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SUMMARY
Fuzzy control has been widely applied in industrial controls
and domestic electrical equipment. The automatic learning
of fuzzy rules is a key technique in fuzzy control. In this
paper, a software development system for fuzzy control is
presented. Since the learning of fuzzy rules can be seen as
finding the best classifications of fuzzy memberships of
input-output variables in a fuzzy controller, it can also be
seen as the combination optimization of input-output fuzzy
memberships. Multi-layer feedforward network and genetic
algorithms (GA) can be used for the automatic learning of
fuzzy rules. The algorithms and their characteristics are
described. The software development system has been
successfully used for the design of some fuzzy controllers.

KEYWORDS: Fuzzy control; Rule generation; Multi-layer feed-
forward network; Genetic algorithm.

1. INTRODUCTION
Fuzzy logic can represent and deal with uncertainty and
fuzziness of knowledge. For many real-world control
systems, state equations are difficult to express or are
strongly nonlinear, and the accurate mathematical models
and constraints of the systems are not precisely known.
Fuzzy control1 is one of the methods most likely to be used
to solve such problems. Fuzzy control simplifies the
modeling of a control system, and realizes a smooth
transformation of states. In classical approaches, fuzzy
membership functions are set in advance and fuzzy rules are
adjusted iteratively until expected results of control systems
are achieved. The whole procedure is usually handled
manually. With the wide application of fuzzy control, the
objects to be controlled become more and more compli-
cated, but the development periods of fuzzy controllers are
expected to be shorter and shorter. A software development
system for fuzzy control is useful and urgently needed.
Knowledge acquisition is the bottleneck for implementing
fuzzy systems. For a complicated fuzzy system, it is very
difficult (even for human experts) to find satisfactory fuzzy
rules manually. Automatic learning of fuzzy rules is a key
technique in a software development system for fuzzy
control. The aim of automatic learning fuzzy rules is to
realize a smooth transformation between a pair of expected
input-output states. It can also be considered as a pattern
classification. A multi-layer perceptron network can be used
for the automatic learning of fuzzy rules2–4 because multi-
layer feedforward networks can be used as a tool for
function approximation to realize smooth input-output data

approximation. Automatic learning of fuzzy rules can also
be seen as a problem of an optimization combination of
input-output states, while the goal is to find the best
combination. As an effective technique of optimization,
genetic algorithms can be used for the automatic learning of
fuzzy rules.4–6

2. SOFTWARE DEVELOPMENT SYSTEM FOR
FUZZY CONTROL
In our software development system for fuzzy control, a
triangular function is selected as the membership function
of fuzzy predicates. A MAX-MIN approach is used for the
inference of fuzzy rules.

Defuzzification: fuzzy predicates of output variables are
defuzzified into their real values according to pre-defined
membership functions. After a fuzzy inference by a MAX-
MIN approach, the membership values �(Ai)i=1, . . . , n of
fuzzy predicates Ai i=1, . . . , n of an output variable are
calculated. The real value of the output variable is:

Z0 = �n

i=1

� (Ai )� Zi��n

i=1

� (Ai )

where zi is the center value of the triangular membership
function of fuzzy predicates Ai.

For a fuzzy controller with two input variables and two
output variables, each variable is divided into three
categories of fuzziness (fuzzy predicates). The structure of
the fuzzy neural network is described in Figure 1.

2.1. The function menu of the software development tool
for fuzzy control
The function menu of the software development tool for
fuzzy control is shown in Figure 2. The system function
consists of operations (Edit, Save, Print) for the data file
*.fuz of a fuzzy controller which records training data,
membership functions, evaluation function, fuzzy rules and
codes of rules for a chip.

The membership function consists of three subfunctions:
a “Variable definition” subfunction defines input and output
variables and their fuzzy predicates; a “Function edit”
subfunction shows default membership functions and
revises them manually; a “Function generation” subfunction
is an automatic generation of membership functions accord-
ing to the distribution of training data and clustering
algorithms.

A Rule-editor function edits fuzzy rules manually or
revises the fuzzy rules learnt by neural or GA approaches.
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A Neural-learning function consists of two subfunctions:
a “Parameters definition” subfunction defines the training
parameters of a multi-layer feedforward network, as a Rule
learning subfunction automatically learns fuzzy rules by a
multi-layer feedforward network.

