous function w : 2 — R, where 2 = (0,1) x (0,1) and = = (z1,z2), and a
sequence of functions {u, } converging to u(r) = x5 in L>®({2;R), such that

/ |(sinw(zx),cosw(z)) - Vu(z)|dz > liminf/ |(sinw(x),cosw(z)) - Vun(z)|dz.
7 7

n—oo
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Since the target function u(xy, z2) = xs is continuous,

f(@,8) = [(sinw(z), cosw(x)) - ]

cannot satisfy either condition (i) or (ii) of theorem A, for in this case we would
obtain a contradiction. This example suggests that, when there is no coercivity,
lower semicontinuity in the L! topology may fail unless we strengthen (1.1) with
an uniform continuity condition.

We are now ready to present the main result of the paper.

THEOREM 1.1. Assume that f : 2 xRxRY — [0, 00) is a Borel integrand, f(x,u,-)
is convex in RN, and for all (zg,ug) € 2 XR and ¢ > 0 there exists 6 > 0 such that

f(anu()ag)_f(xvuvg) <5(1+f(x,u,§)) (17)

for all (z,u) € 2 x R with |x — zg| + |u — ug| < § and for all ¢ € RN, Let
u € BVioc(£2;R), and let {u,} be a sequence of functions in W1 (Q R) converging
to u in Ll (£2;R). Then

n— oo

H(u,2) < hmlnf/ f(x,un(x), Vuy(x)) de.

The main tool in the proof of theorem 1.1 (and of theorem 1.3 below) is the
blow-up method introduced by Fonseca and Miiller [18,19]. In particular, the blow-
up method applied to the characterization of the bulk energy density reduces the
domain {2 to a ball and the target function w becomes a piecewise affine function.
Since affine functions are locally bounded, in the scalar case we may replace the
truncation used in [18,19], in a vectorial setting, and which required a degenerate
coercivity condition, by a considerably simpler argument.

Theorem 1.1 improves Serrin’s theorem A, not only because continuity of the
target function w is assumed in theorem A (ii), and is not needed here, but also
because condition (1.7) is significantly weaker than (ii), as the following result
illustrates.

COROLLARY 1.2. Let g : RY — [0,00) be a conver function and h : 2 x R — [0,
be a lower semicontinuous function. If u € BViee(2;R) and {u,} C W1 (.Q, R)
converges to u in L ({;R), then

/ h(z,u)g(Vu)de < liminf/ h(z,un)g(Vuy,) dz.
Q n—ee Jo

This result seems to be new in this generality. Note that conditions (1.3) and (1.4)
in theorem C of Dal Maso imply the validity of (1.7), while f(z,u,&) = h(z,u)g(§),
as in corollary 1.2 satisfies (1.7), but not, in general, (1.3), (1.6a) and (i), (ii) of
theorem A.

Conditions of the type (1.7) appeared already in the papers of Fonseca and Miiller
[18,19], Dal Maso and Sbordone [10], and Fusco and Hutchinson [21]. All these
results deal with the vectorial case and require some type of coercivity conditions.

In the special case where

h = h(x) :=xa(x) for some measurable set A C {2,
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then h(x)g(€) satisfies (1.7) if and only if LN (DA) = 0 (i.e. if x4(z) has a lower
semicontinuous representative), and thus we recover the condition obtained by
Gangbo [22]. Corollary 1.2 attests to the sharpness of condition (1.7). Indeed, when
N =1 and {2 is bounded, Fusco [20] proved that the functional

F(u) := / h(z)l (z)| dz, ue€ WhH(2;R),
Q
where h(z) is a bounded non-negative measurable function, is lower semicontinuous
in L'(§2;R) if and only if h(x) is lower semicontinuous.

THEOREM 1.3. Assume that £2 is bounded, f : 2 x R x RV — [0,00) is a Borel
integrand, f(x,u,-) is conver in RN and there exists a constant C > 0 such that

0< f(z,u,&) <CA+IE])  forall (z,u,f) € 2 xR x RY. (1.8)
Then F(u,-) is the trace of a finite Radon measure on the open subsets of (2, and

(i) if f is Carathéodory or f(-,-, &) is upper semicontinuous, then
Flu. 2 (S U M) < [ fr,0, V) ds
(i) 4f fo°(-,-,&) is upper semicontinuous, then
Fu, M (u)) < /Q £ (z,u,dC(u));

(iii) of f°(-,u, &) is upper semicontinuous, then

u™(z)
F(u,S(u)) < /S( )mn(/—( : f“(x,s,%)ds) dHY ().

Here, and in what follows, M (u) C £2\S(u) is a Borel set such that £V (M (u)) = 0
and C(M(u) N A) = C(A) for every Borel set A C 2. Theorem 1.3 is based on a
recent work by Bouchitté et al. [7]. We have thus obtained the following relaxation
result.

COROLLARY 1.4. Under the hypotheses of theorems 1.1 and 1.3, we have that
F(u,2) = H(u,2) for all u € BV(2;R).

If we require (1.8) to be satisfied locally u in compact sets of R, i.e. for every
r > 0, there exist C' > 0 and A € L*(£2;[0, 0)), such that

0< f(z,u,§) < ClE[+ A(z)

for all (x,u,£) € 2 x R x RN with |u| < r, then it can be shown that corollary 1.4
continues to hold for all v € BV(£2;R) N L*°(f2;R). Thus, when (1.3) and (1.4) are
satisfied for all (zg,ug) € 2 X R (see also §8), corollary 1.4 improves theorem C,
since conditions (1.3) and (1.4) imply condition (1.7), and corollary 1.4 does not
require any coercivity properties.
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Next we extend theorem E to integrands f = f(z,u,§), which depend on x. As
we pointed out before, there are already several results in this direction, e.g. due
to Ambrosio [3] and later extended by De Cicco [11] to BV functions, and where
local convergence in L! is replaced by weak convergence in BV.

THEOREM 1.5. Assume that f : 2 xRxRY — [0, 00) is a Borel integrand, f(x,u,-)
is convex in RN, and for all zq € 2 and € > 0 there exists 6 > 0 such that

|f(x0,u,§)—f(x,u,§)| <5(1+f(x,u,§)) (19)

for all x € 2 with |x — 20| < § and for all (u,&) € R x RY. Suppose also that
f(zo,-,0) is lower semicontinuous and

limsup (f(x07u70) B f(x07u7§))+

€ Lip.(R;R).

Then H(u, 2) < F(u, 2) for all u € BV({;R).

Note that in theorem 1.5 we do not require f(x,u,-) to be positively homogeneous
of degree one as in theorem D of Dal Maso. The proof of theorem 1.5 relies on the
blow-up method of Fonseca and Miiller [18], and on the original proof of De Giorgi
et al. [13].

THEOREM 1.6. Assume that 2 is bounded and that f : 2 x R x RN — [0,00) is
a Borel integrand that satisfies (1.8), with f(x,u,-) convex in RN and f(-,u,&)
continuous in §2. Then F(u,§2) < H(u,{2).

We now turn our attention to the vectorial case, and consider non-negative inte-
grands

f:2 xR xRWN —[0,00), whered > 1.

The situation is considerably more complicated, even when f(z,u,-) is assumed to
be convex, rather than quasiconvex, which is the natural assumption when d > 1
(see [6,8,27]). In his book on calculus of variations [2, theorems 4.1.1 and 4.1.2],
Morrey extended Serrin’s theorems A and B to the vectorial case. Several years
later, Eisen [14] studied the case where d > 1 and proved that lemma 4.14 in [27],
which is the core of theorem B, ceases to be true when d > 1, thus placing in
doubt the validity of theorem itself. In addition, he constructed counterexamples
for theorems A (ii) and B (iii). Theorem A (ii) seems to fail in the vectorial case
due mainly to the truncation techniques of the type used in lemma 3 of [31] (see
also [30, pp. 30-31]) and in our theorem 1.1, suitable only for the scalar case. On
the other hand, Serrin’s theorem A (i) continues to hold in the vectorial case, the
validity of condition (i) of theorem B was asserted in [16], while theorem B (ii)
remains open when d > 1. Note that Eisen’s counterexamples were both of the
form

f=F(u,&) = h(u)g(§)-

Thus we cannot hope to fully extend either theorem E of De Giorgi et al. or our
theorems 1.1 and 1.5 to the vectorial case. However, we can prove the following.
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THEOREM 1.7. Let f be a non-negative Borel integrand. Suppose that, for all
(zo,up) € 2 x R4 and ¢ > 0, there exist § > 0 and a modulus of continuity p,
with p(s) < C(1+s) for s > 0 and for some C > 0, such that

f@o,u0,8) — fla,u, &) < e(l+ f(z,u,8)) + p(lu — uol) (1.10)

for all x € 2 with |z — xo| < 6, and for all (u,&) € RY x RN, Assume also that
either

(a) f(xo0,u0,") is conver in RUV; or
(b) f(xo,uo,") is quasiconvex in R™N and
0< f(a0,u0,€) < CE[T+1)  for all € € RV, (1.11)

where C' > 0 and the exponent ¢ 2> 1 may depend on (xg,ug). In addition, if
q > 1, then assume that

Flwo w0 €)= SlelT = for all ¢ € BV, (1.12)

Let u € BV, (2, R?) and let {u,} be a sequence of functions in Wll’l(.Q; R?), which

oc
converges to u in Li _(£;RY). Then

n—oo

i v o C < lim inf JUn, VUuy ) dz; and
(i) /Qf(ac,u7 u)dx—|—/ﬂf (z,u,dC(u)) <1 /Qf(xu up) dz; an
(ii) of f = f(x,€), then

/ f(x, (u(z) —u (2) @ vy) dHY 71 < liminf/ f(z, Vuy,) dz.
S(u)ne N

n— oo

Theorem 1.7 improves theorem A (i) of Serrin, since condition (1.10) is signif-
icantly weaker than the corresponding (i). Moreover, theorem 1.7 is also closely
related to a recent result of Acerbi et al. [1] for integrands of the form f = f(z,£),
convex in &, where condition (1.10) is replaced by the growth condition

c(|§P —1) < f(x,6) < C2([€]7 + 1),
with
N -1

> .
qu

In the quasiconvex case, we use a result of Ambrosio and Dal Maso [4] for functions
g = g(§) such that

0<g(§) < C(+ ).
This growth condition is of vital importance for their argument to work.
When (1.11) and (1.12) hold then, by a recent result of Kristensen [23], we can
approximate f(xg,uo,£) by an increasing sequence of quasiconvex functions g;(&)
that grow at most linearly, and thus we can still use [4] for each g;. Note that

without (1.12), L. lower semicontinuity may fail even for the simplest case when
f = f(£). This has been shown by Maly [24] for

f=f(&) =Idetgl,  d=N,
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who constructed a sequence in W% that converges to u(z) = = weakly in WP,
where p < N —1, and for which lower semicontinuity fails (see also [17]). In [6], Ball
and Murat proved that f(&) = |det &| is WP-quasiconvex if and only if p > N. This
implies, in particular, that f(£) = |det {| cannot be approzimated from below by an
increasing sequence of functions g;(§) that grow at most linearly (see also exam-
ple 7.9 in [23]). This is in sharp contrast with the convex case, where it is well known
that this approximation can always be done (see, for example, proposition 9.1).

