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Spectral transfer processes in homogeneous magnetohydrodynamic (MHD) turbulence
are investigated analytically by decomposition of the velocity and magnetic fields in
Fourier space into helical modes. Steady solutions of the dynamical system which
governs the evolution of the helical modes are determined, and a stability analysis
of these solutions is carried out. The interpretation of the analysis is that unstable
solutions lead to energy transfer between the interacting modes while stable solutions
do not. From this, a dependence of possible interscale energy and helicity transfers on
the helicities of the interacting modes is derived. As expected from the inverse cascade
of magnetic helicity in 3-D MHD turbulence, mode interactions with like helicities
lead to transfer of energy and magnetic helicity to smaller wavenumbers. However,
some interactions of modes with unlike helicities also contribute to an inverse energy
transfer. As such, an inverse energy cascade for non-helical magnetic fields is shown
to be possible. Furthermore, it is found that high values of the cross-helicity may
have an asymmetric effect on forward and reverse transfer of energy, where forward
transfer is more quenched in regions of high cross-helicity than reverse transfer.
This conforms with recent observations of solar wind turbulence. For specific helical
interactions the relation to dynamo action is established. The present analysis provides
new theoretical insights into physical processes where inverse cascade and dynamo
action are involved, such as the evolution of cosmological and astrophysical magnetic
fields and laboratory plasmas.
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1. Introduction

Since the contributions by Richardson and Kolmogorov it is well established that
the average transfer of kinetic energy occurring in isotropic non-conducting turbulent
fluids in three dimensions proceeds from the large scales to the small scales, or,
in the Fourier representation, from small to large wavenumbers (see e.g. Frisch
1995, McComb 2014). However, many turbulent flows occurring in nature and/or
in industrial applications deviate from this behaviour, showing some backwards
energy transfer. Examples include rotating flows (Mininni, Alexakis & Pouquet 2009),
two-dimensional flows (e.g. Kraichnan 1967; Boffetta & Musacchio 2010; Mininni &
Pouquet 2013) and flows doped with polymeric additives (Dubief, Terrapon & Soria
2013).
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Electrically conducting turbulent flows also show a variety of phenomena resulting
in a transfer of energy from the small scales to the large scales (Biskamp 1993).
One of these is the inverse cascade of magnetic helicity, first proposed by Frisch
et al. (1975) after the derivation of absolute equilibrium spectra for magnetic and
kinetic energies as well as cross and magnetic helicities, and which was subsequently
confirmed numerically (Pouquet, Frisch & Léorat 1976; Pouquet & Patterson 1978).
By virtue of the realisability condition, which states that magnetic energy at a given
wavenumber k is bounded from below by k/2 times the magnitude of the magnetic
helicity (see e.g. Moffatt 1978, Biskamp 1993), it also drives a transfer of magnetic
energy from the small to the large scales. Another process, which is of particular
importance in astrophysical fluid dynamics due to the generation of magnetic fields of
astrophysical bodies, is the large-scale dynamo, by which a magnetic field on scales
larger than the typical scale of the largest eddies is generated from a magnetic seed
field. The α-effect of mean-field electrodynamics is a classic example of a large-scale
dynamo, and it relies on the presence of kinetic helicity (Krause & Rädler 1980;
Brandenburg 2001). Thus in both these cases energy is transferred in spectral space
from large to small wavenumbers, and a lack of mirror symmetry (i.e. the presence of
kinetic and/or magnetic helicity) facilitates these types of energy transfer. Moreover,
results from recent numerical simulations (Berera & Linkmann 2014; Zrake 2014;
Brandenburg, Kahniashvili & Tevzadze 2015) show that some kind of inverse spectral
transfer also occurs in conducting flows with vanishing magnetic and kinetic helicities.
Recently, Stepanov, Frick & Mizeva (2015) calculated energy and helicity transfer
fluxes numerically from a helical shell model, where helicity and energy input were
separated in order to test the influence of magnetic helicity on the turbulent dynamics.
They found that the inverse cascade of magnetic helicity is connected to a transfer
of purely magnetic energy to lower wavenumbers. By alternating the sign of helicity
injected into the system it was shown that even if the average injection rate of
magnetic helicity vanishes, the reverse transfer of magnetic energy induced by the
instantaneous injection of magnetic helicity remains active.

The effect of helicity on energy transfer and evolution in non-conducting turbulent
fluids has received considerable attention (Moffatt 1969; André & Lesieur 1977; Pelz,
Shtilman & Tsinober 1986; Polifke & Shtilman 1989; Polifke 1991; Waleffe 1992;
Chen, Chen & Eyink 2003a; Chen et al. 2003b; Biferale, Musacchio & Toschi 2012,
2013; Biferale & Titi 2013). It has been studied in a variety of ways, e.g. using
analytical methods, closure calculations, conventional direct numerical simulations
(DNS) and novel approaches in DNS. Waleffe (1992) decomposed the Fourier
transform of the velocity field into eigenfunctions of the curl operator and derived
evolution equations for these eigenfunctions by substitution of the decomposed
field into the Navier–Stokes equation for incompressible flow. Since the non-zero
eigenvalues of the corresponding eigenfunctions are related to the helicity of a given
velocity field mode, the evolution equations were further analysed in order to derive
the dependence of the possible energy transfers on the helicities of the interacting
modes. If the largest two wavenumbers of a given wavevector triad had helicities
of opposite sign, energy was transferred forward in wavenumber space, while a
reverse transfer of energy became possible if the helicities were of the same sign.
The analysis also showed that the triads responsible for an inverse energy cascade
contribute to a direct cascade of kinetic helicity. The possibility of an inverse cascade
of kinetic energy and a forward cascade of kinetic helicity had previously been
predicted by Brissaud et al. (1973).

Biferale et al. (2012) investigated numerically whether this reverse spectral transfer
caused by interactions of helical modes of the same sign occurs. By defining a
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projection operation on the nonlinear term the authors altered the Navier–Stokes
equation to ensure that only modes of, say, positive helicity were present in the
system. The altered Navier–Stokes equation was subsequently solved numerically
using the standard pseudospectral method in conjunction with small-scale forcing.
As predicted by Waleffe’s analysis, it was found that kinetic energy was indeed
transferred downwards in wavenumber space. This was the first observation of an
inverse energy cascade in three-dimensional isotropic turbulence.

In a subsequent paper (Biferale et al. 2013), the same authors forced the system
at the large scales in order to study the predicted forward cascade of kinetic helicity,
which was indeed observed in the simulations. Since the subset of positively helical
modes does not transfer energy to the small scales, it was expected that the resulting
dynamical system would not show finite dissipation in the limit of infinite Reynolds
number. Hence the projected Navier–Stokes equation which governs the evolution
should be globally regular, which was subsequently proven by Biferale & Titi (2013).

Thus, in summary, the decomposition of the Fourier transform of the turbulent
velocity field fluctuations into helical modes has been proven to be very useful
in terms of understanding some fundamental features of turbulent flows, which go
beyond the established Kolmogorov–Richardson (direct) cascade of kinetic energy.
In view of the effects of kinetic and magnetic helicities on the direction of energy
transfer in magnetohydrodynamic (MHD) turbulence, and inspired by the successes of
the helical decomposition used in hydrodynamics, in this paper we propose to use the
decomposition of both the magnetic and velocity fields into helical modes in order to
perhaps shed some more light on why MHD turbulence shows much more transfer
from the small scales to the large scales than turbulence in non-conducting fluids.
This analysis provides deeper insight into fundamental transfer processes in MHD
turbulence. It will help in the further theoretical understanding of various physical
processes involving inverse cascade and dynamo action, such as the evolution and
generation of cosmological and galactic magnetic fields.

Before outlining the structure of this paper we pause briefly to discuss the
terminology used. As the precise meaning of the term varies in the literature, it
is not always evident what is meant by an inverse cascade. In the astrophysical
literature, transfer of energy and helicity from higher to lower wavenumbers is often
described as an inverse cascade (Son 1999; Christensson, Hindmarsh & Brandenburg
2001; Cho 2011), while the fluid dynamics literature requires any cascade process to
possess a wavenumber-independent flux (Alexakis, Mininni & Pouquet 2006; Biferale
et al. 2012; Müller, Malapaka & Busse 2012; Biferale & Titi 2013; McComb 2014;
Brandenburg et al. 2015). It is thus of interest to not only classify the different types
of reverse transfer that can occur in MHD turbulence, but also to perhaps clarify
the terminology. Therefore we propose in this paper the general term reverse (or
inverse) spectral transfer, which encompasses all the phenomena described above
as subcategories according to their properties. We define it as any process that
produces an increase in a spectral quantity (total energy, magnetic helicity, etc.) at
low wavenumbers due to transfer of that quantity away from higher wavenumbers
into smaller wavenumbers. In this framework an inverse cascade is a reverse spectral
transfer showing constant flux of the cascading quantity over a certain wavenumber
range. We point out that in MHD concerns have been raised over the use of the
term ‘cascade’ (Müller et al. 2012), as it may be understood to imply energy (or
magnetic helicity) transfer mainly due to local interactions, which might not be the
case in MHD turbulence (Alexakis, Mininni & Pouquet 2005; Debliquy, Verma &
Carati 2005; Cho 2010; Müller et al. 2012). We will come back to this point in the
discussion section of this paper.
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This paper is organised as follows. First we explain the helical decomposition of the
velocity and magnetic fields in § 2 and use this decomposition to outline the derivation
of the evolution equations for the helical coefficients from the MHD equations in § 3
following the work by Lessinnes, Plunian & Carati (2009). This leads to a system
of coupled ordinary differential equations (ODEs) describing the interaction of modes
corresponding to a single triad of wavenumbers. In §§ 4 and 5 the linear stability of
steady solutions of this system is examined. Section 6 explains the assumptions used
to interpret results from the stability analysis followed by a presentation of first results
on energy transfers, which are used in § 7 to calculate the contribution to inertial range
energy and magnetic helicity cascades. In § 8 we analyse specific cases where the
MHD equations can be decoupled and relate our analysis to large- and small-scale
kinematic dynamo results such as the α-effect (Moffatt 1978; Parker 1979; Krause
& Rädler 1980). Our results are summarised and discussed in § 9 in the context of
numerical simulations of MHD turbulence and observations of turbulence in the solar
wind. At this point we also provide suggestions for further work.

2. Problem statement and basic equations
In this paper we will be studying the interscale energy and helicity transfers

that govern the dynamics of homogeneous MHD turbulence in the absence of a
background magnetic field. We consider the turbulent flow to be incompressible and
make no explicit assumptions about the value of the magnetic Prandtl number. The
MHD equations for incompressible flow are

∂tu=− 1
ρ
∇P− (u · ∇)u+ 1

ρ
(∇× b)× b+ ν1u, (2.1)

∂tb= (b · ∇)u− (u · ∇)b+ η1b, (2.2)

∇ · u= 0 and ∇ · b= 0, (2.3a,b)

where u denotes the velocity field, b the magnetic induction expressed in Alfvén units,
ν the kinematic viscosity, η the magnetic resistivity, P the pressure and ρ the density,
which is set to unity for convenience.

