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Abstract

Dynamics and organization of laser-generated three-dimensional (3D) Richtmyer–Meshkov (RMI) and Rayleigh–Taylor
instabilities (RMI and RTI) on metal target in the semiconfined configuration are different in the central region (CR)
(Lugomer, 2016), near central region (NCR) (Lugomer, 2017) and the near periphery region (NPR) of the Gaussian-
like spot. The RMI/RTI in the NPR evolve from the shock and series of reshocks associated with lateral expansion
and increase of the vapor density, decrease of the Atwood number and momentum transfer. Scanning electron
micrographs show irregular (chaotic) web of the base-plane walls, and mushroom spikes on its nodal points with
disturbed two-dimensional (2D) lattice organization. Lattice disturbance is caused by the incoherent wavy motion of
background fluid due to fast reshocks, which after series of reflections change their strength and direction.
Reconstruction of the disturbed lattice reveals rectangular lattice of mushroom spikes with p2mm symmetry. The
splitting (bifurcation) of mushroom diameter distribution on the large and small mushroom spikes increases with radial
distance from the center of Gaussian-like spot. Dynamics of their evolution is represented by the orbits or stable
periods in 2D phase space. The constant mushroom diameter – stable circulation or the stable periodic orbits – are the
limit cycles between the unstable spiral orbits. Those with increasing periods represent supercritical Hopf bifurcation,
while those leading to decrease and disappearance represent subcritical Hopf bifurcation. The empirical models of
RMI, although predict dependence of the growth rate on radial distance (distance the reshocks travel to reach the
interface), show many limitations. More appropriate interpretation of the simultaneous growth and lattice organization
of small and large spikes give the fundamental model based on the interference of the perturbation modes depending
on their amplitude, relative phase, and the symmetry. The late-time instability in the base-plane evolves into line
solitons, vortex filaments and wave–vortex structures with chaotic rather than stochastic features.

Keywords: Hopf bifurcation; Laser ablation; Lattice of mushroom spikes; Rayleigh–Taylor instability;
Richtnyer–Meshkov instability; Small and large mushroom spikes; Solitary waves; Wave–vortex phenomena

1. INTRODUCTION

The Richtmyer–Meshkov instability (RMI) (Richtmyer,
1960; Meshkov, 1969) occurs for the impulsive acceleration
of either the light fluid into the heavy one, or vice versa.
Growth of spikes and bubbles and subsequent mixing arise
when a shock passes through an interface between two
fluids (Wouchuk & Nishihara, 1996; Zabusky, 1999). The
light fluid (ρL) is accelerated impulsively into the heavy
one (ρH) causing baroclinic vorticity deposition. In the pres-
ence of the re-shock, additional vorticity is deposited during
its interaction with the evolving interface (Yang et al., 1990;
Brouilette & Sturtevant, 1994; Balakumar et al., 2008;

Probyn & Thornber, 2013). Lugomer, 2016. With the pas-
sage of a shock front, the interface begins to decelerate
after shock refraction. Since the pressure decreases monoton-
ically with distance behind the shock front, the reversal of
pressure and of density gradients occurs from the heavy
into the light fluid. Such a condition at the interface causes
the Rayleigh–Taylor instability (RTI) (Miles et al., 2005).
Under the influence of the RMI/RTI, interface perturbations
grow into spikes of heavy-fluid into light-fluid and bubbles
of light-fluid into heavy-fluid. Development of shear along
the growing spikes causes the Kelvin–Helmholtz (KH) insta-
bility and formation of mushroom-shape spikes (Miles et al.,
2005; Lugomer, 2017).

The evolution of three-dimensional (3D) RMI and RTI on
metal surface induced by the laser beam of Gaussian-like
power profile in the semiconfined configuration (SCC) is
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of special interest and reveals some new characteristics
(Lugomer, 2016, 2017). The nanosecond laser pulse causes
plasma detonation and the shock wave that strikes the inter-
face of the vapor/plasma plume [light fluid (ρL)] and the
molten metal layer [heavy fluid (ρH)], with baroclinic vortic-
ity deposition and the RMI evolution. The initial multimodal
perturbation of the interface determines the amplitude and
the wavelength of growing spikes and bubbles. The aniso-
tropic flow and growth of spikes and bubbles depends on
the momentum, M, transferred to the fluid parcel and on
the fluid density ratio expressed by the Atwood number,
A= (ρH – ρL)/(ρH+ ρL) (Lugomer, 2016, 2017). Due to
Gaussian power profile the A number laterally decreases
from the central region (CR) to the near central region
(NCR) and to the near periphery region (NPR) coinciding
with decrease of the momentum transfer M to the density
interface, and reveals many new RMI/RTI characteristics,
which offer a new insight into these phenomena. Previous
studies have shown the evolution of the new wave–vortex
paradigm in the CR and NCR of Gaussian-like spot (Lugomer,
2016, 2017).
The RMI morphology in the CR resembles the irregular

“egg-carton” web with cavities of collapsed bubbles sur-
rounded by irregular “walls” formed at A∼ 1–0.85, M∼
Mmax (Lugomer, 2016). Formed as the crests of a heavy
fluid around the bubbles, the “walls” are developed during
non-linear growth when the instability amplitude becomes
comparable with the perturbation wavelength λ (Srebro
et al., 2003; Reckinger, 2006). The connected walls form
irregular web in a random flow field, while in the coherent
one form a quasi-periodic polygonal or the rosette-like
web. The RMI jet-spikes formed at the nodal points of a
web are broken up into nanodroplets similar to that observed
in the simulation (Statsenko et al., 2006, 2014). Thus, dom-
inant characteristic is – the absence of the mushroom shape
spikes – and presence of their remnants slightly higher than
the rest of the surface.
The morphology in the NCR formed at A∼ 0.85–0.65,

M∼ (0.70–0.60). Mmax is different from the CR (Lugomer,
2017) because the RMI is followed by the reversal of pres-
sure and density gradients with onset of the RTI (Miles
et al., 2005; Suponitsky et al., 2013, 2014).The interface per-
turbations grow into spikes of heavy-fluid into light-fluid and
bubbles of light-fluid into heavy-fluid. The density interface
of NCR is transformed into the large-scale irregular quasi-
periodic web – which in contrast to the CR – comprises the
large mushroom-shape spikes. Dynamics in the vertical
direction differs dramatically from that in the horizontal
(normal) plane, and can be regular (periodic) or quasi-
periodic, or disordered (Abarzhi & Hermann, 2003; Abarzhi,
2008; Abarzhi, private communication).
In this paper, we consider the NPR morphology of RMI/

RTI structures formed at A∼ 0.60< 0.2, M∼ (0.50≤ 0.2).
Mmax evolves due to the shock and fast reshocks. Morphol-
ogy evolves into quasi-periodic web with cavities surrounded
by irregular “walls”– and with large and small spherical

mushroom-shape spikes on disordered two-dimensional
(2D) lattice. Disorder is associated with the reshocks,
which become oblique and randomly oriented increasing
the inhomogeneity of the fluid flow field with deformation
of the web structure. In such environment, the organization
of mushroom spikes on 2D lattice is different in the domains
at various distances from the center of the spot. Intuitively,
the new characteristics like dependence of diameter of
large and small mushroom spikes with radial distance, as
well as dependence of the growth rate on the interface
shape (i.e., on the large and small wavelength modes) can
be expected. Since the surface corrugations are inhomoge-
neous, the perturbation modes may be assumed grouped
into narrow bands of short and large wavelength modes
with different effect on the growth rate.
The basic question is, whether characteristics of RMI/RTI