In theorem 1.7 (ii), we have chosen to restrict ourselves to integrands f of the form
f = f(z,€) because in this case there is a simple integral representation formula
for the relaxation of F' on the jump set S(u), while, when f depends on the full set
of variables and d > 1, the formula is rather complicated (see theorem 1.10 below).

THEOREM 1.8. Theorem 1.7 (i) still holds if we replace condition (1.10) with the
following.

For all (xg,ug) € 2 x RY, either f(xq,uo, &) = 0 for all ¢ € RN or, for every
€ > 0, there exist C1, Ca, 6 > 0 such that

f(wo,u0,8) — f(2,u,§)
f(z,u,8)

for all (z,u) € 2 x R with |z — 20| + |u — uo| < 0 and for all £ € RV,

eI+ f(z,u,§)), (1.13)

<
> Cif¢] = Co (1.14)

Theorem 1.8 was proven by Fonseca and Miiller [19], under somewhat stronger
hypotheses, and in the case where assumption (b) of theorem 1.7 holds with ¢ = 1.
The convex case can be thought of as a natural extension of theorem A (ii) of Serrin
to the vectorial case.

Theorems 1.7 and 1.8 are complemented by the following result.

THEOREM 1.9. Assume that the hypotheses of theorem 1.3 are verified in the vec-
torial case, with f(x,u,-) quasiconvez in RN . Then conditions (i) and (i) of the-
orem 1.8 continue to hold. Furthermore, if in theorem 1.3 (i) we assume that

[ =1>(,¢), then

P S < [ o et @) - un @) © m) i @),
S(u)ng2
A similar extension holds for theorem 1.6.
To obtain an integral representation formula for the relaxation F over the jump
set S(u) in the vectorial case, we need a different set of hypotheses.

THEOREM 1.10. Assume that f is a mon-negative Borel integrand that satisfies
(1.8). Suppose also that for all xg € 2 and € > 0 there exist two constants 0,
L > 0 such that

(o, u, &) — [P (z,u, &) <e(l+ (2, u, ) (1.15)
for all x € 2 with |x — x| < 6, and for all (u,&) € RT x R and
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for all x € 2, with |x — x| < 6, and for all (u,&) € RY x RN and t > L. Then
F(u, S(u)) = (e, ut (x),u” (2),v) dHN " (2), (1.17)
S(u)ng

where

h(an)\a 95 V) = lnf{ foo(anw(y)a V’U)(y))dy Tw e Wl’l(QV)’ w|8Q,, = U)\’g’y}

Qv
(1.18)
and
A ify-v >0,
ux 0.0 (y) == fy
0 ify-v<O0.
Furthermore, if (1.16) is replaced by
t t
foo(x7u7£)_ f(x7:7 g) <E(1+f(x7:7 £)>’ (116/)
and f*(-,u,) is upper semicontinuous, then (1.17) is an equality.
Here, and in what follows, @, := Ru(—%, %)N, where R, denotes a rotation such

that Ryey = v, and Q = (—%, %)N Also, C will denote a generic constant that
may vary from line to line.

It is not difficult to see that conditions (H2) and (H4) in theorem 4.1.4 of [7]
imply (1.16).

In addition to the novelty of the results in this paper, which significantly improve
upon classical theorems in the literature, we would like to close this section pointing
out some aspects of our approach. One of the main tools exploited in the paper is
the blow-up method introduced by Fonseca and Miiller [18,19]. This method was
first used to deal with quasiconvex integrands, since many of the techniques in
convex analysis available for the scalar case could not be easily extended to the
vectorial case. It turns out that blow-up arguments in the scalar case, combined
with some classical methods for convex integrands, may improve and simplify some
important results in the literature. Also, we use the very recent global method
of relaxation introduced by Bouchitté et al. [7], to show that the relaxed energy
density may be written in terms of a Dirichlet problem. Most of the proofs are
carried out firstly for f that grow at most linearly in the gradient variable £&. While
this approach is standard in the convex setting, and in the literature there are
several results that allow us to approximate from below convex functions by an
increasing sequence of convex functions that grow at most linearly, it was only very
recently that Kristensen brought this idea to the vectorial setting, exploiting his
approximation result for quasiconvex functions (see [23]; see also [25]).

In the presentation of the paper, and whenever it was possible, we have tried to
treat separately the energies corresponding to the Lebesgue, Cantor and Jump part
of Du, in order to better understand the corresponding scaling and the necessity
and sufficiency of our hypotheses. It is interesting to observe that the Lebesgue and
Cantor measures may be treated in a similar fashion and, more importantly, under
the same hypotheses on the integrand f. On the other hand, lower semicontinuity for
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the jump part requires hypotheses and methods which depart from those mentioned
above.

Although the hypotheses on the integrand f are rather mild, they are not by any
means minimal. Indeed, it was not our purpose to obtain necessary conditions for
lower semicontinuity, but, rather, to find simple sufficient assumptions, which would
be easy to verify in the applications. It seems, however, that lower semicontinuity
of f in the x variable is almost necessary, but it is not clear if it should always
be uniform in £ (at least for functionals that are allowed to vanish). Dal Maso’s
example (see [9]),

f(@,8) = |(sinw(x), cosw(x)) - €],
certainly seems to imply that it should. The lower semicontinuity of f in the u
variable is not necessary, as proved by theorem D, but in order to drop it, stronger
assumptions on the dependence on z seem to be needed.

2. Proof of theorem 1.1

Throughout this work we will use often truncation arguments, and the result below
will be instrumental.

PROPOSITION 2.1 (Truncation). Let f : 2 x Rx RN — [0,00) be a Borel integrand
satisfying (1.8). Suppose that there exists a sequence (gk, Ak, tk, uox) € R* such that

Ek—>0+, )\k—>)\€[0,00), tkﬁTE(0,00], Ugr — Ug € R,

and

. 1
khm a/ fxo + ery, uor + Mewr(y), tx Vg (y)) dy =: £ < oo,
— 00 Qu

where xo € 2 and {wp} € WH(Q,;R) converges in L*(Q,;R) to a function
wo € L®(Q,;R).

Let [Xessinfq, wo, Aesssupg, wo] C (a1,@2), for some ai, as € R. Then there
exists a new sequence {vp} C WH1(Q,;R), converging to wo in L'(Q,;R), such
that

i 1
khm " f(xo + ery, vor + Mevr(y), te Vor(y)) dy < ¢
— 00 Qu

and
ok + M\evi(y) € [uo + a1, ug + ag]  for LN aq.e. yEQ,.

REMARK 2.2. Tt is easy to check that the conclusion of proposition 2.1 still holds
if we replace @, by any bounded open convex subset of RV containing the origin.

REMARK 2.3. Condition (1.8) can be significantly weakened if we specialize the
sequences tg, € and xg (see lemma 8.4).

Proof. Take 0 < 2e < min{\essinfg, wo — a1, az — Aesssupg, wo}, and let k be so
large that |ug — ugk| < 3&. Define

Er :={y € Q, : uox + Mwg(y) € [uo + a1, uo + azl},
Ef ={y € Q. :uor + Mewi(y) > uo + az},
E, ={y € Qu : uor + Mpwr(y) < uo + o},
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and
wi (Y) in Ey,
Ug — Uk + Q2 . 4
v(y) = Ak in By,
up — Uk + a1 in B
Ak

Then v, € WH(Q,;R) and, for k large enough,

g > € + |ug — uor| + Ai esssupg, wo,}

a1 + e < |ug — ugk| + A essinfg, wo,
with

/ lvk(y) — wo(y)| dy

v

2/ lwi(y) — wo(y)| dy
Ey

+/ (w _ wo(y)> dy+/ (wo(y) _ w) dy
B} Ak Ef Ak

k

< Jlwk — woll 21 (@, r) — 0

as k — oo. Moreover,

1
= f(wo + exy, vor + Aok (y), tVor(y)) dy
Qv
1
= f(wo + ery, vor + Apwi(y), te Vi (y)) dy
Ey

1
+—/ flxo+ ery,up + a2,0)dy
tk J gt

1
+ — fxo + ery, up — 1,0) dy.
tk J B

By (1.8) and (2.1),

1
OS—/ f(xo + ery,uo + az,0)dy
tk J gt

C

< LN (E])
ty
C .~
< aﬁ ({y € Qu : lwi(y) — woly)| > e/Ak})
CAg
< — — 10, 0. 2.2
tre |[wy —woll (QuiR) — (2.2)
Similarly, we can show that the integral over E, approaches zero as k — oo. [
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Proof. Proof of theorem 1.1 Without loss of generality, we may assume that f is
continuous, f(z,u,-) is convex, f satisfies (1.7), (1.8) and, for all (zg,up) € 2 x R
and € > 0, there exists § > 0 such that

f(xo,u,f)—f(x,u,f)<5(1—|—f(x,u,§)) (23)

for all (z,u) € 2 x R with |z — 20| + |u — ug| < § and for all £ € RY.

Indeed, suppose that the conclusion of the theorem is true under these additional
hypotheses. By applying proposition 9.3 to the function f, and noting that (1.7)
and (9.2) are equivalent if f > 1, we may find an increasing sequence of non-
negative continuous functions f; convex in £, which satisfy (1.7), (1.8) and (2.3),
and such that f(z,u,§) 4+ 1 = sup; fj(z,u,§). Let {u,} C WEE(2;R) converge to

u € BV, (2;R) in L] (£2;R), and let A € (2. For any fixed j,

n—oo n—oo

liminf/n fx,un(z), Vun(z))de > liminf/A fi(x,un (), Vuy(z)) de — LN (A)
> Hj(u, A) — LY (A),

where Hj; is the functional given in (1.2) and corresponds to f;. If now we let
j — o0, and use the Lebesgue monotone convergence theorem and proposition 9.3,
we conclude that

lim inf /Q fx,un(z), Vuy(x)) de

2/Af(x,u,Vu)dx—F/Afoo(x,u,dC(u))

ut(x)
—|—/ (/ f“(x,s,zm)ds) dHN -t
S(u)NA \Ju~(x)

= H(u, A),

where we have used the fact that (f 4+ 1) = f°°. The result now follows by letting
A /' (2, and using the Lebesgue monotone convergence theorem once again.

Thus, in what follows, f is continuous, verifies (1.7), (1.8) and (2.3), {u,} C
Wli)’cl(ﬁ; R) converges to u € BVi(2;R) in L{ . (£2;R) and, without loss of gener-
ality, we may assume that

liminf/n fx,un(z), Vun(z))de = lim flz,up(z), Vup(z))de < co.  (2.4)

n—oo n—oo (9

Passing to a subsequence if necessary, we may find a non-negative Radon measure
1 such that
*
@, un (), Vug (2) LV [2 2 p

as n — 0o, weakly x in the sense of measures.

