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A capillary jet falling under the effect of gravity continuously stretches while
thinning downstream. We report here the effect of external periodic forcing on
such a spatially varying jet in the jetting regime. Surprisingly, the optimal forcing
frequency producing the most unstable jet is found to be highly dependent on the
forcing amplitude. Taking benefit of the one-dimensional Eggers & Dupont (J. Fluid
Mech., vol. 262, 1994, pp. 205-221) equations, we investigate the case through
nonlinear simulations and linear stability analysis. In the local framework, the WKBJ
(Wentzel-Kramers—Brillouin—Jeffreys) formalism, established for weakly non-parallel
flows, fails to capture the nonlinear simulation results quantitatively. However, in the
global framework, the resolvent analysis, supplemented by a simple approximation
of the required response norm inducing breakup, is shown to correctly predict the
optimal forcing frequency at a given forcing amplitude and the resulting jet breakup
length. The results of the resolvent analysis are found to be in good agreement with
those of the nonlinear simulations.

Key words: capillary flows, absolute/convective instability

1. Introduction

Pele’s hair, which are thin strands of volcanic glass formed in the air during the
fountaining of molten lava, is an impressive example of the stretching ability of highly
viscous fluids. Named after Pele, the Hawaiian goddess of volcanoes, a single strand
with a diameter of less than 0.5 mm can extend up to a length of 2 m (Shimozuru
1994; Eggers & Villermaux 2008). If such viscous strands are pinned at one end, as
in the case of honey dripping from a spoon under its own weight, gravity acts as
the stretching tool for the viscous fluid, producing very thin and stable liquid threads
(Senchenko & Bohr 2005; Javadi et al. 2013). The cross-section of such threads
varies continually as the jet accelerates downstream in the direction of gravity, before
breaking into drops.

Physically, the breakup of the jet into drops begins with the excitation of a suitable
temporally or spatially amplifying mode due to weak external disturbances. In practice,
this weak agitation is usually imposed by a controlled harmonic perturbation, either
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from within or at the outlet of the nozzle, to generate spatially amplifying waves
leading to jet breakup. In this direction, the primary objective of this paper is to
evaluate the response of an incompressible jet, falling in the presence of gravity, to
externally imposed harmonic perturbations characterised by a fixed frequency and
amplitude, and to find the optimal forcing that generates the most amplified response.

The external forcing is vital in the production of controlled micrometre-sized
droplets, a feature essential to several application as in inkjet printers (Basaran 2002;
Wijshoff 2010; Basaran, Gao & Bhat 2013), pharmaceuticals (Bennett er al. 2002)
and powder technology (van Deventer, Houben & Koldeweij 2013), to name but a few.
In view of the limitations linked to the fabrication of such small droplets, most of the
devices used for the production of drops depend on the generation of very thin liquid
threads whose diameters are several orders of magnitude smaller than the nozzle
diameter. Some common methods for producing such threads use tangential electrical
stresses (in electrospinning devices (Doshi & Reneker 1995; Loscertales et al. 2002)),
outer co-flows (Marin, Campo-Cortés & Gordillo 2009) or a rotating spinneret (in
fibre spinning applications (Pearson & Matovich 1969)). Rubio-Rubio, Sevilla &
Gordillo (2013) showed an alternative method for producing highly elongated jets
through the use of gravity, in which the mass conservation of the liquid jet forces its
thinning as the liquid accelerates downstream.

The breakup of a liquid thread into drops, governed by the relative strength of
the surface tension effect over the viscous and inertial effects, was first explained
by Plateau (1873) and Rayleigh (1879) for a uniform column of fluid. What adds
complexity to the well-understood viscous jet breakup mechanism is the presence
of gravity, which significantly stretches the base flow shape. The stability of the
such spatially varying gravity jets should ideally be examined using global stability
analysis and by including the non-parallel effects of the base flow. A similar difficulty
linked to the non-parallel nature of the flow results from the adaptation of the flow
from a wall-bounded flow within the nozzle to a free jet (Sevilla 2011). Turning back
to falling jets stretched by gravity, Le Dizes (1997) and later on Sauter & Buggisch
(2005) were among the first to approach the problem theoretically by defining a
linear global mode that correlated with the self-sustained oscillations of the falling jet,
observed during the jetting (globally stable) to dripping (globally unstable) transition.
The work of Sauter & Buggisch (2005) was extended by Rubio-Rubio et al. (2013)
experimentally and theoretically by increasing the range of liquid viscosities and
nozzle diameters. Additionally they retained the entire expression of the curvature
term for the formulation of their stability analysis, a feature that helped them to
accurately predict the critical flow rate for the stability transition and the oscillating
mode compared to the previous authors. However, none of these studies predicted the
jet stable length as a function of the flow rate and fluid properties, a question that
was pursued by Javadi et al. (2013) experimentally and theoretically.

More recently, Le Dizes & Villermaux (2017) determined theoretically the stable
jet length, wavelength at breakup and resulting drop size due to the most dangerous
perturbation either applied at the nozzle exit or affecting the jet all along its length for
different jet viscosities. Their analysis accounted for both the base-state deformation
and modification of local instability dispersion relation as the jet thins in the direction
of gravity. Notably, extending the work of previous authors (Tomotika 1936; Frankel
& Weihs 1985; Leib & Goldstein 1986; Frankel & Weihs 1987; Sauter & Buggisch
2005; Senchenko & Bohr 2005; Javadi et al. 2013) they used the local plane-wave
decomposition — the WKBIJ (Wentzel-Kramers—Brillouin—Jeffreys) approximation —
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for their analysis. It is important to note that the perturbation gain definitions used
by Le Dizes & Villermaux (2017) and Javadi et al. (2013) were different. Le Dizes
& Villermaux (2017) defined the gain as the exponential of the spatial growth rate,
whereas Javadi et al. (2013) expressed the gain using the exponential of the temporal
growth rate. Additionally, Le Dizes & Villermaux (2017) computed the resulting gain
from a perturbation by considering only the exponential (e) terms of the WKBJ
approximation. Finally, an ad hoc spatial gain of e’ of the linear perturbations was
assumed to be sufficient for breakup. Thus the level of noise was considered fixed
for all the theoretical analysis.

For non-parallel flows other than the free interface jet under gravity, the successful
implementation of the WKBJ approximation has been performed by Gaster, Kit &
Wygnanski (1985), Huerre & Rossi (1998) and Viola, Arratia & Gallaire (2016),
among others, for analysing the dominant frequency selection mechanism in shear
layers and trailing vortices. In the latter reference, an excellent agreement was
observed between the WKBJ approach and a so-called resolvent analysis, which
consists in determining the optimal time-periodic forcing that maximises the
permanent response norm. In other words, it consists in maximising the transfer
function norm (Trefethen et al. 1993) for each frequency. This method was first
applied to parallel flows characterised by a non-normal linearised stability operator,
like plane Couette or plane Poiseuille flow (see Schmid & Henningson 1994), and
later to non-parallel flows (Akervik et al. 2008; Alizard, Cherubini & Robinet 2009;
Nichols & Lele 2010). The principal aspect of the resolvent analysis lies in its
ability to capture the entire non-normal flow behaviour by evaluating the resolvent
norm directly from the linearised Navier—Stokes operator (Marquet & Sipp 2010;
Monokrousos et al. 2010; Nichols & Lele 2011; Sipp & Marquet 2013; Boujo &
Gallaire 2015). Following a similar approach, Garnaud et al. (2013) provided the
preferred frequency selection and the associated spatial structures for non-parallel jet
flows.

In this paper, we go beyond the global stability analysis of the gravity jets, and
always operate in the stable regime where the jet behaves inherently as an amplifier.
Precisely, we look at the receptivity of the jet in this regime to external perturbations,
through nonlinear simulations and resolvent analysis, with the aim of finding the
optimal forcing that results in the most amplified disturbance. We consider an external
forcing characterised by different amplitudes. The effect of forcing amplitude on the
breakup length of very high-speed jets has been numerically analysed by Hilbing &
Heister (1996). However, a clear understanding of its effect in the case of spatially
varying jets is still missing. Our analysis exemplifies the effect of forcing amplitude
on the breakup length and the optimal forcing frequency. We also investigate the
jet response using the WKBJ approximation and assess its validity for the spatially
varying gravity jet. Our entire study is based on the slender-jet approximation
(Eggers & Dupont 1994) of the Navier—Stokes equation for an axisymmetric jet. The
reduced one-dimensional (1-D) model has turned out to be extremely valuable for
the realistic representation of jets (Ambravaneswaran, Wilkes & Basaran 2002; van
Hoeve et al. 2010) by accurately capturing the jet interface close to the breakup as
well as the formation of ‘satellite’ drops. These equations are similar to the 1-D
models for slender axisymmetric viscous liquid jets of Garcfa & Castellanos (1994),
who deduced not only the same leading-order 1-D equations, but also higher-order
equations like the parabolic and averaged 1-D models. During the final stage of this
work, we became aware of the work of Consoli-Lizzi, Coenen & Sevilla (2014),
which is further detailed in Consoli-Lizzi (2016). With an identical aim to ours, the
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authors compared a linear response analysis to experimental results of forced and
unforced jets. In particular, their global response frequency analysis revealed the
dependence of the optimal frequency on the forcing amplitude (for forced jets) or on
the noise level (in the case of unforced jets).

The paper is structured as follows. In § 2 we describe the governing equations. Then
in § 3 we discuss the nonlinear simulations where the results are detailed in § 3.3. The
local stability analysis of the gravity jet is performed in §4, where we compare the
jet response using stability analysis in §4.3 and the WKBJ formulation in §4.4. We
then operate in the global framework in §5, where the significance of the resolvent
analysis is elucidated in § 5.2. We show that the resolvent analysis is self-sufficient in
predicting the optimal forcing frequency and the breakup length as obtained through
the nonlinear simulations. Finally, we apply a white-noise disturbance on the jet
inlet to explore its behaviour in comparison to the expected response to the optimal
forcing in §6. The conclusion and some perspectives related to the present work are
summarised in §7.

2. Mathematical formulation

We consider an axisymmetric viscous jet falling vertically from a nozzle under
the effect of gravity g. At the nozzle outlet, the jet has a fixed radius A, and
velocity uy. The surrounding medium is considered evanescent and is neglected. The
density, dynamic viscosity and surface tension of the jet are denoted by p, u© and y,
respectively.