morphology like for example, the growth rates and formation
of large and small mushroom spikes, can be explained by a
model that would be able to predict the formation of both,
the small and the large mushroom spikes on 2D lattice and,
and their simultaneous evolution in the subdomains at vari-
ous distance from the center of the spot. Therefore, the com-
parison of the experimental results with prediction of
empirical multiparameter models and also with prediction
of the more fundamental model based on the first principles,
will be performed.
The empirical models of the RMI based on the evolution

of the multimodal perturbation occurring after the shock
and reshocks (Mikelian, 1989; Leinov et al., 2009; Ukai
et al., 2011), indicate the spike growth rate dependence on
the distance the reshock travels in order to reach the interface,
and on the interface shape at the moment of its arrival.
Levinov et al., have shown that reshock arrival to the inter-
face during the linear growth (before the arrival of the reflect-
ed rarefaction wave), will cause the fast linear growth. The
reshock arrival during slower, non-linear growth (before
the arrival of the reflected rarefaction wave), will progressive-
ly decay and the spikes will be small (Leinov et al., 2009). As
shown latter, these models although explain some of the ob-
served phenomena depend on adjustable parameters and
suffer from many shortcomings.
The model of the RMI evolution from the first principles

with interference of initial perturbation modes (without re-
shock) was recently proposed by Abarzhi and co-workers
(Pandian et al., 2017; Stellingwerf et al., 2016a, b). Based
on the group theory analysis and the smooth particle hydro-
dynamics (SPH) simulation their model shows simultaneous
evolution of large and small mushroom-shape RMI spikes on
1D lattice resulting from interference of initial perturbation
modes. In contrast to usual studies based only on the ampli-
tude of perturbation modes, their model takes into account
the amplitude, relative phase, and the symmetry of the
wave vectors on the reciprocal lattice, with various A
number values (Pandian et al., 2017; Stellingwerf et al.,
2016a, b). The results obtained by superposition of perturba-
tion waves on 1D lattices with random phase, in-phase, and
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anti-phase offer more promising (successful) comparison
with the experimental ones.
Discussion of the non-linear phase of the RMI evolution

with the large-scale coherent structures chaotically arranged
as the “late time structures” and the absence of the stochastic
small-scale turbulence mixing (Lugomer, 2016, 2017), is
presented.
The paper is organized as follows: INTRODUCTION;

OUTLINES OF THE EXPERIMENT – Expansion of
metal vapor–plasma spheroid along the SCC microchannel
in the ambient gas; RESULTS AND DISCUSSION – Quasi-
periodic, chaotic, or broken web; Spherical mushroom
spikes; ORGANIZATION OF MUSHROOM SPIKES –

Lattice organization of large and small mushroom spikes;

Off-lattice random organization of very-large and very-small
mushroom spikes; Characteristics of mushroom diameter
distribution across the NPR; Representation of mushroom
diameter by orbit in phase space; GROWTH RATE OF
SMALL AND LARGE MUSHROOM SPIKES – Depen-
dence of the growth rate on the distance the reshock has to
travel; Dependence of the growth rate on the interface
shape; Multiscale mushroom spike evolution caused by the
interference of perturbation modes: Non-linear dynamics of
RM flow; Characteristics of the low-mixing structures in
the base-plane; and CONCLUSION.

2. OUTLINES OF THE EXPERIMENT

The experiments were performed in the SCC in which
the target is irradiated through transparent quartz plate
positioned at Δ∼ 120 μm above the target surface (Lugomer,
2016, 2017). Irradiation was performed by a single pulse
of a Q-switched ruby laser E∼ 160 mJ (Es∼ 12 J/cm2;
Ps∼ 0.48 × 109 W/cm2 (∼0.5 GW/cm2); τ= 25 ns, λ=
628–693 nm). Indium plates of 1 cm × 1 cm × 0.1 cm, as a
soft material with the melting point TM= 429 K and boiling
point TB= 2345 K, were used as targets. Schematic repre-
sentation of the experiment is given in the papers I and II
(Lugomer, 2016, 2017). The sample was situated in the gas
chamber and irradiated in the presence of air as a background
gas at the pressure P0= 1 atm, and the area irradiated was
S= 0.013 cm2. The target surface was prepared by making
small and the large-scale random corrugations (scratches)
with the scratch–scratch distance, dlarge scratch∼ 10–60 μm
and the amplitude a0∼ 10–20 μm. Multimodal perturbation
of density interface consisted of a random combination of
incomensurate short- and long-wavelength modes.

Absorption of laser energy causes plasma ignition and det-
onation with generation of a shock wave in the SCC micro-
channel. The shock wave traveling downward strikes the
ρL/ρH interface causing deposition of baroclinic vorticity
(Fig. 1a–d and description in the Supplement of the paper
I). The shock wave traveling upward is reflected from the
cover plate. The reflected shock wave as (from the cover
plate or the target surface), as well as the lateral plume expan-
sion in the ambient gas is called reshock [Figs 1e–h of the
paper I (Lugomer, 2016)].

2.1. Expansion of Vapor–Plasma Spheroid along the
SCC Microchannel in the Ambient Gas

Radial plasma expansion causes the compression of sur-
rounding background gas (air) and formation of the air
shell (Ma et al., 2010). Compression increases the ion
number density in the radial direction causing minimum in
the center of its distribution. The initial density which be-
comes very low in the CR, increases to the NCR and contin-
ues to increase to the NPR, ρL(CR)< ρL(NCR)< ρL(NPR).
Since the density of a heavy fluid is the same in all regions
ρH(CR)= ρH(NCR)= ρH(NPR), the Atwood number

Fig. 1. SEM micrograph of the spot on indium surface after irradiation by
Gaussian-like pulse of a ruby laser in the SCC with excerpt of the central
region (CR), near central region (NCR), and the near periphery region
(NPR). The NPR morphology (outer ring) is better seen in the magnified
excerpt from the spot.
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decreases across the spot below the Gaussian power profile in
the radial direction from A(CR)> A(NCR)> A(NPR).
The evolution of mushroom spikes and the base-plane

structures forms the morphology, which stays frozen perma-
nently by the fast solidification after termination of interac-
tion making possible a posteriori study by the scanning
electron microscope (SEM) JEOL.

3. RESULTS AND DISCUSSION

3.1. Quasi-Periodic, Chaotic, or Broken Web

Gaussian-like spot with the excerpt of the CR, the NCR, and
the NPR is shown in Figure 2. Morphological structure re-
veals broken “egg-cartoon” web with cavities – formed by
one or more bubbles – surrounded by irregular “walls”.
Figure 2. The “walls” are the crests of a heavy fluid around
the bubbles, or around a bubble cluster, or the – “curtains
between the bubbles” – developed during non-linear
growth when the instability amplitude is of the order of λ
(Reckinger, 2006). The “walls” connected into the quasi-
periodic web comprise deformed cells (bubble/cavities)
with the “wavelength”, λ from ∼40 to ∼60 μm, which may
be attributed to the long-wavelength surface perturbation
by corrugation, dscratch∼ 40–60 μm (Lugomer, 2016). Such
structures may be attributed to the characteristic momentum
transfer, M, which decreases across the NPR (0.6 Mmax≳
M≲ 0.2 Mmax), and to the decrease of the A number (0.60
A≳ 0.2) due to lateral vapor expansion along the SCC

microchannel, which causes increase of the density of the
low-density fluid ρL (Lugomer, 2016).
Quasi-periodic web may be compared with 3D numerically

simulated large-scale periodic RMI structures generated by
both, the single-mode (Miles et al., 2005; Long et al., 2009)
and the multimode perturbations (Cohen et al., 2002;
Kartoon et al., 2003). A large periodic structure (for the
shock tube experiment) is obtained for the vertical interface os-
cillation in a square cell due to the single-mode 3D perturbation

z(x, y) = a0cos(kxx)cos(kyy), (1)

where a0= 3.45 mm, kx= ky=√2 π/W, and W=width of
the test section, for the weak shock of Ma= 1.22, and the
low Atwood number A= 0.65 (Long et al., 2009).
Transformation of regular periodic web into deformed,