PART 1 (Lebesgue part). We claim that

wQlwo.€)) > f(x0, un(0), Vun(xo)) for LY a.e. zo € 2,
(2.5)
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where Q(xg,€) := zg+eQ. If (2.5) holds, then the conclusion of the theorem follows
immediately. Indeed, let ¢ € Cy(£2;R), 0 < ¢ < 1. We have

lim f(x, Uy, Vuy,)de > liminf/ of(x,up, Vuy,) dz
Q

n—oo 0 n—oo

=/ pdu
Q
du
>/Q¢(M:—Ndx
2/ of(z,u, Vu) dz.
Q

By letting ¢ — 1, and using the Lebesgue dominated convergence theorem, we
obtain the desired result. Thus, to conclude the proof of the theorem in what
concerns the absolutely continuous part, it suffices to show (2.5).

Fix zg € {2 such that

dp o p(Q(xo,€))
apy (@) = lim TR < oo, )
1 |
Jim o [ (o)~ (o)~ Vuan)a )] e =0

Choosing g, — 07 such that u(0Q(xg,er)) = 0, then
,U,(Q(,Z'(), Ek))

klim ~ = klim lim — f(x,Uun, Vuy,) dz
— 00 Ek — 00 N— 00 Ek Q(IO,Ek)

k—o00 n—o0

= lim lim f(zo + ery, u(zo) + exwn k(y), Vwn 1 (y)) dy,
Q

where
Un (o + exy) — u(wo)

€k

wn k() =
Clearly, w, ;, € WH1(Q;R) and, by (2.6),

khm hm lwn ke — woll L1 (oir) = 0,

where wy(y) := Vu(xo)y. By a standard diagonalization argument, we may extract
a subsequence wy, := wy,, ; that converges to wp in Ll(Q; R) and such that
dp

dEN(xO): lim / flxo+ exy, u(zo) + erwi(y), Vwr(y)) dy. (2.7)

Fix € > 0 and let ¢ be provided by (1.7). By proposition 2.1, with

Ak 1= €k, iy =1, uok = u(o), —o1 = g =6,

we may find a new sequence {v,} C WH1(Q;R), still convergent to wg in L*(Q;R),
such that
dp

dﬁ—N(l”o) hmlnf/ f(xo + ery, u(xo) + ervr(y), Vur(y)) dy,
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and |epvr(y)| < 6 for LN a.e. y € Q. Since €, — 0, by (1.7), we obtain

dp o
(1t &) oo) < 2 Hmin [ o0, utro), Fouo)
We can now apply Serrin’s theorem A (i) to the integrand g(¢§) := f(zo, u(zo),&) to
conclude that

(1+¢) du

dﬁN( 0) +€ = f(xo,u(zo), Vu(zo)).

The result follows by letting e — 0F.

PART 2 (Cantor part). The proof for the Cantor part is somewhat similar to the
previous one, and we will only indicate the main differences. The inequality (2.5)
is now replaced by

dp - A (u)
qC@)] (zo) = f (x(),u(xo), d|C—(u)|(x0)> for C(u) a.e. zg € 12,

where (see [2])
dC(u)

d|C—(u)|(xO) = ay(zo)vu(x0), (2.8)

with a,(z¢) € R and v,(zo) € SN~ := {x € RV : |z| = 1}. For simplicity of
the notation, from now on we will write a and v to designate a,(z¢) and v, (zg),
respectively. It is known (see [4,7,19]) that for C(u) a.e. g € £2 the following hold:

d|§—?u>|(”°) = lim, % , (2.90)
ELH(I)L ELN - lu(z) — u(zg)|da = 0, (2.95)
slio+ W =0, (2.9¢)
A, M = o0, (2.9d)

Fix 2o € £2, so that (2.9) holds. By lemma 3.9 in [7] (see also theorem 2.3 in [4]),
there exist e, — 07 such that u(9Q,(zo,ex)) = 0, and a non-decreasing function

¥ : (—%,4) — R such that the following hold,

1/2
U(5—0)—¥(-3+0) =1, / /W(s)ds= )
—1/2

zk(y) = (u(l”o +ery) — %/ u(wo + €xz) dZ) /)\k — wo(y) (2.10)
=Y(y-v)a in Ll(Qu;R),
klgfgo |D2k|(Qu) = |Dw0|(Qu)a
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where, by (2.9), A\x := |Du|(Q,(wo,ex))/er ' — 0 and tj, := \p/ep — 00 as
k — oo. Then

dp L w(Qu (o, er))
ac@] ) = M TDulQ, (@0 2))
. . 1
= lim lim ) /Qum,m f(@,tn, Vuin) do

. .1
= lim lim — | f(zo+ kY, Uonk + MeWn k(V), teVwn k(y)) dy,

k—oo n—oo t, Q.

where
Un (To + ELY) — Uon .k 1
wn,k(y) = (%0 )\y) on. ) Uon,k = un(xo + exz) dz.
k €k Y.
Clearly, w,, ,, € WH1(Q,;R) and, by (2.10), (2.9b) and the fact that {u,} converges
to win LT,
Jim i sl =0, i i o= o)

By a standard diagonalization argument, we may extract two subsequences

{wg := wn, 1}, {tok := Uon, .k}, which converge to wp in LY(Q,;R) and u(xo),
respectively, such that
dp . 1
——(x0) = lim — f(zo + ery, uor + Mewi(y), trVwi (y)) dy. (2.11)

d|C(u)] k—oo ty Jq,

We can now continue as in part (i), using proposition 2.1 and then (1.7) to conclude
that
dp |
(14+¢e)=—%—(x0) + € > liminf — flzo,u(zo), tx Vor(y)) dy. (2.12)
d|C(u)] k—oo 1 Jq,

Due to the presence of the sequence ty, we cannot apply directly Serrin’s theo-
rem A (i) to the integrand g(&) := f(zg,u(xq),£) as we did in part(i). Although
the adaptations to the present setting are quite straightforward, here we present
an alternative proof that can be extended to the vectorial case and to quasiconvex
functions. Assume, for simplicity, that ¥ = en, and construct a sequence of smooth
functions vy (y) = U, (yn) such that

1

= and |Vup|(Q) — [Dwol(Q) — 0

lon — woll L1 (@r) <

as h — oo. Since vy depends only on yy, its trace on 0Q) agrees with the trace of
a function

Apy+p(y),  An:=(0n(3) —n(—3)) ® en = Vur(Q),
where p is @Q-periodic. Choose open sets 2;, i = 1,2, 3, such that

01@02@93@62.
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Since g satisfies (1.8), by lemma 2.5 of [4], we may find a new sequence

vnk(Y) = e(Y)wr(y) + (1 — 0(y))vn(y)

such that
1 1
— [ g(txVwg)dy + — g(tkxVup) dy
tk 023 tk Q\ 1

4C 1 1
+ T/ |wk — vh|dy+ E = —/ g(tkvvmk) dy,
Q te Jo

where ¢ is a cut-off function such that ¢ = 1 in a neighbourhood of {25, ¢ =0in a
neighbourhood of RV \ £23, and § < dist ({25, 9623). By virtue of the quasiconvexity
of g, together with the growth (1.8) (recall that, in the scalar case, quasiconvexity
is equivalent to convexity), we obtain

N
g(thwk) dy + C(%}C\Ql)

=/ +Vul@\ 1)

> tig(thvh(Q))-
k

el

4C
+ — |wk — ’Uh| dy +
o Jo
Letting £k — oo gives
1 4C .
lim = | g(tsVwr)dy + CIVurl(Q\ 1) + = lwo — va| dy = g*° (Vun(Q));
Q Q

hence, taking the limit as h — 0o, we conclude that

k—oo Uf

lim i/Qg(thwk)dy—F C|Dwol(Q \ $21) = g*°(Vwo(Q)),

where we used the continuity of ¢ (see proposition 9.1), and the fact that
[Vu,|(Q) — |Dwg|(Q). If we now let 2, /" Q, we get

thus
_dn o dC(u)
dCw)] (vo) +e = f (xo,u(xo), d|C—(u)|(x0)> :

It suffices now to let ¢ — 0.

PART 3 (Jump part). To complete the proof of theorem 1.1, it remains to show
that

dp

u™ (o)
d'HN_—lt»S(u)(xO) = / foo(l‘(), S,I/) ds for HVN 1 ae. X € S(u),

~ (o)
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where v = v, (z0) is the normal to S(u). It is known that (see [7]), for HV ! a.e.
xp € S(u),

dp e H(Qu(@o,€))
T 1[50 ") = T <
e .
Elir(r)l+ o~ o o lu(z) — u™ (zo)|dz = 0, (2.13)
. 1 -
ELI%L g lu(z) —u” (o) dz =0,

where
Qj('x075) = {,Z' € Qu(anE) : (,Z' - .Z'()) V> O}a
Q;(l’o,E) = {,Z' € Qu(l’o,E) : (,Z' - 170) v < 0}
Fix 7y € S(u) such that (2.13) holds, and choose a sequence g, — 07 with

w(0Qu(xo,er)) = 0. Then

ii—u(l”o) = lim ———F—
dHN 1LS(U) k—o0 €L

1
Q. (zo,ek)

1
= lim lim Ekf(xo + ery, wn k(Y), E—ank(y)> dy,
Qv k

k—oo n—o0

where wy, k(y) := un(vo+exy). Clearly, wy, . € WH(Q,;R) and, by (2.13), together
with the fact that u,, converges to u in L',

ut(zg) ify-v>0,

u” (zg) ify-v<O0.

k—oo n—o0

lim lim [Jwy, — woll (g, m) =0, where wy(y) := {

As before, by a standard diagonalization argument, we may extract a subsequence
{wg, := wp, 1} converging to wy in L}(Q,;R), with

dp

50

. 1
lim Ekf(xo + exy, wi(y), avwk(y)> dy. (2.14)

- k— o0 Q.
Fix € > 0. By (2.3), for each uj € [u™(xg),u™ (x0)], there is &,, > 0 such that
f(x03u7£) - f(.l‘,u,f) < 5(1 + f(x,u,f))

for all |z — zo| < 0u,, |u — u1| < 0y, and for all £ € RY. Since

U B(uy,84,) D [u™ (o), u™ (o)),

u1 €[u~ (wo),ut (z0)]

we may find a finite subcovering

M
UB(ui,&) S [u (o), ut (o))
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Set 0 := min{dy,...,dx;,0F,07}, where 6T are provided by (2.3) corresponding to
the points (xq,u™(x()), respectively. Then

f(xo,u,f)—f(x,u,§)<5(1+f(x,u,§)) (2'15)

for all |z — x| < 8, u € [u™(x9) — &,ut (x¢) + §] and for all £ € RV,
By proposition 2.1, with

A =1, t = 1/eg, ugk = 0, a1 =u" (xzg) — 0, s = ut(z0) + 0,

there exists a new sequence v, € WH(Q,;R), convergent to wg in L'(Q,;R), such
that vy (y) € [u™ (z9) — a1,u™ (x0) + ao] and, by (2.14) and (2.15), we have

(1—|—E)dHNi1—fLS(u)(xo) >hkrggf/cgu Ekf(xo,vk( ), —Vvk( )) dy.

Since h(u, &) := f(xo,u,§) is continuous, by an approximation result due to Ambro-
sio [3], we can write

h(u,€) = supla;(u) + bi(u) - ] *,

€N

where the functions a; : R — R and b; : R — R¥ are bounded and continuous. It
is not difficult to see that

o (u, €) = sup|b(u) - €]*.