For simplicity at first we consider periodic boundary conditions on a domain
Ω =[0,L]3⊂R3, thus working with the discrete Fourier transformed MHD equations

(∂t + νk2)û(k) = −FT
[
∇

(
P+ |u|

2

2

)]
+

∑
k+p+q=0

[
−(i p× û(p))∗ × û(q)∗ + (i p× b̂(p))∗ × b̂(q)∗

]
, (2.4)

(∂t + ηk2)b̂(k) = ik×
∑

k+p+q=0

û(p)∗ × b̂(q)∗, (2.5)

where FT denotes the three-dimensional Fourier transform as a linear operator
acting on L2(Ω) functions, û and b̂ denote the Fourier transforms of the velocity
and magnetic fields, respectively, and the inertial term (u · ∇)u in the momentum
equation (2.1) has been written in rotational form (u · ∇)u= (∇× u)× u+ 0.5∇|u|2.
In order to determine the contribution of specific interactions to the fluxes of magnetic
helicity and magnetic energy, eventually we will formally take the limit L→∞ in
§ 7, necessarily assuming that the relevant functions are then well behaved at infinity
to ensure the convergence of the respective Fourier integrals (a discussion of this
point can be found in the book by Titchmarsh (1939)).
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2.1. Helical decomposition
The decomposition of the Fourier transform of a solenoidal vector field in circularly
polarised waves as proposed by Constantin & Majda (1988) has been used in
several investigations of hydrodynamic turbulence (Waleffe 1992; Biferale et al.
2012; Biferale & Titi 2013) in order to establish the properties of energy transfer
depending on the kinetic helicity. For conciseness we only review the fundamental
properties of the helical decomposition and refer to the relevant literature for details
and derivations.

The action of the curl operator on a square integrable real vector field v(x) can be
viewed in spectral space as the action of a linear operator on the Fourier transform
v̂(k) of v(x),

Ik :C3 −→ C3, (2.6)
v̂(k) −→ ik× v̂(k). (2.7)

As such the linear operator Ik(·) = ik × (·) has a set of linearly independent
eigenvectors defining a basis of C3, thus v̂(k) can be expanded in this basis. That is,
it can be expressed as a linear combination of eigenvectors ik, h+(k) and h−(k) of
the curl operator Ik, where

ik× hsk = skkhsk , (2.8)
−ik× h∗sk

= skkh∗sk
, (2.9)

sk = ±1 and skk = ±k are the non-zero eigenvalues of the curl operator in spectral
space and ∗ denotes the complex conjugate. (Note that the curl operator can have
eigenvectors with non-zero eigenvalues, as it involves the cross product of two
complex vectors. This is not necessarily orthogonal to the plane spanned by the
two complex vectors, instead it is orthogonal to the plane spanned by the complex
conjugates of the two vectors.) The complex eigenvectors are orthogonal to each
other and are fully helical. They are normalised to unit vectors for the remainder of
this paper.

Since û(k) and b̂(k) are solenoidal, they can be expressed in terms of h−, h+ only

û(k, t)= u−(k, t)h−(k)+ u+(k, t)h+(k)=
∑

sk

usk(k, t)hsk(k), (2.10)

b̂(k, t)= b−(k, t)h−(k)+ b+(k, t)h+(k)=
∑

sk

bsk(k, t)hsk(k), (2.11)

where usk and bsk are complex coefficients. These coefficients can be calculated by
taking the inner product of the basis vectors with the appropriate fields

usk(k, t)= h∗sk
(k) · u(k, t)

hsk(k) · h∗sk
(k)

, (2.12)

and

bsk(k, t)= h∗sk
(k) · b(k, t)

hsk(k) · h∗sk
(k)

. (2.13)

In order to keep the derivations concise we suppress the dependence of the coefficients
on time and wavevector from now on in the notation.
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The helical decomposition of a solenoidal vector field was first applied to
incompressible MHD flows by Lessinnes et al. (2009), who derived a dynamical
system in Fourier space describing helical triadic interactions in MHD. This system
was subsequently used to construct a helical shell model of MHD turbulence. In
the following section we briefly review the derivation carried out by Lessinnes et al.
(2009).

3. The evolution of the helical modes
The equations describing the evolution of the helical coefficients usk and bsk are

derived by substituting the decompositions (2.10) and (2.11) into the MHD equations
for incompressible flow and then taking the inner product with hsk on both sides of the
respective equations. The resulting evolution equation for the helical coefficient usk is

(∂t + νk2)usk = h∗sk
·

(
−FT

[
∇

(
P+ |u|

2

2

)])
+ h∗sk
·
∑

k+p+q=0

[
−(i p× û(p))∗ × û(q)∗ + (i p× b̂(p))∗ × b̂(q)∗

]
= −1

2

∑
sp,sq

∑
k+p+q=0

(spp− sqq)
[
h∗sp
× h∗sq

· h∗sk

]
(u∗sp

u∗sq
− b∗sp

b∗sq
), (3.1)

where the dummy variables p and q were exchanged in order to symmetrise
the momentum equation with respect to p and q and thus to obtain the factor
(spp − sqq)/2. Following an analogous procedure (Lessinnes et al. 2009) for the
helical coefficient bsk of the magnetic field leads to

(∂t + ηk2)bsk = h∗sk
·

[
ik×

∑
k+p+q=0

û(p)∗ × b̂(q)∗
]

= skk
2

∑
sp,sq

∑
k+p+q=0

[
h∗sp
× h∗sq

· h∗sk

]
(u∗sp

b∗sq
− b∗sp

u∗sq
). (3.2)

In order to study the interaction of helical modes, that is the evolution of the helical
coefficients due to the mode coupling only, the diffusivities are from now on omitted.
For a given triad k, p, q of wavevectors, expressions for the first time derivatives of
each helical coefficient are obtained from (3.1) and (3.2) and from the corresponding
equations for bsp , bsq , usp and usq . This leads to the following system of coupled ODEs
describing the evolution of the helical coefficients in a single triad interaction

∂tusk = (spp− sqq)gkpq (u∗sp
u∗sq
− b∗sp

b∗sq
),

∂tusp = (sqq− skk)gkpq (u∗sq
u∗sk
− b∗sq

b∗sk
),

∂tusq = (skk− spp)gkpq (u∗sk
u∗sp
− b∗sk

b∗sp
),

 (3.3)

∂tbsk =−skkgkpq (u∗sp
b∗sq
− b∗sp

u∗sq
),

∂tbsp =−sppgkpq (u∗sq
b∗sk
− b∗sq

u∗sk
),

∂tbsq =−sqqgkpq (u∗sk
b∗sp
− b∗sk

u∗sp
),

 (3.4)

where the geometric factor

gkpq =− 1
2 h∗sp
× h∗sq

· h∗sk
, (3.5)
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is introduced for conciseness, following Waleffe (1992) and Lessinnes et al. (2009).
It can also be written as

gkpq = skspsq

2
eiα(k,p,q) N

2kpq
(skk+ spp+ sqq), (3.6)

where α is a wavenumber-dependent real number determined by the orientation of
the triad and N a factor depending on the shape of the triad. Further details and a
derivation of (3.6) can be found in the paper by Waleffe (1992).

The three ideal invariants, total energy, magnetic helicity and cross-helicity are
defined respectively as

Etot = 1
2

∑
k

〈|û(k)|2 + |b̂(k)|2〉 = 1
2

∑
k,sk

(〈|usk |2〉 + 〈|bsk |2〉
)
, (3.7)

Hmag =
∑

k

〈â(k)b̂(−k)〉 =
∑
k,sk

sk

k
〈|bsk |2〉, (3.8)

Hc =
∑

k

〈û(k)b̂(−k)〉 =
∑
k,sk

Re
(〈usk b

∗
sk
〉) , (3.9)

where a denotes the vector potential of the magnetic field, Re the real part of a
complex number and angle brackets an ensemble average. They are conserved in
single triad interactions (Lessinnes et al. 2009).

4. Stability of steady solutions
Examining the linear stability of steady solutions of the system (3.3)–(3.4) can

reveal the influence which the helicities of the interacting modes have on the interscale
transfer of a given quantity of interest.

The system (3.3) without a magnetic field (that is for bs = 0) was analysed by
Waleffe (1992) with respect to the linear stability of its steady solutions. Linearly
unstable solutions were found depending on the helicities of the interacting modes.
This result was then interpreted following the instability assumption inspired by the
formal analogy to rigid-body rotation, where rotation around the axis of middle inertia
is unstable. The existence of a linearly unstable solution involving a velocity field
mode û is interpreted as the û-mode losing energy to the other two modes it interacts
with. An equivalent assumption had already been used by Kraichnan (1967) for two-
dimensional hydrodynamic turbulence. In the remainder of this paper we take a similar
approach and investigate the linear stability of steady solutions of the system (3.3)–
(3.4) in view of possible applications to spectral transfer processes in MHD, and in
particular, for the inverse transfers of total energy and magnetic helicity. In principle,
a similar analysis could be carried out for the remaining ideal invariant, the cross-
helicity.

4.1. The steady solutions
The system (3.3)–(3.4) of six coupled ODEs has several steady solutions that one can
linearise about. To simplify the notation, a (formal) solution of the system (3.3)–(3.4)
consisting of helical û- and b̂-field modes interacting in a given triad k, p, q is written
as:

(usk , usp, usq; bsk , bsp, bsq). (4.1)
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In order to find the steady solutions of the system (3.3)–(3.4), we assume (without
loss of generality) that the middle components bsp = Bsp and usp = Usp are constant
in time. Then (3.3) and (3.4) require the other four components to vanish by the
following argument. A steady solution requires ∂tusk = 0, and the only way that this
can happen non-trivially is if both products u∗sp

u∗sq
and b∗sp

b∗sq
vanish (this requires

assuming that no cancellations occur. However, the occurrence of cancellations would
require the system to be in a specific state, which is unlikely to happen frequently in
a chaotic system). Since usp = Usp is constant in time, usq = 0 and similarly bsq = 0.
This leaves us with

(usk ,Usp, 0; bsk , Bsp, 0). (4.2)

Applying the same argument to ∂tusq , it follows that usk and bsk must also vanish.
Therefore a steady solution of the system (3.3)–(3.4) has the form

(0,Usp, 0; 0, Bsp, 0). (4.3)

It can now be checked for consistency that ∂tbs = 0 for k, p and q also. Therefore
the solution is steady for the magnetic field and for the velocity field alike. Asides
from the just explained example, steady solutions of the form (Usk , 0, 0;Bsk , 0, 0) and
(0, 0,Usq; 0, 0, Bsq) are obtained in the same way.

Thus the steady solutions of (3.3)–(3.4) are of the same form as for the
hydrodynamic case (Waleffe 1992), where at least two of the three interacting
modes vanish. However, there are two special cases: one where the magnetic field
component Bs also vanishes, while Us 6= 0 and the other, where the velocity field
component Us vanishes, while Bs 6= 0. The former case may perhaps be connected to
a dynamo process. At this point we note that for the kinematic dynamo, where the
back reaction of the magnetic field on the velocity field can be neglected, the (linear)
stability of the velocity field coefficients us is only determined by hydrodynamic
interactions. We will come back to this point in § 8.

