Radiocarbon, Vol 59, Nr 3, 2017, p 967–971DOI:10.1017/RDC.2017.47Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015© 2017 by the Arizona Board of Regents on behalf of the University of Arizona

STEPS TOWARD MEASUREMENT OF ¹³⁵Cs WITH AMS AT CIAE

Xinyi Yin* • Ming He • Kejun Dong • Yijun Pang • Shaoyong Wu • Shan Jiang[†]

China Institute of Atomic Energy, Beijing 102413, People's Republic of China.

ABSTRACT. ¹³⁵Cs with a half-life of $T_{1/2} = 2.3 \times 10^6$ yr is an important nuclide in studies of the dispersal of nuclear material in the environment. Preliminary measurements using ¹³³Cs as a proxy for the long-lived ¹³⁵Cs, with accelerator mass spectrometry (AMS) have been developed at the China Institute of Atomic Energy (CIAE). In order to improve the sensitivity of ¹³⁵Cs AMS measurement, a new conducting material, Fe powder, was used in the experiment. According to the present results, the background level that can be obtained with blanks was ¹³⁵Ba/Cs~1.83 × 10⁻¹⁰ with the CIAE-AMS system. These measurements showed that the Fe was an inferior conducting medium because the interference of ¹³⁵Ba in Fe powder is 10 times higher than that in Ag powder.

KEYWORDS: ¹³⁵Cs, AMS, conducting material, background, measurement.

INTRODUCTION

The discharge of nuclear fuel material into the environment from a nuclear power plant requires a rapid and sensitive analysis method for detecting fission products in samples taken from the environment. The nuclide ¹³⁵Cs with a half-life of 2.3×10^6 yr is interesting because it plays an important role in many research fields, especially in nuclear environmental studies, due to its high fission yield and long half-life. In addition to formation by direct fission, it is produced as a daughter nuclide in the decays of ¹³⁵Xe and ¹³⁵I, so the concentration of ¹³⁵Cs increases during the operation of a reactor. Therefore, ¹³⁵Cs may be the appropriate tracer for the leakage of nuclear material from a reactor. However, ¹³⁵Cs is a pure β -decay nucleus and the lack of γ emission makes its detection by radiometric methods very difficult. Traditional mass spectrometry methods such as thermal ionization mass spectrometry (TIMS) (Lee et al. 1993) and inductively coupled plasma mass spectrometry (ICP-MS) (Zheng et al. 2014; Liezers et al. 2009) have been used for ¹³⁵Cs measurement. However, the interferences of stable molecular and atomic isobar ions strongly limit the detection sensitivity. Accelerator mass spectrometry (AMS) may be a promising method to detect ¹³⁵Cs (Eliades et al. 2013; Lachner et al. 2015).

In this paper, we report the experimental results for different samples of Cs, which were measured with the HI-13 tandem AMS facility at the China Institute of Atomic Energy (CIAE). In order to improve the sensitivity, a new conducting medium, Fe powder, was used for the first time in this experiment.

EXPERIMENT AND RESULTS

Ion Extraction

To improve detection sensitivity, interference should be removed or decreased. In AMS measurement, isobaric interferences can be removed or decreased by using suitable negative ions. ¹³⁵Ba is the main interference in the measurement of ¹³⁵Cs with AMS, however, it is very difficult to differentiate between ¹³⁵Cs and ¹³⁵Ba by using the Δ E-E method. For the purpose of finding the most favorable ions for ¹³⁵Cs measurements, which should maximize Cs ion currents and minimize currents of Ba, the beam current of stable isotope ¹³³Cs, such as Cs⁻, CsF⁻, CsF⁻₂, and CsF⁻₃ were tested for ¹³⁵Cs AMS measurement. It should be noted that CsF⁻₂ was used for ¹³⁵Cs AMS measurement in the previous study by using PbF₂ as conducting material (Eliades et al. 2013;

^{*}Corresponding author. Email: zyxy_mm@163.com.