quasi-periodic or chaotic, or even into broken one is caused
by the bubble shape oscillations driven by the fast oscillatory
reshocks (n∼ 7–8 MHz), and to the effect of the reshocks on
the fluid shear layer (Lugomer, 2016). High-frequency field
of re-shocks generates the pressure gradient, which couples
with the bubble oscillations (volume pulsations) and vorticity
generation in the ultrasonic field (Leighton et al., 1990).
When the reshock strikes the density interface as rarefaction
wave, the molten indium is subjected to tension, which
causes it to cavitate (Suponitsky et al., 2013; Lugomer,
2016). Pressure pulsations take place in the mixing zone
owing the vortex character of mixing and the pressure
field, which is irregular in vortices (Suponitsky et al.,
2013). Irregularity of the pressure field causes distortion of
the shock wave front and of the RMI surface morphology.
Forcing of the oscillating pressure field on the bubbles of dif-
ferent size causes bubble dynamics, which generates waves
with irregular front in the surrounding fluid. The waves solid-
ified in the fast cooling process make the irregular “walls” of
variable shape and size (around the bubbles). Connected into
quasi-periodic or even chaotic web of broken “egg-cartoon”
morphology, they are characteristic for random (incoherent)
flow field (Lugomer, 2016).
RMImushroom spikes do not appear at the nodal points of a

web, but mostly hillock-like humpswith the exception of some
(random) nodal points. Large incoherent flow field does not
show evolution of coherent flow domains with polygonal or
the rosette-like web as in the CR and NCR (Lugomer, 2016,
2017). SEM analysis reveals that such large irregular and
chaotic or broken web without mushroom spikes (denoted
domain D0) – comprises few subdomains (D1, D2, and D3)
with large and small RMI mushroom spikes. Figure 2. For
the obvious reasons we shall not consider domain D0 but
only subdomainsD1,D2, andD3, which comprise the spherical
mushroom spikes organized on disordered 2D lattice.

3.2. Spherical Shape of Mushroom Spikes

Formed at the nodal points of a web the spherical RMI mush-
room spikes are similar to that in the NCR (Lugomer, 2017),

Fig. 2. SEM micrograph of RMI/RTI morphology typical for NPR. Dom-
inant structure is irregular polygonal web which does not show mushroom
shape spikes at the nodal points (domain D0). SEM analysis reveals inside
D0 the subdomains D1 and D2 (at the same distance from the center of the
spot), which comprise many small and large spherical mushroom spikes
on disordered 2D lattice, as well as the subdomain D3 with off-lattice
very-large mushroom spikes.
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and to that obtained by 3D numerical simulation for the
single-mode perturbation (Anuchina et al., 2004). Similarity
with spherical spikes generated by the single-mode perturba-
tion indicates that in the multimodal perturbation not all
modes are equally active; only a narrow band of modes (con-
centrated around one central wavelength mode) acts as the
single-mode perturbation. Absence of the elongated prolate,
or damped spikes (lack of the shape variation of the mush-
room spikes) relates to the specific values of the A number,
but also of the Eõtvõs number, Eo, and the Morton number
Mo (Lugomer, 2017). Bubble can be characterized by the
Morton number Mo= gμl

4/ρlσ
3, by the Eõtvõs number,

Eo= ρlgdl
2/σ , as well as by density (ρl/ρb) and viscosity

(μl/μb) ratios, where dl is the effective radius of the bubble,
index, l, relates to liquid and, b, to the bubble (gas) (Unverdi
and Trygvason, 1992). Morton number involves the fluid
properties only, and the Eõtvõs number is the non-
dimensional size of the bubble. The analysis of the mush-
room shapes (Lugomer, 2017), indicates that the spherical
shape in D1. D2, and D3 may be characterized by Eo≳ 102

and Mo∼ 102.

4. ORGANIZATION OF THE MUSHROOM SPIKES

Expansion of laterally accelerated shear layer with the veloc-
ity u∼ 1650 m/s (the sonic velocity in liquid indium), is as-
sociated with variation of thickness and velocity due to
reshocks (Lugomer, 2017). The reshocks become oblique
and randomly oriented (due to irregularity of the interface),
increasing the inhomogeneity of the fluid flow field. This
not only causes quasi-periodicity or chaos of the web struc-
ture, but also disturbs the organization of spikes in various
subdomains of the NPR. The subdomains D1 and D2, show
organization of spikes on disordered 2D lattices, while D3

shows very-large off-lattice mushroom spikes (Fig. 2).

4.1. Lattice Organization of Large and Small Mushroom
Spikes

Regarding the mushroom spike organization in D1, the SEM
micrograph shows irregular (chaotic) web of the base-plane

structures and the large and small mushroom spikes with
the particle number density of ρN∼ 5 × 104/cm2 (Fig. 3).
Neglecting the base-plane structures, the mushroom spikes
reveal 2D disturbed lattice organization. Reconstruction of
regular lattice from Figure 3 starts with conformal mapping
of small (blue) and large (red) mushroom spikes (Fig. 4a).
The rows of spikes coincide with uncorrelated (chaotic)
wavy instabilities in the molten layer (background fluid)
(Fig. 4b). Incoherent wavy motion of background fluid is
the consequence of fast reshocks, which after series of reflec-
tions change the strength and direction of the wavy motion.
By continuous deformation the wavy rows of mushroom
spikes can gradually be transformed into the rectangular lattice

Fig. 3. SEM micrograph of subdomain D1 (with small rendering) showing
large and small spherical mushroom spikes formed at the nodal points of ir-
regular web.

Fig. 4. Organization of small (blue) and large (red) mushroom spikes in the
form of disordered lattice, and identification of the closest hypothetical 2D
regular lattice to which the observed pattern might belong. (a) Map of the
large and small mushroom spikes that corresponds to their organization in
Figure 3. (b) Disordered organization of small and large mushroom spikes
caused by the instability (wavy motion) of the surface molten layer.
(c) Reconstruction of the mushroom spike organization on a 2D regular
p2mm lattice. The basic cell is the rectangular configuration of four small
spikes and one large spike at the center of inversion.
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(Fig. 4c) with the primitive cell size of, Ly∼ 80–90 μm, and
Lx∼ 60–70 μm. By extending this arrangement to the whole
plane, a pattern is obtained that belongs to the p2mm symme-
try group with the translation vectors a1 and a2 (Fig. 4c),
having lengths a1= Lx∼ 60–70 μm, a2= Ly∼ 80–90 μm.
The repeating structural unit is made of one large and four
adjacent small mushroom spikes. The diameter of the large
mushroom spike is, DLM∼ 25 μm and of the small one,
DSM≲ 15 μm.
SEM micrograph of D2 shows irregular (chaotic) web as

the base-plane structure, and the large and small mushroom
spikes on its nodal points with ρN∼ 3 × 104/cm2 (Fig. 5a).
The RMI spherical mushroom spikes on 2D disordered lat-
tice are organized in two rows of large- and two rows of
small spikes between them (Fig. 5a). The small spike is con-
nected with the two nearest large mushroom ones under an
angle of ∼120° (Fig. 5b). The conformal map of disordered
small and large mushroom spikes in Figure 6a reveals wavy
rows, which coincide with uncorrelated (chaotic) wavy insta-
bility in the molten layer, as in the case above (Fig. 6b).
Correction of the wavy rows reveals the lattice of p2mm
symmetry group (Fig. 6c). The size of the rectangular (cell)
Ly∼ 110 μm, Lx∼ 80 μm is equal to the translation vectors
of the lattice a1 and a2, Lx= a1, (a1∼ 80 μm), and Ly= a2
(a2∼ 110 μm). The side of the rhombic cell is l≥ 49 μm.
The diameter of the large mushroom spike is DLM≲ 40 μm
and of the small one DSM∼ 10–15 μm.

