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Abstract

We study ergodic properties of a class of Markov-modulated general birth–death pro-
cesses under fast regime switching. The first set of results concerns the ergodic properties
of the properly scaled joint Markov process with a parameter that is taken to be large.
Under very weak hypotheses, we show that if the averaged process is exponentially
ergodic for large values of the parameter, then the same applies to the original joint
Markov process. The second set of results concerns steady-state diffusion approxima-
tions, under the assumption that the ‘averaged’ fluid limit exists. Here, we establish
convergence rates for the moments of the approximating diffusion process to those of the
Markov-modulated birth–death process. This is accomplished by comparing the genera-
tor of the approximating diffusion and that of the joint Markov process. We also provide
several examples which demonstrate how the theory can be applied.
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1. Introduction

There has been a considerable amount of research on Markov-modulated birth–death
processes. The rate control problem for Markov-modulated single-server queues has been
addressed in [10, 18, 24], while the scheduling control problem for Markov-modulated crit-
ically loaded multiclass many-server queues has been considered in [3], in which exponential
ergodicity under a static priority rule is also studied. The papers [1, 14] address functional limit
theorems for Markov-modulated Markovian infinite-server queues. See also the work on the
functional limit theorem for Markov-modulated compound Poisson processes in [22]. We refer
the reader to [15, 25] for the study of stability and instability for birth–death processes.
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2 A. ARAPOSTATHIS ET AL.

In this paper, we study a class of general birth–death processes with countable state space
and bounded jumps. Meanwhile, the transition rate functions of the birth–death process depend
on an underlying continuous-time Markov process with finite state space. An asymptotic
framework is considered under which the Markov-modulated birth–death process is indexed
by a scaling parameter n, with n getting large. The transition rate matrix of the underlying
Markov process is of order nα , α > 0, and the jump size of the birth–death process shrinks at a
rate of nβ with β := max{1/2, 1 − α/2}. This scaling has been used in [1, 3, 14] for some special
birth–death queueing processes.

In this asymptotic framework, we first provide a sufficient condition for the scaled Markov-
modulated process to be exponentially ergodic. We show that if the ‘averaged’ birth–death
process satisfies a Foster–Lyapunov criterion for a certain class of Lyapunov functions, then
the original Markov-modulated process also has the same property. Next, we study steady-
state approximations of the Markov-modulated process. We construct diffusion models, and
show that their steady-state moments approximate those of the joint Markov process with a
rate n−(1/2∧α/2). This problem is motivated by [11], in which steady-state approximations for a
general birth–death process have been considered. However, the problem in this paper is quite
challenging, since we need to consider the variabilities of the underlying Markov process, and
the martingale argument in the above-referenced work cannot be applied. We also present some
examples from queueing systems and show that the assumptions presented are easy to verify.

The aforementioned result of exponential ergodicity is stated in Theorem 2.1. We consider
a large class of scaled Markov-modulated general birth–death processes, whose transition rate
functions have linear growth around some distinguished point. The state processes are also cen-
tered at this point. The increments of the transition rate functions are assumed to have affine
growth. This assumption is relaxed in Corollary 2.1, in which a stronger Foster–Lyapunov
criterion is required instead. The technique of proof for this set of results is inspired by [16],
which studies stochastic differential equations with rapid Markovian switching. We construct a
sequence of Lyapunov functions via Poisson equations associated with the extended generator
of the background Markov process. The technique employed for our results is more involved,
since a class of Markov processes under weak hypotheses is considered, and the scaling param-
eter affects the state and background processes at the same time. In the study of ergodicity of
a Markov-modulated multiclass M/M/n + M queue under a static priory scheduling policy in
[3, Theorem 4], the authors observe an effect of ‘averaged’ Halfin–Whitt regime, and also use
a technique similar in spirit to the method in [16]. In this paper, we consider a more general
model which includes the one in [3, Theorem 4] as a special case. In Example 3.2, we also
show that the result in [3, Theorem 4] holds under some weaker condition, and its proof may
be greatly simplified following the approach in Corollary 2.1. In Corollary 2.2 and Remark 2.4,
we emphasize that the result in this part can be applied in the study of uniformly exponential
ergodicity of Markov-modulated multiclass M/M/n queues with positive safety staffing.

The main result on steady-state approximations is stated in Theorem 2.2. Here, we first
construct ‘averaged’ diffusion models, which capture the variabilities of the state process and
the underlying Markov process at the same time. In these diffusion models, the variabilities
of the state process are asymptotically negligible at a rate n1−2β when α < 1, while the vari-
abilities of the underlying process are asymptotically negligible at a rate n1−α when α > 1
(see Proposition A.1). The gap between the moments of the steady state of the approximating
diffusion models and those of the joint Markov process shrinks at rate of nα/2∧1/2.

The result in Theorem 2.2 extends the results of [11] to Markov-modulated birth–death pro-
cesses. The proofs in [11] rely on the gradient estimates of solutions of a sequence of Poisson
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Ergodicity of a class of Markov processes under fast regime switching 3

equations associated with diffusions and a martingale argument. Under a uniformly exponential
ergodicity assumption for the diffusion models, the gradient estimates we used for the Poisson
equation are the same as those found in [11]. However, the martingale argument is difficult
to apply in obtaining Theorem 2.2. On the other hand, the proof of [3, Lemma 8] concerning
the convergence of mean empirical measures for Markov-modulated multiclass M/M/n + M
queues uses a martingale argument, but considers only compactly supported smooth functions.
The analogous argument cannot be used in this paper, since we need to consider a class of gen-
eral birth–death processes and the Lyapunov functions are unbounded. So we develop a new
approach by exploring the structural relationship between the generator of the joint Markov
process and that of the diffusion models in Lemma 5.1. This is accomplished by matching
the second-order derivatives associated with the covariance of the underlying Markov process
using the solutions of Poisson equations which involve the difference between the coefficients
of the original state process and those of the ‘averaged’ diffusion models. In Lemma 5.2, we
also provide some crucial estimates for the residual terms arising from the difference of the
two generators.

Stability of switching diffusions has been studied extensively. Exponential stability for non-
linear Markovian switching diffusion processes has been studied in [19], while p-stability and
asymptotic stability for regime-switching diffusions have been addressed in [17]. For an under-
lying Markov process with a countable state space, the stability of regime-switching diffusions
has been considered in [23]. In these studies, the state and background Markov processes are
unscaled, and there is no ‘averaged’ system. Under fast regime switching, we observe an ‘aver-
aged’ effect, and study how the ergodic properties of the ‘averaged’ system are related to those
of the original system.

1.1. Organization of the paper

The notation used in this paper is summarized in the next subsection. In Section 2, we
describe the model of Markov-modulated general birth–death processes. We present the results
of exponential ergodicity and steady-state approximations in Sections 2.1 and 2.2, respec-
tively. Section 3 contains some examples from queueing systems. Section 4 is devoted to
the proofs of Theorem 2.1 and Corollaries 2.1 and 2.2. The proofs of Theorem 2.2 and
Corollary 2.2 are given in Section 5. Proposition A.1 concerning the diffusion limit is given in
Appendix A.

1.2. Notation

We let N and Z+ denote the set of natural numbers and the set of nonnegative integers,
respectively. Let Rd denote the set of d-dimensional real vectors, for d ∈N. The Euclidean
norm and inner product in Rd are denoted by | · | and 〈 ·, · 〉, respectively. If a = (a1, . . . , an)
is an ordered n-tuple, then |a| := (

∑n
i=1 a2

i )1/2. For x ∈Rd, xT denotes the transpose of x. We
denote the indicator function of a set A ⊂Rd by 1A. The minimum (maximum) of a, b ∈R is
denoted by a ∧ b (a ∨ b), and a± := 0 ∨ (± a). We let e denote the vector in Rd with all entries
equal to 1, and ei the vector in Rd with the ith entry equal to 1 and all other entries equal
to 0. The closure of a set A ⊂Rd is denoted by Ā. The open ball of radius r in Rd, centered at
x ∈Rd, is denoted by Br(x).

For a domain D ⊂Rd, the space Ck(D) (C∞(D)) denotes the class of functions whose partial
derivatives up to order k (of any order) exist and are continuous, and Ck

b(D) stands for the
functions in Ck(D) whose partial derivatives up to order k are continuous and bounded. The
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4 A. ARAPOSTATHIS ET AL.

space Ck,1(D) is the class of functions whose partial derivatives up to order k are Lipschitz
continuous. We let

[f ]2,1;D := sup
x,y∈D,x 
=y

∣∣∇2f (x) − ∇2f (y)
∣∣

|x − y|

for a domain D ⊂Rd and f ∈ C2,1(D). For a nonnegative function f ∈ C(Rd), we use O(f ) to
denote the space of functions g ∈ C(Rd) such that supx∈Rd

|g(x)|
1+f (x) <∞. By a slight abuse of

notation, we also let O(f ) denote a generic member of this space. Given any Polish space X ,
we let P(X ) denote the space of probability measures on X , endowed with the Prokhorov
metric. For μ ∈P(X ) and a Borel measurable map f : X �→R, we often use the simplified
notation μ(f ) := ∫

X f dμ.

2. Model and results

Let Q = [qij]i,j∈K, with K := {1, . . . , k◦}, be an irreducible stochastic rate matrix, and let

π := {π1, . . . , πk◦} (2.1)

denote its (unique) invariant probability distribution. We fix a constant α > 0. For each n ∈ N,
let Jn denote the finite-state irreducible continuous-time Markov chain with state space K and
transition rate matrix nαQ. In addition, for each n ∈N and k ∈ K, let Xn ⊂Rd be a countable
set with no accumulation points in Rd, and let Rn

k = [
rn

k (x, y)
]

x,y∈Xn be a stochastic rate matrix
which gives rise to a non-explosive, irreducible, continuous-time Markov chain.

The transition matrices {Rn
k} satisfy the following structural assumptions.