GA-learning function consists of four subfunctions: a
“Parameters definition” subfunction defines the training
parameters of the genetic algorithm; an “Evaluation”
subfunction edits the evaluation function for GA-learning; a
“Rule learning” subfunction automatically learns fuzzy
rules by GA-learning; a “Rule optimization” subfunction
optimizes fuzzy rules that are manually edited or learnt by
a neural network.

A Code-generation function consists of two subfunctions:
a “Motorola SR3” subfunction generates codes of fuzzy
rules for a MCU chip (Motorola SR3); an “Other chips”
subfunction generates codes of fuzzy rules for a DSP chip
(e.g. TI C240).

2.2. Automatic generation of fuzzy membership functions
The precision and smoothness of a fuzzy controller are
affected by the division of the variables’ fuzziness cate-
gories. In order to reduce the cost of sensors and the fuzzy
controllers, researchers usually select more fuzziness cate-
gories (more than 4) for variables with a higher demand of
precision or select less fuzziness categories (less than 5) for
those with a lower demand of precision. After fuzziness
categories of each variable have been determined, their
fuzzy membership function can be defined automatically.
The membership function is usually expected to be denser
in the more frequented work area, so that fuzzification or

defuzzification is more sensitive to that area. The center
values of triangular functions of fuzzy predicates are
determined by a clustering algorithm which makes the
square mean error of clustering least. For example, the work
area of a variable is [�1, 1]. Five fuzziness categories [NL,
NS, Z, PS, PL] of the variable are divided. The more
frequented work area is [�0.5, 0.5]; its fuzzy membership
function (Figure 3) is automatically generated.

3. LEARNING FUZZY RULES BY A MULTI-LAYER
FEEDFORWARD NETWORK
Knowledge acquisition is the bottleneck for implementing
fuzzy systems. Neural networks can learn mapping relations
between inputs and outputs of a set of training samples. A
multi-layer perceptron network with sufficient hidden nodes
has been proved to be a universal approximator. Assuming
H(W, X) is the approximation of h(X), the learning process
is designed to reduce the distance between H(W, X) and
h(X).

The goal of designing a fuzzy controller is that the
outputs of the fuzzy controller smoothly vary along with the
variation of its inputs. Given a set of training samples about
inputs and their expected outputs of a fuzzy controller,
automatic learning of fuzzy rules realize a smooth trans-
formation among these inputs and their expected outputs.

3.1. Automatically learning fuzzy rules by data fitting
A multi-layer perceptron network can be used for the
automatic learning of fuzzy rules because as an approxima-
tion tool it can realize data fitting according to the inputs
and their expected outputs of the training samples. In the

Fig. 1. The structure of a five-layer fuzzy neural network.

Fig. 2. The menu of the software development tool for fuzzy control.
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multi-layer feedforward network, nodes Z1 . . . ZM in the
input layer represent the input variables of a fuzzy
controller; nodes O1 . . . OK in the output layer represent the
output variables of a fuzzy controller; d1 . . . dK represent the
expected outputs of O1 . . . OK. A set of training samples
about inputs and their expected outputs of the fuzzy
controller are used to train weights of the multi-layer
feedforward network by an Error Back-Propagation Algo-
rithm until the cycle error is less than the upper bound Emax.
After the multi-layer perceptron network has been trained, it
can be used to realize data fitting so that the expected
outputs for arbitrary inputs of a fuzzy controller can be
computed by the trained multi-layer perceptron network.
Learning a fuzzy rule is to determine the best category of
fuzziness of the output variable corresponding to a combi-
nation of categories of fuzziness of the input variables. The
goal of learning fuzzy rules is that the error between the real
outputs of the fuzzy controller to be designed and their
expected outputs are reduced as much as possible.

Given the premise of a fuzzy rule (i.e. a combination of
categories of fuzziness A1, A2, . . . , An of input variables
I1, I2, . . . , In), the center values X1, X2, . . . , Xn of member-
ship functions of A1, A2, . . . , An are selected as the values
of I1, I2, . . . , In. Then according to the definition of fuzzy
membership functions, the membership of categories of
fuzziness of I1, I2, . . . , In other than A1, A2, . . . , An are all
zero, so that the output O1 of the fuzzy rule is equal to the
output of the fuzzy controller. As the expected output of the
fuzzy controller can be computed by the multi-layer
feedforward network according to the inputs
(X1, X2, . . . , Xn), the expected output of the fuzzy rule can
be found. The nearest category M of fuzziness (the center
value of the membership function of M is nearest to the
expected output) is selected as the conclusion of the fuzzy
rule, so that the error between the real output of the fuzzy
rule and their expected output is minimum. The fuzzy rule
learnt by the multi-layer feedforward network is defined as
follow: If I1 = A1, . . . , In = An Then O1 = M.