4.2. Off-Lattice Random Organization of Very-Large
and Very-Small Mushroom Spikes

SEMmicrographs of subdomainD3 (Fig. 7a and b) also show
irregular (chaotic) and partially broken web and very-large
mushroom spikes with ρN∼ 850/cm2∼ 9 × 102/cm2

–

about three orders of magnitude lower than the number

Fig. 5. SEM micrograph showing (with small rendering) RMI structures in
subdomain D2. (a) Large and small spherical mushroom spikes formed at the
nodal points of irregular web. (b) Enlarged segment from disordered lattice
of spikes in Figure 5a.

Fig. 6. Organization of small (blue) and large (red) mushroom spikes on dis-
ordered lattice, and identification of 2D regular lattice. (a) Map of the large
and small mushroom spikes that corresponds to their organization in Figure 5.
(b) Disordered organization of small and large mushroom spikes caused by
the instability (wavy motion) of the surface molten layer. (c) Reconstruction
of the mushroom spike organization on 2D regular lattice. The basic cell is
the rectangular configuration of four large spikes and four small ones which
make the rhombic subcell.
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density of the spikes in Figures 3 and 5. These off-lattice
spikes with the mushroom diameter, DLM∼ 55–100 μm,
reach the height, hS∼ 120 μm, which is just equal to the
distance of the cover plate from the target surface (Fig. 1 in
the paper I, Lugomer 2016). The top surface is flattened be-
cause the spikes touched the cover plate of the SCC; otherwise
they could reach the height of ∼140 μm. Similarity of the
spherical shape with the spikes in the NCR (Lugomer,

Fig. 7. SEM micrograph of RMI/RTI structures in subdomain D3 showing
irregular web structure in the base-plane and very-large spherical mushroom
spikes. The top surface was flattened when the spherical mushroom spike
reached the quartz cover plate that has stopped its growth. (a) SEM micro-
graph of two giant mushroom spikes with flattened top surface of diameter
DVLM∼ 80 μm at the distance of L≳ 150 μm. There are no small spikes
in the vicinity, but only a small dots, which possibly are a very-small
mushroom spikes. The base-plane structures of destroyed web are chaotically
organized solitary waves and vortex filaments characteristic for the
shallow fluid layer. (b) SEM micrograph of one very-large mushroom
spike of diameter DVLM∼ 70 μm, of the height (amplitude) of, hS∼
120 μm, which is just the height of the SCC channel. The growth rate of
this spike is about 10–15 times faster than the growth rate of bubbles. The
structures in the base-plane are disturbed and chaotically organized
large-scale line-solitons or irregular ribbons, but transition to the small-scale
turbulent structures does not appear.

Fig. 8. Size distribution of mushroom spikes in various domains of the
NPR. (a) Segment of the NPR corresponding to Figure 2, shows location
of subdomains D1, D2, and D3. Domain D0 (which does not comprise mush-
room spikes but only the irregular web) is not limited to some area segment
of the NPR, but relates to the whole NPR between the radial distance r1 and
r4. Subdomains D1 and D2 are in the same angular segment between the
radial distance r1 and r2, while D3 is in more distant radial segment between
r3 and r4. (b) Distribution diagram of the mushroom diameter D as function
of radial distance, r, from the center of the spot (and the origin of the shock
wave). Note that distribution in the NCR (r< 450 μm) shows unique
mushroom diameter, of the average size, 〈D〉∼ 25 μm. However, between
r1∼ 460 μm and r2∼ 650 μm (subdomains D1 and D2), the size distribution
shows splitting into branch of the large mushroom diameter, 〈DLM〉∼
35 μm, into branch of small mushroom diameter, 〈DSM〉∼ 14 μm, and
into the third branch which continues from the NCR with 〈D〉∼ 25 μm.
For the subdomain D3 between r3∼ 650 μm and r4∼ 760 μm, the size dis-
tribution shows strong divergence; the large spikes become very-large spikes
〈DVLM〉∼ 90 μm and the small ones become very-small mushroom spikes
reaching average diameter 〈DVSM〉≲ 4 μm.
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2017) indicates the A number value of A≤ 0.65. The ratio of
the spike and bubble amplitude, hs/hb∼ 10–15, which is pos-
sibly the highest ratio observed in the laser experiments.
The SEM analysis reveals no small spikes as in Figures 3

and 5, but only small random dots on the walls of the web; we
assume them as very-small mushroom spikes. With the size
between nano- and micro-scales they are one order of magni-
tude smaller than the small spikes in Figures 3 and 5. In some
domains they can be hardly seen (Fig. 7a), while in other
domains cannot be seen at all (Fig. 7b).
Regarding the bubble-cavities, two types can be seen:

large flat bubble-cavities and the small curved ones. Since
the curvature of the bubble depends on the density ratio
and on the acceleration strength, the non-linear RMI bubbles

are flattened for weak pressure fluctuations, and are curved
for the strong pressure fluctuations (oscillations) of a series
of fast reshocks in the SCC. Obviously, various local
domains experience the reshocks-induced pressure variation
strength (Bromwick & Abarzhi, 2016).

4.3. Characteristics of Mushroom Diameter Distribution
across the NPR

The question is whether the size (diameter, D) of the large
and small spikes in D1,2,3 have some correlation with the dis-
tance from the center the reshok(s) travels to reach the inter-
face in particular subdomain as schematically shown in
Figure 8a? Distribution of the mushroom spike diameter,
D(μm) as function of radial distance from the center,
r(μm), with distances of D1, D2, and D3 from the center of
the spot are shown on the same radial axis (Fig. 8b). A mono-
dispersed distribution of the mushroom diameters with
the average size 〈D〉∼ 25 μm in the NCR extends up to
r∼ 450 μm, but at r∼ 460 μm NPR becomes spitted into a
band of small-diameter spikes, DSM, into a band of large-
diameter ones, DLM, while the third branch with mushroom
diameters 〈D〉∼ 25 μm, similar to that in the NCR continues
from the NCR into NPR (Fig. 8b). Average diameter 〈D〉∼
25 μm in both subdomains D1 and D2 intermittently increas-
es ( jumps) to 〈DLM〉∼ 35 μm (large diameter ones), while
other branch intermittently decreases ( jumps) to 〈DSM〉∼
14 μm. Beyond r> 650 μm (subdomain D3), a new dramatic
change occurs: the large spikes with 〈DLM〉∼ 35 μm inter-
mittently increase to the very-large mushroom spikes
〈DVLM〉∼ 90 μm; the small ones with 〈DSM〉∼ 14 μm, inter-
mittently decrease to the very-small mushroom spikes with
〈DVSM〉≲ 4 μm. For r> 770 μm (at the border of the PR),
the RMI mushroom spikes vanish.