Hypothesis 2.1. There exist positive constants m0, N0, and C0 such that the following hold for
all x ∈ Xn, n ∈N, and k ∈ K.

(a) Bounded jumps. It holds that rn
k (x, x + z) = 0 for |z|>m0.

(b) Finitely many jumps. The cardinality of the set

Z n
k (x) := {z ∈Rd : rn

k (x, x + z)> 0}
does not exceed N0.

(c) Incremental affine growth. It holds that∣∣rn
k (x, x + z) − rn

k (x′, x′ + z)
∣∣ ≤ C0

(
nα/2 + |x − x′|).

(d) There exists some distinguished element xn∗ ∈Rd such that

rn
k (x, x + z) ≤ C0(n1∨α/2 + |x − xn∗|).

Hypothesis 2.1 is assumed throughout the paper without further mention. We refer the
reader to Examples 3.1 to 3.3 for examples of verification of the conditions in Parts
(c) and (d).

Remark 2.1. The element xn∗ ∈Xn in Part (d) plays an important role in the analysis. For
queueing models, xn∗ may be chosen as the steady state of the ‘average’ fluid; refer to solutions
of (2.20) below.
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Consider the stochastic rate matrix Sn on Xn × K whose elements are defined by

sn((x, i), (y, j)
)

:=

⎧⎪⎪⎨⎪⎪⎩
rn

i (x, y) if i = j,

nαqij if x = y,

0 otherwise,

for x, y ∈Xn and i, j ∈ K. This defines a non-explosive, irreducible Markov chain (Xn, Jn),
where Jn is as described in the preceding paragraph.

In order to simplify some algebraic expressions, we often use the notation

r̃n
k (x, z) = rn

k (x, x + z).

Definition 2.1. Let β := max{1/2, 1 − α/2} be fixed. With xn∗ as in Hypothesis 2.1(d), we define
the scaled process

X̂n := Xn − xn∗
nβ

.

The state space of X̂n is given by

X̂
n

:= {x̂n(x) : x ∈Xn},
where x̂ = x̂n(x) := n−β (x − xn∗) for x ∈Rd.

Naturally, (X̂n, Jn) is a Markov process, and its extended generator is given by

L̂
n
f (x̂, k) = L n

k f (x̂, k) +Qnf (x̂, k), (x̂, k) ∈ X̂
n × K, (2.2)

for f ∈ Cb(Rd × K ), where

L n
k f (x̂, k) :=

∑
z∈Z n(x)

r̃n
k (nβ x̂ + xn∗, z)

(
f (x̂ + n−βz, k) − f (x̂, k)

)
,

Qnf (x̂, k) :=
∑
�∈K

nαqk�
(
f (x̂, �) − f (x̂, k)

) =
∑
�∈K

nαqk�f (x̂, �).
(2.3)

One can clearly see that L̂
n
f and L n

k f are well defined for f ∈ Cb(Rd), by viewing f as a
function on Rd × K which is constant with respect to its second argument.

Throughout the paper, x and x̂ are generic elements of Xn (or Rd) and X̂
n
, respectively.

2.1. Exponential ergodicity

In this subsection, we provide a sufficient condition for the joint process (X̂n, Jn) to be expo-
nentially ergodic. We refer the reader to [20] for the definition of exponential ergodicity and
the relevant Foster–Lyapunov criteria. We introduce the following operator, which corresponds
to the generator of the ‘averaged’ process.

Definition 2.2. Let
r̄n(x, z) :=

∑
k∈K

πkr̃n
k (x, z),

with πk as in (2.1), and
Z n := ∪x∈Xn ∪k∈K Z n

k (x). (2.4)
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6 A. ARAPOSTATHIS ET AL.

We define L
n

: Cb(Rd × K ) �→ Cb(Rd × K ) by

L
n
f (x̂, k) :=

∑
z∈Z n

r̄n(nβ x̂ + xn∗, z)
(
f (x̂ + n−βz, k) − f (x̂, k)

)
, (x̂, k) ∈ X̂

n × K, (2.5)

for f ∈ Cb(Rd × K ).

In the following theorem, we show that if L
n

satisfies a Foster–Lyapunov inequality with
a suitable Lyapunov function, then the original joint process (X̂n, Jn) is exponentially ergodic.
The proof is given in Section 4.

A function f : Rd �→R+ is called norm-like if f (x) → ∞ as |x| → ∞; see, for example, [20,
Section 1.3].

Theorem 2.1. Suppose that there exist a sequence of nonnegative norm-like functions {Vn ∈
C(Rd) : n ∈N}, n0 ∈N, and some positive constants ε0, C, C1, C2, not depending on n,
such that

(1 + |x|) ∣∣Vn(x + y) − Vn(x)
∣∣ ≤ C|y|(1 + Vn(x)

)
,(

1 + |x|2) ∣∣Vn(x + y + z
) − Vn(x + y)

−Vn(x + z) + Vn(x)
∣∣ ≤ C|y||z|(1 + Vn(x)

)
,

(2.6)

for any y, z ∈ B0(ε0) \ {0}, x ∈Rd, and n ∈N, and

L
nVn(x̂) ≤ C1 − C2Vn(x̂) ∀ x̂ ∈ X̂

n
, ∀ n> n0. (2.7)

Then there exist functions V̂n ∈ C(Rd × K ) and positive constants Ĉ1, Ĉ2, and n1 ∈N such
that, for all n ≥ n1, we have

1

2

(
Vn(x̂) − 1

) ≤ V̂n(x̂, k) ≤ 3

2
Vn(x̂) + 1

2
∀ (x̂, k) ∈ X̂

n × K, (2.8)

and
L̂

nV̂n(x̂, k) ≤ Ĉ1 − Ĉ2V̂n(x̂, k) ∀ (x̂, k) ∈ X̂
n × K, ∀ n> n1. (2.9)

As a consequence, (X̂n, Jn) is exponentially ergodic for all n> n1, and its invariant probability
distributions are tight.

Remark 2.2. It follows from the proof of Theorem 2.1 that Ĉ2 can be selected arbitrarily close
to C2, so the rates of convergence of the ‘averaged’ system and the Markov-modulated one
become asymptotically close.

Remark 2.3. A sufficient condition for a function Vn ∈ C2,1(Rd) to satisfy (2.6) is

|∇Vn(x)| ≤ c
1 + Vn(x)

1 + |x| and

|∇2Vn(x)| + [
Vn]

2,1;Bε (x) ≤ c
1 + Vn(x)

1 + |x|2 ∀ x ∈Rd,

(2.10)

for some fixed positive constants ε and c.

In the next corollary, we relax the incremental growth hypothesis in Hypothesis 2.1(c). The
proof is contained in Section 4. In Example 3.2, we show that this result can be applied in the
study of exponential ergodicity for Markov-modulated M/M/n + M queues.
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We replace Hypothesis 2.1(c) by the following weaker assumption.

Assumption 2.1 Suppose that Parts (a), (b), and (d) of Hypothesis 2.1 are satisfied, and r̃n
k can

be decomposed into

r̃n
k (x, z) = φn

k (x, z) +ψn
k (x, z), x ∈Xn, z ∈ Z n

k (x),

where φn
k (x, z) and ψn

k (x, z), k ∈ K, are locally bounded functions on Xn × Z n. In addition,
using without loss of generality the same constant, there exist δ1, δ2 ∈ [0, 1] such that

|ψn
k (x, z) −ψn

k (y, z)| ≤ C0
(
nα/2 + |x − y|δ1

) ∀ k ∈ K, ∀ x, y ∈Xn, ∀ z ∈ Z n, (2.11)

and

|ψn
k (x, z)| ≤ C0

(
n1∨α/2 + |x − xn∗|δ2

) ∀ k ∈ K, ∀ (x, z) ∈Xn × Z n, (2.12)

with xn∗ ∈Rd as in Hypothesis 2.1(d), and for n ∈N.

Corollary 2.1. Grant Assumption 2.1. Let Gn
k : Cb(Rd × K ) �→ Cb(Rd × K ) be defined by

Gn
k f (x̂, k) :=

∑
z∈Z n

(
φn

k (nβ x̂ + xn∗, z) + ψ̄n(nβ x̂ + xn∗, z)
)(

f (x̂ + n−βz, k) − f (x̂, k)
)

(2.13)

for (x̂, k) ∈ X̂
n × K and f ∈ Cb(Rd × K ), and with xn∗ as in Assumption 2.1, where ψ̄n(x, z) :=∑

k∈K πkψ
n
k (x, z). Suppose that (2.6) holds with the second inequality replaced by(

1 + |x|1+δ2
) ∣∣Vn(x + y + z

) − Vn(x + y) − Vn(x + z) + Vn(x)
∣∣ ≤ C|y||z|(1 + Vn(x)

)
,

where δ2 is as in Assumption 2.1, and there exist n2 ∈N and some positive constants C1 and
C2 such that

Gn
kVn(x̂) ≤ C1 − C2Vn(x̂) ∀ (x̂, k) ∈ X̂

n × K, ∀ n> n2. (2.14)

Then the results in (2.8) and (2.9) hold.

In the following corollary, we show that under some stronger assumptions on the transi-
tion rate functions and the scaling parameters, (2.6) can be weakened. The proof is given in
Section 4.

Corollary 2.2. Grant parts (a) and (b) of Hypothesis 2.1, and suppose that rn
k satisfies∣∣rn

k (x, x + z) − rn
k (x′, x′ + z)

∣∣ ≤ C0
(
1 + |x − x′| ∧ n

)
(2.15)

and
rn

k (xn∗, xn∗ + z) ≤ C0n. (2.16)

If in the assumptions of Theorem 2.1 we replace (2.6) by∣∣Vn(x + y) − Vn(x)
∣∣ ≤ C|y|(1 + Vn(x)

)
,∣∣Vn(x + y + z

) − Vn(x + y) − Vn(x + z) + Vn(x)
∣∣ ≤ C|y||z|(1 + Vn(x)

)
,

(2.17)

then, provided β and α satisfy 2β + α > 2, the conclusions of the theorem still hold.