The behaviour of the jet is analysed using the leading-order 1-D mass and
momentum equations, derived by Eggers & Dupont (1994). The dimensionless
form of the equations, obtained by choosing h, as the characteristic length scale, the
inertial time 7; = (phj/y)"/? as the characteristic time scale and y /h} as the pressure
scale, are written as

oh 1 0
— =———(Iu), 2.1
TR R @1a
ou ou dp ohoul 9d%u
—=—u———+30h, | 2———+ — Boj,, 2.1b
ot Yoz 8z+ < 818zh+8zz>+ ? (2.15)
where the dimensionless pressure p(z, f) is expressed as
9%h
1 9.2
p= - 0 . (2.2)
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3/2

h |1+ LA 1+ o)’
0z 0z

In (2.1), h(z, ) and u(z, t) represent the radius of the jet interface and the velocity at
the axial distance z. The system of equations (2.1) are governed by the dimensionless
Ohnesorge (Oh;,) and Bond (Bo;) numbers defined at the inlet. The Ohnesorge
number, expressed as Oh;,, = u/(pyhy)'/?, relates the viscous forces to inertial
and surface tension forces. The Bond (Eotvos) number, denoted by Bo;, = pgh(z)/ Y,
measures the strength of the surface tension forces to body forces. A high Oh;, or
Bo;, leads to a stabilised jet interface, thus increasing the stability of the base flow.
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Using the associated characteristic velocity ho/7;, the non-dimensional boundary
conditions for the jet at nozzle inlet are reduced to

h(0, 1) =1, (2.3a)
u(0, 1) = VWei,. (2.3b)

Here, We;, represents the Weber number defined at the nozzle inlet, We;, = phoﬁg /Y,
and measures the ratio between the kinetic energy and the surface energy.

The steady-state form of the continuity equation (2.1a) gives the relation between
the steady-state shape h, and velocity u, as

hu, = Q = /We,,, 2.4)

where Q is the dimensionless flow rate, obtained from the nozzle conditions. This
gives u, = /We;,/h;. Using the relation (2.4), the steady-state momentum equation
(2.1b) reduces to

20%H, — KC' + 6QO0h;, (hyh,,” — h2h))) + h3Boy, =0, (2.5)

where derivatives are with respect to z and C is the jet interfacial curvature, expressed
as

O R AU
TP I+ )R [+ ()PP

For the fixed nozzle inlet, equation (2.5) is subject to boundary condition A, = 1
at z = 0. Two more boundary conditions are needed to well define this differential
problem of order three. However, exempting the jet tip from the base flow calculation
gives us the liberty to impose a constant slope (h, = 0) and curvature (h, = 0) at
the exit of the jet. It should be noted that the boundary conditions applied at the jet
exit should be treated as a way to close the differential problem rather than depicting
physical boundary conditions. We made sure that these boundary conditions did not
impact the overall base-state solution by computing the solution over a large enough
domain where the base-state solution naturally converges to a solution with 4, =0 and
hy =0.

(2.6)

3. Nonlinear simulations

The strength of a nonlinear simulation lies in its ability to capture the exact response
of the jet interface, including the shape close to the breakup point where the interface
radius A approaches a zero value. Often, the external forcing does not result in the
breakup of fixed-sized drops; rather the regular-sized drops are followed by much
smaller ‘satellite drops’.

Keeping this in view, we analyse the response of the jet in the presence of an
external forcing. We aim to find the optimal forcing that results in the most unstable
jet. The breakup length, which is the length of the stable jet between the nozzle
and the breakup point, is chosen as the quantifier to compare the effect of different
forcings, with the optimal forcing resulting in the shortest possible breakup length.

We begin with the description of the modified nonlinear governing equations used
for the simulations, followed by the numerical scheme implemented to capture jet
breakup. Finally, we present the comparison of breakup characteristics of the jet for
different inlet forcings.
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3.1. Governing equations

In order to remove the singularity in expression (2.2) for the pressure, when h(z, t) —
0, we define the interface radius A(z, ) in terms of the function a(z, f) where a = h>.
The governing equations (2.1) thus transform into

da 0 (au) 3.1a)
a0z “ 4
ou ou dp ad ou\ 1
—_—=—U— — — 30hin - - - B in» 31b
ot ”az 0z * <8z (“az> a> +Bo (3-15)

5 9%a N da\’
) -
972 0z
p= ; 55 |- 3.1¢)
) 1 /0a n
o a
4 \ 0z
The base-state solution for the jet interface (a, =hj;) is obtained by solving (2.5). We

model the external forcing on the jet by perturbing only the inlet velocity using a
forcing of the form

ur (0, 1) = Re(e€e'"), (3.2)

where € represents the amplitude of the forcing and @ represents the angular forcing
frequency. In the presence of the forcing, the boundary conditions at the inlet are
modified to a(0, 1) =1 and u(0, t) = /We;, + u;. No boundary conditions are defined
at the other extremity of the domain close to the tip. Nonetheless, a special treatment
is applied for the tip, as explained in the next section.

3.2. Numerical scheme

The governing equations (3.1) are first discretised in space, after which the resulting
ordinary differential equations (ODEs) are integrated in time. Diffusion terms are
evaluated using second-order finite differences, with a central scheme for intermediate
nodes and a forward or backward scheme for boundary nodes. Advection terms
are obtained using a weighted upwind scheme inspired by Spalding’s (1972) hybrid
difference scheme. Unlike the latter, which approximates the convective derivative
using a combination of central and upwind schemes, we evaluate the derivative based
on a combination of forward and backward finite differences. An advection term
dA/dz is evaluated at node i as

dA dA dA
(d)fﬂ (dz>f,,,+ 4= <dz>,-,f’ G-

where indices b and f refer to the backward and forward finite difference schemes,
and B is a weight coefficient that depends on the local value of velocity u at node i

together with a parameter o:
tanh(ocu;) + 1
_ lanhtow) T 2 (“2”)+ . (3.4)

For the range of feed velocities considered in this study, numerical stability was
always ensured by using a 10-point stencil. Thus, the backward difference term relies
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on a stencil that spans nodes i — 5 to i+ 4, and the forward difference term employs
nodes i —4 to i+ 5. For large enough downstream or upstream velocities, 8 will tend
to 1 or 0, respectively; hence (3.3) reduces to a regular upwind difference scheme.
For smaller velocity magnitudes in between, (3.3) produces a weighted combination
of backward and forward differences. In our simulations, we choose o =50 so that the
transition between the backward and forward difference schemes mostly occurs when
|u| < 0.05. Finally, advection terms at nodes close to the boundary are evaluated based
on the values of the closest nine adjoining nodes.

After obtaining all spatial derivatives, the resulting ODEs are integrated using the
MATLAB solver ode23tb, which implements a trapezoidal rule and a backward
differentiation formula known as TR-BDF2 (Bank et al. 1985), and uses a variable
time step to reduce the overall simulation time.

The numerical domain L is taken sufficiently large to capture the breakup of the
jet. The jet interface is initialised by the solution of (2.5) obtained numerically with
the MATLAB bvp4c solver. The corresponding velocity at each axial location is
then obtained by equating the interface radius with the constant inlet flow rate Q.
The validation of the numerically obtained base-state solution for the jet interface is
presented in § A.1. It should be noted that the jet is initialised only for a segment
of the domain L with the steady-state equation. For the remaining segment of the
domain, both the jet radius and its velocity are initialised to zero. Defining the initial
conditions with the base-state solution only for a part of the domain L helps to reduce
the computational cost without any loss in the accuracy of the results obtained. The
axial span of the base-state solution does not affect the quasi-steady jet characteristics,
which are the focal point of our numerical analysis. A validation for the same is
presented in § A.2.

At every time step, the solution is evaluated for three conditions:

(i) Pinch-off (breakup). This is defined as when the value of a passes below a
threshold value of 107°. The corresponding time 7,, is saved and the position
of the jet tip is updated as N, = N,,, where N,, is the pinch-off location. The
solution for a and u beyond N, is set to zero. For subsequent time steps,
Ny, has two possibilities — it can either advance or recede, which requires the
following two conditions.

(ii) Advancing jet. The values of a at nodes N;, — 1 and N;, are extrapolated to
find a at Ny, + 1. If the extrapolated value is larger than a predefined value of
5 x 1073, the parameter Ny is incremented by 1, and a and u at the new Ny,
are assigned values extrapolated from its previous two neighbours.

(iii) Receding jet. If the value of f at N, falls below a predefined value of 1073, a
and u at N;, are set to zero and the parameter Ny, is reduced by 1.

These three conditions enable the numerical integration of the governing equations
in a way that captures accurately the breakup of the jet and the motion of the tip.
A validation of the numerical scheme is presented in § A.3.

3.3. Nonlinear simulation results

Using the numerical scheme presented in the previous section, nonlinear simulations
were performed for a jet governed by (3.1) for fixed inlet characteristics: Oh;, =
0.3, We;, = 1.75 and Bo;, =0.1. The jet inlet velocity is subjected to time-harmonic
forcing of the form given by (3.2) with a fixed amplitude ¢ and for forcing frequency
w=[04-3.2].
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FIGURE 1. The jet intact shape along the axial direction z for a gravity jet defined by
Oh;, =0.3, Bo;,=0.1 and We;, =1.75 and perturbed by different inlet forcing frequencies
o and forcing amplitudes € =102 and € = 10~*. For clarity, only the shape corresponding
to the shortest breakup length for every frequency is plotted. The forcing frequencies are
in steps of § = 0.4 except for certain intermediate ranges highlighted by the axis break
symbol. The jets of two different colours represent the shape at the same forcing frequency
but different forcing amplitudes . We see that for € = 102 the breakup length is the
minimum for @ = 1.38 and for € = 10~* it is minimum for w = 1.68. The box in red
shows the zoomed image of the jet close to a breakup, highlighting the existence of a
satellite and a main drop. The zoomed image has radial # and axial z dimensions drawn
to the same scale, each representing a dimensionless size of 6. The red bar in both the
plots represents a dimensionless radial length scale of 2, which is also the size of the
dimensionless nozzle diameter.

The simulations were run for a sufficiently long time to enter a permanent regime
wherein the jet breaks up at regular intervals of time and at fixed axial location. In
the quasi-steady regime, the breakup period AT),, is defined as the time difference
between two consecutive breakups or pinch-offs and the breakup length /. as the stable
length of the jet between the nozzle and the pinch-off location. We use [. as the
quantifier to determine the stability of the jet to external forcing such that the most
amplified disturbance caused by the optimal frequency w,,, will compel the jet to have
the shortest possible breakup length.