[†]Corresponding author. Email: jiangs@ciae.ac.cn.

Sample	Mass proportion	Extracted ion	Beam current value before experiment (nA)	Beam current value after experiment (nA)	Measuring time (min)
$\overline{\text{CsNO}_3 + \text{Ag}}$	1:2	Cs	4.0	3.0	100
$CsNO_3 + Fe$	1:2	Cs	0.5	0.5	10
Ag		Cs ⁻	0.2	0.3	10
Fe		Cs ⁻	0.3	0.2	20

Table 1 Ion beam current of Cs⁻ from different samples.

MacDonald et al. 2015a, 2015b; Zhao et al. 2016). Since the usual Cs sputtering would obscure the 135 Cs/ 133 Cs ratio of a sample, Rb sputtering was successfully applied and tested also for various other typical AMS elements. Cs⁻ currents of several 10 nA were extracted over hours from milligram amounts of Cs₂SO₄ material by Lachner et al. (2015). However, Cs⁻ has been selected as the suitable choice for the present 135 Cs AMS measurements based on our previous experimental results. The details of experiment can be found in Yin et al. (2015). The beam current was measured before and after the measurement. The ion beam current was relatively stable and long-lasting during the measurement time, as shown in Table 1.

Background Measurements

To measure the ¹³⁵Ba background level, CsNO₃ with different conducting media were measured with HI-13 tandem AMS system by extracting Cs⁻ ions. The ¹³⁵Ba background from the different conducting media, Fe powder (99.9%), and Ag powder (99.9%) were also measured by AMS. The system comprises an injection system with a 90° spherical electrostatic deflector in front of a double-focusing 112° injection magnet with mass resolution, $M/\Delta M = 400$ to 800 (He et al. 2010). A high terminal voltage, up to 13 MV, is produced in the middle of the acceleration tube. The high-energy beam analysis system consists of a 90° double-focusing magnet followed by a switching magnet which transports the beam to the AMS beam line with a 15° electrostatic deflector and the surface barrier detector (SBD).

Different sample mixtures (as shown in Tables 1 and 2) were pressed into the standard NEC aluminum target holder. Cs⁻ ion was used for analysis extracted from the commercial CsNO₃ (99.99%) +Ag, CsNO₃ (99.99%) +Fe, Ag, and Fe samples. The ¹³³Cs⁻ ions were selected by the injection magnet, a terminal voltage of 7.6 MV was used for acceleration and the 8⁺ charge state was selected for Cs ions. Transmission parameters of all equipment were set for ¹³³Cs. Then the beam current of ¹³³Cs⁸⁺ was measured by the AMS Faraday cup. It should be noted that the previous measurement for CsNO₃+Ag sample (Yin et al. 2015) had been made using the 10⁺ charge state at 7.6 MV. Then the ¹³⁵Cs⁻ ions were selected by changing the injection magnet. Keeping other transmission parameters unchanged, only adjust the terminal voltage to 7.7 MV and change the electrostatic deflector voltage to V₁₃₃ × 135/133. The counts of ¹³⁵Ba were determined from the SBD detector, while the number of ¹³³Cs ions was calculated from the beam current (nA) of ¹³³Cs^{q+} in the AMS Faraday cup. Measuring time is 300 sec for each sample. The ¹³⁵Ba/¹³³Cs ratio can be calculated by the formula below:

$$R = \frac{\frac{N}{t}}{\frac{I}{q} \times n} \tag{1}$$

where N is the ¹³⁵Ba total counts, t is the measuring time, I is the beam current intensity (nA) in the AMS Faraday cup, q is the charge state of the ions, and $n = 6.25 \times 10^9$, the particle counts

per second for 1 nA beam current. The background of ¹³⁵Ba from different samples is shown in Table 2.

