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A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES

RODDOWNEYANDNOAMGREENBERG

Abstract. We introduce a newhierarchy of computably enumerable degrees. This hierarchy
is based on computable ordinal notations measuring complexity of approximation of Δ02
functions. The hierarchy unifies and classifies the combinatorics of a number of diverse
constructions in computability theory. It does so along the lines of the high degrees (Martin)
and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives
a number of natural definability results in the c.e. degrees, including a definable antichain.

§1. Introduction. Ever since Post’s original article [66], two recurrent
themes in computability theory have been understanding the dynamic nature
of constructions, and definability in the structures of computability theory
such as the computably enumerable sets or degrees. Beautiful examples of
this phenomenon in the c.e. sets are the realisation of Post’s programme
by Harrington and Soare [48], giving a lattice-theoretic definable property
guaranteeing both incomputability and incompleteness, and the definability
of the double jump classes for c.e. sets of Cholak and Harrington [21].
Thework reported here can be seen as contributing to these areas. The goal
of this research announcement is to report on the current results of a program
introduced by the authors and some co-authors, that seeks to understand
the relationship between dynamic properties of sets and functions and their
algorithmic complexity, and results in instances of natural definability in the
c.e. degrees.
Much of this announcement will report on the authors’ new monograph
[27]. In that monograph, along with the companion articles [30] and [28], we
introduce a new hierarchy of computably enumerable (c.e.) degrees based
on the complexity of approximations of functions in these degrees.
The reader might well ask why we need yet another hierarchy in com-
putability theory. In this announcement, we discuss three aspects of this
work, which show the importance of the new hierarchy for answering old
questions as well as raising interesting new ones.
(i) A new methodology for classifying and unifying the combinatorics
of a number of constructions from the literature.

(ii) Newnatural definability results in the c.e. degrees. The classes defined
are subclasses of the low2 degrees and hence are not covered by the
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current metatheorems of Nies, Shore, and Slaman [65]. Moreover
they are amongst the very few natural definability results (in the
sense of [68]) in the c.e. Turing degrees.

(iii) The introduction of a number of construction techniques which are
injury-free and highly nonuniform. These would seem to have wider
applications.

It is quite rare in computability theory to find a single class of degrees
which capture precisely the underlying dynamics of a wide class of appar-
ently similar constructions. A good example of this phenomenon is work
pioneered by Martin [60] who identified the high c.e. degrees as the degrees
of dense simple, maximal, hyperhypersimple and other similar kinds of c.e.
sets. Another example would be the promptly simple degrees, investigated
by Ambos-Spies, Jockusch, Shore, and Soare [5]. This class can be charac-
terised in terms of both cupping and capping in the c.e. degrees. A more
recent example of current great interest is the class of K-trivial sets (intro-
duced by Solovay; seeDowney,Hirschfeldt, Nies and Stephan [32], andNies
[63, 64]), which are known to coincide with many other “lowness” classes.
The common theme here is to identify properties of c.e. sets or of functions
in a c.e. degree, which determine their strength as oracles in computations.
In these examples, the properties involve the rate of growth of functions in
a degree (high degrees are the ones that contain dominating functions); the
speed of the approximation of a function (sets of promptly simple degree are
the ones that have rapid approximations, in that within a computable bound
of time they prove that they are not computable); and the overall weight
of an approximation (sets of K-trivial degree are those that have approx-
imations with finite weight on incorrect initial segments, as formalised by
the “main lemma” [64, 5.5.1]). A particularly fruitful class is that of the
array computable degrees [34, 35]; see Theorem 4.1 below for a partial list
of equivalent characterisations of this class following this theme. Our new
hierarchy is a generalisation of this notion.
There are several equivalent definitions of array computable degrees, the
most general of which uses domination properties. Within the c.e. degrees,
one of the most useful characterisations concerns approximability of func-
tions in the degree. Shoenfield’s limit lemma says that every Δ02 function has a
computable approximation. Intuitively, the more complicated the function,
the more changes the approximation needs to make on a given input. Under
this scheme, the c.e. sets are the simplest (noncomputable) Δ02 sets; they have
a computable enumeration, which is an approximation which starts with the
empty set and is allowed to change its mind about membership in the set at
most once. Moving up we get more complicated classes, such as the d.c.e.
degrees and more generally the n-c.e. degrees. Beyond that, an important
class of functions is those that have a computable bound on the number
of mind changes of an approximation; these are precisely those functions
which are weak-truth-table reducible to the halting problem ∅′.
The problem with this classification of complexity is that it does not align
at all with the Turing degrees: a function which has a simple approximation
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can compute a function with only complicated ones. Indeed the failure is
complete: a c.e. set, namely ∅′, computes all Δ02 functions. This is solved
by combining the two notions together: we say that a c.e. degree is weak
if all the functions in that degree have simple approximations. In the first
example, a c.e. degree is array computable if and only if every function in
that degree has an approximation with at most n mind changes on the nth