For example, a fuzzy rule for a fuzzy controller with two
inputs and one output under the premise I1 = NS (negative
small), I2 = PL (positive large) needs to be learnt by the
multi-layer feedforward network. The center value of
triangular membership function of NS is �0.2; the center
value of triangular membership function of PL is 1.8; the
expected output of the fuzzy rule is computed by the trained
multi-layer feedforward network: O1 = 0.3. If the center
value of the triangular membership function of PS in O1 is
nearest to 0.3, PS is selected as a fuzzy conclusion of the
fuzzy rule i.e. the fuzzy rule is automatically learnt: If
I1 = NS, I2 = pL then O1 = PS.

3.2. Automatic learning of fuzzy rules by supervised
learning
From the structure of a five-layer fuzzy neural network in
Figure 1, it can be seen that the learning of fuzzy rules is to
find mapping relations among the combinations of fuzzy
predicates of input variables and their corresponding fuzzy
predicates of output variables (that is, the weights wij

between fuzzy inference and defuzzification layers).7 As the
fuzzy membership function of each variable and the
approaches of fuzzy inference (MAX-MIN) and defuzzifi-
cation are determined, the weights wij can be learnt by a
back-propagation (BP) algorithm and training examples
about inputs and their expected outputs. The following are
the definition of weights of each a layer and the computation
of outputs of nodes in the five-layer fuzzy neural network
(Figure 1).

(i) All weights between input-layer and fuzzification-layer
equal to one. The outputs of nodes in the fuzzification-
layer are memberships [0, 1] of fuzzy predicates of
variables in the input-layer.

Zmn = � Amn
(Im), Amn is the nth category of fuzziness

of Im, m � {1, 2}, n � {1, 2, 3}.

(ii) All weights between fuzzification-layer and fuzzy-
inference-layer equal to one. The outputs of nodes in
the fuzzy-inference-layer are AND-operation of prem-
ises of fuzzy rules (minimum of memberships of input
variables). Xst = min(Z1s, Z2t), s, t � {1, 2, 3}.

(iii) Weights between fuzzy-inference-layer and defuzzifi-
cation-layer are wij. The outputs of nodes in the
defuzzification-layer are an OR-operation of conclu-
sions of fuzzy rules (maximum of conclusions derived
by different fuzzy rules).

Y1l = max(�il� Xst), Y2l = max(�i,l+2� Xst), i � {1, . . . , 9},
k � {1, 2}, l � {1, 2, 3}.

(iv) All weights between defuzzification-layer and output-
layer are 1. The outputs of nodes in the output-layer are
computed by the defuzzification algorithm.

Ok = �3

l=1

Ykl� Ckl��3

l=1

Ykl , k � {1, 2}, l � {1, 2, 3},

Ckl is the center value of the triangular membership function
of Akl, Akl is the lth category of fuzziness of O k.

The weights wij can be learnt by a BP (Back Propagation)
algorithm, so that the square mean error E of the fuzzy
neural network is minimum,

E =
1

2N �N

k=1

(Od �Ok)
2

N is the number of nodes in the output-layer, Od is the
expected output of the dth node in the output-layer. The
weights wij are adjusted according to gradient descent of E.

wkj(t +1) = wkj(t) + �wkj = wkj(t)���Ewkj, �Ewkj = 	E/	wkj

As the outputs of nodes in the defuzzification-layer are an
OR-operation of conclusions of fuzzy rules (maximum of

Fig. 3. Membership function of the variable.
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conclusions derived by different fuzzy rules), only winning
nodes affect the outputs of nodes in the output-layer. Hence
only weights wij of the winning nodes need to be adjusted:
wkj(t +1) = wkj(t) + �wkj = wkj(t)��Xst
, 
 = Ok �Od, where
� is the learning rate. After the weights wij have been learnt
by supervised learning, the weights wij represent the
mapping relations among fuzzy predicates of input variables
and fuzzy predicates of output variables, and can be
understood as certainty factors of fuzzy rules.

Learning according to a gradient descent in the multi-
layer feedforward network involves a problem of a local
minimum. Genetic algorithms are an effective technique for
global optimization, hence fuzzy rules learnt by neural
network can be further optimized by genetic algorithms.