Note that (2.17) is satisfied for exponential functions.
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8 A. ARAPOSTATHIS ET AL.

Remark 2.4. The transition rates of multiclass M/M/n queues, that is, the model in Example
3.2 with no abandonment (γi(k) ≡ 0), satisfy (2.15) and (2.16). Uniform exponential ergodic-
ity of this model (with spare capacity, or equivalently, positive safety staffing) is established
in [4] using exponential Lyapunov functions. Thus, we may use exponential Lyapunov func-
tions in (2.7), and take advantage of the results in [4] to establish exponential ergodicity of
Markov-modulated multiclass M/M/n queues with positive safety staffing using the Lyapunov
functions in [4]. We leave it to the reader to verify that for α ≥ 1, we can in fact establish
uniform exponential ergodicity over all work-conserving scheduling policies. For α < 1 the
discontinuities allowed in the policies need to be restricted.

Extending this to the classes of multiclass multi-pool models studied in [12] is also possible.

2.2. Steady-state approximations

Here, we use a function ξn
z (x, k) for (x, z) ∈Rd ×Rd and k ∈ K which interpolates the

transition rates in the sense that

ξn
z (x, k) = rn

k (x, x + z) if x, x + z ∈Xn.

Recall the definition of Z n in (2.4). It is clear that for z /∈ Z n we may let ξn
z ≡ 0. Thus

Z n = {
z ∈Rd : ∃ x, k such that ξn

z (x, k)> 0}.
This of course also implies that

ξn
z (x, k) = 0 if |z|>m0 (2.18)

by Hypothesis 2.1(a).
We let I := {1, . . . , d}, and define


n(x, k) :=
∑

z∈Z n

z ξn
z (x, k),

�n
ij(x, k) :=

∑
z∈Z n

zizjξ
n
z (x, k), i, j ∈ I,

(2.19)

for (x, k) ∈Rd × K.
We impose the following structural assumptions on the function ξn.

Assumption 2.2 The following hold.

(i) The cardinality of the set {z ∈Rd : ξn
z (x, k)> 0} does not exceed Ñ0.

(ii) For each n ∈N, there exists xn∗ ∈Rd satisfying∑
k∈K

πk

n(xn∗, k) = 0. (2.20)

(iii) The function ξn
z is uniformly Lipschitz continuous in its first argument; that is, there

exists some positive constant C̃ such that

|ξn
z (x, k) − ξn

z (y, k)| ≤ C̃|x − y| ∀ k ∈ K, ∀ x, y ∈Rd, ∀ z ∈ Z n, (2.21)
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for all n ∈N. In addition, using without loss of generality the same constant, we assume
that

max
z∈Rd

ξn
z (xn∗, k) ≤ C̃n ∀ k ∈ K, ∀ n ∈N. (2.22)

(iv) The matrix �n(xn∗, k) is positive definite, and

1

n
�n(xn∗, k) −−−→

n→∞ �̄(k), (2.23)

where �̄(k) is also a positive definite d × d matrix, for all k ∈ K.

We note here that the nondegeneracy hypothesis in Assumption 2.2(iv) is used in Lemma 5.3
to derive gradient estimates of the solution of a Poisson equation.

Remark 2.5. Equation (2.21) is of course much stronger than Hypothesis 2.1(c). This is
needed for the results in this section which rely on certain Schauder estimates for solutions
of the Poisson equation for the generator of an approximating diffusion equation.

Let {An
z : z ∈ Z n} be a family of independent unit-rate Poisson processes, independent of

Jn, and Ãn
z (t) := An

z (t) − t. Then the d-dimensional process Xn(t) is governed by the equation

Xn(t) = Xn(0) +
∑

z∈Z n

z An
z

(∫ t

0
ξn

z

(
Xn(s), Jn(s)

)
ds

)

= Xn(0) + Mn(t) +
∫ t

0

n(Xn(s), Jn(s)

)
ds,

where

Mn(t) :=
∑

z∈Z n

z Ãn
z

(∫ t

0
ξn

z

(
Xn(s), Jn(s)

)
ds

)
.

Note that Mn(t) is a local martingale with respect to the filtration

Fn
t := σ

{
Xn(0), Jn(s), Ãn

z

(∫ t

0
ξn

z

(
Xn(s), Jn(s)

)
ds

)
,

∫ t

0
ξn

z

(
Xn(s), Jn(s)

)
ds : z ∈ Z n, s ≤ t

}
.

The locally predictable quadratic variation of Mn satisfies

〈Mn〉(t) =
∫ t

0
�n(Xn(s), Jn(s)

)
ds, t ≥ 0,

where the function �n = [�n
ij] : Rd × K �→Rd×d is given in (2.19).

By (2.21), it is evident that given xn(0) ∈Rd, there exists a unique solution xn(t) satisfying

xn(t) = xn(0) +
∑
k∈K

πk

∫ t

0

n(xn(s), k) ds.

We refer to this as the nth ‘averaged’ fluid model.
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In this section, the scaled process is defined as in Definition 2.1, with the exception that
xn∗ ∈Rd is as specified in Assumption 2.2. Note that in the extended generator in (2.2) and (2.3)
we may replace r̃n

k (nβ x̂ + xn∗, z) by ξn
z (nβ x̂ + xn∗, k). It is evident from (2.24) that X̂n satisfies

X̂n(t) = X̂n(0) + M̂n(t) +
∫ t

0

̂n(X̂n(s), Jn(s)

)
ds, (2.24)

where

M̂n := Mn

nβ
, and 
̂n(x̂, k) := 
n(nβ x̂ + xn∗, k)

nβ
, (x̂, k) ∈Rd × K. (2.25)

The locally predictable quadratic variation of M̂n is given by

〈M̂n〉(t) =
∫ t

0
�̄n(X̂n(s), Jn(s)

)
ds, t ≥ 0,

with

�̄n(x̂, k) := 1

n2β
�n(nβ x̂ + xn∗, k), (x̂, k) ∈Rd × K. (2.26)

We next introduce a sequence of processes that approximate X̂n. Let Ŷn be the strong
solution to the Itô d-dimensional stochastic differential equation

dŶn(t) = b̄n(Ŷn(t)
)

dt + σ ndW(t), (2.27)

with Ŷn(0) = y0, where W(t) is a d-dimensional standard Brownian motion,

b̄n
i (ŷ) :=

∑
k∈K

πk
̂
n
i (ŷ, k), ŷ ∈Rd, i ∈ I,

with 
̂n defined in (2.25). The diffusion matrix σ n is characterized as follows. Let

ϒ := (�− Q)−1 −� (2.28)

denote the deviation matrix corresponding to the transition rate matrix Q [7]. Let�n = [θn
ij ] be

defined by

θn
ij := 2

∑
�∈K

∑
k∈K


n
i (xn∗, k)
n

j (xn∗, �)
nα+2β

πkϒk�, i, j ∈ I, (2.29)

and
ān(x) = [ān

ij](x) :=
∑
k∈K

πk�̄
n(x, k), x ∈Rd.

Then, by Assumption 2.2(iv), and using the spectral decomposition, σ n satisfies

�n := (σ n)Tσ n = ān(0) +�n. (2.30)

The generator of Ŷn, denoted by An, is given by

Anf (x) =
∑
i∈I

b̄n
i (x) ∂if (x) + 1

2

∑
i,j∈I

�n
ij ∂ijf (x), f ∈ C2(Rd). (2.31)
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Ergodicity of a class of Markov processes under fast regime switching 11

We borrow the following definitions from [11]. We say that a function f ∈ C2(Rd) is sub-
exponential if f ≥ 1 and there exists some positive constant c such that

|∇f (x)| + ∣∣∇2f (x)
∣∣ ≤ c ec|x| ∀ x ∈Rd

and

sup
{z : |z|≤1}

f (x + z)

f (x)
≤ c ∀ x ∈Rd.

We also let Bx denote the open ball around x ∈Rd of radius (1 + |x|)−1, and define

‖f ‖C0,1(Bx) := sup
y∈Bx

|f (x)| + sup
y,z∈Bx

|f (y) − f (z)|
|y − z| , f ∈ C0,1(Rd).

The following assumption concerning the ergodic properties of Ŷn plays a crucial role in
the proofs for steady-state approximations.

Assumption 2.3 There exist a sub-exponential norm-like function V ∈ C2(Rd), a positive
constant κ , and an open ball B such that

AnV(x) ≤ 1B(x) − κV(x) ∀ x ∈Rd, ∀ n ∈N.

We continue with the main result of this section. Its proof is given in Section 5. Let νn ∈
P(Rd) denote the steady-state distribution of Ŷn.

Theorem 2.2. Grant Assumptions 2.2 and 2.3. Assume that (X̂n, Jn) is ergodic, and its steady-
state distribution πn ∈P(Rd × K ) satisfies

lim sup
n→∞

∫
Rd×K

V(x̂)(1 + |x̂|)5πn(dx̂, dk) < ∞. (2.32)

Then, for any f : Rd �→R such that ‖f ‖C0,1(Bx) ≤ V(x), and any α > 0, we have

|πn(f ) − νn(f )| = O

(
1

nα/2∧1/2

)
. (2.33)

Theorem 2.2 concerns the gap between the moments of the marginal distribution of the
steady-state X̂n and those of νn. The order of the function in (2.32) is determined by the esti-
mates in Lemma 5.2 and the gradient estimates of the solutions to the Poisson equation in
Lemma 5.3. In the following corollary, we provide a sufficient condition for (2.32). We give its
proof in Section 5. In Section 3, we show that this sufficient condition holds in many examples.