input.
We generalise this notion by using a hierarchy defined by Ershov [42–44].
His idea is that a witness for the approximation converging is a simultaneous
“counting down” some ordinal. The longer the ordinal, the more room the
approximation has to change its mind about the value of the function being
approximated; well-foundedness implies that the number of changes will be
finite. If a Δ02 function has an approximation with an associated counting
down an ordinal α, we call it α-computably approximable, α-c.a. for short.1

Associating mind changes with a counting down � is the same as imposing
a computable bound on the number of mind changes, and so the �-c.a.
functions are precisely those which are weak-truth-table reducible to ∅′.
Finally, we call a c.e. degree totally α-c.a. if every function in that degree
is α-c.a. This gives us a transfinite hierarchy of complexity within the low2
c.e. degrees. We then identify new levels of this hierarchy by considering
uniform versions (the first uniform level is the array computable degrees),
and new limit levels, the totally <α-c.a. degrees. We identify which levels of
the hierarchy are proper (see for example Theorem 3.2 below) and investi-
gate degree-theoretic properties such as maximal elements (for example,
Theorem 7.2). We also discuss the choice of canonical computable
presentations of the ordinal α.
It turns out that two levels of this hierarchy, namely totally �-c.a. degrees
and totally <��-c.a. degrees, capture the dynamics of a number of con-
structions already present in the literature and widely used. The first is a
nonuniform version of array computability, and similarly to that class, we
obtain equivalent characterisations of the totally �-c.a. degrees using algo-
rithmic randomness, strong reducibilities, or Cantor–Bendixson rank (see
for example Theorems 4.3, 4.5, and 6.2). A particular area is that of embed-
dings of finite lattices into the c.e. degrees. Here we characterise the totally
<��-c.a. degrees as those which do not bound a copy of the nondistribu-
tive 1-3-1 lattice. Together with Theorem 4.5, this gives a solution for the
long-standing quest of finding complexity-theoretic characterisations of the
classes of degrees below which we can find certain lattice-theoretic struc-
tures, such as the 1-3-1 lattice or critical triples, which we discuss below. Our
hierarchy theorems then show that some of these classes do not coincide
(Theorems 5.2 and 5.4). These results also show that these two levels of our
hierarchy are definable in the structure of the c.e. degrees (as a partial order),
indeed naturally so.

1In the literature this has been called both “α-c.e.” and “α-computable”. The first is
imprecise, as we discuss in [27].
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§2. α-computably approximable functions. As discussed, Shoenfield’s
Limit Lemma states that the Δ02 functions are those functions g that have a
computable approximation: a uniformly computable sequence 〈gs〉 of func-
tions which converge to g—in the discrete topology, so this means that for
all n, gs(n) = g(n) for all but finitely many s . As mentioned, the intuition
is that simpler functions have low bounds on the “mind-change” function
#{s : gs+1(x) �= gs(x)}.
Ershov [42–44] developed and refined this idea and created a transfinite
hierarchy of complexity. Fixing an ordinalα, associated with the approxima-
tion 〈gs〉we have a computable sequence 〈os〉 of functions os : � → α; os(n)
can be thought of as the “number of times” we are still allowed to change
our mind; the requirements are that 〈os(n)〉 is nonincreasing in s , and that
os+1(n) < os(n) if gs+1(n) �= gs(n). Such an approximation is called an
α-computable approximation, and a function which has an α-computable
approximation we call α-computably approximable (or α-c.a.).
As mentioned, a mind-change function with a computable bound is the
same as an �-computable approximation. In general, the greater the ordi-
nal α, the more opportunities we have to change our mind, and therefore
the more complicated the limit function g can be. One way to get an idea for
the meaning of this notion is to iterate: an �2-computable approximation
is one for which the mind-change function has an �-c.a. bound. Namely, a
value os(n) = �k +mk means that currently we allow ourselves mk further
mind-changes; but when we run out, at some stage t > s , we can choose a
new numbermk−1 (as large as we like) and decare ot(n) = � ·(k−1)+mk−1,
giving usmk−1 further opportunities to change our mind. In short, this is an
approximation for which we have a computable bound on how many times
we are allowed to change our mind about how many times we are allowed
to change our mind. Inductively this works for �3, �4, . . . (the behaviour
beyond �� is different).
We remark that in [27] we also point out the relationship of these notions
with bounded versions of the jump, as articulated by Coles, Downey, and
LaForte [22], and Anderson and Csima [8]. To wit, if Φ̂e for e ∈ � is an
enumeration of all partial wtt-procedures, we may define