We begin our analysis for fixed amplitudes € = 102 and € = 10~*. The response
of the jet due to different forcing frequency @ in the permanent regime for the
two above-mentioned amplitudes can be seen in figure 1. Jets enforced by the
same disturbance amplitude at the inlet are represented by the same colour. For
visual clarity we plot the response only for certain frequencies and for the jet shape
pertaining to the shortest breakup length. First, figure 1 clearly shows the existence
of a main drop and a satellite drop for all the frequencies. Second, for € = 1072 we
conclude that the optimal forcing frequency is w,,, = 1.38 because it manifests the jet
to have the shortest /.. Third, and most strikingly, we notice that for a lower forcing
amplitude of € = 107, the optimal forcing increases to w,, = 1.68. We would like
to highlight here that a similar inverse relation between the forcing amplitude and
the optimal forcing frequency for gravitationally stretched jets can also be observed
through the linear response analysis results presented in Consoli-Lizzi et al. (2014)
and Consoli-Lizzi (2016). Finally, at all forcing frequencies, the breakup length for
the jet with € =107* is always larger than for € = 1072

To investigate further the breakup characteristics for the amplitudes € = 1072 and
€ = 107" due to w,,, we plot the interface evolution in the permanent regime as
shown in figures 2(a) and 2(c), where regular-sized main drop formation is followed


https://doi.org/10.1017/jfm.2020.247

https://doi.org/10.1017/jfm.2020.247 Published online by Cambridge University Press

Frequency selection in a stretched capillary jet 894 A6-9

(@) ») 5
/RX:()jg ooooooooooooooooooooooooooooooo
52 4
23
51 & AL ALDLDLDLADLDLALDLOLOLALOLOLOLOAO
t 42 AAAAAAAAAAAAAAAAAA
a
50 :
?\Rm:1.62
—>
30 40 50 60 0 10 20 30 40

Y mE=—=——20 @
R,=1.08
100 <]

AAAAAAAAAAAAAAAAAAAAAAA
[ o
108 2

el

|
107#0 1ta
— >

100 110 120 130 0 10 20 30 40 50
z Pinch-off index

AT,,

AbLLLLLLLLLLLLLLLLLLLLLY

FIGURE 2. Breakup characteristics for a gravity jet defined by Oh,;, =0.3, Bo;, =0.1 and
We;, =1.75 and perturbed with w,,,. Panels (a,b) correspond to a forcing with € = 1072 and
woy = 1.38; and panels (c,d) refer to a forcing with € = 10~* and Wopr = 1.68. In panels
(a,c) is elaborated the interface profile at the time of breakup with the existence of a
satellite drop after the main drop is released. The main and satellite drop radii for both the
cases have been highlighted. The axial and radial dimensions of (a,c) represent the same
length scale. In panels (b,d) is represented the breakup period AT,,. The black triangles
refer to AT, between consecutive drops and the blue circles represent that between two
consecutive main (or satellite) drops. The breakup frequency w,, is equal to 1.38 and 1.68
in (b,d) respectively.

by the release of a satellite drop. For both the amplitudes, we see a distinct difference
between the main and satellite drop radii.

The breakup period AT, resulting from the forcing imposed in figures 2(a) and 2(c)
are plotted in figures 2(b) and 2(d), respectively, where the black triangles represent
the AT,, obtained for two consecutive pinch-offs whereas the blue circles denote
AT,, obtained for two consecutive main (or satellite) drop pinch-offs. The latter is
observed to be the same for the main and satellite drop formation (as shown in
blue circles). However, the time of formation of a satellite drop does not lie exactly
midway between the time of formation of the main drops and vice versa. This results
in obtaining two oscillating breakup periods (as shown by the black triangles). We
further observe that the frequency of breakup (w,, = 2m/AT,,) obtained using the
breakup period for consecutive main (or satellite) drops responds to the externally
applied forcing at the jet inlet. For forcing amplitudes € =10~% and 107, w),, =1.38
and 1.68, respectively.

Finally, for the constant flow rate of the jet, the breakup period related to the
consecutive pinch-offs is used to obtain the drop radius for the satellite and main
drops. Note here that the definition of the main and satellite drop radii coincide
with the classical definition of volume-equivalent radii. We notice that, at the optimal
forcing frequency, the main drop radius R, decreases from 1.62 to 1.48 dimensionless


https://doi.org/10.1017/jfm.2020.247

https://doi.org/10.1017/jfm.2020.247 Published online by Cambridge University Press

894 A6-10 I Shukla and F. Gallaire

450 T T T T T T
— =102
400 H— e=1073 q b 4
— =107 o
— =107 A e e=10"8
PR — 100 \ e Op=241 n
e=10"" . -
300H o108 o223 . i
©0—o-ampp 00—
250 - =
L Wop =203
200 - 5
W =1.84
150 J
30 Wopr = 1.68 ]0—2
100 5
50 - 5
1 1 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIGURE 3. The breakup length /. as a function of forcing frequency w for a gravity jet
defined by Oh;, = 0.3, Bo;, = 0.1 and We;, = 1.75. Each curve is indicative of a fixed
forcing amplitude €. For a fixed €, the optimal forcing frequency related to the shortest
I. is represented by a red cross. We observe that the optimal frequency increases as €
decreases and does not appear to saturate even for lower amplitudes of 1078, The black
circles represent the data from numerical simulations.

units as € reduces from 1072 to 10~*. On the contrary, the satellite drop radius R,
increases from 0.78 to 1.08 dimensionless units for ¢ = 1072 and € = 107, respectively.
The longer intact jet length obtained for lower forcing amplitude € = 10~* results in a
larger downstream velocity close to the tip due to the presence of gravity. Eventually,
it results in the formation of highly stretched satellite drops in comparison to the
ones obtained for lower amplitude of € = 1072 as seen in figure 2(a,c).

We now return to the most salient feature observed in figure 1, where the optimal
forcing frequency w,, increased with a decrease in forcing amplitude. To explore if
this effect existed for smaller amplitudes, we simulated the same system for different
forcing amplitudes € = [1072-107%], and plotted the breakup length /. as a function
of the forcing frequency w as shown in figure 3, where the optimal forcing frequency
for a fixed € is marked with a red cross. The results show an increase in /. and w,,
as € decreases, which is in qualitative agreement with the linear response analysis
results presented in Consoli-Lizzi (2016). The increase in breakup length is obvious
due to the decreasing destabilising strength of the forcing amplitude. The increase
in optimal forcing frequency, however, is the most interesting observation drawn
from the numerical results, since it is expected to saturate for small enough forcing
amplitudes. The increase in w,, as € decreases from 1072 to 10™® is a consequence
of the stretched base state due to gravity, which results in the downstream stretching
of the perturbation wavelength initiated at the nozzle. As the forcing amplitude
decreases, the stable jet length /. increases and so does the stretching close to the jet
tip. Thus to compensate for the larger stretching, the breakup potential of the forcing
is sustained by increasing the forcing frequency.
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To conclude, the numerical simulations confirm the dependence of w,, on the
forcing amplitude, a factor generally neglected for linear stability analysis as long
as € < 1. The trend also constitutes a major difference from a jet with no gravity
effect (Bo;,, =0), where w,,, is independent of € (see figure 20 in § A.4). Finally, we
confirm that the preferred-mode analysis carried out for the jet is solely due to the
effect of external forcing. For the given parameter range, the jet tip did not induce
any self-sustained breakups.

4. Local stability analysis

The linear stability theory is applicable for small forcing amplitudes (¢ <« 1) and
does not take into account its absolute value, a parameter that has already been
shown in §3.3 to influence the optimal forcing frequency. Nevertheless, we begin
our analysis in the local framework by first obtaining the dispersion relation for
parallel viscous jets in the absence of gravity, which is used as a basis for obtaining
the absolute—convective instability transition criteria in §4.2. Next, the dispersion
relation for parallel jets is suitably modified to include the spatial variation of the
gravitationally stretched base flow and the spatial stability of the jet is performed in
§4.3. Since the base state is spatially evolving, we extend our stability analysis using
the WKBJ formulation in §4.4.

4.1. Local stability analysis for jets in the absence of gravity

We derive the dispersion relation for the coupled equations (2.1), governing the growth
of small perturbations about the base state. Considering the normal-mode expansion,
the flow variables h(z, t) and u(z, f) are decomposed as

h(z, t) = hy, + ehe® ) (4.1a)
u(z, t) = uy, + eiie' @0, (4.1b)

where € < 1, with / and @ as complex constants, and where k and w are, respectively,
the dimensionless spatial wavenumber and the temporal frequency, which may both
be complex. Similarly, for the variable representing the square of interface, a(z, ) is
decomposed as

a(z, t) = a, + eae' ™", (4.2)

where a;, = hi and a= 2hbiz. Inserting the above expansion into (2.1), linearising about
(hy, up) and replacing h> — a will lead to a linearised system of equations, which can
be formulated as an eigenvalue problem with the eigenmodes represented by ¢ = [a, i].

In the absence of gravity, § represents a constant independent of z, u, = +/We and
h, = 1. Combining both the linearised continuity and momentum equations leads to
the dispersion relation

3i0hk? k2 — k* 90h*k*
w=Wek— = ii\/( . )4 — 43)

where Oh is constant throughout the domain. The dispersion relation is used to
perform a spatio-temporal stability analysis, which includes the effect of advection
speed of the jet on its stability properties. In this framework, we define the impulse
response of a system to a localised perturbation that generates a wavepacket growing
in space and time. In the laboratory framework, the spatio-temporal behaviour of
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FIGURE 4. The absolute—convective transition (represented by full and dashed lines) for
viscous jets (Bo;, =0). The local variation in Oh, and We, for three jets with different We,,
(constant Oh;, =0.3, Bo;, =0.1, L=50) are plotted with different markers, where the red
cross for each represents the inlet condition at z = 0. The distance between consecutive
markers for the same jet represents an axial gap of 10 units.

the wavepacket can be described in terms of the complex absolute wavenumber
ko and the corresponding complex absolute frequency wy = w(ky) whose imaginary
part wp; will determine the temporal evolution of the wavepacket. For wy; > 0 the
system is absolutely unstable since the disturbance grows fast enough to invade the
entire domain in the laboratory frame; and for wy; < 0 the system is convectively
unstable as the localised perturbations are allowed to convect downstream before they
grow in the laboratory frame. The complex pair (ky, wy) is defined using the saddle
point condition or the Briggs—Bers zero-group-velocity criterion, together with the
dispersion relation
dA(wy, ko)
dk

where A represents the dispersion relation (4.3) and

0,  A(wo, ko) =0, (4.4)

dA 1 — 2k + (30hk)?
2 = We —3i0hk £i + GO
ak V20 = 12) + 30hk)?