4.2. Linear stability analysis
In order to assess whether a given steady solution is linearly stable in our particular
setting, we assume without loss of generality that the coefficients usp and bsp

corresponding to wavevector p are non-zero and constant in time, that is, we study
the linear stability of the solution (0, Usp, 0; 0, Bsp, 0) with respect to infinitesimal
perturbations of the four modes that had been set to zero. As the first-order equations
involve the coupling of all three modes of a given triad, little information can be
obtained from them at first sight. Therefore we pass to second-order time derivatives
of the evolution equations for the perturbations usk , bsk , usq and bsq . Taking time
derivatives on both sides of (3.3)–(3.4) and subsequently substituting any occurrence
of a first-order time derivative on the right-hand side by the appropriate evolution
equation, we obtain

∂2
t usk = |gkpq |2(spp− sqq)

[(
(skk− spp)|Usp |2 + sqq |Bsp |2

)
usk

]
− |gkpq |2(spp− sqq)[((skk− spp)U∗sp

Bsp + sqq UspB
∗
sp
)bsk ], (4.4)

∂2
t bsk = |gkpq |2skk[(sqq U∗sp

Bsp + (skk− spp)UspB
∗
sp
)usk ]

− |gkpq |2skk
[(

sqq |Usp |2 + (skk− spp)|Bsp |2
)

bsk

]
, (4.5)

where terms of second order in small quantities (such as e.g. u2
s ) have been neglected.

Note that these equations do not depend on modes at wavenumber q. The evolution
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equations of the helical coefficients usq and bsq can be obtained similarly and show no
dependence on k, therefore we restrict our attention to the evolution of usk and bsk .

The system (4.4) and (4.5) can be written as a matrix ODE

ẍ=
(
α β

γ δ

)
x, (4.6)

where x≡ (usk , bsk) and the matrix elements are

α = |gkpq |2(spp− sqq)
[
(skk− spp)|Usp |2 + sqq |Bsp |2

]
, (4.7)

β = −|gkpq |2(spp− sqq)
[
(skk− spp)U∗sp

Bsp + sqq UspB
∗
sp

]
, (4.8)

γ = |gkpq |2skk
[
sqq U∗sp

Bsp + (skk− spp)UspB
∗
sp

]
, (4.9)

δ = −|gkpq |2skk
[
sqq |Usp |2 + (skk− spp)|Bsp |2

]
. (4.10)

The linear stability of this system can be determined from the eigenvalues λ1 and
λ2 of the matrix in (4.6). These eigenvalues depend not only on the helicities of the
interacting modes and on the magnitudes of Usp and Bsp relative to each other, but also
on the alignment between the magnetic and velocity field modes at wavevector p, that
is, on the cross-helicity. For a given steady solution to be unstable the perturbations
have to be exponentially growing, and so at least for one of the eigenvalues,

√
λi (for

i= 1, 2) must have a positive real part. We will now assess under which conditions
this is possible.

The eigenvalues λi (i= 1, 2) are given by

λ1,2 = α + δ2
±
√
(α + δ)2

4
− αδ + βγ . (4.11)

For convenience we define

x≡ α + δ
2

and Q≡ αδ − βγ , (4.10a,b)

such that

x = −|gkpq|2
2
|Usp |2[skksqq+ (skk− spp)(sqq− spp)]

− |gkpq|2
2
|Bsp |2[skk(skk− spp)+ sqq(sqq− spp)], (4.13)

and

Q= |gkpq|4skksqq(skk− spp)(sqq− spp)((|Usp |2 + |Bsp |2)2 − 4Hc(p)2), (4.14)

hence the cross-helicity Hc(p) enters the dynamics through the parameter Q. The
derivation of (4.14) can be found in appendix A. Note that the term |Usp |4 +
|Bsp |4 + 2|Usp |2|Bsp |2 − 4Hc(p)2 is always positive, regardless of the value of Hc
since |Hc(p)| 6 |Usp ||Bsp |, thus the sign of Q is determined by the helicities of the
interacting modes and the wavenumber ordering.

The eigenvalues λi can now be written more concisely as

λ1,2 = x±
√

x2 −Q, (4.15)
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therefore the possibility of finding exponential solutions of the system (4.6) depends
on the values of x and Q. Apart from the trivial case, where x = 0 and Q = 0,
there is only one case for which no linear instability occurs: this is if x < 0 and
|x| > |√x2 −Q|, since then

√
λ1 and

√
λ2 are imaginary numbers allowing only

oscillatory solutions of the matrix ODE (4.6). All other cases lead to exponentially
growing, as well as exponentially decaying, solutions.

Cases in which x > 0 and Q < 0 result in the largest eigenvalues and thus in the
fastest growing exponential solution. These cases are therefore of special interest,
as within the framework of the instability assumption they may lead to the largest
energy transfer and thus can yield information about which combination of parameters
facilitates most of the energy and helicity transfers. We will consider related points
in further detail in §§ 7 and 8.

As can be seen from the structure of the terms x and Q, the relative magnitudes
and the ordering of the wavenumbers in a given triad will influence the stability of
steady solutions. In view of the continuous interest in non-locality of interactions in
MHD turbulence (Brandenburg 2001; Alexakis et al. 2005; Debliquy et al. 2005; Cho
2010; Müller et al. 2012), we point towards specific results for local and non-local
interactions where appropriate. Following Waleffe (1992), for wavenumbers ordered
k < p < q, the non-local limit is defined as k � p ' q, while local interactions are
characterised by k' p' q.

5. Instability and helical interactions
Since s = ±1, interactions between helical modes which all have helicities of

opposite signs are not possible, and at least two modes will always have helicities of
the same sign. Therefore we have four classes of possible helicity combinations

sk = sp 6= sq, sk = sq 6= sp, sk 6= sq = sp and sk = sq = sp, (5.1a−d)

each of which occurs twice as s can take the values ±1. These four possible (classes
of) combinations are now studied on a case-by-case approach in order to determine
when a certain combination of helicities leads to exponentially growing solutions of
the system (4.6).

5.1. The case sk = sq 6= sp

Since the expressions in square brackets of (4.13) become

kq+ (k+ p)(q+ p) > 0 and k(k+ p)+ q(q+ p) > 0, (5.2a,b)

one obtains x= (α+ δ)/2< 0. For an unstable solution |x|< |√x2 −Q|, however, we
obtain Q> 0 since

Q∼ sksqkq(skk− spp)(sqq− spp), (5.3)
which is positive for sk = sq 6= sp. Furthermore we obtain Q < x2 (see appendix B)
and thus |x|> |√x2 −Q|, which results in negative eigenvalues of the matrix in (4.6).
Therefore we do not obtain unstable solutions for the case sk = sq 6= sp, and this is
independent of the ordering of the wavenumbers k, p and q. Note that this implies that
exponentially growing solutions of (4.6) are impossible if the perturbations usk , usq , bsk

and bsq have helicities opposite to the helicities of the modes Usp and Bsp constituting
the steady solution.

For the remaining helicity combinations, which do result in unstable solutions,
the ordering of wavenumbers matters. The arguments used to decide whether or not
an exponentially growing solution becomes possible are similar to the procedure
employed for the case sk = sq 6= sp described above.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.43


Helical mode interactions in MHD turbulence 71

5.2. The case sk 6= sp = sq

In this case we obtain
Q∼ kq(k+ p)(q− p), (5.4)

and

x=−|gkpq|2
2
|Usp |2[−kq− (k+ p)(q− p)] − |gkpq|2

2
|Bsp |2[k(k+ p)+ q(q− p)]. (5.5)

The stability of a steady solution depends on the signs of these terms which in turn
depend on wavenumber ordering, cross-helicity and the ratio |Usp |/|Bsp |.

(1) For k< p< q we obtain unstable solutions if |Usp |' |Bsp |, since then x> 0. For
|Bsp |> |Usp | unstable solutions are still possible, provided Hc(p) is small and |Bsp | not
much larger than |Usp |. Thus in regions of large cross-helicity unstable solutions only
occur for weak magnetic fields. The method by which these results are obtained is
explained in appendix C.

For non-local interactions (k� p' q) we obtain Q= 0 and the sign of x determines
whether unstable solutions occur. The term x is now of the form

x' |gkpq|2
2

kq(|Usp |2 − |Bsp |2), (5.6)

hence non-local interactions lead to unstable solutions if |Bsp |< |Usp |.
(2) For k< q< p, Q will become negative, leading to unstable solutions regardless

of the ratio |Usp |/|Bsp | and the value of Hc(p).
(3) For p < k < q again we obtain unstable solutions if |Usp | ' |Bsp |, since then

x > 0. For |Bsp | > |Usp | unstable solutions are still possible, provided Hc(p) is small
and |Bsp |/|Usp | not � 1 (see appendix C). Non-local interactions (p� k' q) lead to
unstable solutions if |Usp |> |Bsp |, because then

x' |gkpq|2k2(|Usp |2 − |Bsp |2) > 0. (5.7)

In summary, a given steady solution in this case is more likely to be stable if the
non-zero mode is at medium or low wavenumbers in regions of high cross-helicity.

5.3. The case sk = sp = sq

In this case we obtain
Q∼ kq(k− p)(q− p), (5.8)

and

x=−|gkpq|2
2
|Usp |2[kq+ (k− p)(q− p)] − |gkpq|2

2
|Bsp |2[k(k− p)+ q(q− p)]. (5.9)

(1) For k<p<q we obtain Q<0 and thus x+√x2 −Q>0, leading to exponentially
growing solutions independent of Hc(p) and the ratio |Usp |/|Bsp |. We note that both
velocity and magnetic field modes have positive and negative contributions to the sign
of x. This is of interest since if x > 0 the resulting eigenvalue would be larger and
thus the solution would grow faster. However, in this case this cannot be determined
from the ratio |Usp |/|Bsp | and thus there is little information about what contributes to
a faster growing exponential and thus to a more unstable solution.
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For both local (k ' p' q) and non-local (k� p' q) interactions we obtain Q= 0
and the sign of x determines whether unstable solutions occur. For the non-local case
only the magnetic field term is positive, and x has the form

x' |gkpq|2
2

kq(|Bsp |2 − |Usp |2) (5.10)

leading to unstable solutions if |Bsp |> |Usp |, while for local interactions no instability
occurs as the only term in x that does not vanish is −|gkpq|2|Usp |2kq< 0.

(2) For k< q< p, the possibility of exponentially growing solutions depends on the
ratio |Usp |/|Bsp | and on the relative magnitudes of the wavenumbers k, p and q, as
now Q > 0. Since the magnetic field term in x is now positive, instabilities occur
for |Usp |/|Bsp | < 1. If |Usp |/|Bsp | > 1 it depends also on the cross-helicity whether
instabilities occur. For maximal Hc(p) we obtain x2 − Q > 0, hence the solutions
will be stable. If Hc(p) = 0 and |Usp |/|Bsp | is not too small, instabilities will occur,
depending also on the shape of the triad (see appendix C for further details). In
general, the smaller |Usp |/|Bsp | the more unstable is the solution.

(3) For p< k< q we obtain x< 0 and Q> 0, furthermore x2 −Q> 0 independent
of |Usp |/|Bsp | and Hc(p) (see appendix B), thus no unstable solutions occur. Non-local
interactions (p� k' q) do not lead to unstable solutions, since

x'−|gkpq|2[k2 − kp](|Usp |2 + |Bsp |2) < 0. (5.11)

5.4. The case sk = sp 6= sq

The terms determining the stability in this case are

Q∼ kq(k− p)(q+ p), (5.12)

and

x=−|gkpq|2
2
|Usp |2[−kq− (k− p)(q+ p)] − |gkpq|2

2
|Bsp |2[k(k− p)+ q(q+ p)]. (5.13)

(1) For k< p< q unstable solutions occur independent of the ratio |Usp |/|Bsp |, and
since both magnetic and velocity field terms have positive and negative contributions
to the sign of x, we are in a similar situation to the previous case. However, in the
present case Q' 0 only for local (k' p' q) interactions. It is now the velocity field
term |gkpq|2|Usp |2kq > 0 which ensures that exponentially growing solutions exist for
local interactions provided |Usp |> 2|Bsp |.