A† = {〈x, y〉 | Φ̂Ax (y) ↓}.
Notice that ∅′ ≡m ∅†, but if Q is Δ02, then Q† is also Δ02. Then, for example,
in the same way that X being �-c.a. is equivalent to X �wtt ∅′, Y ∈ 2�
being �2-c.a. is equivalent to Y �wtt ∅††. This relationship is extended in the
obvious way to the whole hierarchy.

2.1. Canonical ordinals. The definition above of α-computable approxi-
mations requires the functions os to be uniformly computable. This makes
sense only if α is presented in a computable way: as a computable well-
ordering of �, or more specially, given by an ordinal notation in Kleene’s
complete Π11-setO (more precisely, by the restriction of the partial ordering
�O to the notations below a given notation). An ordinal notation is essen-
tially a computable copy of an ordinal for which the successor function and
the set of limit ordinals are also computable.
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But here we run into the problem of picking canonical representatives;
not all computable well-orderings of some order-type α, nor all notations,
are computably isomorphic. If we defined a function to be α-c.a. if it is
a-c.a. for some notation a for α, then the hierarchy becomes trivial; Ershov
showed that every Δ02 function is �

2-c.a. according to this definition. The
point is that the complexity of the approximation can be coded by the well-
ordering of �. This resembles the break-down of Spector’s theorem [71] for
strong reducibilities: if a and a′ are two notations for the same ordinal α,
then Ha and Ha′ , the iterations of the Turing jump along these notations,
are Turing equivalent; this allows us to define the degree 0(α). However
Moschovakis [62] showed that Ha andHa′ may fail to be m-equivalent.
Ershov and his school often solve this problem by fixing a Π11 path
through O; but there is nothing canonical about such a choice. For our
purposes ordinals below ε0 more than suffice. For such ordinals, we can put
an extra condition on computable copies which makes the resulting subclass
computably unique. The problem above with �2 was with copies in which
we cannot tell in which copy of � a given element is. That is, given some
� < �2 wewant to know them, n such that � = �n+m. In general, below ε0
what we need is an effective Cantor normal form. For ordinals α < ε0, the
exponents α1, . . . , αn appearing in the Cantor normal form

α = �α1m1 + · · · + �αnmn
of α are strictly less than α, and so the function from an �-copy of α
giving the Cantor normal form (with the exponents again being elements
of our copy) is well-defined, and can be asked to be computable. Note that
from this normal formwe can easily identify limit ordinals and successors, so
each canonical ordinal is necessarily an ordinal notation. Any two canonical
copies of an ordinal α < ε0 are computably isomorphic, and so the resulting
notion of an α-computable approximation, and hence of α-c.a. functions
and sets, is well-defined.2

§3. A degree hierarchy. Equipped with the robust notion of α-c.a.
functions, we now turn to Turing degrees.

Definition 3.1. Let α < ε0. A Turing degree d is totally α-c.a. if every
function g ∈ d is α-c.a.
Note that if d is totally α-c.a. then in fact every f �T d is α-c.a.; taking
any g ∈ d we notice that f is α-c.a. if and only if f ⊕ g is α-c.a. We
remark that the case α = � is of particular interest, and the definition of
totally �-c.a. degrees was first suggested by Joseph Miller. Throughout this
announcement, unless otherwise mentioned, we concentrate on c.e. degrees.