Therefore (see [12, lemma 6]),

u" (o) J +(900)
/ hoo(s,y)ds:supsup{Z/ s)[bi(s) - v] T ds :

u~ (zo0) JEN i=1 (xo)

Fix j € N, ¢1,...,%;, as in (2.16), and let ¢ € C§°(Qy;10,1]). We have

¢ +s>dHNii—i‘LS(u)<xo>

1 +
so(y)smwk(y))[am(y)) + Sty m(y)} ay

>tmint " [ o)) bior(w) - V)] dy,

where we have used the inequality (a+3)T > (8)T — |a] for o, 8 € R, the Lebesgue
dominated convergence theorem, and the fact that

exlai(vr ()] < llaill L~ @yex — 0.
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By a result of De Cicco [12, theorem 1], we have

(I+¢)

WV

d J u® (wo) B
e U3 MY MG Al

u™ (@o)
and, taking ¢ ' 1, we obtain

du J u™ (20)
l+e)———— / / Vi (8)[bi(s) - 1/]+dsdHN_1(y)
dHN=1[S(u ; S(wo) Ju- (wo)
J +(900)
Z/ [bi(s) - v]T ds.
=1 U (zo0)

In view of (2.16), the proof is concluded by taking the supremum over all j € N,
¥1,...,1;, and letting ¢ — 0. O

3. Proof of theorem 1.3
PART 1 (Lebesgue part). Assume first that f is Carathéodory. Consider
F : BV(£2;R) x A(£2) — [0, 00],

where A(£2) stands for the family of open subsets of 2. It can be proved that F(u; )
is the restriction to A(£2) of a Radon measure, F(-; A) is L'(A) lower semicontinuous

and
0 < F(u,A) < C(LN(A) 4 |Du|(A)).

For a proof, we refer to lemma 4.1.2 of [7] (see also [5,19]). Let
Fi(u, A) :== F(u, A) + | Du|(A).
By theorem 3.7 of 7], we have
dFi(u,-) dF(u,-)

aLy (@) = —g7w
= fi(xo,u(xg), Vu(zg)) for LY a.e. xq € 12,

(z0) + [Vu(zo)l

where

fi(xo,ug, &) = limsup ;\/ inf{F1 (v, Q(zo,€)) : v € BV(Q(xq,¢)),

e—0*

V]0Q(w0,e) = Uo + & - (x — x0)}-
Thus the proof of part (i) is completed, provided we show that
fi(zo, w0, &) < f(@o,uo, ) + [¢]
for LN a.e. z € 2 and for all (ug, &) € R x RY. Clearly,

fl(anu(]aé-) < hmsup ELN]:(UO + é- : (,Z' - 170),@(1»‘0,5)) + |£|

e—07t

1
< limsup — f(@,u0 + & (= x0), &) dz + [¢].
e—0t € Q(zo,e)
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Since f is Carathéodory, by the Scorza—Dragonitheorem, for each ¢ € N, there exists
a compact set K; C £2, with LY (2\K;) < 1/i,such that f : K; xRxRY — [0, 0] is
continuous. Let K be the set of Lebesgue points of x g, , and set w := U (K;NK}).
Then

1
N2\w) < LY\ K) <= —0 asi— oo.
i
If 29 € w, then g € K; N K for some index 4. Since g(x) := f(z,up +&(xz — x9),&)

is continuous over K, given § > 0, there exists 7 > 0 such that g(z) < g(xg) + 0
for all x € K; with |z — zg| < 7. Therefore, by (1.8), we have

N ,
10, 10,8) — €] < (o, 10,) + 8) Timsup S X I

e—0t
N(Q(xo,6) \ Ki)
EN

L
+ C(1 + [¢]) limsup

e—0t

= f(x(),u(),é-) + 67

where we have used the fact that x( is a Lebesgue point of xg,. Letting § — 07,
we obtain the desired inequality. The argument for the case where f(-,-, ) is upper
semicontinuous is very similar to the one used in theorem 1.3 (ii) below, and there-
fore we omit the details.

PART 2 (Cantor part). By lemma 3.9 of [7], for C(u) a.e. zg € {2, there exists a
double-indexed sequence {tg us } such that, for every k,

tgk) — 00, Etgk) —0t, ugk) — u(rg) ase— 0" (3.1)
and
d]:l(u7 )
o
dF (u,-)
= lim hmsup;inf{fl(v Q¥ (z0,¢)) : v € BV(QW (20, ¢))
koo ot fN—1gN¢(F) v ’ v T
U|BQ(U;C>(IO’E) =u® + tWap - (- z0)},
where
dC(u)
= = eR
d|C(u)| (xO) av, a a’(u7x0) ’
v=wv(u,zg) € SN! QP (wo,e) == wo + QP
with

QW = R,((—1k, 1k)N 1 x (=1,1)),
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where R, denotes a rotation such that R, ey = v. Take zg € {2, so that all the
limits above exist and are finite. Then

dF(u,-)

d|C(u)| (.Z‘()) + |a|

1
< lim limsup Fr(w® +tPap - (z — z0), QW) (20, ¢))

k—oo ._,o+ k‘N_lEthk)

1
< lim hmsup—k
koo oo+ fN—1gN¢(F)

x / @ u® +tW®ay - (z — 20),t®av) dz + |al.
Q" (wo.e)
(3.2)
By proposition 9.1, (9.1) and (1.8),

F@,u® 1P av(e — o), 1 av)
()

Sz, ugk) gk)au (x — o), 0)
®

< e, ul® + tWav - (2 — x0), av) +

< e, ul® + tWav - (2 — x0), av) + %
te
Therefore, by (3.1) and (3.2),
dF(u,-)
FlEo

- 1 0o
< lim limsup NN /Q(k)( } 7@, ul +t®ay - (2 — 20), av) da
xo

k—oo o0+

= lim limsu (@0 + ey, u® + etPav -y, av) dy.

k—oo Eﬁmp EN=1 Jow

Since the function f°°(:,-, av) is upper semicontinuous, given & > 0, there exists
n > 0 such that f>(z,u,av) < f(zo,u(zo),av) + ¢ for all |z — z¢| < n and
lu — u(zg)| < 1. By (3.1), for each fixed k, if ¢ is small enough, then

zo+¢ey € B(zo,n) and u® + etWay -y € [u(xzo) — 0, ulzo) + 1)

for ally € Q(Vk). Hence

o 2 (xo + Ey,ugk) + Etgk)au ~y,av)dy < (f°(xo, u(xo), av) + 6)/<:N_1

and, in turn,

(“’f( 0) < f= (0, ulzo), av) + 6.

d|C(u)

We now let § — 0.
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PART 3 (Jump part). By theorem 3.7 of [7], for HN 1 a.e. 29 € S(u),

dfl(u, )
THY 15 (a) 70
— T o)+ ' ) = a)
1y inf{fl(v, Qu(l‘o,E)) TV E BV(Qu(an 5))a U|3Qu(ro,5) = ’U)()}
= limsup N1

where v = v, (x0) is the normal to S(u) and

ut(zg) if (z — x9) - v > 0,

O L) i @) v <0

Take zp € S(u), so that all the limit above exists and is finite. Then

T (ao) +  0) = )
< lim sup P00 Qul0:2) 4 it () — (o).

In what follows we assume for simplicity that o = 0 and v = ey, and we set
ut(zq) if vy = ¢e/2n,

+i(ut(zo) + u™(mo)) if —e/2n <ay <g/2n,
u™ (xg) if zy < —¢/2n.

Clearly, |[un.c —wollL1(Q, (z0,c)) — 0 as n — o00; thus

n—oo

Flu, Quleo <) <limint [ unclen), 0., 0,0 (o)) do
Qv (zo,¢)

and, by a standard diagonalization argument,

dF(u,-)

a5 "

. .. 1
< lim liminf ~ T
e—0t n—oo £

/ f(@,un(2n),0,...,0,u, (zN))dz
Qv (zo0e)

1
< liminf/ Ekf(l‘o + ery, vk(yn),0,...,0, E—v;(yN)> dy,
Qv k

k—oo
where
ut(x0) if yy = 1/2ny,
ve(yn) = (u™(z0) — u™ (o)) AYN
+3(ut(zo) +u(z0)) if —1/2ns < yn < 1/2n4,
u_(l‘()) if YN < —1/2nk,
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and ny — 00 as k — 00. By proposition 9.1, (9.1) and (1.8), we have
Ekf(x() + Ekyavk(yN)a 07 R 703 (1/5k)vl/c(yN))

< (w0 + ey, vk (yn), 0, .., 0,0, (yn)) + enf(zo + ery, ve(yn), 0)
< [0 + erxys vk (yn),0,...,0,v(yn)) + Cep.

Therefore, Fubini’s theorem yields
dHN-1S(u)

< liminf/ (w0 + exy, vk (yn), 0, ..., 0, v, (yn)) dy
Q

k—o00

(zo)

1/2nk
= likminfnk/ (/ (w0 + erxy, vi(yn), (u' (z0) — u™ (20))en) dyN) dy/,
—00 ' \J 2120,
(3.3)

where @’ is the unit cube in RV~1, and where we have used the fact that f>° is
positively homogeneous in £. Following [5], we now introduce the Yosida transforms

fa(@,u,8) = sup{f>(2’,u,§) — A2’ — 2| : 2" € 2} (3.4)
for A > 0. For A < n and by (1.8), it follows that

We claim that
)\h_)rgof)\(x7u7£) = foo(x7u7§) (36)

Indeed, let A > 1 and choose z) such that

Falr,u,€) < % n, ) = Alax — ol + 7.

By (3.5),

foo(x7u7§) < f)\(x7u7§) < f)\(.l',’l,L,g) + )\|.Z‘)\ - .Z‘| < foo(x)\au7£) + % (37)

Since the right-hand side is bounded by C|£|+ 1 and f > 0, it follows that z) — x
as A — o0o. If we now let A — oo in (3.7), and use the fact that f*°(-,u,§) is upper
semicontinuous, we obtain (3.6).

Next we show that f) is Lipschitzian. Fix ¢ > 0, x, 2z, € {2, and find z. such that

f)\(.l'7u7 ) < foo(xsau7§) - )\|175 _,Z'| +e
foo(x€7u7§) - )\|175 _171| +)\|17—.Z'1| + €

<
< fn(zr, u, &) + Mz — x| + &

If we now let € — 0, we obtain

fA(.Z',’LL,g) - f)\(xl,’LL,é-) < )\|.Z' — 1
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and, in a similar way,
f)\(xlau7§) - f)\(x7u7§) < )\|.Z‘ - .Z‘1|.