Corollary 2.3. Grant Assumption 2.2. Let V and Ṽ be two sub-exponential functions in C2(Rd)
satisfying Assumption 2.3, such that

V(x)
(
1 + |x|5) ≤ Ṽ(x) (2.34)

and
(1 + |x|)(|∇Ṽ(x)| + ∣∣∇2Ṽ(x)

∣∣) + (
1 + |x|2)[̃V]

2,1;Bm0/nβ
(x) ≤ CṼ(x) (2.35)

for some positive constant C and any x ∈Rd, with m0 as in (2.18). Then (2.32) holds for V. As
a consequence, (2.33) holds.
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3. Examples

In this section, we demonstrate how the results of Section 2 can be applied through
examples.

Example 3.1. (Markov-modulated M/M/∞ queue.) We consider a process given by

Xn(t) := Xn(0) + An
1

(∫ t

0
nλ

(
Jn(s)

)
ds

)
− An

−1

(∫ t

0
μ

(
Jn(s)

)
Xn(s) ds

)
,

where An
−1 and An

1 are mutually independent unit-rate Poisson processes, independent of Jn,
for n ∈N. We assume that λ(k)> 0 and μ(k)> 0, for k ∈ K. We let

xn∗ = n

∑
k∈K πkλ(k)∑
k∈K πkμ(k)

. (3.1)

Recall that X̂n = n−β (Xn − xn∗), and then X̂
n = {x̂n(x) : x ∈Z+}. It is evident that λ(k) andμ(k)x

satisfy Hypothesis 2.1(c)–(d). Let λ̄ := ∑
k∈K πkλ(k) and μ̄ := ∑

k∈K πkμ(k). By Definition
2.2, we obtain

L
n
f (x̂) = nλ̄

(
f (x̂ + n−β ) − f (x̂)

) + μ̄ (nβ x̂ + xn∗)
(
f (x̂ − n−β ) − f (x̂)

)
(3.2)

for all x̂ ∈ X̂
n
. Let V(x) = |x|m, for x ∈R, with m ≥ 2 an even integer. It is clear that∣∣x̂ ± n−β ∣∣m − |x̂|m = ±n−βm(x̂)m−1 + O

(
n−2β)O(|x̂|m−2). (3.3)

Thus we obtain from (3.1) and (3.2) that

L
nV(x̂) = nλ̄

(|x̂ + n−β |m − |x̂|m − n−βm|x̂|m−1) + μ̄nβ x̂
(|x̂ − n−β |m − |x̂|m)

+ μ̄xn∗
(|x̂ − n−β |m − |x̂|m + mn−β |x̂|m−1)

= λ̄O(n1−2β )O(|x̂|m−2) + μ̄
(−|x̂|m + O(n−β )O(|x̂|m−1)

+ O(n1−2β )O(|x̂|m−2)
)

≤ C1 − C2V(x̂) ∀ x̂ ∈ X̂
n
,

for some positive constants C1 and C2, where in the second equality we use (3.3), and in the
last line we apply Young’s inequality. It is straightforward to verify that V(x) satisfies (2.10).
Therefore, the assumptions in Theorem 2.1 hold, and (X̂n, Jn) is exponentially ergodic for all
large enough n.

Next we verify the assumptions in Corollary 2.3. The equation in (2.20) becomes∑
k∈K

πk

n(xn∗, k) =

∑
k∈K

πknλ(k) −
∑
k∈K

πkμ(k)xn∗ = 0. (3.4)

Note that xn∗ in (3.1) is the unique solution to (3.4). Recall the representation of Ŷn in (2.27).
In this example, it follows by (3.4) that

b̄n(x) = n−βμ̄xn∗ − n−βμ̄(nβx + xn∗) = −μ̄x ∀ x ∈R,

and
ān(0) = n−2β (nλ̄+ μ̄xn∗) = n1−2β2λ̄.
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Let V(x) = κ + |x|m, with κ ≥ 1, for some integer m ≥ 2. We choose some κ̃ ≥ 1 such that

Ṽ(x) := κ̃
(
1 + |x|5+m) ≥ V(x)

(
1 + |x|5) ∀ x ∈R.

Then Assumptions 2.2 and 2.3 are satisfied. Indeed, by the discussion following Theorem 3.1
of [11], if Ṽ ∈ C3(Rd) in Corollary 2.3, we may replace (2.35) by

(1 + |x|)(|∇Ṽ(x)| + ∣∣∇2Ṽ(x)
∣∣) + (1 + |x|2)

∣∣∇3Ṽ(x)
∣∣ ≤ CṼ(x) (3.5)

for some positive constant C and any x ∈Rd, where

∇3 := ∂3

∂xη1
1 · · · ∂xηd

d

with a multi-index (η1, . . . , ηd) satisfying
∑d

i=1 ηi = 3. Then it is straightforward to check that
Ṽ chosen above satisfies (3.5). Thus, the result in Corollary 2.3 follows.

The following example concerns Markov-modulated multiclass M/M/n + M queues.
Exponential ergodicity for these queues under a static priority scheduling policy has been stud-
ied in [3, Theorem 4], which treats a special case of the model considered in this paper. Here
we show that by using the result in Corollary 2.1, the proof of [3, Theorem 4] is greatly sim-
plified. We also extend the results in [3, Theorem 4 and Lemma 3] to include a larger class of
scheduling policies such that the Markov-modulated queues have exponential ergodicity.

Example 3.2. (Markov-modulated multiclass M/M/n + M queues.) We consider a
d-dimensional birth–death process {Xn(t) : t ≥ 0}, with state space Zd+, given by

Xn
i (t) := Xn

i (0) + An
ei

(∫ t

0
nλi

(
Jn(s)

)
ds

)
− An−ei

(∫ t

0

(
μi

(
Jn(s)

)
zn

i (Xn(s)) + γi
(
Jn(s)

)(
Xn

i (s) − zn
i (Xn(s))

))
ds

)
for i ∈ I := {1, . . . , d}, where {An

ei
, An−ei

: i ∈ I} are mutually independent unit-rate Poisson
processes, independent of Jn, and zn is the static priority policy defined by

zn
i (x) := xi ∧

(
n −

i−1∑
j=1

xj

)+
∀ i ∈ I.

We assume that {λi(k), μi(k), γi(k) : i ∈ I, k ∈ K} are strictly positive, and the system is
critically loaded, that is,

∑
i∈I ρi = 1 with ρi := λ̄i/μ̄i. Equation (2.20) becomes∑

k∈K

πk

n
i (xn∗, k) = nλ̄i − μ̄iz

n
i (xn∗) − γ̄i(x

n∗,i − zn
i (xn∗)) = 0 ∀ i ∈ I,

which has a unique solution xn∗ = nρ with ρ = (ρ1, . . . , ρd).

We first establish exponential ergodicity and verify Assumption 2.1. Let

ψn
ei

(x, k) = nλi(k), ψn−ei
(x, k) = nρiμi(k),

and
φn−ei

(x, k) =μi(k)(zn
i (x) − nρi) + γi(k)(xi − zn

i (x))
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for i ∈ I and (x, k) ∈Rd × K. Then ψ̄n
ei

(x) = nλ̄i and ψ̄n−ei
(x) = nρiμ̄i = nλ̄i. It is evident

that the functions ψn
ei

and ψn−ei
satisfy (2.11) and (2.12). Note that zn

i (x) ≤ xi, and thus
Hypothesis 2.1(d) is satisfied. Let Vζ,m(x) := ∑

i∈I ζi|xi|m for x ∈Rd, an even integer m ≥ 2,
and a positive vector ζ ∈Rd to be chosen later. Recall Gn

k in (2.13). It is straightforward to
verify that

Gn
kVζ,m(x̂) = n−β ∑

i∈I

−φn−ei
(nβ x̂ + nρ, k)λi|x̂i|m−1

+ n−2β
∑
i∈I

(
2nλ̄i + φn−ei

(nβ x̂ + nρ, k)
)
O

(|x̂i|m−2).

Since infi,k{μi(k), γi(k)}> 0, it follows by [2, Lemma 5.1] that there exist some positive vector
λ, n0 ∈N, and positive constants C1 and C2 such that

Gn
kVζ,m(x̂) ≤ C1 − C2Vζ,m(x̂), (x, k) ∈ X̂

n × K, n ≥ n0. (3.6)

Therefore, the result in Corollary 2.1 follows. We remark that the claim in Corollary 2.1
holds for any work-conserving scheduling policy satisfying (3.6), since there is no continu-
ity assumption on φn−ei

. This extends the results of [3, Theorem 4 and Lemma 3]. Indeed the
proofs of these results can be greatly simplified by following the approach above, since we
only need to consider the constant functions ψn

ei
and ψn−ei

in x.
Next we focus on steady-state approximations for this example. It is straightforward to

verify that the coefficients in (2.27) take the form

b̄n
i (x) = − μ̄i

nβ
(
zn

i (nβx + xn∗) − zn
i (xn∗)

)
− γ̄i

nβ
(
nβxi − (zn

i (nβx + xn∗) − zn
i (xn∗))

)
, i ∈ I,

(3.7)

and

ān
ii(0) = 1

n2β

(
nλ̄i + μ̄iz

n
i (xn∗) + γ̄i

(
xn∗,i − zn

i (xn∗)
) = n1−2β2λ̄i, ∀ i ∈ I,

and that ān
ij(0) = 0 for i 
= j. We let Vζ,m(x) = κ + ∑

i∈I ζi|xi|m for some positive vector ζ ∈Rd,
an even integer m ≥ 2, and κ ≥ 1. We choose κ̃ ≥ 1 such that

Ṽζ,m(x) := κ̃

(
1 +

∑
i∈I

ζi|x|6+m
)

≥ Vζ,m(x)(1 + |x|5) ∀ x ∈Rd.

Repeating the calculation in [2, Lemma 5.1], we find that there exist some positive vector
ζ ∈Rd and some positive constants c1 and c2 such that

〈b̄n(x),∇Vζ,m(x)〉 ≤ c1 − c2Vζ,m(x) ∀ x ∈Rd.