4.4. Representation of Mushroom Diameter by Orbit in
Phase Space

More detailed insight into the dynamical evolution of small
and large spikes can be obtained if the mushroom diameters
are represented by orbits or stable periods. Namely, the
vortex structure and fluid circulation on the spike, which
form the mushroom shape (Anuchina et al., 2004), corre-
spond to the stable periods in the phase space. For the repre-
sentation in 2D phase space, we denote the constant
mushroom diameter in the NCR by the black circular orbit
(stable circulation or constant oscillating frequency), which
is the unique one for all mushroom spikes and not dependent
on distance from the center (Fig. 9). In the NPR, the appear-
ance of stable periodic orbits (the limit cycles) or their disap-
pearance in a dynamical system indicates the Hopf
bifurcation, described by the system of equations (Craford,
1991; Bressan, 2014)

dx/dt = mx+ y+ x3, (2)

Fig. 9. Phase diagram of the “mixing and merging cycles” of spikes based
on the diagram of the mushroom size distribution, D versus r, in Figure 8b.
Mushroom spike diameter is represented by the orbit of certain radius or
stable periods in 2D phase space. For the representation in phase space,
we denote the constant mushroom diameter, 〈D〉, which continues from
the NCR into NPR by the black periodic orbit P (stable circulation or cons-
tant oscillating frequency), which is the unique one for all mushroom spikes
and not dependent on distance from the center. In the NPR, the small
mushroom diameters 〈DSM〉 and 〈DVSM〉 are represented by the stable peri-
ods P1 and P2 (blue orbits) smaller than the period P. The large mushroom
diameters 〈DLM〉 and 〈DVLM〉 are represented by the stable periods P1

′ and
P2

′ (red orbits) larger than the period P. Note that P1, P2, P1
′, and P2

′ are the
stable periods, while all other periods (between them) are unstable. Behavior
of the unstable cycles resembles the kicked oscillator which is pushed from
the stable oscillation into the unstable one until it falls into the stable period
again. Thus, the periods represent the limit cycles of the Hopf bifurcation
which depends on some dynamic parameter μ (see text). The unstable red
spiral orbits change into larger and larger stable ones indicating supercritical
Hopf bifurcation. The unstable blue spiral orbits change into smaller and
smaller stable ones until finally vanish indicating subcritical Hopf
bifurcation.
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dy/dt = −x+ my+ y3.

For μ< 0, the origin is a stable point, and yields of an unsta-
ble periodic orbit; bifurcation is subcritical. For μ> 0 the
origin is unstable spiral and yields of a stable periodic
orbit(s): bifurcation is supercritical (Bressan, 2014). Tenta-
tively, the parameter μ can be defined as difference of
the growth rates in the NPR, dh/dt(NPR) and in the NCR,
dh/dt(NCR), μ= dh/dt(NPR) – dh/dt(NCR). Considering the
phase portrait of dynamics in Figure 9, the red circles
(orbits) at the outer side of the black one correspond to in-
crease of the mushroom diameter with distance and tendency
to stable orbits, indicating the supercritical Hopf bifurcation
(Bressan, 2014), with μ> 0. The blue circles (orbits) at the
inner side of the black orbit indicate decrease of the mush-
room diameter with distance and tendency to the point in
the center (with disappearance of orbits), indicating the sub-
critical Hopf bifurcation with μ< 0 (Fig. 9). Thus, simulta-
neous growth of large and small spikes – analogous to the
rapid and slow growth rates – which shows divergence
with distance may be represented by the supercritical and
subcritical Hopf bifurcations.

5. GROWTH RATE OF SMALL AND LARGE
MUSHROOM SPIKES

The growth rates of small and large mushroom spikes and de-
pendence on distance cannot be considered on the basis of
single-parameter RMI models depending only on the initial
amplitude a0 (Alon et al., 1996; Shvarts et al., 2001),
which we used for the analysis of the spike growth in the
CR (Lugomer, 2016) and NCR (Lugomer, 2017). More com-
plex multiparameter models which consider the problem
from the empirical point of view (Mikelian, 1989; Leinov
et al., 2009; Ukai et al., 2011) are more appropriate as the
first approach. These empirical models assume dependence
of the growth rate of multimodal RMI on the reshock, and
in this respect on the distance the reshock travels to strike
the interface, as well as on the interface shape in the
moment it arrives.

5.1. Dependence of the Growth Rate on the Distance the
Reshock Has to Travel

Strong divergence of spitted distribution of mushroom diam-
eters with r (Fig. 8b) indicates that the distance of particular
subdomain Di = 1,2,3, affects the growth rate. In addition, the
fact that some spikes grow at small growth rate and others at
the high rate, indicates that initial random multimodal pertur-
bation does not affect the growth of all spikes in the same
way. Since random surface corrugations are inhomogeneous,
the small and large perturbation modes are grouped into
narrow band of modes; the band of short-wavelength
modes between λ∼ 10–30 μm, and the band of the large
wavelength ones between λ∼ 40–60 μm. The short-

wavelength band is concentrated around the central mode
of, λshort∼ 20 μm and the large wavelength one around
λlarge∼ 50 μm with the corresponding amplitude of,
a0short∼ 10 μm and a0large∼ 20–25 μm. Since the distances
of the subdomains from the center [and of the shock wave
origin, r(D1)= r(D2)< r(D3)], the reshock(s) strike the
subdomains D1 and D2 in the same time – before the
subdomain D3.

Leinov et al., have shown dependence of post re-
shock(s) growth rates on distance and the corresponding
times the reshock needs to reach the interface (Leinov
et al., 2009). Neglecting the perturbation amplitude of
the interface, the reshock strength was found to be a dom-
inant parameter; the evolution of the interface after pas-
sage of the reshock is influenced dramatically (Leinov
et al., 2009). If the reshock strikes the interface during
the linear growth before the arrival of the reflected rarefac-
tion wave, the post-reshock growth will continue to be the
fast liner growth. The linear growth rate which is the result
of a bubble competition process leads to formation of
large spikes (and bubbles). If the reshock strikes the inter-
face during slower, non-linear growth before the arrival of
the reflected rarefaction wave, the post-reshock growth
will progressively decay (Leinov et al., 2009), and the
spikes will be small.

5.2. Dependence of the Growth Rate on the Interface
Shape

Dependence of the growth rate on the interface shape is char-
acterized by the initial amplitude a0, by the amplitude of os-
cillation after the first shock, the velocity jump after reshock,
and the wavelength of perturbation. Many models have been
proposed, some with controversial conclusion. The interface
shape changes after the first shock, meaning that the moment
when the reshock strikes it determines the growth rate of the
spike in the post-reshock time. Dependence of growth rate on
the above parameters that characterize the interface shape is
usually transformed into dependence on the mixing length
at reshock hr, and the wave vector k of the perturbation
modes (Ukai et al., 2011). Considering only the reshock
models for multimodal perturbation such as the model of
Mikelian, the growth rate is given by (Mikelian, 1989;
Ukai et al., 2011)

dh2/dt = CΔV2A
+, (3)

where dh2/dt is the growth rate after reshock, ΔV2 is the ve-
locity jump caused by the reshock, A+ is the post-reshock A
number, and C is the growth rate constant empirically deter-
mined, actually the adjustable parameter (Mikelian, 1989;
Ukai et al., 2011). In the Mikelian’s model the growth rate
is dependent on the parameter C (C∼ 0.28) indicating that
the reshock growth rate is only a weak function of hr and
k, or not function at all.
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However, the study of single- and multi-modal 3D insta-
bility with reshock(s) has shown that the rapid and slow
growth rates of spikes strongly depend on the interface
shape (Ukai et al., 2011), with different initial amplitudes
and wave numbers – what makes the conjecture with our
case. The rapid post-reshock growth occurs for the small am-
plitudes a0 and wave numbers kmax, which correspond to the
Mikelian’s growth rate constant (0.81< C< 0.93), close to
the single mode RMI growth rate (because the interface
shape at the moment of the reshock arrival is still sharp
and well resolved) (Ukai et al., 2011). The slow post-reshock
growth is caused by random initial interface shape (larger a0
and kmax), for 3D case correspond to the constant (0.31<
C< 0.42). In that case, the interface shape at the moment
of the reshock arrival is a mixed and not sharp, because the
complex mixing of spikes and bubbles carry lateral motion
that cease the growth of the mixing length in the longitudinal
direction and enhances the mixing of species (Ukai et al.,
2011). The model assumption is that a0 and kmax (in non-
dimensional units) are the only parameters that determine
whether the mixing layer growth rate is rapid or slow. To
quantify the initial perturbation they defined the Randomness
factor R (Ukai et al., 2011)