We conclude that
|f>\(x,u,§)—f>\(x1,u,§)| < )\|.7J—.Z‘1| (38)

for all z,z; € 2, u €R, £ € RV,
Fix A > 0. By (3.3), (3.5) and the fact that f, is Lipschitzian, we have

dF(u,-)

T—1[5 ) )
1/2nk
< likminfnk/ (/ (@0 + exy, vi(yn), (u' (zo) — u_(xo))ezv)dyzv> dy’
o '\ —1/2n
1/2nk
< likminfnk/ (/ Ia(@o +ery, vr(yn), (uh (z0) — u_(xo))ezv)dyzv> dy’
—00 ' \J 120,
1/2nk
< likminfnk/ (/ Ialzo, v (yn), (uh (o) —u™ (g))en) + )\5k|y|dyN> dy
o '\ —1/2n

1/2n
= likm inf ny, / Ix(zo, v (yn), (u™ (20) — u™ (20))en) dyn.
o —1/2ny

A simple change of variables now yields

dF (u, ) 1 /uwo)

dHN=1| S (u) (w0) < ut(x0) —u™(20) Ju-(20) Fal@o, s, (u' (@o) —u”(z0))en) ds.

Letting A — oo, by (3.5), (3.6) and the Lebesgue dominated convergence theorem,

we obtain
T 1[50 ")
1 ut (20) N
< U ) S, —u- d
AZo T (20) — u (o) /u—(ro) Faleo, o (™ (@o) —u™(Eo))en) ds
ut (zo)
:/ 2 (xg, s,en) ds,
u~ (zo0)
where we have used again the fact that f°° is positively homogeneous in &. O

4. Proof of theorem 1.5

PART 1 (Lebesgue part). We claim that g(z) := f(z,u(x), Vu(z)) € Li.
To show this, it is clearly enough to prove that

/ g(z)dzr < oo
Q(z0,0)

(2;R).

https://doi.org/10.1017/50308210500000998 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000998

544 1. Fonseca and G. Leoni

for any g € {2 and 6 > 0 sufficiently small. Let § > 0 correspond to € = % in (1.9).
Then

oo > lim fx,un(z), Vun(z)) de

n—oo (9

> 2tmint [ fwo,un(a), Vun(z) do — 36V,
Q(z0,0)

n—oo

The functional

Fo(v, A) ::/Af(xo,v,Vv)dx+/Afoo(xo,v,dC(v))

v (x)
—|—/ (/ foo(xo,s,l/u)ds> dHNL
S(v)NA v ()

satisfies all the conditions of theorem 2 in [12], and

Fo(un,A)z/Af(xO,un(x),Vun(x))dx,

since u,, € Wl’l(.Q; R); thus, taking A := Q(zo, ),

loc

oo > lim fx,un(z), Vuy(x)) de

n—oo (9
> %FO(U7Q('I"076)) - %JN

> 1/ g(x) dz — 26V, (4.1)
3 JQ0.6)

where we have used (1.9) a second time. Therefore, the claim is proved.

Let 2(u) be the set of Lebesgue points of g. Since g € L{.(£2;R), we have
that £V (£2\ £2(u)) = 0. We now proceed essentially as in the proof of theorem 1.1,
starting from (2.4) up to (2.6), where, without loss of generality, we may also assume
that 7o € 2(u). Fix € > 0 and let § > 0 be such that (1.9) holds. Choose e, — 0%

such that p(0Q(zo,er)) =0, ex < 0, and

dp 1
——(z0) = lim lim — f(x,up, Vuy,) dz
d[,N k—o0 n—o0 EkN Q(Io,Ek)
1 €
> liminf liminf — flxo,upn, Vu,)dz — (4.2)
14+¢e koo n—oo EkN Q(zo,er) 1

For fixed k, again by theorem 2 in [12], applied this time to Fy(-, Q(xo,ex)), we

obtain
oo ] 1

liminf —= f(xo, un(r), Vup(x)) de > — f(zo,u(z), Vu(z)) dz
o0 € JQ(wo.ek) €k Y Q(zo,ex)
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(recall that f°° > 0) and, consequently,

dp 1 1 €
——(xg) 2 liminf — o, u, Vu)dz —
d[:N( 0) 1+E E— o0 5‘}lc\[ Q(IO’Ek) f( 0 ) 1+E
1-— 1 2
> Eliminf—N/ flz,u, Vu)dz — °
1—|—E k— oo Ek Q(Io,Ek) 1+E
1—c¢ 2e
= — v —
T3/ (@o, ulwo), Vulwo)) — 79—,

where we have used (1.9) and the fact that xg € 2(u). We now let € — 0.

PART 2 (Cantor part). By (4.1), the function

dC(uw) 1
hz) = f“(x,u(x),—(x)) € L,.(2;|C(w)]);
thus, by the Lebesgue—Besicovitch differentiation theorem,

1
lim / hd|C(u)| = h(zo)
Q,,(Eo,f)

=0t |C(u)[(Qu (20, €))
for |C'(u)] a.e. xg € 2. Moreover, it is known that, for C(u) a.e. zg € £2,

[C()|(Qu (o, )

I D0 @, 0)
hence
lim ;/ h(z)d|C(u)|(x) = h(zo) (4.3)
e—0* |Du|(Qu(xOvE)) Qv (xo,e)

for |C'(u)] a.e. zg € 2. Let M;(u) be the set of all points of {2 that satisfy (4.3). Then
|C'(w)](£2\ My(u)) = 0. We now proceed as in the proof of part (ii) of theorem 1.1
up to (2.10), with the only difference being that we impose the further restriction
that zg € M;(u), to obtain

dp L 1 /
———(zg9) = lim lim Ty Uy, Vg, ) dz.
d|C(U)|( 0) k—oo n—oo |Du|(Qu(l‘0,Ek)) Q. (z0,ek) f( )

The remaining part of the proof follows an argument similar to that of part (ii)
above after (4.2), except that the integral is now averaged over Q,(xg,¢cx), and we
use (4.3) at the end. We omit the details.

PART 3 (Jump part). It suffices to use arguments similar to those of parts (i)
and (ii) above. O

5. Proof of theorem 1.6

PART 1 (Lebesgue part). Fix n € N. Applying the Scorza—Dragoni theorem to the
function f : 2 X [-n,n] x RN — [0,00) for each i € N, there exists a compact set
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K;, C R, with £LY([-n,n]\ K;,,) < 1/(i2"), such that f: 2 x K; , x RY — [0, 00)
is continuous. Let K, be the set of Lebesgue points of Xk, ,,, and set

w —UUKmmK*

Then

1
Zﬁl —n,n]\ Kin) <= —0 asi— o0,
i

and so |Du|(A) = 0 (see, for example, lemma 1 in [11]), where
A:={ze 2\ S):ulz) € R\w}.

Fix zg € 2\ S(u). If zg € A, then, up to a set of N-dimensional Lebesgue measure
zero, we may assume that Vu(zg) = 0, so that, as in the proof of theorem 1.3 (i),
we have

fi(zo,u(z0),0) = lim —7:( (z0), Q(z0,¢))

e—o+ eV

1
< limsup — f(z,u(x),0)dx
e—0+t € Q(z0,¢)

= f(l‘(),u(.l‘o), O)a

where we have used the fact that f(-,u(zg),0) is continuous. If zg € (2\ S(u))\ 4
and Vu(zg) = 0, then we proceed as above. If zg € (£2\ S(u)) \ A and Vu(zg) # 0,
then set

Vu(x

vim W) e Vuleg),  wole) = ulao) + £z o).

V()]
Find n € N such that [|wollz=(q, (@o,1)) < 7 and let i € N be such that u(zg) €
KinNK},. Since g(x) := f(z,wo(z),§) is continuous over wy H(Kin), given § > 0,
there exists 7 > 0 such that g(z) < g(wo)+6 for all z € wy *(K;,,,) with |z —20| < 7
Therefore, as in proof of theorem 1.3 (i), and by (1.8),

J1(wo,u(z0),§) — |§|
= lim —7:( (7o), Q(w0,¢€))

emo+ eV

-1
< (f(mo,u(x0), &) + 0) limsup EN(Q”(xO’E;\? wy (Kin))

e—07t
N(Qu(an E) \ w()_l(Kl,n))
EN

L
+ C(1+ [¢]) limsup

e—07t

< flao, ulwo),€) + 9, (5.1)
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since, by the co-area formula (see [32, theorem 2.7.1]), we have

[’N(Qu('anE) \ w()_l(Kl,n))

eN

lim sup
e—07t

LY(Qu(0,2) Nwy ' (Kin))
EN

=1—liminf
e—0t

| Dwo(x)| dz

=1—liminf

e—0F |§|EN/Q (z0,6)Mwy  (Kin)

_ 1 N—-1
=g T 0 N Qe

For simplicity, we assume that xg =0, u(zg) = 0, v = en, so that

—1, 4N S is\l
()QQ@CO,)—{;[ 2 3) x {s} if[s| < 3elé],

if |s| > 3elél:
thus
['N v 0! Kin mKin
limsup @ (xO’E)N\ Wy (Kin)) =1 — liminf L= 25|§| EKH ) =0,
e—0+ € e—0" 135

where we have used the fact that u(zo) is a Lebesgue point of xg, . By letting
d — 07 in (5.1), we obtain the desired inequality.

PART 2 (Cantor part). The proof for the Cantor part is very similar to the previous
one (see also the proof of theorem 1.3 (ii)), and therefore we omit the details.

PART 3 (Jump part). The proof follows the same arguments of the proof of theo-
rem 1.3 (iii). O

REMARK 5.1. In the proof of theorem 1.6, we have used the fact that f(-,u,-) is
continuous. Indeed, it is well known that the convexity of f(x,u,-) together with
the growth condition (1.8) imply that

|f(x,u,§) - f(x7u7£0)| < C|§ _£0|

for all (z,u) € 2 xR and all ¢, & € RY, and thus for fixed (z9,u, &) € 2 x R x R?
we have

|f(x,u,§) - f(,l‘o,u,fo)| |f(x,u,§) - f(x,u,§0)| + |f(x,u,§0) - f(,l‘o,u,fo)|

<
< C|§ - £0| + |f(x,u,§0) - f(x05u7£0)|'
It now suffices to let (z,£) — (xg,&o) and use the continuity of f(:, u,&g).

6. Proof of theorem 1.7

PART 1 (Lebesgue part). We proceed as in the proof of theorem 1.1 (i) up to (2.7),
where instead of using the truncated sequence, we apply condition (1.10) to get

(I+¢) du

awteo) + 2> mint | fGao,u(a), V) [ o) ay
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By Fatou’s lemma, and since p is continuous with p(0) = 0, we have

C — limsup/ pleklwr(y)]) dy
Q

k— o0

k—o00

= liminf/Q[C(l + erlwr (y)]) — plerwr(y)])] dy

> [ tmind[C0 -+ alunw)) - plerlun@))dy = C,
Q

k—oo
and so
/p<sk|wk<y>|>dyeo as k — oo.
Q
Thus dy
(14 ) eo) = > timin [ fGao,uleo), Vun)dy. (6.)
— 00 Q

If g(&) := f(zo,u(z0),§) is convex, then we may apply Serrin’s theorem A (i), which
continues to hold in the vectorial case. If g is quasiconvex and ¢ = 1 in (1.11), then
we apply a result of Ambrosio and Dal Maso [4] (see also [19]) to conclude that

du
1+¢
(1+£)= e (w0)
It is now sufficient to let ¢ — 07 to obtain the desired result. When ¢ > 1 and g is
quasiconvex in (1.11), then we can apply an approximation result of Kristensen [23,
proposition 1.9] to write

+e = f(zo, u(zo), Vu(zo)).

f(zo,u(z0),§) = Sl;pgj(§),

where g;(&) is quasiconvex, g;(€) < gj+1(§) and g;(§) = a;|&| + b; for [¢] large, say
|¢] = r;. From (6.1) and for any fixed j, applying [4], we have

(1t €)oo 2 2 Ty [ g,(F))ay > g5 (Vo))

and then let j — oo.