4.5)

Equation (4.4) identifies the critical dimensionless speed We.;, for a fixed Oh,
which signifies the transition of the jet from an absolutely unstable to a convectively
unstable system as shown in figure 4 with the full and dashed lines. The two curves
are obtained for a system initialised either using a low or a high Oh, respectively. For
the intermediate values of Oh, we obtain two saddle points, thus giving two distinct
values of the critical curve.

4.2. Local stability analysis for jets in the presence of gravity

Extending the formalism for parallel jets to spatially varying jets, we derive the
dispersion relation for the coupled equations (2.1), governing the growth of small
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FIGURE 5. The stretching (or necking) close to the nozzle of the base flow due to the
presence of gravity for a jet with Oh;,, =0.3, Bo;, =0.1 and three different We;,. Clearly,
the effect of gravity is prominent for the jet with the smallest We;,.

perturbations about the base state. The linearised system of equations obtained around
the spatially varying base flow can be formulated as an eigenvalue problem with the
eigenmodes represented by ¢(z) = [a(z), u(z)] as functions of z. Next we express
the local stability of a gravity jet by introducing the terms Oh, and We,, which are
the local dimensionless numbers at an axial distance of z from the nozzle. They are
expressed as

on. = on, | Q. (4.6a)
hy(2)
We. = hy(2)u, (2). (4.6b)

We then plot the values Oh, and We, along the entire axial domain L above the
absolute—convective transition curve in figure 4. The variation in local Oh, and We,
along the jet defined within a domain size L =50 for Oh;, =0.3 and Bo;, =0.1 and for
three different inlet Weber numbers We;, =[1.75, 0.25, 0.002] are represented by the
different markers in figure 4. The gap between consecutive markers is representative
of an axial interval of 10 units. In each case, the red cross represents the inlet of
the jet whose base state is shown in figure 5. We remind the reader that the case
with We;, =1.75 corresponds to the jet whose numerical analysis has been presented
in §3.3.

For We;,, = 1.75 and 0.002, the entire jet exists in the convective and absolute
region, respectively. For intermediate We;, = 0.25, there exists a small pocket of
absolute instability close to the nozzle, after which the local parameters modify along
the downstream direction, resulting in the transfer of the jet into a convectively
unstable regime.

The parameter Bo;, indirectly affects the instability of the jet through the base-
state solution. Since Bo;, is constant, its relative strength for the stretching of the
jet interface depends on the corresponding value of We,,, with the effect being more
pronounced for lower values of We;, as shown in figure 5.

Next, for the spatially varying base flow, we perform the stability analysis in a local
framework wherein the system is considered parallel at each axial location. The local
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FIGURE 6. The four k branches shown in four different colours, obtained as a solution
of the dispersion relation for complex w and for increasing values of w; for a jet defined
by Oh;,=0.3, Bo;,, =0.1 and We;, =1.75 at (a) the nozzle outlet z=0 and (b) the jet exit
z=L=>50. The arrows represent the direction of movement of the waves for increasing
values of w;.

dispersion relation, which now includes the local spatially varying base flow properties,
is given by

1
K =0.
2«/ ap (Z) (4 7)

For the convectively unstable jet (We;, =1.75), the solution of the dispersion relation
(4.7) for a given range of complex w (with w; > 0) results in obtaining four spatial
branches, which are expressed as the roots of the fourth-order polynomial (4.7). The
solution consists of upstream-propagating (denoted k~) and downstream-propagating
(denoted k™) branches. To identify these branches, we successively add an artificial w;
so as to separate the branches into the upper k; >0 and lower k; <0 planes (Huerre &
Rossi 1998; Gallaire & Brun 2017). For a downstream-propagating k™ branch damped
in space, the associated k; > 0. Based on this analysis, we obtain two downstream- and
two upstream-propagating waves for the dispersion relation (4.7). The k branches for
the localised dimensionless numbers at the nozzle inlet (z=0) and domain end (z=50)
are shown in figure 6(a) and 6(b), respectively, with the two k* branches denoted by
the black and green colours and the two k= waves by the red and blue colours. The
presence of two kT and k= waves is not specific to the present jet characteristics but
rather exists for all the tested cases in the range of Oh;, =[0.1, 10], We;, =[0.8, 10]
and Bo;, =[0, 1] for L=150.

vap(2)
2

w? — 2u,(2)wk + ( +u,(z)* + 3itha)> K> — 3i0h.u,,(z)k* —

4.3. Spatial stability analysis

Since the base flow with We;,, = 1.75 exists in the convectively unstable regime
(see figure 4), we then proceed to analyse the base flow using the spatial stability
framework, wherein the spatial growth rate for the imposed real frequency determines
the flow stability.

Given the polynomial nature of the dispersion relation, there are four spatial waves.
We have verified that two of them are k™, downstream-propagating, waves while the
remaining two are k~, upstream-propagating, waves (see figure 6). For a more detailed
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FIGURE 7. (a) Growth rate —k; for a jet defined by Oh,;,=0.3, Bo;,=0.1 and We;,=1.75,
plotted as a function of the frequency for the four k branches at the nozzle exit with
the dominant k branch represented in black. (b) The growth rate corresponding to the
dominant k branch at different axial locations. The inset shows the evolution of the locus
of the real and imaginary parts of &, and i at the optimal frequency as z increases.
(c¢) The growth rate —k; of the dominant k branch as a function of z for various w.
(d) The k, related to the optimal growth rate in (b) as a function of real frequency. The
coloured markers (®) in (b) and (d) correspond to the same forcing frequency and the
axial location.

account on the nature of spatial waves in capillary jets, depending on the flow model,
the reader is referred to Guerrero, Gonzédlez & Garcia (2016).

Among the four k waves, only one of the k™ waves is seen to be amplified. To
obtain this dominant k wave, we plot the spatial growth rate —k; as a function of
the real forcing frequency w at the nozzle inlet. As shown in figure 7(a), among
the four k branches, only the branch denoted in black has a growth rate that is
positive in its propagation direction. We chose the k wave corresponding to this
amplified &t branch as the dominant wavenumber for all frequencies. The relevant
k(z) branches are then obtained for different z along the jet as shown in figure 7(b,d)
by imposing the spatially dependent base flow and Oh, in (4.7). Figure 7(b) shows
that the most amplified frequency shifts to higher values as one travels away from the
nozzle. The associated eigenmode §(z) also changes as one progresses downstream.
Imposmg lgll =1 at every axial location as the normalisation condition, together with

a; =0 to set the phase, we see in figure 7(c) the evolution of the locus of the real
and imaginary parts of the remaining degrees of freedom u, and i; as z increases
(remember that #? + u#? + a*> = 1). While this locus is difficult to interpret from a
physical point of view, it highlights the change of the eigenmode along the jet axis
in such non-parallel gravity-driven jets.

The knowledge of the relevant kt wave obtained for a given w allows us to evaluate
the leading-order response due to different forcing frequencies imposed on the base
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FIGURE 8. Comparison of the total gain G at different frequencies @ from the resolvent
analysis and the spatial analysis for domain sizes (a) L =50 and (b) L =60 and for the
jet defined by Oh;, =0.3, Bo;; =0.1 and We;, = 1.75. The resolvent gain is computed by
using the transfer function and the direct mode obtained from the spatial analysis. All the
theories predict a shift in w,, as L is increased.

flow, conveniently expressed as
Z
q(z, ) =q(w, ) exp [i </ k(w, 7)d7 — wt)] . (4.8)
0
The overall response norm defined in a domain size L is then given as

L 4
/ q(w, 2) exp [i </ k(w,7)d7 — a)t)} H . 4.9)
0 0

This allows us to determine the optimal forcing frequency w,, that results in the
maximal gain

G(w, L) = ‘

Gs,max(L) = max [Gs(wv L)]» (410)

attained at a frequency w,,. Figure 8 (in dotted lines) shows the spatial gain as a
function of forcing frequency for two arbitrary domain sizes L =150 and 60. We notice
that ,,, shifts from 1.16 to 1.21 as we increase the domain size.

4.4. Weakly non-parallel stability analysis (WKBJ)

In order to further incorporate the non-parallelism of the base flow, we extend our
spatial analysis by including the WKBJ formalism introduced by Gaster et al. (1985)
and Huerre & Rossi (1998) for a spatial mixing layer and applied by Viola et al.
(2016) for swirling flows.

In this framework, we introduce a slow streamwise scale Z, which relates to the
fast scale z as Z =nz, where n < 1 is a measure of the weak non-parallelism. The
new base flow depends only on Z and the global response to inlet forcing takes the
modulated wave form

z
qZ, 1) ~AZ)q(Z,0)exp [i (1 / k(w,ZYdZ — a)tﬂ , “4.11)
nJo
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where ¢(w, Z) is the local eigenmode and k(w, Z) the local wavenumber at section
Z and a fixed forcing frequency w. The amplitude function A(Z) acts as an envelope,
smoothly connecting the progressive slices of the parallel spatial analysis. At each
axial location, we impose t}H -q=1, where ()" is the transconjugate. As described
in § A.6, imposing an asymptotic expansion and a compatibility condition, the local
stability analysis is retrieved at zeroth order in 5, while at first order in 7 the
following amplitude equation is obtained:

dA2)
M@Z)= =+ N@DAZ) =0, 4.12)

whose solution is given as

(4.13)

Z ’
N(Z') dZ’> ‘

A(Z)=A —
2) 03Xp< , M(Z)

The functions M(Z) and N(Z) are defined in § A.6. The amplitude at the inlet is set as
A(0) =1, which simplifies the forcing expression at the inlet to ¢'(0, ) = ¢(0) exp(iw?).
Finally, we express the total spatial gain at first order as

/ ) ANDAD G @) - §(2)) [eXp ( / | —2k;(Z") dz”)] dz
0

0

Ghpp(@, L) = (4.14)

q"(0) - §(0)

The global gain of the response due to the forcing frequency, for fixed domain sizes,
is reported in figure 8, where w,,; =1.24 and 1.30 for L=350 and 60, respectively. The
WKBJ approximation greatly modifies the gain when compared to the zeroth-order
analysis and shifts the optimal forcing frequency predicted from the spatial analysis,
which excludes the amplitude equation. However, to truly assess the validity of the
amplitude equation, one needs to analyse the base flow in the global framework
using the resolvent analysis, which will be the focus of our discussion in the
next section.