R = a0kmax/Ly, (4)

where Ly as the domain size in the y-direction is used to nor-
malize the parameter. Thus, when R is small, the growth rates
are similar to the single-mode cases. Thus, rapid 3D growth
happens when R≤ 0.2 (Ukai et al., 2011).
Considering the large spikes with rapid growth in our case,

one has a0 ≳ 10 μm, the domain size is about Ly∼ 400 μm,
and wavelength in the band of short-wavelength modes, λ∼
10–30 μm. For the estimation of randomness factor R, the
non-dimensional parameter, kmax (ND), has to be found.
Taking, kmax(ND)= 2π/λmin(ND), where λmin(ND)= λmin-

(μm)/<λ(mm)>, with λmin(μm) ∼10 μm is the minimal
wavelength in the band, and <λ(mm)> ∼15.5 μm, is the
average wavelength of the short-wavelength band of
modes, gives kmax(ND)∼ 10. Based on these parameters,
R∼ 0.2 indicating that short-wavelength perturbation
modes satisfy the Ukai’s condition for the rapid growth.
Regarding the small spikes with slow growth and taking

the initial amplitude a0∼ 20 μm, the domain size of Ly∼
400 μm, and the wavelength in the band of the long-
wavelength modes, λ∼ 40–60 μm, with λmin(μm)∼ 40 μm,
and 〈λ(μm)∼ 50 μm, one has kmax(ND)∼ 7.9. With these pa-
rameters one finds, R= 0.395, the value which satisfies con-
dition for the slow growth, and which is also in agreement
with the slow growth rate constant (0.31< C< 0.42).
The conjecture between these empirical models and our

experimental results besides similarities reveals two impor-
tant differences: (i) The empirical models with adjusting pa-
rameters although explain the growth rate of large and small
spikes cannot explain their formation on 1D or 2D lattice. (ii)
These models cannot describe simultaneous formation of

large and small spikes in the same subdomain, but of the
large ones in one subdomain, and the small ones in other sub-
domain – at various distances and with different interface
shapes.

5.3. Multiscale Mushroom Spike Evolution Caused by
the Interference of Perturbation Modes: Non-linear
Dynamics of RM Flow

More appropriate model for description of simultaneous for-
mation of large and small mushroom spikes on 1D lattices
from multimodal perturbation is a fundamental model
derived from the first principles. The model is based on the
group theory analysis and SPH numerical simulations (Pan-
dian et al., 2017, Stellingwerf et al., 2016a, b). The growth
(rate) of RMI small and large mushroom spikes on regular
lattice emerges from the first shock and from the interface
shape, and not from the reshock(s). The RMI evolution
depends on the wavelength and amplitude but also on the
relative phase of the initial perturbation modes. The model
assumes that 2D flow spatially extended in the y-direction,
periodic in the x-direction and invariant on 1D space
groups. The initial multimodal perturbation is expressed by
terms of wave vectors each of which corresponds to the sym-
metry position in the reciprocal lattice of the p1 and pm1

groups with translation operators. By using the two-wave ini-
tial perturbation, the evolution characteristics of RMI dynam-
ics have been studied by the variation of relative phase of the
waves f, of the ratio a2/a1 (a2 and a1 are the amplitudes of
the interfering waves 1 and 2), and of the A number (A= 0.6,
0.8, and 0.9). From the group theory aspect the superposition
of perturbation waves on p1 and pm1 lattices with random
phase fn= any, in the first case, and fn= 0, 2π (in-phase)
or fn=±π (anti-phase) in the second case, have been stud-
ied (Pandian et al., 2017; Stellingwerf et al., 2016a, b). The
results obtained for A= 0.6 and the small amplitude of
the second wave show the evolution of KH instability and
formation of mushroom spikes. For the waves in anti-phase
(f= π), the ratio of amplitudes a2/a1 determines the evolu-
tion of RMI dynamics. For a2/a1= 0.01 the effects are insig-
nificant, but they start to play some role for 0.1, while for 1.0
the interface morphology changes dramatically, because in
the non-linear phase small mushroom-shape spikes start to
grow among the large ones (Pandian et al., 2017; Stelling-
werf et al., 2016a, b). The relative phase and interference
of waves determine the RMI dynamics that influence qualita-
tively and quantitatively the symmetry, morphology, and
growth rate of the unstable interface (Pandian et al., 2017;
Stellingwerf et al., 2016a, b).
Based on this model the formation of spherical mushroom

spikes on 2D p2mm lattice can be interpreted by the interfer-
ence of perturbation modes, which are in anti-phase and have
the ratio of amplitudes, a2/a1≲ 1. Lattice disorder, as seen in
Figures 3 and 5, can be attributed to the series of fast
reshocks, which cause the wavy perturbation of the back-
ground fluid and of the lattice of mushroom spikes.
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Intuitively, these effects should depend on the distance the
reshocks travel to reach particular subdomain and affect the
post-reshock RMI structure evolution.

5.4. Characteristics of the Low-Mixing Structures in the
Base-Plane

SEM micrographs in Figures 3, 5, and 7 show in the base-
plane the irregular web of non-linear solitary waves, breaking
waves and ribbons as well as vortex filaments, that is, the co-
herent structures similar to that observed in the NCR
(Lugomer, 2017). Horizontal acceleration causes the forma-
tion of non-linear waves in a thin fluid layer (shallow fluid
layer), as well as their roll up into vortex filaments (for the
Rayleigh number larger than the critical one, Re≳ 103).
The stochastic small-scale RMI turbulent mixing structures
reported by many respected authors (Zhang, 1998; Cohen
et al., 2002; Anuchina et al., 2004; Miles et al., 2005;
Long et al., 2009; Youngs, 2013), are absent. Instead, the
chaotic or quasi-regular organization of the large-scale co-
herent structures characterizes the non-linear evolution in
the NPR. This problem is connected with the noise and
fluctuations in RM/RT mixing called the interfacial
RM/RT “turbulent mixing” (Zhang, 1998; Dimotakis,
2000). However, turbulence (at least canonical turbulence)
is an equivalent of a stochastic process, where the flow fluc-
tuations are independent of the initial conditions, boundary
conditions and external forcing (Abarzhi, private communi-
cation). For canonical turbulence to occur the conditions of
isotropy, locality, homogeneity, and statistical steadiness
should be fulfilled. It may be said that in the case observed
the RT and RM mixing flows do not obey these conditions.
In contrast to turbulence – a chaos, while also appears as
‘irregular’, – depends on the initial conditions. In fact, their
sensitivity to the initial conditions suggests that RT and
RMmixing are more “chaotic” rather than stochastic process-
es (Abarzhi, private communication).

6. CONCLUSION

The NPR of Gaussian-like spot shows different morphology
from the CR and the NCR. Due to the lateral vapor expansion
in the SCCmicrochannel the ablated vapor is transported into
the NPR. The change of morphology follows the change of
momentum transferM and the Atwood number Awhich con-
tinuously decrease across the NPR from about M≲ 0.65
Mmax to∼0.2Mmax and A∼ 0.6 to∼0.2 or less. Under mod-
erate A and M parameters, a vertical shock wave causes
growth of large and small RMI/RTI mushroom spikes orga-
nized on 2D rectangular lattice of p2mm symmetry.
Distribution of the mushroom spike diameter as function

of radial distance from the center of Gaussian-like spot
shows that the monodispersed distribution in the NCR at
the border of the NPR splits into a band of small-diameter
spikes, and into a band of large-diameter ones. Divergence
of splitted diameter distribution indicates divergence of

growth rates of the spikes with increasing distance from the
center of the spot (and of the origin of the shock wave).
Evolution of small and large mushroom spikes is considered
in the picture of dynamic system in which the mushroom di-
ameter is represented by the orbit or stable periods in 2D
phase space. For the corresponding phase portrait, the cons-
tant mushroom diameter is represented by the circular orbit
(stable circulation or constant oscillating frequency), between
unstable spiral ones. The unstable spirals leading to the stable
periodic orbits (the limit cycles) represent supercritical Hopf
bifurcation; those lading to their disappearance represent the
subcritical Hopf bifurcation.