(2) For k< q< p the result is the same, since reversing the relative ordering of p
and q does not change the sign of Q. That is, exponentially growing solutions occur.

(3) For p < k < q the term Q is positive and the term proportional to |Usp |2 is
positive while the term proportional to |Bsp |2 is negative. Thus instabilities occur if
|Usp |/|Bsp |' 1. For |Usp |/|Bsp |< 1 the occurrence of instabilities depends on the value
of Hc(p). If Hc(p) is maximal and magnetic and velocity field are fully aligned, then
the solutions are stable. For zero cross-helicity and |Bsp | being not much larger than
|Usp |, solutions are unstable (see appendix C).

This type of helicity combination is another possibility for non-local interactions of
the type p� k ' q leading to exponentially growing solutions if |Usp | > |Bsp |, since
then

x' |gkpq|2k2(|Usp |2 − |Bsp |2) > 0. (5.14)
The results of the dependence of the occurrence of unstable solutions on

combinations of helicities, wavenumber ordering, relative magnitudes of the u and b
modes and cross-helicities at wavenumber p are summarised in tables 1–3.
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Helicities Hc Constraint Stability

sk 6= sq = sp n/a |Usp |/|Bsp |' 1 Unstable
Max |Bsp |> |Usp | Stable

0 |Bsp |/|Usp | not � 1 Unstable
sk = sp 6= sq n/a n/a Unstable
sk = sq = sp n/a n/a Unstable

TABLE 1. Summary of possible unstable solutions for the middle wavenumber modes
k< p< q.

Helicities Hc Constraint Stability

sk 6= sq = sp n/a n/a Unstable
sk = sp 6= sq n/a n/a Unstable
sk = sq = sp n/a |Bsp |> |Usp | Unstable

Max |Usp |> |Bsp | Stable
0 |Usp |/|Bsp | not � 1 Unstable

TABLE 2. Summary of possible unstable solutions for the largest wavenumber modes
k< q< p.

Helicities Hc Constraint Stability

sk 6= sq = sp n/a |Usp |/|Bsp |' 1 Unstable
Max |Bsp |> |Usp | Stable

0 |Bsp |/|Usp | not � 1 Unstable
sk = sp 6= sq n/a |Usp |/|Bsp |' 1 Unstable

Max |Bsp |> |Usp | Stable
0 |Bsp |/|Usp | not � 1 Unstable

sk = sq = sp n/a n/a Stable

TABLE 3. Summary of possible unstable solutions for the smallest wavenumber modes
p< k< q.

6. Energy transfers and the instability assumption

In order to use the results of the previous section to derive results for the transfers
of the ideal invariants total energy Etot and magnetic helicity Hmag, we invoke
the instability assumption (Waleffe 1992). Generalised to MHD turbulence, this
assumption asserts that energy is transferred away from modes whose evolution
equation for the helicity coefficient is linearly unstable, into the other two modes it
is coupled to by a triad interaction given through the system (3.3)–(3.4).

Therefore the results of the stability analysis determine whether a given helicity
combination mainly contributes to forward or reverse transfer of energy. That is, if
a steady solution at wavenumber p is unstable and energy is transferred away from
Bsp and Usp into the modes they interact with (note that Bsp and Usp do not interact
with each other directly), then the wavenumber ordering k < q< p results in reverse

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.43


74 M. Linkmann, A. Berera, M. McKay and J. Jäger

transfer of energy, while p< k< q results in forward transfer and k< p< q in a split
transfer with contributions to forward and reverse directions of energy transfer.

Several immediate results can be deduced from the summary of the stability
analysis for the different helicity combinations presented in tables 1–3. First, unlike
in non-conducting fluids modes, corresponding to the largest wavenumber in a
given triad can be unstable, leading to more possibilities for reverse spectral energy
transfer in MHD compared to hydrodynamics. Second, all three helicities influence the
direction of energy transfers, and reverse transfers are also possible for cases of unlike
helicities. Third, forward transfers appear to be more quenched in regions of high
cross-helicity than reverse transfers. Fourth, very non-local triads contribute mainly
to reverse transfers in magnetically dominated systems through interactions of modes
with like helicity. They only contribute to forward transfers through interactions of
modes with unlike helicity and mostly if the kinetic energy is larger than the magnetic
energy.

Therefore we obtain that reverse spectral transfer becomes much more likely in
MHD turbulence than in turbulence of non-conducting fluids, which reflects the
predictions from absolute equilibrium spectra (Frisch et al. 1975; Zhu, Yang & Zhu
2014) and the well-established numerical results on inverse cascades, and more
generally reverse transfer, in MHD turbulence (Pouquet et al. 1976; Pouquet &
Patterson 1978; Balsara & Pouquet 1999; Brandenburg 2001; Alexakis et al. 2006;
Müller et al. 2012; Berera & Linkmann 2014; Brandenburg et al. 2015).

We note that the transfer directions deduced so far may or may not contribute
to forward and inverse cascades of energy and magnetic helicity, as no information
on the constancy, or otherwise, of the fluxes of these quantities through a given
wavenumber is available at this point. The aim of the next section is to determine
the contribution of the individual transfers to energy and magnetic helicity cascades.

7. Transfer and cascades of total energy and magnetic helicity

In order to determine the contribution of a given interaction of helical modes
to energy and magnetic helicity cascades, the fluxes of these quantities need to be
calculated and studied in the respective inertial ranges where they are wavenumber
independent. However, several technical details need to be discussed before we can
proceed to this calculation.

In the discrete Fourier representation the evolution equations of the kinetic and
magnetic energy spectra Ekin(k) and Emag(k) are obtained by multiplying the relevant
equations in the system (3.3) by u∗sk

and b∗sk
, respectively, then summing over all triads

and helicity combinations and finally carrying out shell and ensemble averages. For
the kinetic energy spectrum this leads to

∂tEkin(k)= 1
2

∆∑
p,q

8∑
i=1

(t(i)HD(k, p, q)+ t(i)LF(k, p, q)), (7.1)

where
∑∆

p,q denotes a sum over all wavenumbers p and q whose wavevectors p and
q form a triad with k such that k+ p+ q= 0 and the superscript (i) labels the eight
possible helicity combinations. The transfer terms in this equation are given by

t(i)HD(k, p, q)= (spp− sqq)
∑

S(k,p,q)

gkpq〈usk Uspusq〉 + c.c., (7.2)
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and
t(i)LF(k, p, q)=−(spp− sqq)

∑
S(k,p,q)

gkpq〈usk Bspbsq〉 + c.c., (7.3)

where S(k,p,q) indicates a summation over all wavevectors in shells of radius k,p and
q and c.c. denotes the complex conjugate. Homogeneity allows the summation over the
shells without explicitly restricting the sum to wavevectors satisfying k + p+ q = 0,
since triple correlations with k+ p+ q 6= 0 vanish for homogeneous MHD as shown
in appendix D. For the magnetic energy spectrum one obtains

∂tEmag(k)= 1
2

∆∑
p,q

8∑
i=1

t(i)mag(k, p, q), (7.4)

where
t(i)mag(k, p, q)=−skk

∑
S(k,p,q)

gkpq〈bsk Bspusq − bsk Uspbsq〉 + c.c. (7.5)

The evolution equation for the total energy spectrum E(k) = Ekin(k) + Emag(k) is
given by the sum of the respective evolution equations for Ekin(k) and Emag(k)

∂tE(k)= 1
2

∆∑
p,q

8∑
i=1

t(i)(k, p, q), (7.6)

and total energy transfer term t(i)(k, p, q) therefore consists of three types of transfers

t(i)(k, p, q)= t(i)HD(k, p, q)+ t(i)LF(k, p, q)+ t(i)mag(k, p, q). (7.7)

The term t(i)HD(k, p, q) denotes purely hydrodynamic transfer due to the coupling of the
velocity field to itself, t(i)LF(k, p, q) the contribution due to the Lorentz force acting on
the fluid and t(i)mag(k, p, q) the contributions due to advection of the magnetic field by
the flow and conversion of kinetic to magnetic energy, that is, due to dynamo action.
In real space the nonlinear term ∇ × (u× b) corresponding to the magnetic transfer
term can be split into an advective term (u ·∇)b and a dynamo term (b ·∇)u, however,
this splitting is obscured in Fourier space.

These terms are still written in the discrete Fourier representation of the magnetic
and velocity fields. However, the calculation of the energy and magnetic helicity fluxes
requires a continuous Fourier representation. The continuous transfer terms are given
in terms of Fourier integrals and can formally be obtained by taking the period L to
infinity, assuming that the respective integrals are well defined. The sums then become
integrals and the continuous counterpart of e.g. the hydrodynamic transfer term t(i)HD
becomes

T (i)HD(k, p, q) dk dp dq = lim
L→∞

t(i)HD(k, p, q)

= (spp− sqq)
∫
|k|=k

dk
∫
|p|=p

d p
∫
|q|=q

dqgkpq〈usk Uspusq〉 + c.c. (7.8)

The transfer terms T (i)LF and T (i)mag are defined analogously.
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7.1. Total energy transfer
In the absence of dissipation the total energy is conserved and the transfer term
T(k, p, q) in the spectral evolution equation of the total energy redistributes energy
between the Fourier modes and vanishes if integrated over all space. Therefore the
flux of total energy through wavenumber k due to a given interaction (i),

Π (i)(k)=−
∫ k

0
dk′
∫ ∞

k

∫ ∞
k

T (i)(k′, p, q) dp dq, (7.9)

can be written as the sum of two contributions: the flux of total energy into all modes
at wavenumber k′ due to triads with p, q< k< k′ minus the flux of total energy into
all modes at k′ due to triads with k′ < k< p, q

Π (i)(k)= 1
2

∫ ∞
k

dk′
∫ k

0

∫ k

0
T (i)(k′, p, q) dp dq− 1

2

∫ k

0
dk′
∫ ∞

k

∫ ∞
k

T (i)(k′, p, q) dp dq.