It follows directly by Young’s inequality that there exists some positive constant c3 such that∣∣∇2Vζ,m(x)
∣∣ ≤ c3 − c2

2
Vζ,m(x) ∀ x ∈Rd.

The same holds for Ṽζ,m. Thus, we have verified Assumption 2.3. Since zn
i is Lipschitz contin-

uous, it is evident that Assumption 2.2 holds. An easy calculation shows that (3.5) holds. As a
result, Corollary 2.3 follows.
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When d = 1, (2.20) becomes∑
k∈K

πk

n(xn∗, k) = nλ̄− μ̄

(
xn∗ ∧ n

) − γ̄
(
xn∗ − n)+ = 0,

which can be solved directly without the critically-loaded assumption. It is straightforward to
verify that (3.7) becomes

b̄n(x) = −μ̄(
(x + n−βxn∗) ∧ n1−β − n−βxn∗ ∧ n1−β)

− γ̄
(
(x + n−βxn∗ − n1−β )+ − n−β (xn∗ − n)+

)
.

Repeating the procedure as above, we establish Corollary 2.3.

Example 3.3. (Markov-modulated M/PH/n + M queues.) We assume that all customers start
service in phase 1, and there are d phases. Given Jn = k, the probability of getting phase
j after finishing service in phase i is denoted by pij(k). Let Xn

1 denote the total number of
customers, both in service and queued, in phase 1, and let Xn

i , for i 
= 1, denote the number
of customers in service in phase i. (We refer the reader to [8] for a detailed description of
the model without Markov modulation, and to [26] for an application of Markov-modulated
phase-type distributions in queueing.) Then (2.19) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


n
1(x, k) = nλ(k) −μ1(k)

(
x1 − (〈e, x〉 − n)+

) − γ (k)
(〈e, x〉 − n

)+
,


n
i (x, k) = −μi(k)xi +

∑
j 
=i,j 
=1

pji(k)μj(k)xj

+ p1i(k)μ1(k)
(
x1 − (〈e, x〉 − n)+

)
for i 
= 1,

and (2.20) becomes⎧⎨⎩nλ̄− μ̄1
(
xn
∗,1 − (〈e, xn∗〉 − n)+

) − γ̄
(〈e, xn∗〉 − n

)+ = 0,

−μ̄ixn∗,i +
∑

j 
=i,j 
=1 p̄jiμ̄jxn∗,j + p̄1iμ̄1
(
xn
∗,1 − (〈e, xn∗〉 − n)+

) = 0 for i 
= 1,

where γ̄ = ∑
k∈K πkγ (k), and p̄ij = ∑

k∈K πkpij(k). Here, eT = (1, . . . , 1) as defined in
Section 1.2. Assume that λ̄= 1. Note that {
n

i : i ∈ I} are piecewise linear functions in their
first argument. It is straightforward to verify that Hypothesis 2.1 and Assumption 2.2 are
satisfied. We get xn∗ = nρ, where

ρ := M̄−1e1

eTM̄−1e1
, and M̄ := (I − P̄T)diag(μ̄),

with I the identity matrix and P̄ := [p̄ij]. The coefficients in (2.27) satisfy

b̄n(x) = −M̄x + (
M̄ − γ̄ I

)
e1〈e, x〉+,

ān
ii(0) =

⎧⎨⎩n1−2β
(
1 + μ̄1ρ1

)
if i = 1,

n1−2β
(∑

j 
=i,j 
=1 p̄jiμ̄jρj + μ̄iρi + μ̄1ρ1p̄1i

)
if i 
= 1,

and

ān
ij(0) = n1−2β(p̄ijμ̄iρi + p̄jiμ̄jρj

)
, i 
= j.

By [5, Theorem 3.5] (see also [9, Theorem 3]), there exists a function Ṽ satisfying the assump-
tion in Corollary 2.3. In analogy to [5, Theorem 3.5], we can show that there exists a function
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V(x) = 〈x, Rx〉m/2, for m ≥ 2 and some positive definite matrix R, satisfying the conditions in
Theorem 2.1.

4. Proofs of Theorem 2.1 and Corollaries 2.1 and 2.2

The range of the transition matrix Q is the subspace � := {y ∈Rk◦ :
∑

k∈K πkyk = 0}. As
shown in [13, Theorem 3.5], if v and u are any vectors in Rk◦ satisfying πTv 
= 0 and uTe 
= 0,
then the matrix Q + vuT is nonsingular, and

T := (
Q + vuT)−1 (4.1)

is a generalized inverse of Q; that is, it satisfies QT Q = Q. This of course means that

QT y = y for all y ∈�. (4.2)

We also need the following definition.

Definition 4.1. Recall (2.3) and Definition 2.2. Let L̆
n
k := L

n − L n
k . This operator takes

the form

L̆
n
k f (x̂, k) :=

∑
z∈Z n

r̆n
k (nβ x̂ + xn∗, z)

(
f (x̂ + n−βz, k) − f (x̂, k)

)
, (x̂, k) ∈ X̂

n × K,

for f ∈ Cb(Rd × K ), where

r̆n
k (x, z) := r̄n(x, z) − r̃n

k (x, z), (x, k) ∈Xn × K.

Proof of Theroem 2.1. Let T = [Tk�]k,�∈K be as defined in (4.1).

Ṽn(x̂, k) := 1

nα
∑
�∈K

Tk� L̆
n
� Vn(x̂), (x̂, k) ∈ X̂

n × K. (4.3)

Then
QnṼn(x̂, k) = L̆

n
k Vn(x̂) ∀ (x̂, k) ∈ X̂

n × K, (4.4)

by (4.2).
We define

V̂n(x̂, k) := Vn(x̂) + Ṽn(x̂, k), (x̂, k) ∈ X̂
n × K. (4.5)

By Hypothesis 2.1(c)–(d), we have

r̃n
k (nβ x̂ + xn∗, z) ≤ C0(n1∨α/2 + nβ |x̂|) ∀ (x̂, k) ∈ X̂

n × K, ∀ z ∈ Z n, ∀ n ∈N. (4.6)

We choose N1 large enough so that m0 ≤ ε0Nβ1 , with m0 as defined in Hypothesis 2.1(a). By
Hypothesis 2.1(a)–(b), (2.6), and (4.6), we have∣∣L̆ n

k Vn(x̂)
∣∣ ≤ N0C0(n1∨α/2 + nβ |x̂|) Cm0

1 + Vn(x̂)

nβ (1 + |x̂|) (4.7)

for all n ≥ N1. Therefore, since α + β − 1 ≥ α/2 for α > 0, it follows by (4.5)–(4.7) that there
exists n1 ∈N, n1 ≥ N1, such that (2.8) holds.

Recall the definitions in (2.2), (2.3), and (2.5). We have

L
nVn(x̂) = Ln

kVn(x̂) + L̆
n
k Vn(x̂) = Ln

kVn(x̂) +QnṼn(x̂, k)
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by (4.4). Therefore, since QnVn(x̂) = 0, we obtain

L̂
nV̂n(x̂, k) = L n

k Vn(x̂) + L n
k Ṽn(x̂, k) +QnṼn(x̂, k)

= L
nVn(x̂) + L n

k Ṽn(x̂, k) ∀ (x̂, k) ∈ X̂
n × K.

(4.8)

We define the function

Gn
k(x̂, z) := r̆n

k

(
nβ x̂ + xn∗, z

)(
Vn(x̂ + n−βz) − Vn(x̂)

)
.

It is straightforward to verify, using (4.3), that

L n
k Ṽn(x̂, k) =

∑
h∈Z n

r̃n
k (nβ x̂ + xn∗, h)

(
Ṽn(x̂ + n−βh, k) − Ṽn(x̂, k)

)
= 1

nα
∑

h,z∈Z n

r̃n
k (nβ x̂ + xn∗, h)

∑
�∈K

Tk�
(
Gn
�(x̂ + n−βh, z) − Gn

�(x̂, z)
)
.

(4.9)

On the other hand, it follows by Hypothesis 2.1(c) and a triangle inequality that

|Gn
k(x̂ + n−βh, z) − Gn

k(x̂, z)|
≤ 2C0(nα/2 + |h|) ∣∣Vn(x̂ + n−βz) − Vn(x̂)

∣∣
+ ∣∣r̆n

k (nβ x̂ + xn∗ + h, z)
∣∣∣∣Vn(x̂ + n−βz + n−βh)

− Vn(x̂ + n−βh) − Vn(x̂ + n−βz) + Vn(x̂)
∣∣

(4.10)

for all h, z ∈ Z n. As in (4.6), we have

|r̆n
k (nβ x̂ + xn∗ + h, z)| ≤ C0

(
n1∨α/2 + nβ |x̂| + |h|) ∀ (x̂, k) ∈ X̂

n × K, ∀ h, z ∈ Z n,

(4.11)
for all n ∈N. By (2.6) and Hypothesis 2.1(a), we have∣∣Vn(x̂ + n−βz) − Vn(x̂)

∣∣ ≤ Cm0
1 + Vn(x̂)

nβ (1 + |x̂|) ,∣∣Vn(x̂ + n−βz + n−βh) − Vn(x̂ + n−βh)

−Vn(x̂ + n−βz) + Vn(x̂)
∣∣ ≤ Cm2

0
1 + Vn(x̂)

n2β (1 + |x̂|2)

(4.12)

for all h, z ∈ Bm0 , x̂ ∈ X̂
n
, and n ∈N. Hence, using (4.9) together with the estimates in (4.6)

and (4.10)–(4.12) and Hypothesis 2.1(a)–(b), we obtain

L n
k Ṽn(x̂, k)

≤ N0C0Cm0

∑
k,k′∈K

|Tk�|
(

2(nα/2 + m0)(n1∨α/2 + nβ |x̂|) 1 + Vn(x̂)

nα+β (1 + |x̂|)

+ N0C0m0
(
n1∨α/2 + nβ |x̂|)(n1∨α/2 + nβ |x̂| + m0

) 1 + Vn(x̂)

nα+2β (1 + |x̂|2)

)
.