2This approach can certainly be extended beyond ε0 to ordinals such as Γ0, with more
stringent conditions than having computable Cantor normal form. For example, below the
first fixed point of the ε function, we also need to effectively identify � < α such that ε� is a
part of the Cantor normal form of α. It is not clear exactly how far this can be carried out.
In any case, the classes that we actually use are all well below ε0.

https://doi.org/10.1017/bsl.2017.41 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.41


58 ROD DOWNEYANDNOAMGREENBERG

If α < � < ε0 then there is a �-c.a. function which is not α-c.a. However,
someof these differences collapse inour newhierarchy.For example, suppose
that d is totally (α · 2)-c.a. and let f ∈ d. Let g(n) = f�n. Since g �T f we
can find an (α · 2)-computable approximation (gs , os) of g. Now either for
infinitely many n, o�(n) = lims os(n) is smaller than α; by waiting, we can
use this to give an α-c.a. approximation of f. In the other case, ignoring
finitely many inputs, we live entirely in the second copy of α inside α · 2,
and again we can translate that to an α-computable approximation of f.
Thus, every totally (α · 2)-c.a. degree is actually totally α-c.a. Note the
nonuniformity in this argument; it is necessary.
Recall that an ordinal is closed under (ordinal) addition if and only if it is
a power of �.

Theorem 3.2 ([27]). Let α < ε0. There is a totally α-c.a. degree that is not
totally �-c.a. for any � < α if and only if α is a power of �.

We thus get a proper hierarchy of classes of degrees, indexed by the powers
of � below ε0.

Sketch of proof. In the easy direction, if α is not a power of � then
there is some � such that α ∈ (��,��+1). The nonuniform argument above
generalises to show that any totally α-c.a. degree is also totally �� -c.a.
For the main direction, we will sketch the priority argument. Assume
that α is closed under addition. We enumerate a c.e. set D whose Turing
degree is totally α-c.a., but not totally �-c.a. for any � < α. To witness the
last part, we enumerate a Turing functional Λ and ensure that Λ(D) is not
�-c.a. for any � < α. For � < α, we can effectively enumerate all �-c.a.
functions in a list 〈fe,�〉 together with (� + 1)-computable approximations〈
f
e,�
s , o

e,�
s

〉
; and then we aim to meet the requirements:

Pe,� : Λ(D) �= fe,� .
Qe : If Φe(D) is total, then it is α-c.a.

It turns out that the simplest construction one would hope works, does
work. The strategy for meeting a Pe,� requirement is to pick a witness p
(a “follower”) and change the value of Λ(D,p) whenever we observe that
f
e,�
s (p) = Λs(Ds, p). This is of course done by enumerating the use �s(p) of
the old computation into Ds+1. This requirement is guaranteed to succeed
and only act during finitely many stages; this is because

〈
fe,�s (p)

〉
must

stabilise.
The requirement Qe follows Φe(D) and at various stages “certifies”
observed computations Φe,s(Ds, x). Fix some x and let s0 be the least
stage at which a computation Φe(D, x) is certified. Of course only finitely
many weaker-priority positive requirements Pd,� have chosen followers by
stage s0. All other weaker-priority positive requirements will be prohibited
from injuring any certified Φe(D, x) computation in the future. Now we
know that oe,�s0 (p) � � for each “old” Pd,� . This means that the “number of
times” that Pd,� will ever act is bounded by �. The fact that α is closed under
addition allows us to tally up all the ordinals for “old” Pd,� . Since we ensure
that any injury to a certified computation indeed comes from the action of
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an old Pd,� , this allows us to give a bound (strictly below α) on the “number
of times” Φe(D, x) will be certified.
It is not actually easy to seewhyweneedan infinite-injury construction; the
reason is an intricate interplay between two negative requirements affecting
a third positive requirement. However once we organise everything on a
tree of strategies in the usual way, this problem goes away. A node working
for Qe will have Π2/Σ2 outcomes based on the totality of Φe(D). One
thing to note is that we need to make Λ(D) total; this means that when
a node working for Pd,� enumerates �s(p) into D, we need to immediately
redefine a new (presumably large) value �s+1(p). This is done before recovery
is observed for the Φe(D, x) computation, and so the same node might
indeed injure Φe(D, x) multiple times. The ordinal computation takes this
into account. �
3.1. Refinements of the hierarchy. Definition 3.1 is not the most general
we could make.

Definition 3.3. Let α < ε0. A Turing degree d is totally <α-c.a. if every
function g ∈ d is �-c.a. for some � < α.

The nonuniform collapsing argument above can be used to show that
the totally < ��+1-c.a. degrees are precisely the totally �� -c.a. degrees, so
we get nothing new in this case. So the only interesting cases are limits of
powers of�. The construction proving Theorem 3.2, as it constructs a single
function Λ(D), shows that for any limit � there is a degree which is totally
�� -c.a. but not totally <�� -c.a. At limit powers of � we do indeed get
something new:

Theorem 3.4 ([27]). Let α < ε0. There is a totally <α-c.a. degree that is
not totally �-c.a. for any � < α if and only if α is a limit of powers of �.