5. Global stability analysis

Unlike the local stability analysis, the global stability framework allows taking into
consideration the axially varying base state due to the stretching effect of gravity. The
global stability analysis of the leading-order 1-D model was performed by Sauter &
Buggisch (2005), and refined later on by Rubio-Rubio ef al. (2013). Following the
work of the previous authors, we first evaluate the inherent global stability of the base
flow in § 5.1. We next perform a resolvent analysis in § 5.2 on the globally stable base
flow to evaluate its response in the presence of a given perturbation.

5.1. Global stability

Since the base flow is spatially varying, the perturbations imposed on it are no longer
sought in the form of Fourier modes but are expanded in the form

h(z, 1) = hy(2) + €h(z)e", (5.1a)
u(z, t) = uy(2) + €ii(z)e, (5.1b)
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where € <« 1, and h(z) and ii(z) are the global stability modes related to the complex
growth rate A. Substituting expressions (5.1) in (2.1) and linearising around the base
state (hy, u,) results in the general eigenvalue problem of the form

ultl=ml]. 52)

u u

with boundary conditions A(0, 1) =0 and (0, f) =0. We do not impose any boundary
conditions at the end of the domain, z = L, since it is not possible a priori to
distinguish between amplifying perturbations and transient disturbances. This will
occur in any problem that involves an ‘active system’ and can support amplifying
waves (Briggs 1964; Leib & Goldstein 1986). The global stability analysis presented
in Rubio-Rubio et al. (2013) does not impose any boundary conditions for z=L since
the numerical method naturally converges to the most regular asymptotic solution of
the base flow equation (2.5) and eigenvalue problem (5.2), as z — oo. Nonetheless,
we checked that the dominant eigenvalue and eigenmode were unaffected by the
presence of a Neumann boundary condition at z= L, namely du(L)/dz=0.

The complete expressions for the linear operator M can be found in § A.5. The
solution of (5.2) results in a set of eigenmodes (fz, u), whose growth rate and frequency
are given by the real (1,) and imaginary (4;) parts of the related eigenvalue. A base
state is stable to self-induced oscillations provided A, < 0.

To solve the eigenvalue problem, the Chebyshev collocation method is used to
obtain the differential operators. Derivatives with respect to z are calculated using the
standard Chebyshev differentiation matrices. Denoting the non-dimensional physical
domain as L, the domain is mapped into the interval —1 <y < 1 by using the
transformation z =[(L/2) x (y + 1)]. The global stability scheme is validated against
the results of Rubio-Rubio ef al. (2013).

For the three cases of jets described in figure 5, with L =50, Oh;, = 0.3, Bo;, =
0.1 and three different values of We;,, a global stability analysis is carried out using
different resolutions (N; = 100, N, = 125, N3 = 150) to exclude spurious eigenvalues.
The eigenvalue spectra for We;, =0.25, 1.75 and 0.002 are represented in figures 9(a),
9(c) and 10(a), respectively. The dominant eigenvalues have A, <0 (for We;, = 0.25
and 1.75) and 4, > 0 (for We;, =0.0025), thus representing globally stable and unstable
jets, respectively. Note, however, that the local stability analysis of the globally stable
flow with We;, = 0.25 predicts the jet to have a small ‘pocket’ of absolute instability
close to the nozzle.

Eigenmodes corresponding to the dominant eigenvalues are presented in the
accompanying figures. We note that the dominant eigenmode, as represented in
figures 9(b), 9(d) and 10(b), has an amplitude that grows downstream. Figure 10(b)
also shows that the wavelength grows downstream. This is a consequence of the fluid
acceleration caused by gravity (Tomotika 1936; Rubio-Rubio ef al. 2013) and can
be interpreted from figure 7(d), where k, is seen to decrease with increasing z for a
fixed forcing frequency w. Further we see that, close to the outlet, the eigenmodes
evolve at a much larger length scale compared to that related to the variations in
a steady-state jet, thus strengthening the argument that weakly non-parallel stability
analysis should be used with care for predicting the global stability of the gravity jet.
A similar warning for the use of local analysis under strong stretching is one of the
main conclusions of the work presented in Rubio-Rubio et al. (2013).
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FIGURE 9. (a,c) Eigenvalue spectrum A obtained for three different resolutions N; = 100,
N, =125 and N; =150 and (b,d) the real and imaginary parts of the leading eigenfunction
ft, for Oh;, = 0.3, Bo;, = 0.1, L = 50 and evaluated for two different values of inlet
Weber number. Panels (a,b) correspond to We;, = 0.25 where the leading eigenvalue has
an eigenfrequency A; = 0.55. Panels (c,d) correspond to We;, = 1.75 with A; =1.97. For
both Weber numbers, the entire spectrum has A, <0, rendering the system globally stable.

(a) 1.5 (b) 0.02
‘ N] b
AN, A 0.01 t
1.0 L% N5 .
Dominant
A; 1;=0.21 7 0
i . ) h
3 X
051 s ¥ ol 4 —0.01 |
$
| | | —0.02 ’
0 0.1 02 0.3 0 10 20 30 40 50
A, <

FIGURE 10. (a) Eigenvalue spectrum A obtained for three different resolutions N; = 100,
N, =125 and N; =150 and (b) the real and imaginary parts of the leading eigenfunction
h, for Oh;,=0.3, Bo,, =0.1, We;, =0.002 and L=50. We note that the leading eigenvalue
has a positive growth rate A, > 0, thus rendering the system globally unstable.

5.2. Global resolvent

Analysing the linear response of the base state for an external harmonic forcing
at frequency o is only well defined if the linear operator is stable, or, in other
words, the base state is stable, where the imposed perturbations are allowed to travel


https://doi.org/10.1017/jfm.2020.247

https://doi.org/10.1017/jfm.2020.247 Published online by Cambridge University Press

894 A6-20 I Shukla and F. Gallaire

downstream before spreading in the entire domain under consideration. Otherwise the
algebraically amplified solution is superimposed by the unforced naturally growing
exponential mode. Keeping this in mind, in this section we present the resolvent
analysis for the stable gravity jet (We;, = 1.75). We would like to remind the reader
that a similar response analysis along the lines of the present work was presented
in Consoli-Lizzi et al. (2014), and can also be found in Consoli-Lizzi (2016). To
compare our linear resolvent results with the nonlinear simulations of § 3, we impose
similar inlet forcing conditions and approximate the gain predicted by the resolvent
analysis in terms of the forcing amplitude.

5.2.1. Problem formulation

The external force f is modelled as an incoming perturbation in the form of an
unsteady upstream boundary condition of the 1-D Eggers and Dupont equations (2.1).
The resulting linearised equation is represented as

10,[s] = M[s] + Bf, (5.3)

where, as in the eigenvalue problem (5.2) with N as the resolution number, s = [A, u],
I represents the identity matrix of rank 2N x 2N, M is the linear operator of rank
2N x 2N (detailed in § A.5) and B; is a 2N x 2N prolongation operator that maps
the inlet forcing f (2N x 1) onto the bulk equation (Garnaud et al. 2013; Viola et al.
2016). Considering a time-harmonic forcing, f = f exp(—iwt), results in an asymptotic
flow response s =§ exp(—iwr) at the same frequency. Here § = [A, it]. Imposing these
transformations in (5.3) we obtain

—(M + iwh)§ = B/f. (5.4)

Equation (5.4) is subjected to two inlet and two outlet boundary conditions. The
solution forced only in u at the nozzle satisfies # =0 and & = 1, while for the one
that is forced in both / and u, h and @& can be chosen arbitrarily. We use the former
when comparing the results with the nonlinear simulations (where the forcing was
applied using the form (3.2)) whereas the latter when comparing to the spatial and
WKBIJ analysis of §§4.3 and 4.4.

Based on the results of the local and global analysis at We;, =1.75, the convective
instability of the flow ensures that, at the outlet, any existing k™ branch, obtained
from the spatial analysis, will be transmitted downstream. Since the relevant k™ (w, L)
branch for a given w and at z =L can be obtained from the local analysis of §4.3,
we impose for the solution of (5.4) at z= L the spatial response, specifically, A(L) =
ﬁexp(ikL) and u(L) = u exp(ikL), k being the unique root of the dispersion relation
corresponding to a downstream amplified wavenumber. It should be noted that, for
active systems, such as the jet falling under the influence of gravity, it is not possible
a priori to impose unique boundary conditions at the outlet. Thus, substitution of
the resolvent response by the spatial response at the outlet should be treated as an
approach to close the differential problem of (5.4) rather than depicting the physical
boundary conditions. To ensure that these boundary conditions do not affect the final
response over a given domain size L, we impose them for a domain size L' > L,
such that the response for all the frequencies over L is independent of the imposed
boundary condition.


https://doi.org/10.1017/jfm.2020.247

https://doi.org/10.1017/jfm.2020.247 Published online by Cambridge University Press

Frequency selection in a stretched capillary jet 894 A6-21

Finally, we express the magnitude of the response § due to the externally applied
forcing in terms of the gain G, with the maximum gain expressed as

511 M +iwl)~' Bif||?
6 (1) = man B _ g M+ i0D "B
<A ¢ 1l
attained at w,,,. To measure the amplitude of the response and the forcing, we define
Q and Q; as the weight matrices of the discretised energy norm (||§ ||2 =s"Qs) and

) (5.5

the forcing norm (|[f||2 =f7Qyf), respectively, obtained for the Chebyshev space on
the physical domain L that is mapped into the interval —1 <y < 1 by using the
transformation z = [(L/2) x (y + 1)]. Here Q; is a 2N x 2N matrix enabling us
to distinguish forcing on u only or on both components u and h. Following the
optimisation method using singular value decomposition (SVD) described in Marquet
& Sipp (2010) and Garnaud et al. (2013), we then express the optimal gain using
the following eigenvalue problem:

Q;'Bj{(M+iol)™"Q"(M+ioh) ™' Bif = Af, (5.6)

whose leading eigenvalue solution A gives G2,

f yields the optimal normalised forcing amplitude in (k, u) to be applied at the inlet.