(4.13)

Using the property β = max{1/2, 1 − α/2}, we deduce from (4.13) that for any ε > 0 there exists
some constant C◦(ε) such that

L n
k Ṽn(x̂, k) ≤ C◦(ε) + εVn(x̂) ∀ (x̂, k) ∈ X̂

n × K, ∀n ∈N. (4.14)
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Therefore, choosing ε = 1
2 C2, and using (2.7), (2.8), (4.8), and (4.14), we obtain

L̂
nV̂n(x̂, k) ≤ C1 + C◦

(
C2/2

) + 1

6
C2 − 1

3
C2V̂n(x̂, k) ∀ (x̂, k) ∈ X̂

n × K, ∀ n> n1.

This completes the proof.

Proof of Corollary 2.1. Recall Gn
k in (2.13), and let Ğn

k := Gn
k − L n

k . Then Ğn
k takes the form

Ğn
k f (x̂, k) =

∑
z∈Z n

ψ̆n
k (nβ x̂ + xn∗, z)

(
f (x̂ + n−βz, k) − f (x̂, k)

)
, (x̂, k) ∈ X̂

n × K,

for f ∈ Cb(Rd × K ), where

ψ̆n
k (x, z) := ψ̄n(x, z) −ψn

k (x, z), k ∈ K, (x, z) ∈Xn × Z n.

Compare this to Definition 4.1. We let

Ṽn(x̂, k) := 1

nα
∑
�∈K

Tk� Ğn
�Vn(x̂), (x̂, k) ∈ X̂

n × K.

As in (4.4), we have

QnṼn(x̂, k) = Ğn
kVn(x̂), (x̂, k) ∈ X̂

n × K.

In analogy to (4.8), we get

L̂
nV̂n(x̂, k) = Gn

kVn(x̂) + L n
k Ṽn(x̂, k), (x̂, k) ∈ X̂

n × K.

In obtaining an estimate for L n
k Ṽn(x̂, k), the proof is the same as that of Theorem 2.1, except

that we replace r̆n with ψ̆n, and use (2.11) and (2.12). Applying (2.11) and (2.12) again, we
may show (2.8). Then the claim in (2.9) follows by (2.14). �

Proof of Corollary 2.2. We present only some crucial estimates that are different from those
in the proof of Theorem 2.1. Indeed, it follows by (2.15) and (2.16) that

r̃n
k (nβ x̂ + xn∗, z) ≤ C0(1 + n), r̆n

k (nβ x̂ + xn∗, z) ≤ C0(1 + n), (4.15)

and ∣∣r̆n
k (nβ (x̂ + n−βh) + xn∗, z) − r̆n

k (nβ x̂ + xn∗, z)
∣∣ ≤ C0(1 + |h| ∧ n) (4.16)

for some positive constant C0. By Hypothesis 2.1(a)–(b), (4.15), and (2.17), (4.7) becomes∣∣L̆ n
k Vn(x̂)

∣∣ ≤ N0C0(1 + n) Cm0
1 + Vn(x̂)

nβ
(4.17)

for all large n. Using (2.17) and (4.15)–(4.17), together with Hypothesis 2.1(a)–(b), (4.13)
becomes

L n
k Ṽn(x̂, k) ≤ N0C0Cm0

∑
k,k′∈K

|Tk�|
(

2(1 + m0)(1 + n)
1 + Vn(x̂)

nα+β

+ N0C0m0(1 + n)(1 + n)
1 + Vn(x̂)

nα+2β

)
.

(4.18)

Since α + 2β > 2 implies α + β > 1, it follows by (4.18) that (4.14) holds for all large n. The
rest of the proof is the same as that of Theorem 2.1. �
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5. Proofs of Theorem 2.2 and Corollary 2.3

We need to introduce some additional notation to facilitate the proofs. Recall the definitions
of 
̂n, �̄n, b̄n, and ān in (2.25)–(2.27) and (2.30), respectively. For f ∈ C2(Rd) and n ∈N, let

ğn
1[f ](x, k) :=

∑
i∈I

(
b̄n

i (x) − (

̂n

i (x, k) − 
̂n
i (0, k)

))
∂if (x)

+ 1

2

∑
i,j∈I

(
ān

ij(x) − �̄n
ij(x, k)

)
∂ijf (x)

(5.1)

and

ğn
2[f ](x, k) := 1

nα+2β

∑
z

∑
h∈K

(∑
l∈K

πlξ
n
z (nβx + xn∗, l)ϒlh

− ξn
z (nβx + xn∗, k)ϒkh

) ∑
j∈I


n
j (xn∗, h)

∑
i∈I

zi∂ijf (x),
(5.2)

with ϒ as defined in (2.28). It follows by the identity∑
k∈K

(∑
l∈K

πlξ
n
z (nβx + xn∗, l)ϒlh − ξn

z (nβx + xn∗, k)ϒkh

)
≡ 0

that
∑

k∈K πkğn
2[f ](x, k) = 0. It is clear that

∑
k∈K πkğn

1[f ](x, k) = 0. Recall the matrix T in
(4.1) and (4.2). We define

gn
i [f ](x, k) := 1

nα
∑
�∈K

Tk� ğn
i [f ](x, �), i = 1, 2, (5.3)

and thus
Qngn

i [f ](x, k) = ğn
i [f ](x, k), i = 1, 2. (5.4)

For f ∈ C2(Rd) and n ∈N, let

gn
3[f ](x, k) := 1

nα+β
∑
h∈K

∑
j∈I


n
j (xn∗, h)ϒkh ∂jf (x). (5.5)

Note that the function gn
3[f ] corresponds to the covariance of the background Markov process

Jn. We let gn[f ] denote the sum of the above functions, that is,

gn[f ](x, k) := gn
1[f ](x, k) + gn

2[f ](x, k) + gn
3[f ](x, k), (x, k) ∈Rd × K. (5.6)

To keep the algebraic expressions in the proofs manageable, we adopt the notation
introduced in the following definition.

Definition 5.1. We define the operators [Dn
z ]0 and [Dn

z ]1
j , j ∈ I, by

[Dn
z ]0f (x) := f (x + n−βz) − f (x) − n−β ∑

i∈I

zi∂if (x) − n−2β
∑

i,j∈I

zizj∂ij f (x),

[ Dn
z ]1

j f (x) := ∂jf (x + n−βz) − ∂jf (x) − n−β ∑
i∈I

zi∂ij f (x),
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for f ∈ C2(Rd) and z ∈ Z n. In addition, we define

Rn
1[f ](x̂, k) :=

∑
z

ξn
z (nβ x̂ + xn∗, k) [Dn

z ]0f (x̂),

Rn
2[f ](x̂) := 1

2

∑
i,j∈I

∑
k∈K

πk
(
�̄n

ij(x̂, k) − �̄n
ij(0, k)

)
∂ijf (x̂),

Rn
3[f ](x̂, k) := 1

nα+2β

∑
i,j∈I

∑
h,l∈K

(

n

i (xn∗ + nβ x̂, l) −
n
i (xn∗, l)

)

n

j (xn∗, h)πlϒlh∂ijf (x̂),

Rn
4[f ](x̂, k) := 1

nα+β
∑

z

∑
h∈K

ξn
z (nβ x̂ + xn∗, k)ϒkh

∑
j∈I


n
j (xn∗, h)[Dn

z ]1
j f (x̂),

Rn
5[f ](x̂, k) := L n

k gn
1[f ](x̂, k),

Rn
6[f ](x̂, k) := L n

k gn
2[f ](x̂, k).

The following lemma establishes a useful identity involving the generator of (X̂n, Jn) in
(2.2) and that of Ŷn in (2.31) and the operators Rn

i in Definition 5.1.

Lemma 5.1. Under Assumption 2.2(ii), for f ∈ C2(Rd), we have

L̂
n
f (x̂) +L̂

n
gn[f ](x̂, k) = Anf (x̂) +

6∑
i=1

Rn
i [f ](x̂, k), (x̂, k) ∈ X̂

n × K. (5.7)

Proof. By (2.2) we have

L̂
n
gn[f ](x̂, k) =

3∑
i=1

(
L n

k gn
i [f ](x̂, k) +Qngn

i [f ](x̂, k)
)
, (5.8)

and L̂
n
f (x̂) = L n

k f (x̂) for any f ∈ C2(Rd).
We first show that

L n
k f (x̂) +Qngn

1[f ](x̂, k) +Qngn
3[f ](x̂, k)

=
∑
i∈I

b̄n
i (x̂)∂if (x̂) + 1

2

∑
i,j∈I

ān
ij∂ijf (x̂) +Rn

1[f ](x̂, k) +Rn
2[f ](x̂). (5.9)

Using (2.3) and (5.5), we obtain

Qngn
3[f ](x̂, k) =

∑
h∈K

∑
�∈K

qk�ϒ�h
∑
j∈I


n
j (xn∗, h)

nβ
∂jf (x̂). (5.10)

Since Qϒ =�− I, where I denotes the identity matrix, it follows by (2.20) that∑
h∈K

∑
�∈K

qk�ϒ�h

n
j (xn∗, h) =

∑
h∈K

πh

n
j (xn∗, h) −
n

j (xn∗, k) = −
n
j (xn∗, k), (5.11)

where in the second equality we use Assumption 2.2(ii). Thus, by (5.10) and (5.11), we have

Qngn
3[f ](x̂, k) =

∑
j∈I

−

n
j (xn∗, k)

nβ
∂jf (x̂) =

∑
j∈I

−
̂n
j (0, k) ∂jf (x̂). (5.12)
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By (2.3) and a standard identity, we obtain

L n
k f (x̂) =

∑
z∈Z n

ξn
z (nβ x̂ + xn∗, k)

(∑
i∈I

n−βzi∂if (x̂)

+
∑

i,j∈I

n−2βzizj∂ijf (x̂) + [Dn
z ]0f (x̂)

)

=
∑
i∈I


̂n
i (x̂, k)∂if (x̂) +

∑
i,j∈I

�̄n
ij(x̂, k)∂ijf (x̂) +Rn

1[f ](x̂, k).