(7.10)
We now follow the procedure introduced by Waleffe (1992) in order to render the

two integrals in (7.10) independent of k. This is achieved using a scaling argument,
where the two integrals are treated separately. For conciseness we only outline the
procedure briefly for the first integral on the right-hand side of (7.10) and refer to
the original work of Waleffe (1992) for the full derivation. The aim is to express the
transfer function in the first integral on the right-hand side of (7.10) in terms of new
variables

v = q
p
, w= k′

p
, u= k

p
, (7.11a−c)

in order to remove k from the integration limits. Since T (i)HD(k′, p, q) may scale
differently compared to T (i)LF(k′, p, q) and T (i)mag(k

′, p, q), the term T (i)(k′, p, q) in
(7.10) must be replaced by the individual transfer terms. The transfer terms are now
expressed individually in terms of the new variables u, v and w

T (i)HD(k
′, p, q)= p−βT (i)HD(w, 1, v)=

(
k
u

)−β
T (i)HD(w, 1, v), (7.12)

T (i)LF(k
′, p, q)= p−β

′
T (i)LF(w, 1, v)=

(
k
u

)−β ′
T (i)LF(w, 1, v), (7.13)

and

T (i)mag(k
′, p, q)= p−β

′
T (i)mag(w, 1, v)=

(
k
u

)−β ′
T (i)mag(w, 1, v), (7.14)

where β is related to the exponent of the kinetic energy spectrum provided it has
a power-law dependence on k, while the exponent β ′ is related to the exponents of
the kinetic and magnetic energy spectra as explained in further detail in appendix E.
We point out that it order to write down (7.12)–(7.14) we assumed both the magnetic
energy spectrum and the kinetic energy spectrum to display power-law scaling in the
inertial range. This assumption is made solely to allow estimates of the direction of
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the flux. The first term on the right-hand side of (7.10) then becomes

1
2

∫ ∞
k

dk′
∫ k

0

∫ k

0
T (i)(k′, p, q) dp dq

= k3−β
∫ 1

0
dv

∫ 1+v

1
dw
∫ w

1
du
(

1
u

)4−β
T (i)HD(w, 1, v)

+ k3−β ′
∫ 1

0
dv
∫ 1+v

1
dw
∫ w

1
du
(

1
u

)4−β ′ [
T (i)LF(w, 1, v)+ T (i)mag(w, 1, v)

]
. (7.15)

The second term on the right-hand side of (7.10) can be treated similarly (Waleffe
1992), and we obtain

1
2

∫ k

0
dk′
∫ ∞

k

∫ ∞
k

T (i)(k′, p, q) dp dq

= k3−β
∫ 1

0
dv
∫ 1+v

1
dw
∫ 1

v

du
(

1
u

)4−β
T (i)HD(v, 1,w)

+ k3−β ′
∫ 1

0
dv
∫ 1+v

1
dw
∫ 1

v

du
(

1
u

)4−β ′ [
T (i)LF(v, 1,w)+ T (i)mag(v, 1,w)

]
. (7.16)

Combining the two results and integrating over u leads to the following expression
for the total energy transfer flux

Π (i)(k)= k3−β
∫ 1

0
dv
∫ 1+v

1
dw
(

T (i)HD(w, 1, v)
[

wβ−3 − 1
β − 3

]
+ T (i)HD(v, 1,w)

[
vβ−3 − 1
β − 3

])
+ k3−β ′

∫ 1

0
dv
∫ 1+v

1
dw
(

T (i)LF(w, 1, v)
[

wβ ′−3 − 1
β ′ − 3

]
+ T (i)LF(v, 1,w)

[
vβ
′−3 − 1
β ′ − 3

])
+ k3−β ′

∫ 1

0
dv
∫ 1+v

1
dw
(

T (i)mag(w, 1, v)
[

wβ ′−3 − 1
β ′ − 3

]
+ T (i)mag(v, 1,w)

[
vβ
′−3 − 1
β ′ − 3

])
,

(7.17)

where 06 v6 16w6 1+ v due to the triad geometry. This now enables us to study
the contribution to the total energy transfer from a given interaction (i), where the
scaling of the magnetic and kinetic energy spectra will influence the transfer through
the exponents β and β ′. In the inertial range of total energy the energy transfer flux
through a given wavenumber k does not depend on that wavenumber, which leads
to the characteristic values of the scaling exponents β ′ = β = 3, making the split
of the total energy transfer term into its individual components redundant in this
wavenumber range. In § 7.3.1 we concentrate on the contributions of the different
interactions to transfers in the inertial range of total energy and set β = 3, thus taking
into account only the region in wavenumber space where this scaling is established.
Since the values of β and β ′ may influence the direction of energy transfer, a similar
approach may be useful to calculate energy and helicity transfer at the very low
wavenumbers. However, this awaits consensus on the low-wavenumber scaling of the
magnetic and kinetic energy spectra. Furthermore, the integrals must be cut off at
some wavenumber such that a single scaling exponent for the wavenumber range of
interest can be studied. As the extent of the inertial range will grow with increasing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.43


78 M. Linkmann, A. Berera, M. McKay and J. Jäger

Reynolds number, contributions from the production and dissipation ranges can safely
be neglected, as they will become very small compared to the extent of the inertial
range. However, in the low-wavenumber region, this argument is not applicable and
further work is necessary in order to establish if very non-local interactions contribute
significantly to the transfers of magnetic energy and helicity in the low-wavenumber
range or not.

7.2. Magnetic helicity transfer
Using the decomposition into helical modes, the transfer term in the evolution
equation of the magnetic helicity can be expressed through the transfer term in the
evolution equation of the magnetic energy, that is

T (i)H (k, p, q)= sk

k
T (i)mag(k, p, q), (7.18)

and only the transfer term which originates from the induction equation is present,
since Hmag is a purely magnetic quantity and as such only implicitly depends on the
evolution of the velocity field.

Since the magnetic helicity is an ideal invariant, the transfer term in the spectral
evolution equation of the magnetic helicity vanishes if integrated over all space,
therefore, similar to the flux of total energy, the flux of magnetic helicity through
wavenumber k due to a given interaction (i),

Π
(i)
H (k)=−

∫ k

0

sk′

k′
dk′
∫ ∞

k

∫ ∞
k

T (i)mag(k
′, p, q) dp dq, (7.19)

can be written as the sum of two contributions

Π
(i)
H (k) =

1
2

∫ ∞
k

sk′

k′
dk′
∫ k

0

∫ k

0
T (i)mag(k

′, p, q) dp dq

− 1
2

∫ k

0

sk′

k′
dk′
∫ ∞

k

∫ ∞
k

T (i)mag(k
′, p, q) dp dq. (7.20)

Following the approach explained in § 7.1 the integral becomes independent of k and
one obtains the following expression for the flux of magnetic helicity through k

ΠH(k) = k2−β ′
∫ 1

0
dv
∫ 1+v

1

dw
w

×
(

swT (i)mag(w, 1, v)
[

wβ ′−2 − 1
β ′ − 2

]
+ svT (i)mag(v, 1,w)

[
vβ
′−2 − 1
β ′ − 2

])
. (7.21)

7.3. Cascades and wavenumber-dependent transfers of total energy and
magnetic helicity

From the expressions (7.17) and (7.21) for the fluxes of total energy and magnetic
helicity, respectively, it is now possible to determine the sign of the fluxes and
hence the direction of energy and magnetic helicity transfers using the results from
the stability analysis. If the total energy flux is positive, energy is transferred from
smaller to larger wavenumbers and if it is negative, energy is transferred from larger
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to smaller wavenumbers. As the magnetic helicity is not positive definite, the situation
is slightly different. For positive magnetic helicity a positive flux indicates forward
transfer just as for the total energy. For negative magnetic helicity a negative flux
indicates forward transfer while a positive flux indicates inverse transfer. However, as
this situation is symmetric we assume positive helicity throughout the analysis.

In § 6 unstable solutions of (3.3) and (3.4) were interpreted as leading to energy
transfer out of the unstable mode into the two modes it interacts with for a given
helical mode interaction (i). If Usp and Bsp are the unstable modes, this interpretation
leads to

∂t|Bsp |2 = T (i)mag(p, k, q) < 0, (7.22)

and
∂t|Usp |2 = T (i)HD(p, k, q)+ T (i)LF(p, k, q) < 0. (7.23)

The instability assumption therefore attributes signs to the transfer terms, which will
determine their respective contributions to the overall energy (and magnetic helicity)
transfer. Note that ∂t|Usp |2 and ∂t|Bsp |2 cannot have different signs, as both signs are
determined from the existence of exponentially growing solutions of the system (4.6).

We now treat the three helicity combinations which lead to unstable solutions
separately assuming without loss of generality that sp = 1. Having determined the
signs of the transfer terms within our framework, we now use these results to calculate
the contributions of the individual transfer terms to the fluxes of total energy and
magnetic helicity though a given wavenumber.

7.3.1. Total energy cascades
For the (inertial range) energy cascade the flux is wavenumber independent leading

to β = 3 in (7.17). Hence the integrand in (7.17), which determines the sign of the
total energy flux, becomes

IE = T (i)(w, 1, v) ln w+ T (i)(v, 1,w) ln v, (7.24)

where we remind the reader of the wavenumber ordering v6 16w. That is, the term
T (i)(w, 1, v) describes energy transfer in and out of the largest wavenumber modes
while T (i)(v, 1, w) describes energy transfer in and out of the smallest wavenumber
modes.

Using the signs of the transfer terms determined for the different helicity
combinations depending on wavenumber ordering, we can now deduce which helicity
combinations contribute to forward or inverse cascades of total energy.

(1) sv = s1 = sw
For this case we can deduce from the results of the stability analysis summarised in
tables 1–3 that T (i)(1, v,w)<0, as modes corresponding to the middle wavenumber are
unstable, while T (i)(v, 1,w) > 0, as modes corresponding to the smallest wavenumber
are stable and hence these modes can only receive energy from the modes at higher
wavenumbers. The sign of T (i)(w, 1, v) depends on the values of cross-helicity
and the ratio of magnetic to kinetic energy. For a magnetically dominated system
T (i)(w, 1, v) < 0 and we obtain in this case an inverse cascade of total energy, as

IE = T (i)(w, 1, v) ln w+ T (i)(v, 1,w) ln v < 0. (7.25)

If the kinetic energy is much larger than the magnetic energy, cancellations between
the two terms in IE occur. The term T (i)(w, 1, v) ln w is now positive, since the modes
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at the largest wavenumber can only receive energy, thus contributing to a forward
cascade. For intermediate cases the value of the cross-helicity becomes decisive as
high cross-helicity quenches the inverse transfer in this case. In summary, we expect
inverse cascade contributions from this combination of helicities if the magnetic
energy dominates, while for larger kinetic energy high values of cross-helicity quench
the inverse transfer contribution to some extent.

(2) sv 6= s1 = sw
From tables 1–3 the instability assumption imposes T (i)(w, 1, v)< 0 and T (i)(v, 1,w)>
0 as modes corresponding to the largest wavenumbers are unstable, while modes
corresponding to the smallest wavenumber are stable. This implies

IE = T (i)(w, 1, v) ln w+ T (i)(v, 1,w) ln v < 0, (7.26)

thus we conclude that this combination of helicities leads to an inverse energy cascade
as IE < 0, and we note that this case behaves differently to its hydrodynamic analogue,
where it led to an inverse cascade of kinetic energy (Waleffe 1992) for non-local
interactions and a direct cascade for local interactions. We also note that this inverse
cascade should always be present, as it is not subject to constraints from Hc(p) and
|Usp |/|Bsp |.

(3) sv = s1 6= sw
Analogously, we obtain T (i)(1, v, w) < 0 and T (i)(w, 1, v) > 0, since the modes
corresponding to the middle wavenumber are unstable while modes corresponding to
the largest wavenumber are stable. As the stability of the remaining transfer term
T (i)(v, 1, w) depends on several constraints, no clear assessment is possible. If we
assume the lowest wavenumber modes to be unstable, that is T (i)(v, 1, w) < 0, we
obtain a contribution towards a direct cascade. However, if we assume them to be
stable, contributions to inverse and direct cascades are possible. We note that the
instability leading to forward transfer in this case is damped by high values of Hc(p).

(4) s1 6= sw = sv
In this case we obtain T (i)(1, v, w) > 0 and T (i)(w, 1, v) < 0, since the modes
corresponding to the middle wavenumber are stable while modes corresponding to
the largest wavenumber are unstable. Again the sign of the remaining transfer term
T (i)(v, 1, w) depends on several constraints. If we assume the lowest wavenumber
modes to be stable, that is T (i)(v, 1, w) > 0, we obtain a contribution towards an
inverse cascade. However, if we assume them to be unstable, contributions to inverse
and direct cascades are possible. We note that the instability leading to inverse
transfer in this case is damped by high values of Hc(p).