The first new level, that of the totally <��-c.a. degrees, is the main class
investigated in [27]. The proof of Theorem 3.4 is an elaboration on the proof
of Theorem 3.2. We cannot uniformly in � < α define some f �T D which
is not �-c.a. (or we would string them together to get a function which is
not �-c.a. for any � < α). In the construction, the problem arises when a
requirementQe tries to give Φe(D) a �-computable approximation for some
� < α (which �, to be determined); but below � are requirements Pd,� for
arbitrarily large � < α. To resolve this, a “mother node” � attached to
some � < α (a power of �) starts a functional Λ� with the aim of making
Λ�(D) not �-c.a. Only nodes working for Pd,� whose mother node lies
above the node 	 working for Qe are allowed to injure the computations
certified by 	; the ordinal bound on the injuries to 	 is given by adding the
finitely many mother nodes above 	; here we use the fact that α is a limit
of powers of �. The nodes Pd,� whose mother node � lie below 	 will not
injure computations certified by 	 because only � is responsible for making
Λ�(D) total; � is only accessible during 	-expansionary stages at which we
have seen the 	-computations recover, and so new Λ�(D) uses can be always
set to be larger than the uses of the 	-computations.
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Yet another refinement of our hierarchy is motivated by the class of array
computable degrees. Aswe see below in Section 4, our new definability results
will allow us to tie a number of natural constructions together in new degree
classes in the same way as the array noncomputable degrees did in Downey,
Jockusch, and Stob [34, 35]. A c.e. degree d is array computable if and
only if for some (equivalently, every) order function h,3 every f ∈ d has a
computable approximation whose mind-change function is bounded by h.
In other words, this is like being totally �-c.a., but with a uniform bound
on the mind-change function.
This can be generalised to ordinals beyond � as follows. Let α < ε0. An
α-order function is a computable function h : � → α which is nondecreasing
and unbounded in α. For such a function h, an h-computable approximation
is an α-computable approximation 〈fs, os〉 for which o0(n) < h(n) for all n;
a function is h-c.a. if it has an h-computable approximation. We then define
a degree d to be uniformly totallyα-c.a. if for some (equivalently, all)α-order
function(s) h, every f ∈ d is h-c.a. Thus a c.e. degree is array computable if
and only if it is uniformly totally �-c.a.
Every totally �� -c.a. degree is uniformly totally ��+1-c.a., and so the
new, uniform levels of our hierarchy slot in between the previous levels;
indeed a theorem akin to Theorems 3.2 and 3.4 states that if α is a power
of � then there are totally α-c.a. degrees which are not uniformly so, and
uniformly totally α-c.a. degrees which are not totally �-c.a. for any � < α.
(In particular, there are c.e. degrees which are totally �-c.a. but not array
computable.) And if α is a limit of powers of � then every totally <α-c.a.
degree is uniformly totally α-c.a., and this implication is proper.

3.2. Domination. The original definition in [34] of array computability
was restricted to c.e. degrees (and in that article was shown to be equivalent
to being uniformly totally �-c.a.). This definition was extended in [35] to
nonc.e. degrees but using domination instead. Indeed, a c.e. degree d is array
computable if and only if some �-c.a. function dominates every function
in d; and this was used as a general definition.
Such a characterisation holds for all levels of our hierarchy. Indeed, for
all α � ε0, a c.e. degree d is. . .
(1) uniformly totally α-c.a. if and only if it is uniformly α-c.a. domi-
nated: some α-c.a. function dominates all functions in d (Downey,
Greenberg, and McInerney, see [27]);

(2) totally α-c.a. if and only if it is α-c.a. dominated: every function in d is
dominated by some α-c.a. function (Diamondstone, Greenberg, and
Turetsky [25]);

(3) totally <α-c.a. if and only if it is <α-c.a. dominated: for every f ∈ d
there is some � < α and a �-c.a. function dominating f.