(5.13)

Thus (5.9) follows from (5.1), (5.4), (5.12), and (5.13).
Next, we show that

L n
k gn

3[f ](x̂, k) +Qngn
2[f ](x̂, k) = 1

2

∑
i,j∈I

θn
ij∂ijf (x̂) +Rn

3[f ](x̂, k) +Rn
4[f ](x̂, k). (5.14)

We have

L n
k gn

3[f ](x̂, k)

= 1

nα+β
∑

z

ξn
z (nβ x̂ + xn∗, k)

∑
h∈K

∑
j∈I


n
j (xn∗, h)ϒkh

(
∂jf (x̂ + n−βz) − ∂jf (x̂)

)
by (2.3). It is clear that

∂jf (x̂ + n−βz) − ∂jf (x̂) = n−β ∑
i∈I

zi∂ijf (x̂) + [Dn
z ]1

j f (x̂)

and ∑
z

ziξ
n
z (nβ x̂ + xn∗, k) =
n

i (xn∗, k) + (

n

i (xn∗ + nβ x̂, k) −
n
i (xn∗, k)

)
.

Therefore, (5.14) follows from combining these identities with (5.2) and (5.4).
Hence, we obtain (5.7) by adding (5.8), (5.9), and (5.14), and using the definitions of Rn

i [f ]
for i = 5, 6. This completes the proof. �

The following lemma provides needed estimates for Rn
5 and Rn

6.

Lemma 5.2. Under Assumption 2.2 (i)–(iii), there exists some positive constant C such that∣∣Rn
5[f ](x̂, k)

∣∣
≤ C

[(
1

nα
|x̂| + 1

nα+β−1

)
|∇f (x̂)| +

(
1

nα+β |x̂| + 1

nα+2β−1

)∣∣∇2f (x̂)
∣∣

+
(

1

nα−β |x̂|2 + 1

nα−1
|x̂|

)
max
z∈Z n

|∇f (x̂ + n−βz) − ∇f (x̂)|

+
(

1

nα
|x̂|2 + 1

nα+β−1
|x̂| + 1

nα+2β−2

)
max
z∈Z n

∣∣∇2f (x̂ + n−βz) − ∇2f (x̂)
∣∣]

(5.15)
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and

∣∣Rn
6[f ](x̂, k)

∣∣ ≤ C

[(
1

n2α+β−1
|x̂| + 1

n2α+2β−2

) ∣∣∇2f (x̂)
∣∣

+
(

1

n2α−1
|x̂|2 + 1

n2α+β−2
|x̂|

+ 1

n2α+2β−3

)
max
z∈Z n

∣∣∇2f (x̂ + n−βz) − ∇2f (x̂)
∣∣],

(5.16)

for any (x̂, k) ∈ X̂
n × K.

Proof. Recall the functions gn
1[f ] and gn

2[f ] in (5.3). It follows by (2.21) and (2.22) that

|ξn
z (x, k)| ≤ C̃(|x − xn∗| + n) (5.17)

and

|ξn
z (x + xn∗, k) − ξn

z (xn∗, k)| ≤ C̃|x| (5.18)

for (x, k) ∈Rd × K, z ∈ Z n, and n ∈N. By Assumption 2.2(i), and applying (2.20) and (5.18)
it is straightforward to verify that∣∣∣∣∣∑

k∈K

πk
̂
n(x̂, k)

∣∣∣∣∣ ≤ C̃Ñ0m0|x̂| ∀ x̂ ∈Rd. (5.19)

Thus, by (5.18) and (5.19),we have∣∣b̄n(x̂) − (

̂n(x̂, k) − 
̂n(0, k)

)∣∣ ≤ 2C̃Ñ0m0|x̂| ∀ (x̂, k) ∈Rd × K. (5.20)

Applying (5.17), we obtain∣∣ān(x̂) − �̄n(x̂, k)
∣∣ ≤ 2C̃Ñ0m2

0

(
n−β |x̂| + n1−2β) ∀(x̂, k) ∈Rd × K, (5.21)

and ∣∣∣∣∣∑
l∈K

πlξ
n
z (nβ x̂ + xn∗, l)ϒlh − ξn

z (nβ x̂ + xn∗, k)ϒkh

∣∣∣∣∣ ≤ C1
(
nβ |x̂| + n

) ∀ x̂ ∈Rd (5.22)

and all k, h ∈ K and z ∈ Z n, for some positive constant C1. We have

|
n(xn∗, k)| ≤ C̃Ñ0m0n ∀ k ∈ K, n ∈N, (5.23)

by (2.22), and

|ξn
z (nβ x̂ + xn∗, k)| ≤ C̃(nβ |x̂| + n) ∀ (x̂, k) ∈Rd × K, z ∈ Z n, n ∈N, (5.24)
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by (5.17). From (2.21), we obtain∣∣
̂n(x̂ + n−βz, k) − 
̂n(x̂, k)
∣∣ ≤ n−β C̃Ñ0m2

0 (5.25)

and ∣∣�̄n(x̂ + n−βz, k) − �̄n(x̂, k)
∣∣ ≤ n−2β C̃Ñ0m3

0 (5.26)

for (x̂, k) ∈Rd × K, z ∈ Z n, and n ∈N. Repeating similar calculations as in (4.10) and (4.13),
and applying (5.20), (5.21), and (5.24)–(5.26), we have∣∣Rn

5[f ](x̂), k
∣∣

≤ C̃Ñ0m0

∑
k,�∈K

|Tk�|
(

2C̃Ñ0m2
0

(nβ |x̂| + n)

nα+β |∇f (x̂)|

+ 2C̃Ñ0m0|x̂| (nβ |x̂| + n)

nα
max
z∈Z n

|∇f (x̂ + n−βz) − ∇f (x̂)|

+ C̃Ñ0m3
0

(nβ |x̂| + n)

nα+2β
|∇2f (x̂)|

+ 2C̃Ñ0m2
0

(
n−β |x̂| + n1−2β

)
(nβ |x̂| + n)

nα
max
z∈Z n

|∇f (x̂ + n−βz) − ∇f (x̂)|
)
,

which establishes (5.15). The estimate for Rn
6 in (5.16) obtained in a similar manner by

applying (2.21) and (5.22)–(5.24). This completes the proof. �
We borrow the following estimates for solutions to the Poisson equation for the operator

An from [11, Theorem 4.1] and the discussion following this theorem. Recall that νn is the
steady-state distribution of Ŷn in (2.27).

Lemma 5.3. Grant Assumption 2.2, and fix a function V in Assumption 2.3. Let f ∈ C0,1(Rd)
be such that ‖f ‖C0,1(Bx) ≤ V(x) and νn(f ) = 0. Then the function un

f ∈ C2(Rd) defined by

un
f (x) :=

∫ ∞

0
Ex

[
f
(
Ŷn(s)

)]
ds

is the unique (up to an additive constant) solution to the Poisson equation

Anu = −f , (5.27)

and satisfies

|∇un
f (x)| ∈ O

(
(1 + |x|)V(x)

)
,

∣∣∇2un
f (x)

∣∣ ∈ O
(
(1 + |x|2)V(x)

)
, (5.28)

and [
un

f

]
2,1;B m0√

n
(x) ∈ O

(
(1 + |x|3)V(x)

)
. (5.29)

In the following lemma, we consider the solution of the Poisson equation in (5.27) and
establish an estimate for the sum of terms Rn

i [un
f ], i = 1, . . . , 6, given in Definition 5.1.
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Lemma 5.4. Grant Assumption 2.2, and fix a function V in Assumption 2.3. Let f and un
f be as

in Lemma 5.3. Then

6∑
j=1

Rn
j [un

f ](x̂, k) = O

(
1

nα/2∧1/2

)
O

(
(1 + |x̂|5)V(x̂)

) ∀ (x̂, k) ∈ X̂
n × K. (5.30)

Proof. Note that

[Dn
z ]0un

f (x̂) = n−2β
∑

i,j∈I

zizj∂ij
(
un

f (x̂ + εn
x,z) − un

f (x̂)
)

for εn
x̂,z ∈ ∏

i∈I [x̂i, x̂i + n−βzi]. Applying (4.6) and (5.29), we obtain

Rn
1[un

f ](x̂, k) = 1

nβ
O

(
(1 + |x̂|4)V(x̂)

) ∀ (x̂, k) ∈ X̂
n × K. (5.31)

By (5.18), we have

|�̄n
ij(x̂, k) − �̄n

ij(0, k)| ≤ C̃Ñ0m2
0n−β |x̂| ∀ (x̂, k) ∈ X̂

n × K,

and thus it follows by (5.28) that

Rn
2[un

f ](x̂) = 1

nβ
O

(
(1 + |x̂|3)V(x̂)

)
. (5.32)

Applying Definition 5.1, (5.18), (5.23), and (5.28), we obtain

Rn
3[un

f ](x̂, k) = 1

nα+β−1
O

(
(1 + |x̂|3)V(x̂)

) ∀ k ∈ K. (5.33)

Repeating the above procedure, and using Definition 5.1, (5.17), (5.23), and (5.29), we obtain

Rn
4[un

f ](x̂, k) = O

(
1

nα+3β−2

)
O

(
(1 + |x̂|4)V(x̂)

) ∀ k ∈ K. (5.34)

It follows by Lemma 5.2, (5.28), and (5.29) that

Rn
5[un

f ](x̂, k) = O

(
1

nα+β−1

)
O

(
(1 + |x̂|5)V(x̂)

)
(5.35)

and

Rn
6[un

f ](x̂, k) = O

(
1

n2α+3β−3

)
O

(
(1 + |x̂|5)V(x̂)

)
(5.36)

for all k ∈ K. On the other hand, when α > 1, β = 1
2 , α+ β − 1 ≥ β and 2α + 3β − 3 ≥ β,

and when α ≤ 1, α + β − 1 = 2α + 3β − 3 = α/2 and α+ 3β − 2 = β. Then, by using (5.31)–
(5.36), we have shown (5.30). This completes the proof. �
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Proof of Theorem 2.2. Without loss of generality, we assume that νn(f ) = 0 (see [11, Remark
3.2]). Recall the function gn in (5.6). Applying Lemma 5.1, it follows that

Eπn

[
un

f

(
X̂n(T)

) + gn[un
f ]

(
X̂n(T), Jn(T)

)]
=Eπn

[
un

f (X̂n(0)) + gn[un
f ](X̂n(0), Jn(0))

]
+Eπn

[∫ T

0
Anun

f

(
X̂n(s)

)
ds

]

+
6∑

j=1

Eπn

[∫ T

0
Rn

j [un
f ]

(
X̂n(s), Jn(s)

)
ds

]
.