4. LEARNING OF FUZZY RULES BY A GENETIC
ALGORITHM
A genetic algorithm is a computational model inspired by
Darwin’s theory of evolution: superior chromosomes have a
greater probability of being selected for inheritance and
populations with good fitness are evaluated by chromosome
inheritance and chromosome evolution (mutation).

A genetic algorithm is an effective technique for solving
complicated problems of optimization. It has been applied
for the optimization of combinations. The automatic
learning of fuzzy rules can be seen as the problem of the
combination optimization of input-output states: a group of
fuzzy rules can be seen as a kind of combination, and the
automatic learning of fuzzy rules is to find the best
combination. As an effective technique of optimization,
genetic algorithm can be used for the automatic learning of
fuzzy rules.

Key techniques in the automatic learning of fuzzy rules
by GA are chromosome coding of fuzzy rules, operators of
inheritance (selection, crossover, mutation), and evaluation
of chromosomes (fuzzy rules).

4.1. Chromosome coding of fuzzy rules
A group of fuzzy rules can be seen as a kind of combination
of fuzzy predicates. As the order of the combinations of

fuzzy predicates of input variables can be determined in
advance, only fuzzy predicates of output variables (conclu-
sions of the fuzzy rules) under these combinations need to
be recorded for the chromosome coding of fuzzy rules. As
the number of fuzziness category of output variables is
usually not more than 9, numbers between 1 and m (m ≤ 9)
are used to represent the fuzziness category of output
variables (m is the number of the fuzziness category of
output variables).

For example, chromosome coding of above fuzzy
rules with three inputs and one output (Table I) are
realized by coding the fuzzy predicates of O1:
332212332221233212322112321, (1,2,3 represent the
fuzzy predicates S, M, L, respectively). On the contrary,
given a chromosome coding of fuzzy rules
112233221233221232211122322, it can be transformed
into corresponding fuzzy rules as Table II.

4.2. Operations of chromosome inheritance
(i) Selection. The random selection of chromosomes for

reproduction is based ona biased roulette wheel algo-
rithm. For a population of size n, a chromosome i is
assigned a probability Pi of being selected. Pi is
proportional to the fitness fi, computed as

Pi = fi��n

k=1

fk .

After chromosome reproduction, the chromosomes with
a higher fitness have a greater probability of being
selected for a recombination operation (crossover,
mutation).

(ii) Crossover. When two chromosomes are randomly
selected for the operation of crossover, two points are
randomly selected in the length of these two chromo-
somes. Two new chromosomes are generated by
performing a two-point crossover.

(iii) Mutation. Mutation is an operation whereby the allele
of a gene is altered randomly; it can then introduce new
genetic materials into the population. In order to

Table I: Fuzzy rule-table of a fuzzy controller with three inputs and one output

I1 S S S S S S S S S M M M M M M M M M L L L L L L L L L
I2 S S S M M M L L L S S S M M M L L L S S S M M M L L L
I3 S M L S M L S M L S M L S M L S M L S M L S M L S M L

O1 L L M M S M L L M M M S M L L M S M L M M S S M L M S

Table II: Fuzzy rule-table TRANSFORMED FROM A CHROMOSOME
112233221233221232211122322

I1 S S S S S S S S S M M M M M M M M M L L L L L L L L L
I2 S S S M M M L L L S S S M M M L L L S S S M M M L L L
I3 S M L S M L S M L S M L S M L S M L S M L S M L S M L

O1 S S M M L L M M S M L L M M S M L M M S S S M M L M M
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prevent the loss of potentially useful genetic materials
during the search, mutation is usually performed at a
very low rate (e.g. 1%). Given a chromosome for the
mutation operation, one point P is randomly selected in
the length of the chromosome, and the allele of the
chromosome at point P is altered randomly. It is
necessary that any mutation operation used satisfies the
constraint “the allele altered must still represent a
category of fuzziness of the output variable”. If the
number of the categories of fuzziness of the output
variable is m (m ≤ 9) and the allele of the chromosome
at point P is n (n ≤ m), then the allele of the
chromosome at point P is altered randomly into n’
which satisfies the constraint: n’ ≤ m, n’ ≠ n.

4.3. Evaluation of a chromosome (fuzzy rules)
For each generation, the fitness of each chromosome in the
population is evaluated using a fitness function. The choice
of a fitness function is usually very specific to the problem
under consideration, and often crucial to the success of the
GA. The process of learning fuzzy rules by GA terminates
when the fitness of the learnt fuzzy rules is accepted by
users.