PART 2 (Cantor part). We proceed as in theorem 1.1 (ii) until (2.11), where (2.8)
should now be written as
dC(u)

d|C—(u)|(xO) = au(.l'o) @ I/u(.l'()), (62)

with a,(z9) € R and v, (z¢) € SV 1, and where we have used Alberti’s result [2].
By (2.11) and (1.10),

(I+¢)

dp . 1
2 \ " ) ) \%
q[C () o) +e kggo{ . f(zo, ulzo), tk Vwr(y)) dy
1

= | pllulwo) = ok + Awi(y)]) dy} :
k

(6.3)
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As p(s) < C(1 + s) for all s > 0 and for some C > 0, wy converges to wq in
LY(Q.;RY), ugr converges to u(zg), \p — 0, and £, — 0o as k — 0o, we have

1
= p(lu(zo) — uor + Arwr(y)|) dy — 0,
kEJQ.
and thus
A4 —H oy te> tim = [ Flzo, ulzo), ts Vor () d (6.4)
d|C(u)| 0 Z m T o, 05 0)slk kY Y. .

If ¢ is quasiconvex and ¢ = 1 in (1.11), then we can proceed as in theorem 1.1 (ii)
starting from (2.12). When g(§) := f(xo,u(z),§) is convex, or g is quasiconvex
g > 1 in (1.11), then we use proposition 9.1 below or proposition 1.9 of [23], to
deduce from (6.3) and (6.4)

(I+¢)

dp . 1/
> lim — (teV :
A0 o) +& 2 i = | gi (Vo (y)) dy

v

Proceeding as in the case ¢ = 1, we obtain

Since the function h;(t) := g;(ta ® v) is convex, by proposition 9.1 and (9.1), we
have, for t > 1,

du gita®v) g;(0)

> - : 1.
ac @) ) t F o

As f(20,u(20),0) = sup; g;(0) < C, letting j — oo yields

du f(zo,u(zp),ta®@v) C
aC ) o) 2 ¢ T

We now let t — oo.

REMARK 6.1. Note that when (1.12) holds, then

+oo if & #£0,

foo(x(]au()ag):{o lfé-:O

PART 3 (Jump part). We proceed as in theorem 1.1 (iii) up to (2.14). By (2.14)
and (1.10),

(1+¢) () + &> lim skf(xo, ink(y)> dy.

o+
dHN-1 LS(U) k—o0 Q.

Now we continue exactly as in the proof of the Cantor part in theorem 1.7,
starting from (6.4), with the vector a in place of u¥(29) — u™ (z0). |
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7. Proof of theorems 1.8-1.10

Proof of theorem 1.8 (Lebesgue part). We proceed as in theorem 1.1 (i) until (2.7).
If f(zo,u(xo),&) = 0 for all &, then there is nothing to prove. Thus we assume
that (1.13) and (1.14) hold, we fix € > 0 and let § > 0 be given by (1.13) and (1.14).

STEP 1. We first prove the theorem under the additional hypothesis that there
exists M > 0 such that
0< flz,u,§) < M(1+9) (7.1)

for all 2 € 2 with |z — x| < 6, u € R? and ¢ € R4, As in [18, proposition 2.6], we
may find wy, € C$°(RY;RY), with wy, — wg in L, wo(x) := Vu(xg)z, such that,
by (2.7), (1.14), and for k sufficiently large,

d
et > | F(wo-+ <4y, utzo) + exn(v), Veor(y) dy
QN{|wr|<6/en}

> Cl/ [Vwy(y)| dy — Ca;
QN{lwk|<d/ex}
thus there exists a constant K > 0 such that

/ |[Vwg(y)|dy < K. (7.2)
QN{|wk|<6/en}

In order to truncate wy, fix s, > |lwollLe(q;re) + 1, Lr > s and construct a
smooth cut-off function gy, : R? — R4 such that

with |g(u)| < |u| and |Dgy(u)| < CLy /(L — s3) for all u € RZ. Define

vk (y) = gr(wk(y))

and
Ep:={y €Q:|wr(y)| < si}
Efi={y € Q:|wk(y)| > Ly},
B :={y€Q: s, <|wp(y)| < Li}.
Then

- /E w(y) —wo(y)|dy+fEk+ '“’O(y)'d“/E; 91w (y)) — wo(y)| dy

< Jlwe — woll L (@ray + llwoll o (@urey LN (B U EFF) + / wi(y)ldy

k

< 2wy — U)OHLl(Q;Rd) + 2||w0||Loo(Q;]Rd)£N(Ek_ U El—:) — 0 ask — o0,
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since
0< LY(E; VEY)
=LY{y € Q : |wi(y)| = si})
<LY{y € Q : lwi(y) — wo(y)| = 1})
< we = wollzr @me). (7.3)
Moreover,

/Q F (o + exysulxo) + exvn(y), Vor(y)) dy

=/, f(wo + exy, u(wo) + exwi(y), Vwg(y)) dy

[ s+ e utz),0)dy
5t

+ o (2o + ery, u(zo) + ervr(y), Vur(y)) dy. (7.4)

We claim that the last two integrals are infinitesimal as k& — oo. Indeed, by (7.1)
and (7.3),

0< /E+ f(@o + ery, u(wo),0)dy < MLN(E) — 0,
i
while, from (7.1) and the co-area formula,
| steo+ cuuton) + ), Vo) dy
K
<M (14 |Vgg(wi)Vwg|) dy

Ey

L
<M(L:N(E,;)+ CLx / |Vwk|dy>
By

Ly — sg

Ly
() + 2 [T gy € @) = har).

(7.5)
By theorem 7.10 of [29] and (7.2), for £ a.e. L < §/ex, we have
NS SR A -
lim — / MY ({y € Q Jwr(y)| =t dt = HY ' ({y € Q : [wi(y)| = L}).
(7.6)
Moreover, by lemma 2.6 in [18] and (7.2), for any 0 < a < 8 < §/e, we obtain
essinfre(a,g) LHN_l({y €Q :|wk(y)| =L}) < r .
’ log(B/a)
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Set a 1= 6/51/4 and § := 6/5,16/ , and find Ly € (6/51/4 6/51/2) such that (7.6)
holds and

_ 2K
LiHN ' ({y € Q : lwi(y)l = Li}) < S ——
log(1/e,")
Choose s > %Lk so that
[ e @ i = mars — 2]
s wg = _— -
Li—sn sy, log(1/e)/*) K

Then the integral on the right-hand side of (7.5) approaches zero as k — oo, and
so, from (7.4),

du

agiwan) 2 Hminf [ (oo + evy. utzo) + evni), u(1) dy

Since e — 0, by (1.13), we obtain

(1 +E)dilN( 0) +e= liminf/Qf(xo,u(xo),Vvk(y))dy.

k—o0
We can now continue as in the proof of theorem 1.7 (i), and the result is established
if f satisfies (7.1).

STEP 2. In the general case, let ¢ € C5°(R%R) be a cut-off function, with
0 < < 1, and such that ¥ =1 on B(u(xg), %6), 1 = 0 outside B(u(xg),9).
From (2.7),

di:—’uN( 0) = hmlnf/l/) u(xo) + exwi(y))

X f(zo + exy, u(zo) + exwr(y), Vwi(y)) dy,

and by (1.13),

(I+¢) du

dEN( 0) e hmmf/ Y(u(zo) + erwi(y)) f (xo, u(xo), Vwi (y)) dy.

If f(xo,u(xp),-) is convex (respectively, quasiconvex with ¢ > 1 in (1.11)), we use
proposition 9.1 (respectively, proposition 1.9 of [23]) to approximate f(xo, u(xo), &)
by an increasing sequence g;(§) of convex (respectively, quasiconvex) functions such
that

0 < g;(§) < C;(I¢[+1). (7.7)
If f(zg,u(xg),-) is quasiconvex with ¢ =1 in (1.11), we simply take

9i(&) = f(wo, u(x0),&) for all j.

For any fixed j,

(I+¢) du

awm) + 2> mint [ pluten) + enn(s)a; (V1)
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and f;(z,u,§) := ¥ (u)g, (&) satisfies (7.1). Moreover, by (7.7), equation (7.2) contin-
ues to hold, provided we replace § with %6. Finally, equation (1.13) is still satisfied
at the point (xg,u(zg)). Therefore, we can apply the first part of the proof to get

e (20) > V(a0 (Tu(zo)) = g5(Vulzo)).

It suffices to take the supremum in j. O

Proof of theorem 1.8 (Cantor part). We proceed as in theorem 1.1 (ii) until (2.11).
We can now truncate the sequence wy using an argument similar to that of the
Lebesgue part of theorem 1.8 (note that the only property of wg(y) that has been
used is the fact that it is bounded), and then continue as in the Cantor part of
theorem 1.7, using (1.13) in place of (1.11). We omit the details. O

Proof of theorem 1.9. The proofs of parts (i) and (ii) of theorem 1.3 and of the first
part of theorem 1.6 continue to hold. We observe that in theorem 1.3 (ii), since a®v
has rank one, the function g(t) = f*°(z,u,ta ® v) is convex and thus we can still
use proposition 9.1 and (9.1).