(5.37)

By Lemma 5.4, we have∣∣∣∣∣
6∑

j=1

Eπn

[∫ T

0
Rn

j [un
f ]

(
X̂n(s), Jn(s)

)
ds

]∣∣∣∣∣
≤ O

(
1

nα/2∧1/2

)
Eπn

[∫ T

0

(
1 + V

(
X̂n(s)

)(
1 + |̂Xn(s)|5)) ds

]
= O

(
1

nα/2∧1/2

)
T

∫
Rd×K

(1 + V(x̂))(1 + |x̂|)5πn(dx̂, dk).

(5.38)

Applying (5.6), (5.24), and (5.28), we obtain

|gn(x̂, k)| ≤ C1
(
1 + (1 + |x̂|3)V(x̂)

) ∀ (x̂, k) ∈ X̂
n × K, (5.39)

for some positive constant C1 and all large enough n. Since
∣∣un

f

∣∣ ∈ O(V) by the claim in (22) of
[11], it follows by (5.39) that∣∣∣Eπn

[
un

f

(
X̂n(T)

) + gn[un
f ]

(
X̂n(T), Jn(T)

)]∣∣∣
≤ C2

(
1 +

∫
Rd×K

V(x̂)(1 + |x̂|)3πn(dx̂, dk)

) (5.40)

for some positive constant C2. By (5.27),

Eπn

[∫ T

0
Anun

f

(
X̂n(s)

)
ds

]
= −Eπn

[∫ T

0
f
(
X̂n(s)

)
ds

]
= −Tπn(f ). (5.41)

Since πn is the stationary distribution, the bound in (5.40) also holds for the first term on the
right-hand side of (5.37). Thus, applying (5.37), (5.38), (5.40), and (5.41), we obtain

T
∣∣πn(f )

∣∣ ≤ 2C2

(
1 +

∫
Rd×K

V(x̂)(1 + |x̂|)3πn(dx̂, dk)

)
+ O

(
1

nα/2∧1/2

)
T

∫
Rd×K

(1 + V(x̂))(1 + |x̂|)5πn(dx̂, dk).

(5.42)
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Therefore, dividing both sides of (5.42) by T , taking T → ∞, and applying (2.32), we obtain

|πn(f )| = O

(
1

nα/2∧1/2

)
.

This completes the proof. �

Proof of Corollary 2.3. We claim that for some positive constants C1, κ1, and κ2, a ball B,
and a sequence εn → 0 as n → ∞, we have

L̂
n
Ṽ(x̂) +L̂

n
gn [̃V](x̂, k) = AnṼ(x̂) +

6∑
i=1

Rn
i [̃V](x̂, k)

≤ κ11B(x̂) − κ2Ṽ(x̂) + C1 + εnṼ(x̂)

(5.43)

for all (x̂, k) ∈ X̂
n × K. Indeed the equality in (5.43) follows from Lemma 5.1. Following the

calculation in the proof of Lemma 5.4, and using (2.35), the inequality in (5.43) follows from
Assumption 2.3 and Lemma 5.2. By Assumption 2.2 and (2.35), we have

C2Ṽ(x̂) − C3 ≤ Ṽ(x̂) + gn [̃V](x̂, k) ≤ C3(̃V(x̂) + 1) ∀ (x̂, k) ∈ X̂
n × K, (5.44)

for some positive constants C2 and C3. Combining (5.43) and (5.44), we see that V(x̂, k) :=
Ṽ(x̂) + gn [̃V](x̂, k) satisfiesL̂

n
V(x̂, k) ≤ κ31B′ (x) − κ4V(x̂, k) for some positive constants κ3

and κ4, and a ball B′. This together with (5.44) and the hypothesis in (2.34) implies (2.32),
and completes the proof. �

Appendix A. The diffusion limit

Proposition A.1, which follows, shows that under suitable assumptions, the processes X̂n in
(2.24) and Ŷn in (2.27) have the same diffusion limit. This proposition is interesting in its own
right.

Let (Dd,J1) denote the space of Rd-valued càdlàg functions endowed with the J1 topology
(see, e.g., [6]).

Proposition A.1. Grant Assumption 2.2. In addition, suppose that X̂n(0) ⇒ y0,

ξn
z (xn∗ + nβ x̂, k) − ξn

z (xn∗, k)

nβ
−−−→
n→∞ ξ̂z(x̂, k) ∀ (k, z) ∈ K × Z n (A.1)

uniformly on compact sets in Rd, M̂n is a square-integrable martingale, and


n(xn∗, k)

n
−−−→
n→∞ 
(k) ∈ Rd ∀ k ∈ K. (A.2)

Then X̂n and Ŷn have the same diffusion limit X̂ in (Dd,J1), and X̂ is the strong solution of the
stochastic differential equation

dX̂(t) = b̄
(
X̂(t)

)
dt + σαdW(t),
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with X̂(0) = y0, where
b̄(x̂) :=

∑
k∈K

πk

∑
z

z ξ̂z(x̂, k),

(σα)Tσα :=

⎧⎪⎪⎨⎪⎪⎩
∑

k∈K πk�̄(k) for α > 1,∑
k∈K πk�̄(k) +� for α= 1,

� for α < 1,

and �= [θij] is defined by

θij := 2
∑

k,�∈K


i(k)
j(�)πkϒk�, i, j ∈ I.

Proof. Recall that
∑

k∈K πk

n(xn∗, k) = 0 and 
̂n(0, k) = n−β
n(xn∗, k). Recall the repre-

sentation of X̂n in (2.24). By [21, Lemma 5.8], M̂n is stochastically bounded; see also the proof
of [3, Theorem 2.1(i)]. Since 
̂n is Lipschitz continuous by (2.21), it follows by the same
argument as in the proof of [21, Lemma 5.5] that X̂n is stochastically bounded. Thus, by [21,
Lemma 5.9], n−1Xn converges to the zero process in (Dd,J1). We write X̂n as

X̂n(t) = X̂n(0) +
∑
k∈K

∫ t

0

(

̂n(X̂n(s), k) − 
̂n(0, k)

)
1k

(
Jn(s)

)
ds + M̂n(t)

+
∑
k∈K


n(xn∗, k)

n
n1−β

∫ t

0

(
1k

(
Jn(s)

) − πk
)

ds.

(A.3)

Let Ŝn(t) and R̂n(t) be d-dimensional processes denoting the second and fourth terms on the
right-hand side of (A.3). It follows by [1, Proposition 3.2] and (2.23) that

R̂n ⇒
{

WR for α ≤ 1,

0 for α > 1,
in (Dd,J1), (A.4)

as n → ∞, where WR is a d-dimensional Wiener process with the covariance matrix�. On the
other hand, we have

Ŝn(t)

=
∑
k∈K

∫ t

0
n−α/2

(

̂n(X̂n(s), k) − 
̂n(0, k)

)
d

(
nα/2

∫ s

0

(
1k(Jn(u)) − πk

)
du

)

+
∑
k∈K

πk

∫ t

0

(

̂n(X̂n(s), k) − 
̂n(0, k)

)
ds.

(A.5)

It follows by the convergence of n−1Xn to the zero process that n−α/2X̂n also converges to the
zero process uniformly on compact sets in probability. Note that, for some constant C, we have
|
̂n(X̂n(s), k) − 
̂n(0, k)| ≤ C|̂Xn(s)| for all s ≥ 0 by (2.21). It then follows by [1, Proposition
3.2] and [14, Theorem 5.2] that the first term on the right-hand side of (A.5) converges to
the zero process uniformly on compact sets in probability, as n → ∞. See also the proofs of
Lemma 4.4 in [14] and Lemma 4.1 in [3]. It is clear by (A.1) that

hn(x̂) :=
∑
k∈K

πk
(

̂n(x̂, k) − 
̂n(0, k)

) −→
∑
k∈K

πk

∑
z

z ξ̂z(x̂, k) (A.6)
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uniformly on compact sets in Rd. Note that the function hn is Lipschitz continuous by (2.21).
By [21, Theorem 4.1] (see also [14, Lemma 4.1]), the integral mapping xn =�n(zn) : Dd →D

d

defined by

xn(t) = zn(t) +
∫ t

0
hn(xn(s)) ds ∀ n ∈N,

is continuous in (Dd,J1). Thus, applying the continuous mapping theorem and using
(A.3)–(A.6), we obtain

X̂n ⇒ X̂ in (Dd,J1).

Recall the definitions of �̄n and �n in (2.25) and (2.29), respectively. As n → ∞, we have
that �̄n(0, k) → �̄(k) when α ≥ 1, and �̄n(0, k) → 0 when α < 1, by (2.23). Since β =
max{1 − α/2, 1/2}, it then follows by (A.2) that�n →� when α ≤ 1, and�n → 0 when α > 1.
It is then straightforward to verify that Ŷn ⇒ X̂ in (Dd,J1), as n → ∞. Therefore, X̂n and Ŷn

have the same diffusion limit. �
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