(i) Evaluating the fitness of the fuzzy rules by user
defined fitness function. According to the goal of the
fuzzy controller, the fitness function of fuzzy rules can
be defined by users. If fuzzy rules cannot be evaluated
by the fitness function directly, simulations of the fuzzy
controller based on the learnt fuzzy rules are used for the
evaluation. In the well-known “cart-pole balance”
example, the goal of fuzzy control is to keep the pole
from falling and maintain the pole close to the vertical
position. The fuzzy rules are tested with different initial
conditions within the range of control. For each of these
tests, the cart-pole system is simulated until the pole
falls or the prespecified value of T timesteps is reached.

(ii) Evaluating the fitness of fuzzy rules by computing
cumulative errors. A fitness function specific to the
problem of fuzzy control is usually difficult to define.
As a group of fuzzy rules describe fuzzy control under
different initial conditions, fuzzy rules are usually
difficult to be evaluated by the fitness function directly,
and simulations for evaluation of fuzzy rules are time-
consuming. Given training examples about inputs and
their expected outputs of a fuzzy controller, the goal of
designing a fuzzy controller is to reduce the errors
between expected outputs and real outputs derived by
fuzzy rule as much as possible. Thus evaluating the
fitness of fuzzy rules can be realized by computing the
cumulative errors between expected outputs and real
outputs derived by fuzzy rules by training samples with
different input situations.

A chromosome operated by crossover and mutation can
be transformed into its corresponding fuzzy rules. Accord-
ing to the five-layer fuzzy neural network (Figure 1) and
inputs of training samples, real outputs of fuzzy neural
network can be derived by predefined algorithms of
fuzzification, defuzzification and the fuzzy rules learned by
GA. The fitness of fuzzy rules is evaluated by computing

cumulative errors between real outputs and expected outputs
of the training samples.

f =�n

i=1
�m

j=1

(Oj �Oej)
2 n–the number of training examples,

m–the number of output variables of the fuzzy controller,
Oj–the real output derived by fuzzy rules for training sample
Ti, Oej–the expected output of training example Ti.

The evaluation of the fitness of fuzzy rules by computing
cumulative errors is dependent on the training examples.
The selected training examples should have good distribu-
tion (reflecting different possible input conditions of the
fuzzy controller) and good representation (reflect typical
input conditions of the fuzzy controller). If existing training
examples cannot satisfy these demands, data fitting can be
first realized by a multi-layer feedforward network (see
Section 3.1). Satisfactory training examples can be selected
after the data fitting, and then they can be used for
evaluating the fitness of fuzzy rules in GA.

5. CONCLUSIONS
In this paper, an algorithm for the automatic learning of
fuzzy rules by a multi-layer feedforward network is
presented. It is simple and fast, but has the problem of a
local optimum. An algorithm for the automatic learning of
fuzzy rules by GA is presented. It can search for a global
optimum, but is complicated and time-consuming. The
automatic learning of fuzzy rules by combining a multi-
layer feedforward network and a genetic algorithm can
complement each other.4

The following example is used for examining our
development tool. A system with three inputs and one
output is constructed. Its mathematical model is:
o = 0.5� (e

i1 + i2� i3� cos(i1� i2) + i1� i3), where i1, i2, i3, o
�[0,1]. A fuzzy system is taught for the modeling of the
system by our developmental tool, where i1, i2, i3 are divided
into 5 fuzziness categories. In order to show the perform-
ance of the fuzzy system in a graphic form, i1, i2, i3 are
represented by functions with the same variable t�[0,1]:
i1 = t,

i2 = � 2� t
2�2� t

0≤t<0.5
0.5≤t≤1

, i3 = �0.9
0.1

t�[0,0.25)� [0.5,0.75)
t�[0.25,0.5)� [0.75,1]

.

The following figures are the analysis of the results of our
development tool. The curve and the broken line in the
figures, respectively, represent the real output and expected
output of the fuzzy system. Figure 4 is the result of a fuzzy
system taught by a multi-layer perceptron network; Figure 5
is the result of the fuzzy system taught by a genetic
algorithm.

The software development system has also been applied
to the design of a fuzzy controller for a big steelworks,
which has won acclaim for its satisfactory results. The fuzzy
controller has four inputs and one output; each variable is
divided into five categories of fuzziness. Fuzzy rules are
extracted based on 188 training examples. The average error
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between real output and expected output of the fuzzy
controller is less than 10%.
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