Since the linear analysis is based on small perturbations, the exact amplitude of the
perturbation is unaccounted for in expression (5.5). For the resolvent analysis we then
define G, 4, as the gain in & from a solution forced only in u and G, , as the gain in
q for a solution forced in g, where g = [a, u]. The two expressions for the gain, Gy
and G, y,, are formulated to replicate the forcing and gain definitions in the nonlinear
simulations (§ 3) and the spatial analysis (§4.3 and §4.4), respectively.

Looking for the gain in G,y requires the inclusion of additional operators P and
H, which express ¢ in terms of s, and are given by

and the associated eigenmode solution

G = P, (5.7a)
f,=Hf. (5.7b)

The operator H modifies the imposed boundary conditions in terms of a, whereas the
operator P adequately expresses the response in a in terms of 4 such that a = 2h,h.
Additionally, to have an explicit comparison with the spatial analysis, we apply a
forcing at the inlet which is obtained as the eigenmode solution of the spatial problem
in §4.3. Thus,

fe=4@z=0). (5.8)

The gain for the imposed forcing is then obtained as

~112 : —1 —1 2

G2, () = IIthI2 _ 1P +iwh ™ BH S, I* 59)
Al Ak

Note, however, that even though this formalism allows a direct comparison with the
spatial analysis, the gain G,z (w) does not represent the maximum optimal gain since
we do not impose the optimisation of the inlet forcing vector using an SVD formalism
as was done in (5.6). Figure 11 demonstrates the difference between the gain and
ey, computed using the direct mode from spatial analysis (in black) and through an
optimisation problem that solves for the optimal mode (in blue). Indeed, the resolvent

gain based on the optimised mode is much larger in magnitude.
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FIGURE 11. Comparison of the total gain at different frequencies from the resolvent
analysis for domain sizes (@) L=50 and () L=60 and for the jet defined by Oh;, =0.3,
Bo;, =0.1 and We;, =1.75. The gain computed by applying the transfer function on the
direct eigenmode from the spatial analysis is shown in black and the maximal optimal
gain computed through the SVD analysis is shown in blue.

5.2.2. Results: comparison with spatial stability analysis

To replicate the type of forcing and the expression of gain used in the spatial
analysis in §§4.3 and 4.4, we impose the eigenmode solution at the nozzle exit
obtained from the spatial analysis as the forcing vector in the resolvent analysis.
The resulting gains G, g, for two different fixed domain sizes L =50 and L =60 are
shown in figure 8. We observe from that figure that the inclusion of the amplitude
equation in evaluating the spatial response by far improves the estimation of the true
gain obtained from the resolvent analysis. Moreover, the predicted w,, producing
the largest G,y from the WKBJ analysis is in close agreement with that of the
resolvent analysis. The response norm obtained using the different approaches agrees
qualitatively (see figure 22 later). Its non-monotonic behaviour at w = 1.5 (see
figure 22c¢—d) is well captured and is in accordance with the work presented in
Consoli-Lizzi (2016). However, the difference in gain between the three methods
originates as a result of the quantitative disparity in the response obtained at different
frequencies. The divergence between the spatial and resolvent analysis is due to the
stretching effect of gravity on the base flow. For a parallel base flow, the results
obtained from both methods are found to be identical (as shown in § A.4, figure 21).

5.2.3. Results: comparison with nonlinear simulations

We compare the resolvent analysis with the nonlinear simulations of §3.3.
Classically, the optimal forcing frequency w,,, resulting in the maximum gain can be
deduced by plotting the gain G,y as a function of @ for a fixed domain size L. For
capillary jets, however, the domain size over which the perturbation grows cannot be
fixed a priori. It is merely an outcome of the analysis, which should compare well
with the value of /. measured in the nonlinear simulations.

In order to circumvent this lack of consistency and in the absence of the knowledge
of I., we first plot Gj 5 as a function of increasing domain sizes L and for fixed w as
shown in figure 12(a), where the gain G,y (w, L) is computed for w = [1-2.5] with
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FIGURE 12. (a) Resolvent gain computed for h with a forcing applied only in u for
different values of domain sizes for a jet defined by Oh;, =0.3, Bo;,,=0.1 and We;,, =1.75.
Each curve is representative of a constant frequency. (b) The dominant frequency envelope
as a function of the domain size L. The gain represented by 10%, 10* and 10° is related
to forcing amplitudes € = 1072, 10~* and 107, respectively. A horizontal projection from
the respective gain on the frequency envelope yields w,,, and a vertical projection from
the w,,, on L determines the breakup length /..

Aw =0.01 and for L =[10-240] with AL = 10. This results in a bundle of constant-
frequency curves, intersecting each other at different locations in L. In figure 12(a) we
now define the dominant frequency at a given L as the frequency with the maximum
gain at L. A close examination reveals that there is a continuous transition in the
dominant frequency as one moves along increasing domain sizes. This is shown in
figure 12(b) where for clarity we plot only the envelope G, (L) of the dominant
frequency for all values of L. Thus G,, (L) is attained for w,,(L).

As discussed previously, L represents the breakup location along the jet where
the nonlinear effects appear. Broadly speaking, nonlinearity enters the system when
a small perturbation € gives rise to a response of the order of 1, which suggests
approximating /. by the value of L at which

1
Gopt(lc) ~ E (510)

In other words, the gain at the breakup location L =1/. should be equal to 1/e.
Using (5.10), we locate the gain in figure 12(b) for different forcing amplitudes

€ =[1072-10"°]. At the given value of G su» a horizontal projection on the dominant

frequency envelope will then decide the optimal forcing frequency for the given e.
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FIGURE 13. Comparison of breakup characteristics obtained from the nonlinear
simulations (figure 3) and the resolvent analysis (figure 12) for a jet defined by
Oh;, = 0.3, Bo;,, = 0.1 and We;, = 1.75 for (a) the optimal forcing frequency w,, and
(b) the breakup length [. at different inverse forcing amplitudes 1/e€.

Finally, a vertical projection on L from the intersection point on the dominant
frequency envelope will provide the relevant breakup length [. for the forcing
amplitude €. Extracting the results from figure 12(b), we compare the optimal forcing
frequency and the breakup length for different € with the nonlinear solutions of § 3.3
in figure 13. The close quantitative agreement between the two approaches shows the
strength of the resolvent analysis in predicting the w,, and /. especially without any
prior information from the nonlinear simulations. In figure 13 the small difference
in values in the two methods can probably be attributed to ad hoc definition of the
required threshold for nonlinear effects to kick in and breakup to occur. Finally, we
would like to remind the reader that the dependence of w,, and /. on the forcing
amplitude €, from the linear and nonlinear analysis presented above, qualitatively
agrees with the linear results reported in Consoli-Lizzi (2016).

Note here that the jet breakup is a local phenomenon and conventionally the norm
of the signal at L is used to define the breakup. However, in a global analysis, the
pointwise norm of the field is not a definite norm. Using the infinity norm to define
the breakup would have been an option, but is really not well suited to optimal growth
calculations (see Foures, Caulfield & Schmid (2013) for a discussion). Hence, in our
resolvent, spatial and WKBIJ analysis, we always use an integral norm, the 2-norm,
for the definition of the spatial gain.

6. Response to white noise

Up to now, we have only been interested in the response of the jet to an external
disturbance characterised by a constant forcing frequency. However, in reality, the
external disturbance is more likely to be composed of a broadband frequency rather
than being harmonic. Thus, to model this physical perturbation, we carry out nonlinear
simulations consistent with the scheme presented in §3 by exciting the jet at the
nozzle by white noise &(¢) defined in the time interval [0, 7] and formulated in
a similar way as in Manti¢-Lugo & Gallaire (2016). The white noise signal &(¥) is
characterised by a constant power spectral density (PSD) Sg: (@) = Ié(w)lz, where § (w)
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FIGURE 14. (a) White noise signal with unit power, comparing a signal without filter and
filtered using a band limiting frequency w,/2m. (b) PSD comparison of these two signals
with their theoretical value. The PSD is estimated using a Welch method in MATLAB.

is the Fourier transform of £(¢) and has an infinite power P defined as

1 T 1 RN
=T/ |§T(t)|2dt=n/ £ dw =07, 6.1
0 0

where o is the variance. Even though pure white noise has infinite power (as Sg: (@) >
0), physical systems are usually characterised by a band-limited white noise. We thus
filter the digital random signal &,(¢) with a band limiting frequency w,/2m =1 to
obtain the band-limited white noise &,(r) as shown in figure 14. For &,(¢), the Nyquist
frequency is set by wy/2m, which depends on the time step (6f) of the signal, such
that wy /21 = 1/26¢. Here we chose 6t =0.01. The noise &,(¢) is normalised to have
zero mean, unit variance and unit power, with a constant value for the PSD, where
2|§A;,|2 =27 /wy, which completely depends on the band limiting frequency. Finally, we
impose this filtered white noise as an inlet velocity condition for the jet defined by
Oh;,,=0.3, Bo;,=0.1 and We;, =1.75 and governed by the equations (3.1) by replacing
the boundary condition (3.2) with

d
) (6.2)

dz |,

where € is the amplitude of the white noise signal. The forcing is applied at two
different amplitudes, € = 107 and 107*, and for large times (7T = 2000) so as to
achieve results that are time-independent. For the MATLAB solver ode23tb with
varying step size, the maximum time step size is set as &¢ and white noise for
intermediate time steps is obtained through interpolation.

At every pinch-off on the jet, we note the breakup length /., the pinch-off period
AT,, and the drop radius Ry, at the time of breakup. The distribution of the breakup
characteristics is shown as a histogram in figures 15 and 16 and compared with the
expected response of the jet in the presence of the pure w,,(€), which corresponds to
o = 1.38 and 1.65 for e = 1072 and 107*, respectively. The breakup characteristics
for w,, have been discussed in figure 2 and are depicted by red bars in figures 15
and 16.
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FIGURE 15. Comparison of the normalised frequency of the drop radius R, for a jet
defined by Oh;, =0.3, Bo;,, =0.1 and We;, = 1.75 and being forced at amplitude (a) € =
1072 and (b) € =107 by their respective optimal forcing frequency w,, (in red bars) and
white noise (in cyan bars). For both the amplitudes, the white noise data are concentrated
around two main drop sizes, representatives of the main and satellite drops. The most
frequent drop sizes are Ry, =1.65 and 1.45 for e =107 and 107*, respectively. These
values are close to the ones predicted by the nonlinear simulations of figure 2, where the
main drop size was predicted to be 1.62 and 1.48 for e =102 and 10~*, respectively.