7.3.2. Magnetic helicity transfer in the inertial range of total energy
For β ′ = 3, the integrand IH in (7.21) becomes

IH = T (i)mag(w, 1, v)sw(w− 1)+ T (i)mag(v, 1,w)sv(v − 1). (7.27)

Using the signs of the transfer terms determined for the three helicity combinations,
we can now deduce which helicity combinations contribute to a forward or inverse
cascade of magnetic helicity. As can be seen in (7.27), there is an explicit dependence
of the magnetic helicity flux on the helicities of the interacting modes. In the
following we assume s1 = 1.

(1) sv = s1 = sw
The integrand IH becomes

IH = T (i)mag(w, 1, v)(w− 1)+ T (i)mag(v, 1,w)(v − 1). (7.28)
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As the signs of the magnetic energy transfer term deduced from the stability analysis
are the same as for the total energy and ln w and w−1 are both positive while lnv and
v − 1 are both negative, the result for the helicity transfer reflects the results for the
total energy cascade. Thus, for this helicity combination, total energy and magnetic
helicity will be transferred in the same direction, which can be both forward and
inverse in this case.

(2) sv 6= s1 = sw

The integrand IH becomes

IH = T (i)mag(w, 1, v)(w− 1)− T (i)mag(v, 1,w)(v − 1), (7.29)

where the contributions from the smallest wavenumber modes now enter with the
opposite sign. Compared to the total energy flux, which was purely inverse in this
case, we obtain the possibility of simultaneously a forward helicity flux and an inverse
energy flux.

(3) sv = s1 6= sw

The integrand IH becomes

IH =−T (i)mag(w, 1, v)(w− 1)+ T (i)mag(v, 1,w)(v − 1), (7.30)

where the contributions from the largest wavenumber modes now enter with the
opposite sign. Compared to the total energy cascade, again we find that it is possible
to have a transfer of magnetic helicity in the opposite direction to the transfer of
total energy.

(4) s1 6= sw = sv
The integrand IH becomes

IH =−T (i)mag(w, 1, v)(w− 1)− T (i)mag(v, 1,w)(v − 1), (7.31)

where the contributions from both transfer terms now enter with the opposite sign.
That is, magnetic helicity and total energy are transferred in opposite directions.

In this subsection we determined the direction of the magnetic helicity transfer in
the inertial range of total energy for different combinations of helicities and compared
the results to those for the total energy cascade. We found that a cascade of total
energy is possible in one direction while the transfer of magnetic helicity may proceed
in the opposite direction.

7.3.3. Magnetic helicity cascades
In the inertial range of magnetic helicity the flux of magnetic helicity is

wavenumber independent resulting in β ′ = 2 in (7.21). Therefore the integrand IH

in (7.21) becomes

IH = T (i)mag(w, 1, v)sw ln w+ T (i)mag(v, 1,w)sv ln v. (7.32)

For the different helicity combinations this leads to
(1) sv = s1 = sw

The integrand in this case is of the same form as the integrand IE for the total energy
cascade (that is, if β = 3 in IE)

IH = T (i)mag(w, 1, v) ln w+ T (i)mag(v, 1,w) ln v, (7.33)
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hence the results for the cascades of magnetic helicity are the same as for the cascades
of total energy.

(2) sv 6= s1 = sw
The integrand in this case has a different form compared to the integrand IE for the
total energy

IH = T (i)mag(w, 1, v) ln w− T (i)mag(v, 1,w) ln v, (7.34)

hence the results for the cascades of magnetic helicity are different from the total
energy cascades. In particular, this case may lead to a non-helical reverse energy
transfer while the helicity cascade may be forwards, due to the contribution from
T (i)mag(v, 1,w) now having the opposite sign in IH compared to IE.

(3) sv = s1 6= sw
Again, the integrand in this case has a different form compared to the integrand IE
for the total energy

IH =−T (i)mag(w, 1, v) ln w+ T (i)mag(v, 1,w) ln v, (7.35)

hence the results for the cascades of magnetic helicity differ from the total energy
cascades. In particular, this case may lead to a forward energy transfer while the
helicity cascade may be backwards, due to the contribution from T (i)mag(w, 1, v) now
having the opposite sign in IH compared to IE.

(4) s1 6= sw = sv
Now IH and IE have opposite signs

IH =−T (i)mag(w, 1, v) ln w− T (i)mag(v, 1,w) ln v =−IE, (7.36)

hence this case leads to helicity transfer and energy transfer in opposite directions.

7.3.4. Magnetic energy transfer in the inertial range of magnetic helicity
For β ′= 2, the contributions to the integrand IE due to magnetic energy transfer are

IEmag =−T (i)mag(w, 1, v)
(

1
w
− 1
)
− T (i)mag(v, 1,w)

(
1
v
− 1
)
. (7.37)

The signs of Tmag and T are the same by (7.22)–(7.23), and ln w and w− 1 are both
positive while ln v and v− 1 are both negative. Hence, the result for the contributions
of these terms to the total energy transfer in the inertial range of magnetic helicity
is the same as in the inertial range of total energy for all helicity combinations. That
is, magnetic energy transfer and conversion in the inertial ranges of total energy and
magnetic helicity proceed in the same direction.

This assessment of contributions to forward and inverse transfers and cascades
is based on an analysis of the nonlinear terms in the MHD equations only, thus
neglecting the symmetry-breaking effect of dissipation creating an energy sink at the
small scales. Accounting for this effect, it is plausible that the contributions from
transfer terms leading to forward transfer are higher weighted than contributions
leading to inverse transfer. This is particularly relevant in interactions where forwards
and reverse contributions are present and the overall transfer depends on cancellations
between the two terms. It would perhaps be safest to attribute these cases to forwards
rather than inverse energy cascades.

Although it is not possible to exactly determine which helical interactions are
higher weighted than others, some information can be obtained from the magnitude
of the geometric factor gkpq defined in (3.5). The magnitude of gkpq depends on the
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helicity combinations since it involves the helicity-dependent factor I= skk+ spp+ sqq.
Therefore it parametrises the strength of a given helical interaction, and the case of
all helicities being of the same sign gives the largest value of |I|, since in this case
|I| = |k+ p+ q|.

For the reverse transfers, that is, for k< p, q, the factor |I| takes the smallest value
for the case sk = sp 6= sq, since |I| = |k + (p − q)|. Note that in this case I becomes
small for small k even in the non-local limit k� p' q, suggesting that the non-helical
reverse transfer found in this case is less efficient in increasing spectral power at the
very low wavenumbers. The remaining class of helical interactions sk 6= sp = sq leads
to |I| = |k− (p+ q)|. In this case |I| does not necessarily become small for small k
which is due to the contribution of non-local interactions, where p and q are large
compared to k. According to the results from the stability analysis, in the non-local
limit unstable solutions occur for the case sk= sp= sq only if |Bsp |> |Usp | and for the
case sk 6= sp = sq if |Usp |> |Bsp |.

It is therefore possible to deduce within the framework of the instability assumption
that most of the increase in energy at the very largest scales (in a magnetically
dominated system) is mainly due to a breaking of mirror symmetry, which had
been established before by Frisch et al. (1975) using a different approach. That is,
it is due to the presence of kinetic and magnetic helicity, since interactions of the
type sk = sp = sq, which account for most of the inverse transfer, can only occur
in significant numbers for fields consisting of many modes with the same helicity.
Recent numerical results in hydrodynamics showed that there is an overall reverse
flux of energy only when the system mainly contains helical modes of the same sign.
As soon as a small amount of oppositely polarised modes is introduced, the usual
direct cascade is recovered (Sahoo, Bonaccorso & Biferale 2015).

In summary, in this section we determined the direction of total energy and
magnetic helicity transfers in their respective inertial ranges. Not surprisingly, we
found that fully helical magnetic fields lead to inverse cascades of magnetic helicity
and inverse transfer of magnetic energy, but the analysis also showed that an inverse
energy cascade is possible for non-helical magnetic fields, which is a new theoretical
result. However, due to the coupling of the momentum and induction equations,
within this framework it is not possible to determine the nature of the energy transfers
resulting from an instability of a given steady solution, since the same eigenvalue
controls the growth of the exponential solution of (4.6) for both the magnetic and the
velocity field. Nevertheless, for some special cases the evolution equations (3.3)–(3.4)
decouple and more detailed information becomes available. These cases are treated
in the following section.

8. Special solutions and the (kinematic) dynamo

Having established the general case, we now draw attention to special cases where
the analysis becomes much simpler and which are relevant to specific problems in
MHD such as the kinematic dynamo. In § 4.2 we analysed the stability of general
steady solutions of the dynamical system (3.3)–(3.4), which describes the evolution
of a triad of interacting helical modes. Using the notation (4.1), the general steady
solutions were of the form (0,Usp, 0; 0,Bsp, 0). In this section we now study the cases
where either Usp = 0 or Bsp = 0, that is we analyse the stability of steady solutions of
(3.3)–(3.4) of the form (0,Usp, 0; 0, 0, 0) and (0, 0, 0; 0,Bsp, 0). The former case may
be of particular interest due to its relation to dynamo action.
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8.1. The kinematic dynamo
For small magnetic fields the Lorentz force is small compared to inertial forces, and
can be neglected in the momentum equation. This decouples the momentum equation
from the induction equation and defines the kinematic dynamo problem. In our setting,
it corresponds to |Usp |/|Bsp | � 1, and terms proportional to |Bsp | can be neglected as
they are very small compared to terms proportional to |Usp |.

Alternatively, one could also consider the steady solution Bsp = 0 while Usp 6= 0.
This would correspond to a stability analysis of a flow field at a particular length
scale subject to small perturbations of the magnetic and velocity fields, where the
magnetic field perturbation may be viewed as the magnetic seed field to be amplified
by dynamo action. In this setting we observe from (3.3) that the term corresponding
to the Lorentz force disappears while in (4.5) terms involving Bsp disappear, thus the
system simplifies to

∂2
t usk = |gkpq|2(spp− sqq)(skk− spp) |Usp |2usk , (8.1)

∂2
t bsk =−|gkpq|2skk sqq |Usp |2bsk . (8.2)

As the only contribution to the evolution of the magnetic field now comes from the
velocity field, we associate the remaining terms in (3.4) with dynamo action. From
(8.2) we observe that this system has exponential solutions leading to magnetic field
growth if sk 6= sq, regardless of wavenumber ordering. So for energy transfer from Usp

into bsk (and bsq) to become possible, the magnetic modes at wavenumbers k and q
should be of opposite helicity.

For small k, non-local interactions with k� p ' q provide most transfer into bsk .
This is because the eigenvalue determining the growth of the exponential solution of
(8.2) is larger for q� k than for q' k, thus the perturbations should grow faster in
the former than in the latter case. Hence, according to the instability assumption, Usp

loses energy in favour of bsk mainly due to non-local interactions if bsk describes the
largest scales of the system.

8.1.1. The α-effect
One well-known example of a large-scale dynamo is the α-effect of mean-field

electrodynamics (see e.g. Moffatt 1978), where α is a coefficient in the mean-field
induction equation related to the kinetic helicity of the flow. The α-effect leads to a
generation of large and small-scale magnetic helicities of opposite sign (Brandenburg
2001, 2003). It is a mean-field description of the stretch-twist-fold (STF) dynamo
(Vainshtein & Zeldovich 1972; Childress & Gilbert 1995; Mininni 2011), which
describes how a positively helical velocity field generates magnetic field perturbations
leading to the large-scale component of the magnetic field becoming negatively helical.
By conservation of magnetic helicity, the small-scale component of the magnetic field
then has to become positively helical (and more so if the initial magnetic field was
positively helical). That is, the small-scale magnetic and kinetic helicities are of the
same sign.