If f*° = f*°(z,£), then the proof of theorem 1.3 (iii) is still valid with some
obvious modifications. O

Proof of theorem 1.10. We proceed as in theorem 1.1 (iii) until (2.14). Fix € > 0
and let k be so large that e < min{d,1/L}, where ¢ and L are provided by (1.15),
(1.16). Then, by (1.16) and (1.15), in this order,

()
AHN=T[S(u) °
. 1
= lim Ekf(xo +Eky,wk(y),—Vwk(y)> dy
k—ooJg, €k
. o 5
>zt |G+ eu (o), Vo) dy —
>;liminf/ F (w0, wi (y), Vag(y)) dy — ——s — —
/(1+E)2 A o 0, We\Y), kY Yy (1+E)2 1+¢
E E
> = (2o, v -t (7.
1o nsup Quf (zo, vi(y), Vur(y)) dy T+o2 T1+¢ (7.8)

where we have used lemma 2.6 and remark 2.7(1) of [7] to obtain a new sequence
v € WHHQ,; RY) that converges to wg in L'(Q,;R?) and such that vlag, = wo.
It now follows from (7.8) and the definition of the function A in (1.18) that

dp 1 € €

dHN——l[S(u)(xO) > mh(ﬁfo,u+($o),u—($o),V) TUT? T4e

3

and we obtain the first part of the theorem upon letting e — 0.
We first prove the reverse inequality to (1.17) under the additional coercivity
assumption that there exists C' > 0 such that

flz,u, &) > Cl¢| for all (z,u,€) € 2 x R x RV, (7.9)
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Fix ¢p > 0, and define

ut(zg) ify-v>0,
u (zg) ify-v<O0.

up(x) = {

By lemma 4.1.3 and (3.17) of [7], for HVN ! a.e. ¢ € S(u),

dF(u,-)
dHN-1|S(u)

1
= limsup ﬁinf{/ flz,v(z), Vo(y))dy :
€ Qv (wo,¢e)

(7o)

e—0t
vE Wl’l(Qu(anE);Rd)a U|8Q,,(ro,s) = uO(' - 33‘0)}

= lim sup inf{/ Ef(xg + ey, w(y), %Vw(y)) dy :

e—0t v

w E Wl’l(Qu;Rd),wau = uo}

< limsup inf{ (@0 + ey, w(y), Vw(y)) dy :
—&p e—0t Q.
IS
w e WHHQu;RY), wlag, = uo} + =
1-— €0
. IS
< lim sup fOO (xO + €Y, U)1(y), vwl(y)) dy + 0 )
— &0 e—0*t Q. 1— €0

for any wy € WH(Q,;RY), with w1]ag, = uo, and where we have used (1.16"). We
now take w; in the previous inequality such that

o Fo (o, wiy), Vwi(y)) dy < h(zo, u™ (20), u™ (20), vu(20)) + 0. (7.10)

By (3.5), (3.6) and the Lebesgue dominated convergence theorem,

lim/ Ix(zo, wi(y), Vwi(y)) dy = [ (w0, w1(y), Vwi(y)) dy,  (7.11)
Qv Qv

A—00

where the Yosida transforms f) were introduced in (3.4); thus, for fixed A sufficiently
large, by (7.10), and by (7.11),

Ir(@o, wi(y), Vwi(y)) dy < h(zo, u™ (z0),u™ (o), vu(w0)) + 220.  (7.12)

Qv
Consequently, also from (3.5) and (3.8),
d]:(u7 ) 1 . €0
< 1 , v d
THN 115 (0) (wo) < T— mswp f Ao + ey wi(y), Vun(y)) dy + 37—
1
< lim sup( falxo, wr(y), le(y)> dy +eX) + =0
1—e0 o+ Q. 1—¢9
1 _ €
< (Ao, u™ (x0),u™ (wo), vu(wo)) + 220) + —
1-— €0 1-— €0
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by (7.12). Letting g — 07 in the previous inequality yields the desired result
when (7.9) holds.

In the general case, it suffices to consider the family of perturbed energy densities

fol,u, &) = f(x,u,§) +pl¢l, p>0.

Then, since F < F,, it follows that

THY 1[5 (w) "

dF,(u,-
< %(%)
dH LS (u)

<mf{ (), Vo)

+ p/ Vw(y)ldy : w e WHHQuiRY), wlag, (roe) = uO}

v

<[ reomt). V) ay+o | [9mwlay

v

for any fixed w; € WH1(Q,;R?), such that w150, (we,e) = Uo- Letting p — 0F
yields
dF(u, ) /
S Sk A < > (z0, ,V dy,
THN 15 (a) (7o) . 2% (@o, w1(y), Vwi(y)) dy

and since wy is arbitrary, by taking the infimum over all functions w,, we obtain

T ) < M o) ). o)

8. Further results

As in theorems C and D of Dal Maso [9], some of our results continue to hold if the
regularity conditions on the integrand f are required everywhere except at most on
‘small’ sets. In order to establish the main result of this section, theorem 8.5, we
first prove three lemmas.

LEMMA 8.1. Let Ny be a Borel subset of 2xR, with H™ (Ng) = 0, letu € BV(£2;R),
and define

A:={2ec 2\ (S(u)UM)): (z,u(x)) € No},
B:={z € M(u) : (,u(z)) € No},

where M(u) C 2\ S(u) is a Borel set such that
LY(M(u) =0 and C(M(u)NA)=C(A)
for every Borel set A C §2. Then
(i) LN(A) = 0;
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(it) [C()l(B) = 0.
Proof. (i) If LY (A) > 0, then, by corollary 1 in §2.4.1 of [15], we obtain
0 =HY(No) = HY({(x,u(z)) : x € A}) = HN(A) = LN (A) > 0,

which is clearly a contradiction.
(ii) Let

yo={(z,s) €N xR:s<ut(x)}
Gr={(r,s) €N xR:u () <s<u(x)}.

Then xa, € BViec(£2 xR) (see [26]), and for any Borel set K C 2 xR and D C £2,
we have

Dxe () =YK NGL), [ Ipxed=[ Kl s
DxR D
where ((u) := (Du,—LY) (see [9, lemma 2.2]). Take K := B x R. If z € M(u),
then u™(z) = v~ (z), and thus

IDxc,|(K) = HY ({(z, u(z)) : @ € B}) < HYN(No) = 0.

In turn, by (8.1),
[ el -

Since |¢(u)| coincides with |Du| on M (u) (recall that £V (M(u)) = 0), it follows
that |Du|(B) = 0. O

The following lemma is a generalization of theorem 3 in §2.4.3 of [15]

LEMMA 8.2. Let h € L}

loc

(2;R), let p be a positive Radon measure, and define

1
By := {x enN: limsup—/ |h(z)|dz > 0} , (8.2)
0 0 e—07t M(Qu('anE)) Qv (xo,e)

where in the limsup we consider only those € > 0 such that u(0Q,(z,e)) = 0. Then
1s(Bg) = 0, where

Proof. Without loss of generality, we can assume that (2 is bounded, h > 0 and
h € LY (2;R). Given n > 0, there exists § > 0 such that

/ h(z)dz <n whenever LN (U) < 6.
U

Let E be a Borel set such that £V (E ) 0 and pus(X) = pus(X N E) for every
Borel set X C £2. Since pys(X) = ps(X N E), we consider B = By N E. Clearly,
LN(Bf) =0, and

1
B = B,., where B, := {xo € F : limsup —/ h(x)dz > 7“} )
0 rg‘*' e—0t M(Qu(xOvE)) Qv (z0,8)
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We claim that u(B,) = 0, from what will follow that u(Bj) = 0. Let U be an
open set such that B, C U and LY (U) < 6. Fix p > 0 and consider

Fr= {Qu(x,s) cx € B, 0<e<p, p(0Q,(x,e)) =0,

mczf,/

h(y) dy > w(Qu(%E))}
Q. ()

and consider the Borel sets

Ur .= U{Qu(x,s) 1 Qy(w,e) € FPY, Uy := ﬂ U”.

p>0

Since B, C Uy, it suffices to prove that p(Uy) = 0. Fix a compact set K C Uy,
po > 0, and let

FY={Qu(z,e) :x € By, 0 < e < p, (0Q,(r,€)) =0, Q,(z,e) CU\ K}.
Then U?° admits a fine covering
Umzzz( U Qu@;d>LJ( U Qu@gd>,
Qu(ze)eFy? Qu(w,e)eFy°

and, by Morse’s version of Besicovitch’s covering theorem (see [28, theorem 5.11]),
we may find a subcovering of U”° such that

U = (UQ) U (UQJ) UN, KCcC (UQ) U N,
i€l jelI el

I and J are countable, Q; € F{°, Q; € FL°, the sets Q; and Q; are mutually
disjoint, and p(N) = 0. Then

n> [ hwdrz Y [ hdez e Y u@) =r Y p(@) > ru(k),
U iel Y@ iel iel

By letting 7 — 0, we obtain p(K) = 0, and by the inner regularity of y, we conclude
that u(Up) = 0. O

REMARK 8.3. Since, for us a.e. xg € §2,

lim M(Qu(ﬁoaf)) o,
e—07T €

it is clear that if z¢g € By, then us a.e. zg is not a Lebesgue point for |h|, otherwise

1 eN
limsup—/ |h(z)| dz = lim sup —————|h(zo)| = 0.
ot 1(Qu(0,9) Lo, (0.e) ot 1(Qu(w0,6)

Using lemma 8.2, it is possible in some cases to weaken (1.8) in proposition 2.1.
Indeed, assume that, for £! a.e. u € R,

f('vu70) € Llloc(Q;R)' (83)
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Then there exists a countable set Rq := {r;};, dense in R, such that f(-,r;,0) €
Li ($2;R) for all j. Let §2; be the set of Lebesgue points of f(-,7;,0) and set
Aj =2\ £2;. Then
LV (U, Ay) =
Let B; be the set of points corresponding to the set By in lemma 8.2 when
h:= f(-,rj,0) and g := |Du|. Then
|Dsu|(U;°-ilBj) =0.

LEMMA 8.4. Proposition 2.1 is still valid, provided we replace (1.8) by (8.3), and
we take

00 1 if xo € (oo, 82,
xOEQ\(UAjUBi>, tk::{ foO mjzl R

) |Dul(Qu(z0,ek)) /el otherwise,

where |Dul(0Q, (zo,ex)) = 0, tx, — T € (0,00] and ug + a1, ug + as € Ry.
Proof. The only change is in (2.2). Considering first the case where
xo € Q\ (UAJ> = mﬁj,
j=1 j=1

then ¢, = 1 and (2.2) becomes

0</+f($0+5kyauo+02,0)dy
Ek

1
:_N f(x7u0+a270)dx
€k Y Qu(mo,er)N(zotenE})

1
<E— |f(z,u0 + a2,0) — f(xg,up + a2,0)| dz
E Y Qu(zo.er)
+ f(z0,u0 + az,0) LN (E).

Since zg is a Lebesgue point for f(z,uo + ag2,0) (recall that ug + as € Ro and that
T € ﬂj 1 £2;), the first integral on the right-hand side approaches zero as k — oo.
Moreover, EN(E+) — 0 as before.

If xg € Q\ (U2, B;) and z ¢ ﬂjﬂ £2;, then (2.2) may be estimated as follows,
0< 1 / f(zo + ery,uo + az,0)dy
k—>oo tk
< I ! / P, w0 + a2, 0) dz = 0
< lm ———— X, Uup T+ Qg, r =Y,
k—oo |Du|( (xOka)) Q(zo0,ek)

where we have used the fact that t; = |Du|(Q,(z0,ex))/cl and the definition of
Bj as in (8.3), with h := f(-,r;,0). O

We are now ready to state the main result of this section.

THEOREM 8.5. Assume that f : 2 x R x RN — [0,00) is a Borel integrand,
flx,u,-) is convex in RN, and f satisfies (8.3). Suppose also that (1.7) holds for all
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(zg,u0) € (2 X R)\ Ny, where Ny is a Borel subset of 2 xR. Let u € BV, (£2;R),
and let {u, } be a sequence of functions in W1 (Q R) converging to u in Ll (12;R).

(i) If either HN (Ny) = 0 or No = My x R with LN (My) = 0, then

/ flz,u(z), Vu(x)) dz < liminf/ fx,un(x), Vuy(x)) de.
Q Q

n—oo

(ii) If either HN(Ng) =0 or Ny = My x R with HN=1(My) < oo, then

/ 2z, u(x),dC(u(x))) hmlnf/ fx,un(z), Vuy(x)) de.