The growth rate of small and large RMI mushroom spikes
is considered in the view of empirical models, which assume
that the growth rate in multimodal perturbation depends on
the reshock, and not primarily on the first shock. Conse-
quently, the growth rate of mushroom spikes in various sub-
domains indicates dependence on the distance the reshock
has to travel, and dependence on the interface shape at the
moment of the reshock arrival in particular domain. In
spite of the agreement of the growth rates for a given surface
roughness parameter predicted by the model and the experi-
mental ones, it was shown that these models cannot describe:
(i) formation of mushroom spikes on 2D lattice, and (ii) si-
multaneous evolution of small and large mushroom spikes
at the same distance (but the large spikes at one distance
and the mall ones at the other distance).

More complete picture of 2D lattices of small and large
mushroom spikes by multimodal perturbation after first
shock gives the model based on the interference of perturba-
tion modes taking into account the amplitude, relative phase
and the symmetry of the wave vectors of the initial perturba-
tion modes. The model for 1D periodic flow and formation of
large and small spikes is based on the group theory and the
SPH numerical simulations by Abarzhi and collaborators.
The model can also describe more complex 2D periodic
fluid flow and formation small and large mushroom spikes
like that on a regular p2mm lattice, observed in this case.

Lattice disturbance from ideal regular one can be attributed
to the series of fast reshocks which cause the wavy perturba-
tion of the background fluid (and of the lattice of mushroom
spikes). Intuitively, this effect depends on the distance the re-
shocks have to travel to reach particular subdomain and on
the shape of interface at that moment of its arrival.

The base-plane structures are not small-scale turbulent
mixing ones, but the chaotic large-scale low-mixing solitary
waves and vortex filament structures

ACKNOWLEDGMENTS

This work has been supported by the Croatian Science Foundation
under the project: IP-2014-09-7046. I would like to thank to Profes-
sor N.J. Zabusky, Department of Physics of Complex Systems,
Weizmann Institute of Science, Rehovot, Israel, for his comments
of the wave–vortex paradigm in turbulent mixing in the laser exper-
iments. I would also like to thank to Professor S. I. Abarzhi,

Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities 607

https://doi.org/10.1017/S0263034617000611 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034617000611


Carnegie Mellon University, USA, for the inspiring comments of
the chaotic and stochastic aspects of the mixing structures.

REFERENCES

ABARZHI, S.I. (2008). Coherent structures and pattern formation in
Rayleigh–Taylor turbulent mixing. Phys. Scr. 78, 015401.

ABARZHI, S.I. & HERMANN, M. (2003). New Type of the Interface
Evolution in the RMI. Annual Res. Briefs 2003, Center for
Turbulence Research, Defense Tech. Inform. Center. (173–183).
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADP014801

ALON, U., OFER, D. & SHVARTS, D. (1996). Scaling Laws of Nonlin-
ear RT and RM Instabilities, Proc. 5th Int.Workshop on Com-
pressible Turbulent Mixing, ed. R. Young, J. Glimm and
B. Boston, World Scientific. http://www.damtp.cam.ac.uk/
iwpctm9/proceedings/.../Alon_Ofer_Shvarts.pdf

ANUCHINA, N.N., VOLKOV, V.I., GORDEYCHUK, V.A., ES’KOV, N.S.,
ILYUTINA, O.S. & KOZYREV, O.M. (2004). Numerical simulation
of R–T and R–M instability using MAH-3 code. J. Comput.
Appl. Math. 168, 11–20.

BALAKUMAR, B.J., ORLICZ, G.C., TOMKINS, C.D. & PRESTRIDGE, K.P.
(2008). Dependence of growth patterns and mixing width on ini-
tial conditions in Richtmyer–Meshkov unstable fluid layers.
Phys. Scr. T 132, 014013.

BRESSAN, A. (2014). Math 417 – Qualitative theory of ODEs.
https://www.math.psu.edu/bressan/PSPDF/M417-review4.pdf

BROMWICK, A.K. & ABARZHI, S.I. (2016). Richtmyer–Meshkov
unstable dynamics influenced by pressure fluctuations. Phys.
Plasmas 23, 112702.

BROUILETTE, M. & STURTEVANT, B. (1994). Experiments on the
Richtmyer–Meshkov instability: Single-scale perturbations on
continuum interface. J. Fluid Mech. 263, 71–292.

COHEN, R.H., DENNEVIK, W.P., DIMITS, A.M., ELIASON, D.E., MIRIN,
A.A., ZHOU, Y., PORTER, D.H. &WOODWARD, P.R. (2002). Three-
dimensional simulation of a RM instability with two-scale initial
perturbation. Phys. Fluids 14, 3692–3709.

CRAFORD, J.D. (1991). Introduction to bifurcation theory. Rev. Mod.
Phys. 63, 991–1035.

DIMOTAKIS, P.E. (2000). The mixing transition in turbulent flows.
J. Fluid Mech. 409, 69–98.

KARTOON, D., ORON, D., ARAZI, I. & SHVARTZ, D. (2003). Three-
dimensional Rayleigh-Taylor and Richrmyer–Meskhow
instabilities at all density ratios. Laser Part. Beams 21,
327–334.

LEIGHTON, T.G., WALTON, A.J. & PICKWORTH, M.J.W. (1990). Prima-
ry Bjerknes forces. Eur. J. Phys. 11, 47–50.

LEINOV, E., MALAMUD, G., ELBAZ, Y., LEVIN, L.A., BEN-DOR, G.,
SHVARTS, D. & SADOT, O. (2009). Experimental and numerical
investigation of the RM instability under re-shock conditions.
J. Fluid Mech. 626, 449–475.

LONG, C.C., KRIVETS, V.V., GREENOUGH, J.A. & JACOBS, J.W. (2009).
Shock tube 3D-experiments and numerical simulation of the
single-mode, 3D RM instability. Phys. Fluids 21, 114104.

LUGOMER, S. (2016). Laser generated Richtmyer–Meshkov instabil-
ity and nonlinear wave paradigm in turbulent mixing. I. Central
region of Gaussian spot. Laser Part. Beams 34, 687–704.

LUGOMER, S. (2017). Laser generated Richtmyer–Meshkov
instability and nonlinear wave paradigm in turbulent mixing.
II. Near-central region of Gaussian spot. Laser Part. Beams
35, 210–225.

MA, Q.I., MOTTO-ROS, V., BOUERI, M., BAI, X.S., ZHENG, L.J.,
ZHENG, H.P. & YU, J. (2010). Temporal and spatial dynamics
of laser-induced Al plasma in Ar background at atmospheric
pressure: Interplay with the ambient gas. Spectrocim. Acta B
65, 896–907.

MESHKOV, E.E. (1969). Instability of the interface of two gases
accelerated by a shock wave. Fluid Dyn. 4, 101–104.

MIKELIAN, K.O. (1989). Turbulent mixing generated by RT and RM
instabilities. Physica D 36, 343–347.

MILES, A.R., BLUE, B., EDWARDS, M.J., GREENOUGH, J.A., HANSEN,
F., ROBEY, H., DRAKE, R.P., KURANZ, C. & LEIBRANDT, R.
(2005). Transition to turbulence and effect of initial conditions
on 3D compressible mixing in planar blast-wave-driven systems.
Phys. Plasmas 12, 056317.

PANDIAN, A., STELLINGWERF, R.F. & ABARZHI, S.I. (2017). Effect of a
relative phase of waves constituting the initial perturbation and
the wave interference on the dynamics of strong-shock-driven
Richtmyer-Meshkov flows. Phys. Fluids 2, 073903.