The drop size distribution shown in figure 15(a) highlights the two distribution
peaks concentrated around ~0.9 and ~1.65, representing the group of satellite and
main drops, respectively. This behaviour also exists for smaller € = 10~*, where
the radius is aggregated at ~1.05 and =~1.45. The results for the main drop size
are coherent with the ones obtained in the presence of pure optimal forcing, where
Ryop=1.62 and 1.45 for € = 1072 and 107*, respectively. Thus, even in the presence
of white noise, the response of the jet is dominated by its expected behaviour at w,,.

Unlike the drop radius, the peak of the distribution of breakup length obtained by
imposing the white noise is not in close agreement with that of the optimal forcing
as shown in figure 16(a,b). Yet, we clearly see that the distribution spectrum shifts
to large values of breakup length as € is decreased, a behaviour similar to the one
predicted by w,,, where /. increases from ~50 to ~125 as e is decreased. The
distribution spectrum shifts due to the presence of forcing frequencies other than the
optimal one, owing to which the breakup length is known to show a large variation,
as is evident from figure 1. In the absence of white noise, a similar rationale should
not be applied when evaluating the effect of a given pair of forcing frequencies.
Indeed, their collective effect on the breakup characteristics could be different from
their individual responses, as was demonstrated in the case of parallel jets (Driessen
et al. 2014).

Similar conclusions can be drawn for the comparison of AT),, between white noise
forcing and forcing with w,, from figure 16(c,d) where we plot the breakup period
between two consecutive drops.

7. Conclusion and perspectives

In this work, we inspect the response of a spatially varying gravitationally stretched
jet subjected to an inlet velocity perturbation. The forcing is characterised through
the frequency and the amplitude, the latter playing a major role in the determination
of the optimal forcing frequency. The results of the numerical simulations performed
on the nonlinear 1-D Eggers & Dupont (1994) equations show an increase in optimal
forcing frequency and the breakup length as the forcing amplitude is decreased.
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FIGURE 16. (a,b) Comparison of the normalised frequency of the breakup length /. and
(c,d) comparison of the normalised frequency of the breakup period AT,,, each for a
jet defined by Oh;, = 0.3, Bo;,, = 0.1 and We;, = 1.75: (a,c) are subjected to a forcing
amplitude € = 1072 and (b,d) to € = 10~*. The data in red correspond to the optimal
forcing frequency w,, and data in cyan to white noise. The most frequent white noise
breakup length is close to the /. prediction in the presence of the w,,. For € =107 and
107, the peak breakup period AT,,=2.45 and 1.35, respectively, and is in close proximity
to the results obtained from the nonlinear simulations of figure 2.

We found that the amplitude-dependent preferred mode is a characteristic of
gravity-driven jets only. A pure capillary jet, the base state of which is independent of
gravity-induced stretching, does not sustain such behaviour. In such cases, decreasing
the forcing amplitude only resulted in an increase of the breakup length, with the
optimal frequency remaining fixed at all amplitudes.

The linear stability theory characterised the jet flow used for nonlinear simulations
as locally unstable and globally stable. Based on the absolute—convective transition
criteria, we analysed the local stability at each section along the axial direction. The
solution of the dispersion relation and the subsequent analysis for the downstream-
propagating spatial waves helped in confirming the predominant wave to be used
for the zeroth-order spatial gain expression. The strong non-parallelism of the base
flow close to the nozzle motivated the incorporation of the WKBJ framework, which
markedly improved the prediction of the optimal forcing frequency in comparison
to the resolvent analysis. However, the spatial gain was still observed to be lower
than the resolvent. As suggested by Le Dizes & Villermaux (2017), using advanced
stability tools (Schmid 2007), which accounts for non-parallel effects and non-modal
growth, leads to an estimation of a more realistic spatial response.

This task was tackled using a resolvent analysis, which accurately captured the
linear response of stable jets in the presence of an external forcing. Assuming a
simple global amplitude breakup threshold criterion, the linear resolvent analysis
becomes capable of predicting both the breakup length and the optimal forcing
frequency given the amplitude of the forcing. The results of the nonlinear simulations
and the resolvent for different forcing amplitudes are quantitatively comparable, thus
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underlining the importance of the resolvent analysis. Additionally, the results have
a qualitative agreement with the linear response analysis presented in Consoli-Lizzi
(2016). Besides forcing the jet inlet with a fixed frequency, we also studied the
response to white noise, to analyse its natural response to a distributed forcing
frequency range. Surprisingly, even in the presence of white noise, the dominant
response of the jet is close to that seen from the optimal frequency at that amplitude.
These simulations also indicate the plausible reasons behind the large deviation
observed for the frequency and breakup length in the unforced jet experiments of
Consoli-Lizzi (2016).

In the presence of external forcing, a dominant feature seen from the nonlinear
simulations is the formation of a main and a satellite drop at the time of breakup.
Nevertheless, to properly examine the consequence of the forcing amplitude on the
final drop size, there is a need to enhance the nonlinear model by including the
physics of drop coalescence and disintegration, as done by Driessen & Jeurissen
(2011). Post breakup, the state of the jet after the pinch-off should be inferred from
the system before the breakup. Additionally, the choice for drop curvature is of
paramount importance since a given breakup can possess a variety of drop shapes —
each on a different length scale (Kowalewski 1996).

On a different note, if the final aim is to eliminate the presence of satellite
drops, the forcing should be modified such that it leads to the selective production
of equi-sized drops. In this direction the work of Chaudhary & Redekopp (1980),
who controlled satellite drops by forcing the jet with a suitable harmonic added
to the fundamental, and Driessen er al. (2014), who controlled the size of the
droplet breaking off from a parallel jet by imposing a superposition of two
Rayleigh—Plateau-unstable modes on the jet, could serve as the basis for formulating
a theory for spatially varying gravity jets.
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Appendix A
A.l. Numerical base-state solution validation

In this appendix, we show the validation of our numerically obtained base-state
solution of the governing equation (2.5) with the experimental results of Rubio-Rubio
et al. (2013) for three different jet flows. The MATLAB bvp4c solver along with the
boundary conditions stated in § 2 accurately capture the stretching (necking) close to
the nozzle due to the effect of Bo;, as shown in figure 17.
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FIGURE 17. Comparison of the steady-state solution with results from Rubio-Rubio et al.
(2013) for: (a) Ohy, =2.117, We;, =2.62 x 1072, Bo;, = 0.71; (b) Oh,;, = 0.4799, We;, =
6.06 x 1073, Bo;, =1.81; and (c¢) Oh;, =0.7238, We;, =1.85 x 1073, Bo,;, =5.53.

A.2. Effect of initial condition on breakup characteristics

This section demonstrates the effect on breakup characteristics due to different initial
conditions of the jet. Using the scheme described in § 3.2, we perform numerical
solutions for a jet with Oh;, =0.3, We;, =1.75 and Bo;, = 0.1 excited with a forcing
of amplitude € = 1072 and frequency w = 0.8. In the first case, the jet is initialised
as a circular tip of radius 1 (figure 18a), and in the second case with the base-state
solution obtained by solving (2.5) defined for an axial length of 100 (figure 18b).
In both cases the numerical domain is considered large enough to capture all the
breakups. As shown in figure 18, both the jets with different initial conditions have
different transient dynamics up to =155 (tip) and t =40 (base state) after which they
enter the permanent regime. In this regime, the breakup length /. and period AT,, are
identical as shown in figure 18(c,d), respectively. It is thus safe to conclude that, in
the permanent regime, the jet breakup is independent of the initial base-state solution.

A.3. Numerical scheme validation

In this appendix, we show the validation of our numerical scheme described in § 3.2
for the simulations of reduced 1-D Eggers & Dupont (1994) equations represented
by equation (3.1). For the purpose of validation, we use the numerical data of van
Hoeve et al. (2010), which are described for micro-jets of initial radius hy=18.5 wm
with density p = 1098 kg m™3, viscosity n = 3.65 mPa s and surface tension
y = 67.9 mN m~'. The jet is injected at a constant flow rate Q = 0.35 ml min™',
corresponding to an initial jet velocity Uy = Q/(wh}) = 5.4 m s~'. The flow can
thus be described by the dimensionless numbers Oh;,, = 0.1 and We;, = 8.7. Since
the gravity effects are not considered in the experiment, we inject Bo;, =0 in (3.1).
To initiate jet breakup in their numerical simulations, a harmonic modulation of the
dimensional nozzle radius is applied as follows:

h(z=0, f) = hy + & sin(2mtnt), (A1)
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FIGURE 18. Time-sequence plot of a simulation with Oh;, =0.3, We;, =1.75 and Bo;, =
0.1 excited with a forcing of amplitude € = 1072 and frequency w = 0.8 and initialised
(a) as a tip and (b) using the base-state solution. Comparisons of the breakup length and
period for the two cases are presented in (c¢) and (d), respectively.

with 8/hy ~ 0.005 the forcing amplitude and n the driving frequency. The latter is
selected to match the optimum wavelength A,, for jet breakup, that is, n = Uy/A,p.
To ensure a constant flow rate Q through the nozzle, the dimensional velocity is
modulated correspondingly as

n2U,

[h(z=0,0]* (A2

uy(z=0,1 =

The amplitude of the wave imparted by the forcing at the nozzle grows until it equals
the radius of the jet. Pinch-off or jet breakup is then defined as when the minimum
width of the jet is below a predefined value set to 10~3h.

In our numerical simulations, we compute solutions to the governing equation
(3.1) with the same harmonic forcing and flow parameters as in van Hoeve et al.
(2010). A hemispherical droplet described by h = (hy> — 22)'? is used as initial
condition for the shape of the jet, the tip of which is therefore initially at z=#hy. The
velocity is initialised to u, everywhere along the jet. A fixed number of grid points,
corresponding to a discretisation size dz = 0.05, is uniformly distributed throughout
the entire domain. The final validation is presented in figure 19, which shows a
comparison of the time series of the dynamics of jet breakup obtained from our
numerical scheme and the numerical results from van Hoeve et al. (2010).