It is plausible that the type of interaction (0,Usp, 0; 0, Bsp = 0, 0) for k< p, q with
sk 6= sp= sq can be associated with an STF dynamo and hence the α-effect. First, non-
zero small-scale kinetic helicity (we have sp = sq) is present. Second, the magnetic
field growth at the large scales is described by (8.2), where magnetic fluctuations at k
and q of opposite helicities are necessary to obtain an unstable solution. That is, the
large-scale magnetic field has opposite helicity to the small scale one, reminiscent of
the α-dynamo. We also note that this combination of helicities produces a transfer of
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kinetic energy from small to large scales (Waleffe 1992). Thus this type of interaction
feeds into the magnetic and velocity fields on scales larger than the characteristic scale
L = 1/p of the velocity field. The magnetic field mode which is amplified by this
process has helicity opposite to the velocity field at p, which conforms to expectations
in terms of STF dynamo action and the α-effect.

8.2. Excitation of a flow by the Lorentz force
For the other special solution (0, 0, 0; 0, Bsp 6= 0, 0) the system (4.4)–(4.5) simplifies
to

∂2
t usk = |gkpq|2(spp− sqq)sqq |Bsp |2usk , (8.3)

∂2
t bsk =−|gkpq|2skk(skk− spp) |Bsp |2bsk , (8.4)

and we note that the inertial term in (3.3) and the ‘dynamo’ term in (3.4) are now
absent and the system of coupled ODEs has split into two decoupled ODEs. This
case may perhaps be associated with the generation of turbulence caused by the action
of the Lorentz force on the fluid (i.e. energy conversion from Bsp to usk or usq) and
interscale transfer of magnetic energy from Bsp into bsk or bsq . Exponentially growing
solutions of (8.4) only occur if sp = sk and k < p, leading to a reverse transfer of
magnetic energy. Exponentially growing solutions of (8.3) occur for p> q and sp= sq

leading to forward and reverse transfers corresponding to k> p and k< p, respectively.
Interestingly, energy transfer only becomes possible if the magnetic field is helical and
the helicity of the velocity field mode does not affect the analysis.

9. Conclusions
The four main results of the present work are: First, unlike in non-conducting

fluids (Waleffe 1992), the stability analysis shows that in MHD turbulence energy
can be transferred away from the smallest scales in a triad interaction. Second,
the stability analysis reveals mechanisms for reverse energy transfer for non-helical
magnetic fields, in which case it does not need to be driven by the inverse transfer
of magnetic helicity. Third, forward energy transfers are more quenched in regions
of high cross-helicity than reverse energy transfers. Fourth, we expect significant
cancellations to occur between the contributions to forward and reverse transfers,
as on several occasions they occur with opposite signs in the same equation. Our
theoretical analysis was conducted within the framework of the instability assumption,
and it is crucial to discuss the results within the wider context of MHD turbulence
research.

Interscale energy transfers between the two different vector fields as well as
within the same fields have been studied by several groups for freely decaying
(Debliquy et al. 2005; Brandenburg et al. 2015) and stationary (Brandenburg 2001;
Alexakis et al. 2005; Carati et al. 2006; Cho 2010) MHD turbulence as well as
for the kinematic dynamo regime (Mininni, Alexakis & Pouquet 2005) and for
magnetic helicity transfer (Alexakis et al. 2006), using shell-filtered transfer terms
calculated from DNS or from a helical shell model (Stepanov et al. 2015). In the
stationary case, it was found that transfers between the same fields are mainly
local while transfers between different fields were non-local, and transfers from the
injection scale to the largest scales in the system were observed. In the decaying
case, energy transfers were generally found to be mainly local. However, transfers
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between different fields were more non-local than transfers between the same fields.
Furthermore, large cancellations occurred between the contributions to forward and
reverse transfers (Debliquy et al. 2005). The analysis presented here also predicts
cancellations between these contributions to occur, thus being consistent with the
aforementioned numerical results.

In terms of locality and non-locality of energy (and helicity) transfer, we found that
non-local interactions contribute to forward transfer only for interactions of helical
modes with unlike helicity and mainly if the kinetic energy exceeds the magnetic
energy. Interestingly, for inverse transfers we find less constraints on non-local
interactions. In particular for magnetically dominated systems non-local interactions
between modes of like helicity contribute to reverse energy transfer. In view of the
cancellations that occur between forward and reverse transfers, the inverse cascade
may thus have a significant non-local component which is not cancelled by forward
transfers within the same triad interaction.

A numerical study of large-scale magnetic field generation in helically forced
globally isotropic MHD turbulence was carried out by Brandenburg (2001). It was
found that the injection of energy from the velocity field into the magnetic field
occurs directly from the forcing scale into the largest resolved scale, implying that
this is a non-local process. Due to the non-locality of the observed increase in
spectral power of the magnetic field at the lowest resolved wavenumber k = 1 and
the excellent agreement of numerical results with an α-dynamo model, the transfer
of energy into the k = 1 mode is explained by the α-effect rather than an inverse
cascade, and it is shown to occur after saturation of the small-scale dynamo. Our
results in § 8 suggest that one type of helical mode interaction may be mapped to
the α-effect, and we established that large-scale dynamo action is more active in the
non-local limit than certain other types of interactions.

One of the main results of the present work is the possibility of inverse energy
transfer for non-helical magnetic fields. Such inverse transfer has recently been
found in high resolution DNS of slightly compressible (Brandenburg et al. 2015) and
relativistic (Zrake 2014) MHD turbulence. An analysis of interscale transfers showed
that this inverse transfer was mainly due to energy transfer away from the medium
scale (see supplemental material of Brandenburg et al. (2015), last figure), while
energy transfer away from the smallest scales also occurred. The analytic approach
put forward in the present paper also shows that energy is transferred away from the
medium and small scales for interactions of modes with unlike helicities, thus being
qualitatively consistent with these numerical results. However, since no numerical
work decomposing the MHD equations into helical contributions as suggested by
Biferale et al. (2012) and Biferale & Titi (2013) has been carried out so far, we are
not in a position to claim numerical confirmation of our results.

Having discussed numerical results, we now turn to measurements of energy
transfer in the solar wind. Unlike in our own analysis and in the numerical results
discussed so far except for (Cho 2010), a background magnetic field is present in
the solar wind. Recent measurements at 1 AU (Stawarz et al. 2010) showed negative
Elsässer fluxes in regions of high cross-helicity, giving possible evidence of inverse
energy transfer in these regions, which cannot be explained by selective decay as
cross-helicity cascades forwards (Frisch et al. 1975). Our results may be helpful in
explaining this phenomenon as one of the results we obtained was a quenching of
forward energy transfer in regions of high cross-helicity, leaving more inverse transfer
to perhaps dominate the dynamics in these regions.

In subsequent work (Coburn et al. 2014) concerns were raised on the implications
of the effect of expansion in the solar wind especially in regions of high Hc.
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Expansion effects had been neglected in the previous analysis. The authors restrict
their measurements to regions where the relative cross helicity σc is not too large,
that is 0 6 |σc| 6 0.5 and measure positive energy fluxes on average, while the
instantaneous flux shows large variations including negative values. It is shown that
the broad distribution of the measured instantaneous fluxes is related to intermittency
of the energy cascade in terms of the variability of the energy flux (Politano &
Pouquet 1995; Karimabadi et al. 2013), and not caused by experimental uncertainty.
The various possibilities of energy transfer in forward and reverse directions
determined in the present work are consistent with these measurements, as they
also would result in broader tails of the probability distribution of the energy flux,
even if on average energy transfer proceeds in the forward direction. As for the
concerns about the validity of the negative fluxes measured by Stawarz et al. (2010),
our results do suggest that the measured inverse fluxes may be a genuine effect due
to quenching of forward energy transfers if Hc is large.

Since most of this discussion is based on statements of plausibility rather than
certainty, more work clearly has to be carried out before a decisive result on energy
transfer in MHD turbulence can be achieved, and we hope that our analysis constitutes
a step forwards in this direction. As suggested by Biferale et al. (2012), Biferale &
Titi (2013), one could study energy and helicity transfers numerically by projecting
out helical modes of a particular sign, similar to work done by Biferale et al. (2012),
Biferale & Titi (2013) and Sahoo et al. (2015) in hydrodynamic turbulence. However,
numerical verification of reverse spectral transfer due to the particular non-helical
interactions found in the present work may be difficult to obtain in that framework,
and a particular DNS study concentrating on inverse transfer for non-helical magnetic
fields using the full MHD equations subject to small-scale forcing may be needed in
order to provide further insight. An analysis of Fourier-filtered transfer terms from
DNS of highly unbalanced MHD turbulence compared to balanced MHD turbulence
could be carried out in order to verify (or otherwise) the proposed quenching of
forward transfers by high values of Hc, especially as it is not possible to quantify
this effect from theoretical analysis only. On the analytical side, the present work may
be extended to include the effects of a background magnetic field and of compressive
fluctuations, which would be included in the decomposition of the velocity field as
modes parallel to the wavevector k. Asides from providing an advance in MHD
turbulence research on a fundamental level, this work may contribute to the further
theoretical understanding of various physical processes involving inverse cascade and
dynamo action. This includes the evolution and origin of cosmological and galactic
magnetic fields as well as solar physics and the dynamics of laboratory plasmas and
turbulence in liquid metal flows.
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Appendix A. The dependence of Q on the cross-helicity

In § 4, the parameter Q was defined as Q=αδ−βγ , where α, β, γ and δ were the
entries of the matrix in (4.6). Using the expressions for these terms given in (4.10),
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we obtain

Q= |gkpq|4skksqq(skk− spp)(sqq− spp)
(
|Usp |4 + |Bsp |4 − 2 Re([U∗sp

Bsp]2)
)
. (A 1)

However, in (4.14), instead of the term Re([U∗sp
Bsp]2) a term involving Hc(p) appeared.

In general, the helical coefficients Usp and Bsp are related by a complex number
M = m + in such that Bsp = MUsp . Expressions for m and n can be found by
decomposing the two fields into their real and imaginary parts. Let Usp = U1 + iU2
and Bsp = B1 + iB2. Then

m = 1
|Usp |2

(U1B1 +U2B2) and (A 2)

n = 1
|Usp |2

(U1B2 −U2B1), (A 3)

and we note the constraint n2 = |Bsp |2/|Usp |2 − m2 which follows from the definition
of M. Decomposing the cross-helicity in the same way results in Hc(p) = |Usp |2m.
Now we can relate Re([U∗sp

Bsp]2) to the cross-helicity by rewriting it in terms of the
components of Usp and Bsp :

Re([U∗sp
Bsp]2) = (U1B1 +U2B2)

2 − (U1B2 −U2B1)
2 (A 4)

= |Usp |4m2 − |Usp |4
( |Bsp |2
|Usp |2

−m2

)
(A 5)

= 2Hc(p)2 − |Usp |2|Bsp |2, (A 6)

and we obtain (4.14) by substitution of this expression for Re([U∗sp
Bsp]2) into (A 1).

Since the maximum and minimum values of |Hc(p)| are |Usp ||Bsp | and 0 respectively,
it is useful to define the relative cross-helicity ρ = Hc(p)/(|Usp ||Bsp |), which takes
values between −1 and 1. We obtain

Re([U∗sp
Bsp]2)= |Usp |2|Bsp |2(2ρ2 − 1), (A 7)

which is bounded by −|Usp |2|Bsp |2 and |Usp |2|Bsp |2, where the first value is the case
of vanishing cross-helicity and the latter occurs when there is maximal cross-helicity.
This implies that the term (|Usp |4 + |Bsp |4 + 2|Usp |2|Bsp |2 − 4Hc(p)2) in (4.14) cannot
be negative.