DISCUSSION

According to Middleton et al. (1989), the electron affinity of Ba is negative. This means that there should be no background of ¹³⁵Ba in the case of extracting Cs⁻ from the ion source. However, our results show that the ¹³⁵Ba background still can be detected in the case of extracting Cs⁻ although it is low. The representative energy spectrum of CsNO₃+Ag and CsNO₃+Fe samples detected with the SBD detector is shown in Figure 1. The two peaks of ¹¹⁸Sn and ¹³⁵Ba are clearly visible. This implies that the Ba can be extracted as the form of Ba⁻ and the electron affinity of Ba should be larger than 0. The new data of electron affinity of Ba is about 0.14 eV (Petrunin et al. 1995), and our results support this data. Possible interfering ions were analyzed for ¹³⁵Cs AMS measurement using our own computer programs, and the results are shown in Table 3. The analysis results show that the rigidity of ¹¹⁸Sn⁷⁺ is very similar to that of ¹³⁵Cs⁸⁺. So ¹¹⁸Sn can be detected, but separated by the different energy (Figure 1).

Table 2Background level of different samples.

Sample	Mass proportion	Extracted ion	Terminal voltage VT (MV)	Charge state	Count rate ($M = 135$)	¹³⁵ Ba/Cs
$\overline{\text{CsNO}_3 + \text{Ag}}$	1:2	Cs	7.6	8+	0.130 ± 0.013	$(1.8 \pm 0.2) \times 10^{-10}$
$CsNO_3 + Fe$	1:2	Cs ⁻	7.6	8+	0.170 ± 0.010	$(1.4 \pm 0.1) \times 10^{-9}$
Ag		Cs ⁻	7.6	8+	0.007 ± 0.005	$(1.5 \pm 1.0) \times 10^{-10}$
Fe		Cs ⁻	7.6	8+	0.060 ± 0.012	$(1.3\pm0.3)\times10^{-9}$

Figure 1 Representative energy spectra of C_{sNO_3} + Ag and C_{sNO_3} + Fe samples.

М	q	E (MeV)	ME/q ²	E/q
67	4	34.28685	143.5762	8.571713
84	5	42.84388	143.9555	8.568777
101	6	51.40092	144.2082	8.566821
118	7	59.95796	144.3886	8.565423
135	8	68.51500	144.5238	8.564375

Table 3 Possible interfering ions for ¹³⁵Cs AMS measurement.

The importance of the conducting medium in AMS measurement cannot be neglected. In our previous experiments (Yin et al. 2015), Ag powder was used as the conducting medium. In order to affirm whether the Ag powder is the appropriate conducting medium or not, a different conducting medium, Fe powder, was used in the present experiment. As shown in Table 1, for the sample of CsNO₃ with Ag, the beam current of Cs⁻ is little higher than that from the CsNO₃ with Fe. For the sample of Ag, the beam current of Cs⁻ is almost equal to that of Fe. It can be seen from Table 2 that the background of ¹³⁵Ba from CsNO₃ mixed with Ag is ~10 times lower than that from CsNO₃ mixed with Fe. Furthermore, the background of ¹³⁵Ba from sample Ag is also ~10 times lower than that from sample Fe. Therefore, the results indicate that the conducting medium Ag powder is better than Fe powder in our AMS measurement, as shown in Tables 1 and 2.

In addition, the sensitivity of 1.8×10^{-10} (¹³⁵Ba/Cs) can be obtained from the present experiment, which is slightly worse than that of previous result (Yin et al. 2015). The likely reason for this is that, in case of the Cs⁻ ion with charge state 10^+ , an interference peak from the scattering of some ions with similar energy cannot be completely separated from the peak of ¹³⁵Ba.

SUMMARY

The AMS measurement method of ¹³⁵Cs has been studied at CIAE. The new conducting medium Fe powder was used for the first time in this experiment. For the sample of CsNO₃ with Ag, the beam current of Cs⁻ is slightly higher than that of CsNO₃ with Fe. The background of ¹³⁵Ba from the sample mixed with Ag is ~10 times lower than that from the sample mixed with Fe. The results indicate that the conducting medium Ag powder is better than Fe powder in AMS measurement for ¹³⁵Cs. The ¹³⁵Ba background level is about 1.8×10^{-10} (¹³⁵Ba/Cs). However, more investigations in the future, such as the sample of Cs₂SO₄, may be useful to improve the sensitivity of AMS measurement. Additional measurements are needed in order to deal with the problem of cross contamination. We note that some recent works (MacDonald et al. 2015a, 2015b; Zhao et al. 2016) have carried out detailed experiments on this issue.