Q n—oo

(iii) If Ng = Mo x R and either HN(Ng) = 0 or HN=1(My) = 0 and we assume
that for all (xo,up) € (2 x R)\ Ny and € > 0 there exists 6 > 0 such that

f(x(]au?é-) - f(.l',u,é-) < 5(1 + f(x,u,f)) (84)
for all (z,u) € 2 x R with |x — xq| + |u — ug| < § and for all £ € RN, then

ut(x)
/ (/ f“(x,s,%)ds) dHY " (x)
S(u)ne u~ (z)

< liminf/ fz,un(z), Vup(z)) dz.
Ie;

n—oo

Proof. (i) We proceed as in theorem 1.1 (i) starting from (2.4). If H¥(Ng) = 0, then
in (2.6) we take zg € 2\ A, where A is the set given in lemma 8.1 (i), otherwise take
xg9 € 2\ Mjy. Using the notation introduced in lemma 8.1 and thereafter, we may
assume, in addition, that z is also a Lebesgue point for all the functions f(-,r;,0),

precisely
xo € Q\ (U AJ> .
j=1

We can now continue with the same argument as in the proof of the Lebesgue part
in theorem 1.1, except that we invoke lemma 8.4 instead of proposition 2.1 to justify
the truncation step.

(ii) If HV(Np) = 0, then take 2o € §2\ B, where B is the set given in lemma 8.1 (ii),
otherwise take zg € £2\ M. As before, let B; be the set introduced in lemma 8.2
and corresponding to f(-,7;,0) € L{ .(£2;R) (see (8.2)). Since

DE

we may assume that zo € 2\ (U;il B;). Now we continue as in theorem 1.1 (ii),
using lemma 8.4 in place of proposition 2.1, but now in order to apply lemma 2.5
of [4] we first need to approximate g(§) := f(xg,u(xq),&) from below by a non-
decreasing sequence of convex functions that grow at most linearly. This can be
done by virtue of proposition 9.1.
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(iii) Since Ny = My x R and HY = HN=1 x £ on S(u) x R, it follows that
HN=L(My N S(u)) = 0. Moreover, by lemma 8.2,

HN‘l(S(u) N (Q Bj>> =0.

Take
o0
o € S(u) \ (MO U UBJ>
j=1
We pursue the proof of the jump part as in theorem 1.1 (iii), using lemma 8.4 instead
of proposition 2.1, but now in order to apply the density result of Ambrosio, we

first need to approximate h(u,§) = f(xg,u,§) from below by a non-decreasing
sequence of continuous functions that grow at most linearly. For this purpose, we
invoke proposition 9.3 below. O

REMARK 8.6. The hypothesis placed on part (iii) above, i.e. in the jump part,
ensuring that the set Ny is of the form Ny = My x R, is used heavily to apply the
compactness argument leading to (2.15).

REMARK 8.7. Theorems 1.3, 1.7 and 1.8 may be improved similarly to theorem 8.5
versus theorem 1.1. We leave this to the interested reader.

REMARK 8.8. As in theorem D of [9], in the special case where f(z,u,0) = 0,
condition (1.9) can be weakened as follows.

Assume that there exists a set Py C R with L*(Py) = 0 such that, for all zo € 2
and € > 0, there exists § > 0 such that

|f(x0,u,§)—f(x,u,§)| <5(1+f(x,u,§)) (19/)

for all x € 2 with |x — x| <6 and for all (u,&) € (R\ Py) x RY.

The proof of theorem 1.5 should now be modified accordingly, using the fact that,
if A:={x € 2\ Su):u(x) € Py}, then Vu =0 for LY a.e. 2 € A and |C(u)| =0
a.e. ¢ € A. We omit the details.

9. Approximation of convex functions

Let g: RNV — [0,00) be a convex function. Then

¢ 98 = 9(0)
t

is increasing, and we define the recession function

g% (&) := lim 9t _ o 2O — 9(0)
tooo  t >0 t

PROPOSITION 9.1. Let g : RN — [0,00) be a convex function. Then

t 0
for t > 0, and there exists an increasing sequence {g;}; of non-negative convex

functions such that

(9.1)
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(i) (&) = sup; g;(&) for all € € RY;
(i) g™ (€) = sup; g5°(€) for all £ € RY;
(iil) g; 4s Lipschitz continuous with Lipschitz constant j;
)

if g(& ) C(|€]=1) for some C > 0, then g; satisfies the same growth condition
forj = [C]+1.

(iv

Proof. Inequality (9.1) follows immediately from the definition of the g*°. Define
9i(§) := sup (" -&—g"(£7)),
|€71<y

where g* is the Young—Fenchel conjugate of g. Since g is convex, g = ¢**; hence
g(§) = sup; g;(§). Also, g; are convex and

9;(€) = —g*(0) > infg >0

This proves (i).
Since g(§) = g;(§) for each j, it follows that g°°(§) = sup; ¢5°(§). Conversely,
and by (9.1),
g(ts) 9; ()

== =su
t P

[gj(tf) — 9;(0)

= sup +

J

: gji())]

< sup g;° (§) +Su,p%)
J J

=supg;°(§) + %O)-
J

Letting t — oo, we conclude that g (t) < sup, g5°(§).
Property (iii) is straightforward. We prove (iv). If g(£) > C(]¢] — 1), then

g' (&) <C(- 1= DI(E);

hence
g;(§) = sup (- &—g"(&7)) = sup (" - & [C(-|—D]"(£)).
[€* 1< [€*|<j
Since
c iflgr<C

[C(-1=DI"(€) =

oo otherwise,

we conclude that if j > [C] + 1, then
9i(§) = sup (&"-&—C)=C([¢]-1).

N
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The last proposition of this section uses a corollary of Lindel6f’s theorem, which
allows us to select a countable collection of functions yielding the supremum func-
tion of a non-countable family. For convenience, we include the proof below.

LEMMA 9.2. Let X be a o-compact metric space, let G C C(X;R), and let f(z) :=
sup,eg g(x), for all x € X. Then there exists a countable collection {gn}nen C G
such that

f(x) =supgn(x) forallxe X.

Proof. 1t is clear that f is lower semicontinuous. Therefore, for every = € X, there
exist 0 < r(z) < 1 and g} € G such that

fy) = f(z) =3 forally € B(z,r'(2)), gy(z) > flz) - 3.
Let p*(z) < r(z) be such that

92 (y) — 9L(¥)| < 3 for all y,y € B(z,p'(z)).

Since {B(z, p'(x))}sex is an open covering of X, by Lindelof’s theorem, we may
extract a countable subcovering {B(z},pl)}. Recursively, we may find an open
covering of X, {B(z, p*(2))}zex, p"(z) < 1/2F, and functions g¥ € G such that,
forallz € X,

F) > f) = o forally € Bz, (x),
o) > fa) - 51
9h() — 5| < o for all y,/ € B, p(2)).

Again by Lindel6f’s theorem, X is covered by a countable family {B(z*, p¥)}. We

claim that
f(z) = sup Ioe ().
Let z € X, k € N, and choose n € N such that z € B(zk, pk). Then
F@) > gy (@) > gy o) - > Jh) - >t - o
= Jzk Z Jgk\Pn ok = n ok = B(a;1/2%) ok *

As f is lower semicontinuous, liminf. .o infp(, ) f = f(z), and we conclude that

2
f(e) <liminf inf f-—25< liminf g (@) < sup g, (2) < f(@).

PROPOSITION 9.3 (cf. [10]). Let A be an open set of RN and let
h:AxRxRN —[0,00)

be a function convez in the £ variable, and such that, for every (zo,ug) € A xR
and € > 0, there exists 6 > 0 such that

h(z,u,€) = (1 = e)h(xo, uo, £) (9.2)
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for all (z,u) € AXR with |z —x¢| < 0, |u—ug| <6 and for all ¢ € RN. Then there
exists an increasing sequence {h;}; of non-negative continuous functions, convex
in the £ variable, satisfying (9.2) and such that

(i) h(z,u,&) = sup; hj(z,u,§) for all (z,u ,6) € AX R x RY;

(ii) h*>(z,u,§) = sup; h°(z,u,§) for all (z,u,§) € AX R x RY;

(iil) hj(z,u, &) < Cj(|€] + 1) for all (v,u,&) € Ax R xRN and for some C; > 0;
(iv) for every (xo,u0) € A X R and € > 0, there exists §; > 0 such that

h](x7u7§) 2 (1 - E)hj(l'(),’ll,é-),
hj(x7u7€) > (1 _E)hj(x7u03€)

for all (z,u) € A x R with |x — 2| < d;, |u —ug| < &, and for all £ € RV,

Proof. Let G be the class of all continuous functions g : A x R x RY — [0, c0),
convex in the ¢ variable, and such that

(1) g(z,u, &) < h(z,u,€) for all (z,u,&) € A xR x RY;
(2) for every (zo,up) € A x R and & > 0, there exists § > 0 such that
g(x7u7§) 2 (1 - E)g(xo,uo,ﬁ)

and

g ( )g(x07u7§)a
u,¢) —€)g(x, ug,¢)

for all (z,u) € A x R with |z — x| < 6, |u —ug| <, and for all ¢ € RY;

VWV

(3) there exists C' > 0 such that

gz, u, &) <O(l€|+1) for all (z,u,6) € A xR x RY.

Clearly, G # 0, as 0 € G. Following [10], we claim that

h(zo, uo, ) = sup g(xo, ug, €) for all (xg, ug, &) € A x R x RV, (9.3)
9€eG

By definition of G, it follows immediately that h > sup,cgg. Conversely, fix
(zo,u0) € A X R, € > 0, and let § be such that (9.2) is satisfied. Consider two
cut-off functions ¢ € C§°(A4), ¥ € CP(R), with 0 < ¢ <1, 0< ¥ <1, p=1on
B(zo, %6), @ = 0 outside B(xg,d) and, similarly, 1) = 1 on B(uy, %6), 1) = 0 outside
B(ug, ). We can write
h(zo,u0,§) = sup h; (&)
J
where h; are convex functions satisfying the properties stated in proposition 9.1.

Consider

h5(x;u,8) = (1 = e)p (@) (u)h;(£).
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Clearly, h5 € G (in particular, property 1 follows from (9.2)). Letting j — oo, we
get
(1 = &)h(zo,u0, &) = sup hj(xo, uo,§) < sup g(zo, uo,§);
J 9€g
hence the claim follows by letting e — 0F.

By lemma 9.2 and (9.3), there exists a sequence h; in G such that h(z,u,§) =
sup; hj(w,u,§) for all (z,u,§) in A x R x RY. Due to the stability properties of
the class G, we can assume that the sequence {h;}; increasing. Indeed, it is easy
to see that if g1, go € G, then g1 V go € G (while, in general, g1 A g2 ¢ G, since
we may loose convexity). This proves (i). Clearly, properties (iii) and (iv) follow
immediately from the definition of G.

Property (ii) follows easily from proposition 9.1, (9.1) and the fact that clearly
hoe(z,u, &) = sup; h$°(z,u,§). Indeed,

hiz,u,t) _ Sup[hj(x7u7t£> — hy(@,u,0) hj(x7u70)]
J

t t t

h 0

< sup h5°(x, u, §) + (JJ+L,),
J

so letting ¢ — oo we obtain (ii). |
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