Appendix B. x2 −Q> 0 for specific cases

In § 5.1, the result was dependent on whether x2−Q is positive or negative. Recall
that the helicity combinations in question were sk = sq 6= sp and sk = sp = sq with the
wavenumber ordering p 6 k, q for the latter case. Therefore x2 −Q becomes

x2 −Q = 1
4

[|Usp |4(kq+ (k± p)(q± p))2 + |Bsp |4(k(k± p)+ q(q± p))2

+ 2|Usp |2|Bsp |2[kq+ (k± p)(q± p)][k(k± p)+ q(q± p)]]
− [kq(k± p)(q± p)](|Usp |4 + |Bsp |4 − 2Re([U∗sp

Bsp]2))
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= 1
4

[|Usp |4(kq− (k± p)(q± p))2 + |Bsp |4(k(k± p)− q(q± p))2

+2|Usp |2|Bsp |2[kq+ (k± p)(q± p)][k(k± p)+ q(q± p)]]
+ 2Re([U∗sp

Bsp]2)[kq(p± p)(q± p)]. (B 1)

In general, we have |Re([U∗sp
Bsp]2)| 6 |Usp |2|Bsp |2 (see appendix A), hence assume

Re([U∗sp
Bsp]2)=−|Usp |2|Bsp |2 as this would be the most negative value this term can

take. It corresponds to zero cross-helicity at p. Equation (B 1) is now an inequality
and reads

x2 −Q > 1
4

[|Usp |4(kq− (k± p)(q± p))2 + |Bsp |4(k(k± p)− q(q± p))2
]

+ 1
2 |Usp |2|Bsp |2[kq+ (k± p)(q± p)][k(k± p)+ q(q± p)]
− 2|Usp |2|Bsp |2[kq(k± p)(q± p)], (B 2)

hence the result x2 −Q> 0 follows immediately if we can show

[kq+ (k± p)(q± p)][k(k± p)+ q(q± p)] − 4kq(k± p)(q± p)> 0. (B 3)

For this purpose, set a± ≡ (k± p) and b± ≡ (q± p). The expression on the left-hand
side of (B 3) can now be further simplified

[kq+ a±b±][ka± + qb±] − 4kqa±b± = k2qa± + (a±)2kb± + q2kb± + (b±)2qa− 4kqab
= qa±(k− b±)2 + kb±(q− a±)2 > 0. (B 4)

The last line follows for the case sk= sq 6= sp since both a+> 0 and b+> 0, while for
the case sk= sp= sq both a−> 0 and b−> 0 due to the wavenumber ordering p6 k, q.
Hence the inequality (B 3) is satisfied and x2 −Q > 0 in both cases.

Appendix C. Graphical determination of constraints on stability
As explained in the main body of the text, the term Q given in (4.14) determines

the stability of the system (4.6) if x< 0. As such, a solution is unstable if Q< 0 or
if x2 −Q< 0, where the latter case is the more difficult to determine, as the sign of
x2−Q depends on the shape of the wavenumber triad, the cross-helicity and the ratio
|Usp |/|Bsp |. Given the multitude of possibilities that can emerge for this, the simplest
way of determining the constraints on the stability of a solution of (4.6) is using a
graphical method. For each combination of helicities we plot x2–Q for several set
values of |Usp |/|Bsp | and Hc(p) in order to show in which parameter range instabilities
are more likely to occur.

The dependence of x2–Q on the triad k, p, q can be reduced to a dependence on the
triad’s shape by rescaling each wavenumber similar to the procedure in appendix B,
which enables us to use two-dimensional plots and the triad geometry to obtain the
necessary information. Figures 1–4 show the function x2(v, w) − Q(v, w) for the
different cases shown in tables 1–3, where v and w correspond to the smallest and
largest wavenumber in a given triad, rescaled by the middle one such that the triad
geometry enforces the constraint 0 < v 6 1 6 w < 1 + v, hence each wavenumber
pair (v, w) describes a shape of triad. Each subfigure corresponds to set values of
Hc(p) and |Usp |/|Bsp |, while each point (v, w) in a particular graph corresponds to a
class of triad interactions characterised by their shape. Regions in wavenumber space
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FIGURE 1. Plots of f (v, w) = x2 − Q for various values of |Usp |/|Bsp | and cross-helicity
for case 1 in appendix C (sk 6= sp = sq, k < p < q). The upper grey triangle is ruled out
by the condition w< 1+ v and unstable values are shown in white. The ratio |Usp |/|Bsp |
increases from left to right, with each column of subfigures taking the values 0.01, 0.1
and 1 respectively, while each row takes the following values of relative cross-helicity:
Hc(p)/(|Usp ||Bsp |)= 0, 0.5, 0.9 and 1.

excluded from the analysis by the constraints of the triad geometry are shaded in
grey, positive values of x2−Q leading to stability are indicated in black and negative
values of x2−Q leading to unstable solutions are marked white. Across the main four
figures, Hc(p) increases towards the bottom of the figure while |Usp |/|Bsp | increases
from left to right, leading to the constraints summarised in tables 1–3. Depending on
the wavenumber ordering, the definitions of v and w are slightly different, and we
explain the procedures for each case individually.

(1) sk 6= sp = sq and k< p< q
In this case we rescale all wavenumbers by p, such that v ≡ k/p and w ≡ q/p. As
can be seen in figure 1, for decreasing |Usp |/|Bsp | and increasing Hc(p) less and less
unstable solutions occur and we obtain the constraints on split transfer shown in
table 1.

(2) sk 6= sp = sq and p< k< q
In this case we rescale all wavenumbers by k, such that v ≡ p/k and w ≡ q/k. As
can be seen in figure 2, for decreasing |Usp |/|Bsp | and increasing Hc(p) less and less
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FIGURE 2. Plots of f (v, w) = x2 − Q for various values of |Usp |/|Bsp | and cross-helicity
for case 2 in appendix C (sk 6= sp = sq, p < k < q). The upper grey triangle is ruled out
by the condition w< 1+ v and unstable values are shown in white. The ratio |Usp |/|Bsp |
increases from left to right, with each column of subfigures taking the values 0.01, 0.1
and 1 respectively, while each row takes the following values of relative cross-helicity:
Hc(p)/(|Usp ||Bsp |)= 0, 0.5, 0.9 and 1.

unstable solutions occur and we obtain the constraints on forward transfer shown in
table 3.

(3) sk = sp 6= sq and p< k< q
In this case we rescale all wavenumbers by k, such that v ≡ p/k and w ≡ q/k. As
can be seen in figure 3, for decreasing |Usp |/|Bsp | and increasing Hc(p) less and less
unstable solutions occur and we obtain the constraints on forward transfer shown in
table 3.

(4) sk = sp = sq and k< q< p
In this case we rescale all wavenumbers by q, such that v≡ k/q and w≡ p/q. As can
be seen in figure 4, now for increasing |Usp |/|Bsp | and increasing Hc(p) less and less
triads lead to unstable solutions and we obtain the constraints shown in table 2 on
reverse transfer.

Appendix D. Triple correlations in homogeneous MHD
Let Aα(x), Bβ(x) and Cγ (x) be individual components of three homogeneous

random vector fields. The Fourier transform of the triple correlation of these three
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FIGURE 3. Plots of f (v, w) = x2 − Q for various values of |Usp |/|Bsp | and cross-helicity
for case 3 in appendix C (sk = sp 6= sq, p < k < q). The upper grey triangle is ruled out
by the condition w< 1+ v and unstable values are shown in white. The ratio |Usp |/|Bsp |
increases from left to right, with each column of subfigures taking the values 0.01, 0.1
and 1 respectively, while each row takes the following values of relative cross-helicity:
Hc(p)/(|Usp ||Bsp |)= 0, 0.5, 0.9 and 1.

fields is

〈Âα(k)B̂β(p)Ĉγ (q)〉 =
(

1
L

)9 ∫ ∫ ∫
d3x d3x′ d3x′′〈Aα(x)Bβ(x′)Cγ (x′′)〉

× e−i(k·x+p·x′+q·x′′), (D 1)

where the term in the angled brackets on the right-hand side is the real space
correlation tensor Cαβγ of the three fields. Since the fields are homogeneous, the real
space correlator only depends on the displacements r = x− x′ and r ′= x− x′′ and as
such is independent of x

〈Aα(x)Bβ(x′)Cγ (x′′)〉 =Cαβγ (r, r ′). (D 2)

The integration over x then results in a delta function imposing the condition that the
triple correlation in Fourier space is non-zero only when the wavevectors form a triad,
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FIGURE 4. Plots of f (v, w) = x2 − Q for various values of |Usp |/|Bsp | and cross-helicity
for case 4 in appendix C (sk = sp= sq, k< q< p). The upper grey triangle is ruled out by
the condition w < 1 + v and unstable values are shown in white. The ratio |Usp |/|Bsp |
increases from left to right, with each column of subfigures taking the values 1, 10
and 100 respectively, while each row takes the following values of relative cross-helicity:
Hc(p)/(|Usp ||Bsp |)= 0, 0.5, 0.9 and 1.

i.e.

〈Âα(k)B̂β(p)Ĉγ (q)〉 = δ(k+ p+ q)
(

1
L

)6 ∫ ∫
d3r d3r′ Cαβγ (r, r ′)e−i(p·r+q·r′). (D 3)

Since the fields A, B and C were arbitrary homogeneous random fields, this result
holds for any combination of triple correlations of the magnetic and velocity fields in
homogeneous MHD turbulence.

Appendix E. Similarity scaling

For theoretical convenience we assume that both kinetic and magnetic energy
spectra have power-law scalings in the inertial range, that is

Ekin(αk)/Ekin(k)= α−n, Emag(αk)/Emag(k)= α−m (E 1a,b)
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where α is a real number and n> 0 and m> 0 are the spectral indices of the kinetic
and magnetic energy spectra, respectively. From

Ekin(k) dk= 1
2

∫
|k|=k
〈|u+(k)|2 + |u−(k)|2〉 dk, (E 2)

Emag(k) dk= 1
2

∫
|k|=k
〈|b+(k)|2 + |b−(k)|2〉 dk, (E 3)

we then find a scaling of the helical coefficients

us(αk)= α−(5+n)/2us(k), bs(αk)= α(−5+m)/2bs(k). (E 4a,b)

From (E 1a,b) the scaling of T (i)HD(k, p, q), T (i)LF(k, p, q) and T (i)mag(k, p, q) is then given
by

T (i)HD(αk, αp, αq)

T (i)HD(k, p, q)
= α−(1+3n)/2 = α−β, (E 5)

T (i)LF(αk, αp, αq)

T (i)LF(k, p, q)
= α−(1+n+2m)/2 = α−β ′, (E 6)

T (i)mag(αk, αp, αq)

T (i)mag(k, p, q)
= α−(1+n+2m)/2 = α−β ′, (E 7)

In hydrodynamics n = 5/3, while in MHD there are different predictions for the
spectral exponent, either m = 3/2 (Iroshnikov–Kraichnan) or m = 5/3 (Kolmogorov).
Note that n = m = 5/3 implies β ′ = β = 3 while n = 5/3 and m = 3/2 implies
β ′ = 2+ 5/6. In both cases β − 2> 0.
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