ACKNOWLEDGMENTS

The authors would like to thank the crew of the HI-13 tandem accelerator at the China Institute of Atomic Energy for steady operation of the accelerator. This work was supported by the National Science Foundation of China (NSFC) under Grant No. 11205250.

REFERENCES

- Eliades J, Zhao XL, Litherland AE, Kieser WE. 2013. On-line ion chemistry for the AMS analysis of ⁹⁰Sr and ^{135,137}Cs. *Nuclear Instruments and Methods in Physics Research B* 294: 361–3.
- He M, Ruan XD, SL WU, Wang W, Li CL, Shen HT, Wang XG, Lu LY, Wu SY, He GZ, Jiang S. 2010. ⁴¹Ca analysis using CaF⁻ in CIAE-AMS system. *Nuclear Instruments and Methods in Physics Research B* 268(7–8):804–6.

- Lachner J, Kasberger M, Martschini M, Priller A, Steier P, Golser R. 2015. Developments towards detection of ¹³⁵Cs at VERA. *Nuclear Instruments* and Methods in Physics Research B 361:440–4.
- Lee T, Ku TL, Lu HL, Chen JC. 1993. First detection of fallout ¹³⁵Cs and potential applications of ¹³⁷Cs/¹³⁵Cs ratios. *Geochimica et Cosmochimica Acta (Letters)* 57:3493–7.
- Liezers M, Farmer OT III, Thomas ML. 2009. Low level detection of ¹³⁵Cs and ¹³⁷Cs in environmental samples by ICP-MS. *Journal of Radioanalytical and Nuclear Chemistry* 282:309–13.
- MacDonald CM, Charles CRJ, Zhao XL, Kieser WE, Cornett RJ, Litherland AE. 2015a. Determination of ¹³⁵Cs by accelerator mass spectrometry. *Nuclear Instruments and Methods in Physics Research B* 361:554–8.
- MacDonald C, Charles CRJ, Cornett RJ, Zhao XL, Kieser WE, Litherland AE. 2015b. Detection of ¹³⁵Cs by accelerator mass spectrometry. *Rapid Communications in Mass Spectrometry* 29:115–8.
- Middleton R. 1989. *A Negative-Ion Cookbook.* Philadelphia: Department of Physics, University of Pennsylvania.

- Petrunin VV, Voldstad JD, Balling P, Kristensen P, Andersen T, Haugen HK. 1995. Resonant ionization spectroscopy of Ba⁻: metastable and stable ions. *Physical Review Letters* 75(10): 1911–4.
- Yin XY, He M, Dong KJ, Dou L, Lan XX, Pang FF, Wu SY, Jiang S. 2015. Preliminary measurements of ¹³⁵Cs with AMS. Nuclear Instruments and Methods in Physics Research B 361:488–90.
- Zhao XL, Charles CRJ, Cornett RJ, Kieser WE, MacDonald C, Kazi Z, St-Jean N. 2016. An exploratory study of recycled sputtering and CsF²₂ current enhancement for AMS. *Nuclear Instruments and Methods in Physics Research B* 366: 96–103.
- Zheng J, Bu WT, Tagami K, Shikamori Y, Nakano K, Uchida S, Ishii N. 2014. Determination of ¹³⁵Cs and ¹³⁵Cs/¹³⁷Cs atomic ratio in environmental samples by combining AMP selective Cs adsorption and ion-exchange chromatographic separation to triple quadrupole inductively coupled plasma mass spectrometry. *Analytical Chemistry* 86(14): 7103–10.