PROBYN, M. & THORNBER, B. (2013). Reshock of self-similar multi-
mode RMI at high Atwood number in heavy-light and light-
heavy configurations. 14th European Turbulence Conf., Lyon,
France. etc14.ens-lyon.fr/openconf//request.php?

RECKINGER, S. (2006). Development and applications of important
interfacial Instabilities Rayleigh-Taylor, Rchtmyer–Meskhov,
and Kelvin–Helmholtz, sales.colorado.edu/reckinger/Pubs/
a1_fluids.pdf

RICHTMYER, R.D. (1960). Taylor instability in shock acceleration of
compressible fluids. Commun. Pure Appl. Math 13, 297–319.

SHVARTS, D., SADOT, O., ORON, D., KISHONY, R., SREBRO, Y., RIKA-

NATI, A., KARTOON, D., YEDVAB, Y., ELBAZ, Y., YOSEF-HAI, A.,
ALON, U., LEVIN, L.A., SARID, E., ARAZI, L. & BEN-DOR, G.
(2001). Studies in the Evolution of Hydrodynamic Instabilities
and their Role in Inertial Confinement Fusion, IAEA, IF/7.
www-pub.iaea.org/mtcd/publications/pdf/csp_008c/html/
node263.htm

SREBRO, Y., ELBAZ, Y., SADOT, O., ARAZI, L. & SHVARTS, D. (2003).
A general buoyancy-drag model for the evolution of the
Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser
Part. Beams 21, 347–353.

STATSENKO, V.P., SIN’KOVA, O.G. & YANILKIN, Y.V. (2006). Direct
3D numerical simulation of turbulent mixing in a buoyant jet
(in Russian). VANT Ser. MMFP 1, 39–49.

STATSENKO, V.P., YANILKIN, Y., SIN’KOVA, O.G. & TOPOROVA, O.O.
(2014). Numerical modeling of development of regular local
perturbations and turbulent mixing for the shock waves of
various intenisties. (in Russian). VANT ser. Math. Model.
Phys. Process. 1, 3–17.

STELLINGWERF, R., PANDIAN, A. & ABARZHI, S.I. (2016a). Wave inter-
ference in Richtmyer–Meshkov flows. 69th Annual Meeting of
the APS Division of Fluid Dynamics, November 20–22, 2016;
Portland, Oregon, Vol. 61, Number 20. http://meetings.aps.
org/Meeting/DFD16/Session/R18.6

STELLINGWERF, R., PANDIAN, A. & ABARZHI, S.I. (2016b). Wave inter-
ference in Richtmyer–Meshkov flows. 58th Annual Meeting of
the APS Division of Fluid Dynamics, October 31–November
4, 2016; San Jose, California, Vol. 61, http://meetings.aps.
org/Meeting/DPP16/Session/YP10.52

SUPONITSKY, V., BARSKY, S. & FROESE, A. (2014). On the collapse of
a gas cavity by an imploding molten lead shell and Richtmyer–
Meshkov instability. Comput. Fluids 89.20, 1–19. Science
Direct. Web. 17 May 2014

S. Lugomer608

https://doi.org/10.1017/S0263034617000611 Published online by Cambridge University Press

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADP014801
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADP014801
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADP014801
http://www.damtp.cam.ac.uk/iwpctm9/proceedings/.../Alon_Ofer_Shvarts.pdf
http://www.damtp.cam.ac.uk/iwpctm9/proceedings/.../Alon_Ofer_Shvarts.pdf
http://www.damtp.cam.ac.uk/iwpctm9/proceedings/.../Alon_Ofer_Shvarts.pdf
https://www.math.psu.edu/bressan/PSPDF/M417-review4.pdf
https://www.math.psu.edu/bressan/PSPDF/M417-review4.pdf
https://www.math.psu.edu/bressan/PSPDF/M417-review4.pdf
http://etc14.ens-lyon.fr/openconf//request.php?
http://etc14.ens-lyon.fr/openconf//request.php?
http://etc14.ens-lyon.fr/openconf//request.php?
http://sales.colorado.edu/reckinger/Pubs/a1_fluids.pdf
http://sales.colorado.edu/reckinger/Pubs/a1_fluids.pdf
http://www-pub.iaea.org/mtcd/publications/pdf/csp_008c/html/node263.htm
http://www-pub.iaea.org/mtcd/publications/pdf/csp_008c/html/node263.htm
http://www-pub.iaea.org/mtcd/publications/pdf/csp_008c/html/node263.htm
http://meetings.aps.org/Meeting/DFD16/Session/R18.6
http://meetings.aps.org/Meeting/DFD16/Session/R18.6
http://meetings.aps.org/Meeting/DFD16/Session/R18.6
http://meetings.aps.org/Meeting/DPP16/Session/YP10.52
http://meetings.aps.org/Meeting/DPP16/Session/YP10.52
http://meetings.aps.org/Meeting/DPP16/Session/YP10.52
https://doi.org/10.1017/S0263034617000611


SUPONITSKY, V., FROESE, A. & BARSKY, S. (2013). A parametric study
examining the effects of re-shock in RMI. Soft Condens. Matter
2013, 1–43. Arxiv. Web. 17 May 2014.

UKAI, S., BALAKRISHNAN, K. & MENON, S. (2011). Growth rate pre-
dictions of single- and multi-mode RM instability with reshock.
Shock Waves 21, 533–546.

UNVERDI, S.O. & TRYGVASON, G. (1992). A front-tracking method
for viscous, incmpressible multi-fluid flows. J. Comput. Phys.
100, 25–37.

WOUCHUK, J.G. & NISHIHARA, K. (1996). Linear growth at a shocked
interface. Phys. Plasmas 3, 3761–3776.

YANG, X., ZABUSKY, N.J. & CHERN, I.L. (1990). Breakthrought via
dipolar-vortx formation in shock-accelerated density-stratified
layers. Phys. Fluids A2, 892–895.

YOUNGS, D.I. (2013). The density ratio dependence of self-similar
Rayleigh–Taylor mixing. Philos. Transact. R. Soc. A 371,
20120173.

ZABUSKY, N.J. (1999). Vortex paradigm for accelerated inhomoge-
neous flows: Visiometrics for the RT and RM environments.
Ann. Rev. Fluid Dyn. 31, 495–536.

ZHANG, Q. (1998). Analytical solutions of Lazer-type approach to
unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 3391–3394.

Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities 609

https://doi.org/10.1017/S0263034617000611 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034617000611

	Laser-generated Richtmyer--Meshkov and Rayleigh--Taylor instabilities. III. Near-peripheral region of Gaussian spot
	Abstract
	INTRODUCTION
	OUTLINES OF THE EXPERIMENT
	Expansion of Vapor--Plasma Spheroid along the SCC Microchannel in the Ambient Gas

	RESULTS AND DISCUSSION
	Quasi-Periodic, Chaotic, or Broken Web
	Spherical Shape of Mushroom Spikes

	ORGANIZATION OF THE MUSHROOM SPIKES
	Lattice Organization of Large and Small Mushroom Spikes
	Off-Lattice Random Organization of Very-Large and Very-Small Mushroom Spikes
	Characteristics of Mushroom Diameter Distribution across the NPR
	Representation of Mushroom Diameter by Orbit in Phase Space

	GROWTH RATE OF SMALL AND LARGE MUSHROOM SPIKES
	Dependence of the Growth Rate on the Distance the Reshock Has to Travel
	Dependence of the Growth Rate on the Interface Shape
	Multiscale Mushroom Spike Evolution Caused by the Interference of Perturbation Modes: Non-linear Dynamics of RM Flow
	Characteristics of the Low-Mixing Structures in the Base-Plane

	CONCLUSION
	ACKNOWLEDGMENTS
	References