For both parts of figure 19, the evolution of the jet shape is shown at time intervals
of 2 ps. Our numerical model predicts a breakup period of 25 s and a breakup
length of 856 pwm. The results of van Hoeve et al. (2010) have a breakup period
of approximately 26 to 30 ws and a breakup length of approximately 800 pm. The
error in breakup length between the two codes can be explained by the difference in
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FIGURE 19. Numerical solutions of the governing equation (3.1) for a jet in an inert
medium with Oh;,, =0.1, We;, =8.7 and Bo;, =0. (a) Results from our numerical scheme
described in §3.2 and (b) experimentally validated numerical results of van Hoeve et al.
(2010). The red bar corresponds to a length scale of 200 pwm.
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FIGURE 20. Nonlinear simulation results for optimal forcing frequency w,,; carried out
for jet characteristics Oh;, =0.3, We;, =1.75 and Bo;, =0. The breakup length /. is plotted
as a function of forcing frequency w for different forcing amplitudes e.

grid size. Overall, figure 19 shows a good agreement between the two sets of results
and validates our numerical scheme.

A.4. Comparison between resolvent and spatial analyses

In this section, we briefly show the preferred forcing frequency of the jet discussed
in §3.3 in the absence of gravity. The jet is characterised by Oh;, = 0.3, We,, =
1.75 and Bo,;, = 0. As shown in figure 20, nonlinear simulations for the governing
equations (3.1) for the zero-gravity case using different forcing amplitudes € show
that w,, is independent of the chosen forcing amplitude, a behaviour in contrast to
the situation where gravity is present (previously shown in figure 3). Figure 21 shows
the comparison of gain, in the absence of gravity, as a function of forcing frequency
using spatial and resolvent analysis for two different domain sizes. For convenience,
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FIGURE 21. Comparison of gain and w,, obtained from the resolvent analysis and spatial
analysis for two different domain sizes (@) L=25 and (b) L=50 for a jet in the absence
of gravity and characterised by Oh =0.3 and We = 1.75. Irrespective of the domain size
and the method employed, the w,, value lies in the range [0.74, 0.75].
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FIGURE 22. Resolvent and spatial response (Ja| and |u|) of the jet characterised by Oh;, =
0.3, We;,=1.75 and Bo;,=0.1 at (a,b) =1 and (c,d) w=1.5 with a domain size L=150.

we also plot the resolvent gain G,y expressed in terms of the forcing applied for
the nonlinear simulations. We note that all the curves, irrespective of the domain size,
predict the same optimal forcing frequency w,, = 0.74-0.76, a value close to the
nonlinear prediction of figure 20. Moreover, unlike the situation with Bo = 0.1, we
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notice that, in the absence of gravity, the magnitude of the gain at all frequencies is
well captured by the spatial analysis.

A.S. Linear operator for eigenvalue problem

For the eigenvalue problem related to the global stability in §5.1, the matrix M is

expressed as
My My
M= , A3
{le Mzz] (A3)

where the expressions M;;, M;;, My and My denote the following differential
equations:

Q Qhn),
M, =——D 1, A4
11 h}z} + h[?; ( a)
hy )
MIQZ—ED—th, (A4b)
4 h/z h//
My, = d=lr. —120h,Q | -2 + -2 ) D, A4
pm w (A4
2h, Q 2QH,
My =30h;, [ D*+ —L | — = by, Add
2 < +th) hzz; + hi ( )

In the group of equations (A4), I is the identity operator, D" = d"/dz", s(z) =[1 +
(h,)*17"/* and

1 2,
TIi=-5D—-—1, (A 5a)

Ty p

h/ (h/ )2 h// rh/ h//
T,=D+ tD? — | =2+ 2 bby, A5b
=0+t [+ o= T (A30)
h/ 2h//
Ty = —6h,h,D* — 3 [( L + (h)* — h;h;’/} D, (A5c)
b

Ty = 15(h))*(h,)D. (A 5d)

A.6. WKBJ formulation for axisymmetric 1-D Eggers and Dupont equations

A.6.1. Linearised equations
Considering linear perturbations (a’, «’) in the jet interface and velocity around the
base flow (a,, up), the linearised system of equations is written as

aa’
rYi (—A; — ADy)d + (—A; — AuDD, (A 6a)
ou'
rrin (=B) — B,D, — B;D, — B,D3)d’ + (—B; — B,D| — B;Dy)u//, (A 6D)
where D; with i=1, ..., 3 are the differential operators with respect to z. Equation

(A5) can be reformed as
[¢'1=Klq'], (A7)
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where
"o a _ _Al —A2D1 —A3 —A4D1
[q ] - |:I/t/:| ’ K= |:_Bl — Ble — B3D2 — B4D3 —B5 — BﬁDl — B7D2 ’ (A 8(1,[7)
where the coefficients A; 4 and By __; are given as
A =uy/(2), (A9a)
Ay =u(2), (A9D)
Az =a;/(2), (A9c)
Ay =a,(2), (A9d)

15(=2a,'(2)* — 4a,(Da)' (2) + ay'(2)* (=" (2) + ap(D)ay' (D)ay" (2)%)

B, =
1657/2
3Q2ap(2)ay® (z) — 8ay' (2) + ay ()ay" (2)* — 24,/ (2)ay” (2))
o 855/2
a,¥ (@) 3(Ohyay (2)uy (2))
253/2 - Clb(Z)2 ’ (A 96)
_15(=2a) (2)* — 4ap(2)ay (2)* + @' (2)*(—ay" (2) + ap(D)ay' (2)°ay" (2)%)
: 32872
_ 3ap@)ay” (2)? — 8ay'(2)* + ap(2)ay ¥ (2)ay (2) — 4ay (2)*ay” (2) — 4a,(2))
85572
B (a,(2) +2) 30hu,/(2)
283/2 a,(2) (A9)
3(ay' (z)° — 2a,(2)a, (2)a," (2)) ay'(2)
= ;’;(jz , (A9h)
Bs = —u;/(2), (A 9i)
30h;,a,’
o= 2@ @ . (A9))
a,(2)
B; =30h. (A 9%k)

In the above equations S replaces the term iab/(z)2 + a,(2).

A.6.2. Linearised equation expressed in terms of slow variable

For the WKBJ analysis, we then introduce the spatial scales. The fast spatial scale
z is replaced by the slow scale Z, such that Z=nz. The base flow is now expressed as
a function of Z such that a,(Z) and u,(Z). Let us consider the following normal-mode
expansion for the perturbation:

z
q(Z,1)=q(Z) exp [i (1 / k(Z,w)dZ — wt)] . (A10)
nJo
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Injecting the transformations (A 1la—d) into (AS5), the linearised equations on a
weakly non-parallel base flow are expressed through (A 12)—(A 13):

0 .
— = —lw,
at
0 i+ ad
— =i —,
oz "oz
a2 ) ok a , 92
P (az+ ")*” 0z (A lla—d)
33 ok a
— — —ik’ —3nk k
o ! (azJr az)
ok o 02 0%k 93
3i— — + 3ik—s +is —,
< Y9zaz Tz +1822> Py
where the continuity equation converts to
A o a . . .
(—iw + ikuy)a + (kay)u = —n [8Z(abu + uba)] , (A12)

and the momentum equation transforms as

. u, . 30h da, 0
iwh = —n—1u— s — +i
"oz " 9z ) \Taz
ok 9 92 3 9,
30h (- + ni 2% T Va— (=%
" ( +’“(az+ aZ>+" 8ZZ> (”4a,§/2 aZ)“
1 3n0Oh du,, 0
— 90 (L ik
* (2a§,/2+ a az) <”az+l>

n dap ] d a2
By (' 2% .
2037 az( +”l(a T2 )tz )

1 dk ad
— | —ik’ —3nk k— ) +0®m") | a. A13
S B S O T
Defining ¢" = [aV M) and §® = [a® #®], we now consider the asymptotic
expansion
i~ADG" D +nd? @D+ (A 14)

and inject it into the governing equations (A 12)—(A 13) to obtain the local stability
problem at orders n° and n'.

Order 1n°. At zeroth order in 7, the local stability problem is retrieved:

(—iw + ikuy) aV + (ikay) 4V = (A 15q)
L Lo
ik
——213/2 (1 = Kay) & + (- iw + ikuy, + 30hK?) 2O = (A 15b)
ay,
2;1 Ly
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The system of equations represented by (A 15) can be reframed using the linear
operator L, such that

L[(}(l)] =0, where the linear operator L= L L . (A 16)
Ly Ly

Substituting the expression for &V from (A 15q) into (A 15b), we finally obtain

1
<—a)2 + 2u,wk + (— —uy — 3i0ha)> k* + 3i0hupk’ + Vb k4> aV=0, (A17)

2./a, 2

the solution of which gives the four roots of k for a given w. The relevant k branch is

tracked as discussed in §4. For a given w and a predetermined k, the solution of the

linear problem (A 16) gives the response t}(l), a parameter needed to solve the local

stability problem at order n'.
Order n'. At first order we obtain

L[g”1=QAg"1, (A18)
where the operator Q can be split into two parts:
~Dy _ pra® dA ~(1)
QlAg " 1=Rlg 1 +Slg 1A. (A19)

Here the operator R is expressed as

—Uyp —Aayp
_|/1-3
R= (ﬂ) (610hk — uy) | ° (A20)
2a,

and S is defined as

where the individual parameters are expressed as

N Bub 0
S11 = 57 Mbaz,
. aa;, 0
=07 T Yz
3i0hk du, 1 day ok 9
= — _ 3 —2k%ay) — + 6ka’ — + 2a,(—1 + 3k*a)— | ,
$21 w 07 2" (( ab)aer abaz+ ap(—1+ (lb)az
_ k da, 0k 9 9 du,
=310h | ——+ — +2%k— | —up— — —.
2= <ab82+8Z+ az> Wz oz

As explained in Huerre & Rossi (1998) and Viola et al. (2016), in order to have

solutions of the inhomogeneous equation L[t}(z)] = Q[A@(l)], the forcing term Q should
be in the image of the operator L. This implies that Q should be orthogonal to the
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corresponding adjoint eigenfunction " of the adjoint operator L, with respect to the
defined inner product,

RSN S () _ D
Rig"1g" - +513"13" A= 11§73 =47 11g"™1 =o0. (A21)

M(Z) N(Z)

This leads to the amplitude equation
dA
M(Z)d—z +N(Z2)A =0, (A22)

solving which we obtain the amplitude solution A(Z), which should then be expressed
in terms of the fast length scale z. Finally, at first order, the response if given by

q'(2) ~A2)§" (2) exp (/ —ki(z)’dz’) exp [i (/‘k,(z/) d7 — wt)] . (A23)
0 0
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