3.3. Lowness. The definition of array computability in terms of domi-
nation shows that it is a strengthening of being low2: a degree d is low2
if and only if some Δ02 function dominates all functions in d. In fact, the

3A computable, nondecreasing and unbounded function.
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ability to list all α-c.a. functions effectively shows that for any α < ε0, every
totally α-c.a. degree is low2. In other words, our transfinite hierarchy is a
(nonexhaustive) refinement of the low2 degrees. As we shall later see, this
shows that our definability results cannot be achieved using the Nies–Shore–
Slaman metatheorems, as the latter concern classes that are invariant under
the double jump.
We remark that being low2 is often used in constructions involving a
given a totally α-c.a. degree, using a Δ03 decision procedure about totality of
functions computable from that degree. Knowing that a degree d is totally
α-c.a. gives us further information; once we have guessed that Γ(D) is total
(for some D ∈ d), we can guess an α-computable approximation for Γ(D).
A somewhat stranger phenomenon occurs in constructions of totally α-c.a.
degrees: often one first proves that the constructed set is low2, then this fact
is used to help show that the other requirements are met. These techniques
come into play, for example, when investigatingmaximality in our hierarchy;
see Section 7.
It is tempting to guess that all members of this hierarchy are low. For
example if A is superlow (meaning that A′ ≡tt ∅′), then A is certainly
array computable and hence totally �-c.a. Similarly, if A′ ≡tt ∅††, then A
is certainly totally �2-c.a. However, even the array noncomputable degrees
contain nonlow c.e. sets (Downey, Jockusch, and Stob [34]), and as is shown
in [27], all levels of the hierarchy contain low sets, but no level contains all
low c.e. sets. Thus the hierarchy does not align itself with the low sets in any
precise way.

§4. Unifying classes. As mentioned in the introduction, a main theme in
computability is the identification of a common dynamic aspect of a variety
of constructions. This is formalised asmultiple characterisations of a class of
degrees, such as the high degrees, the promptly simple degrees, the K-trivial
degrees and the array computable degrees which were discussed above.
In each case, these classes quantify the necessary amount of “permit-
ting” required to carry out constructions below such a degree. In a typical
construction, a requirement makes infinitely many requests, and we quan-
tify how often these requests are granted. Namely, we ask a c.e. oracle
to change below some specified use. High degrees correspond to almost-
always permitting; all but finitely many requests are granted. Promptly
simple degrees correspond to prompt permitting; not all requests will be
granted, but somewill be granted quickly (within a computable time bound).
Similarly, nonK-trivial degrees grant requests which globally have finite
weight. The classifications show that degrees in the class are sufficiently
complicated so that they will permit as required; but also that degrees
outside the class cannot give such permission, and so cannot bound the
kind of object being constructed. In a strong way this says that the stan-
dard construction of that kind of object is the only way to build such an
object.
As discussed, an important class that falls in this scheme is the class of
array noncomputable degrees; these are the degrees that provide “multiple
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permitting” [35]: roughly, the nth instance of a request needs to be granted n
times. Let us recall some of the results.

Theorem 4.1. A c.e. degree d is array noncomputable if and only if. . .
(1) it is the degree of a perfect thinΠ01 class (Downey, Jockusch, and Stob
[34]; Coles, Downey, Herrmann, and Jockusch [19]).

(2) it computes a separating Π01 class (the class of separators of a pair of
disjoint c.e. sets) which contains no element computing ∅′; it computes
a pair of separating classes C1 and C2 such that any X ∈ C1 and Y ∈ C2
are Turing incomparable (Downey, Jockusch, and Stob [34]).

(3) it contains a c.e. set A which infinitely often has maximal (plain)
Kolmogorov complexity: (∃∞n)C (A�n) �+ 2 log n (Kummer [52]).

(4) it does not have a strong minimal cover in the Turing degrees
(Ishmukhametov [49]).

(5) it has effective packing dimension 1 (Downey and Greenberg [29]); it
computes a degree which has effective packing dimension 1 but contains
no set of effective packing dimension 1 (Downey and Stephenson [40]).

(6) it contains two left-c.e. reals with no common upper bound in the cL-
degrees of left-c.e. reals4 (Barmpalias, Downey, and Greenberg [13]);
it contains a left-c.e. real (equivalently, a set) which is not cL-reducible
to anyML-random left-c.e. real (Barmpalias,Downey, andGreenberg
[13]).

(7) it contains a set which is not reducible to the halting problem with tiny
use (Franklin, Greenberg, Stephan, and Wu [46]).5

(8) it computes an integer-valued random sequence (Barmpalias, Downey,
and McInerney [14]).

The connection between domination properties, approximation prop-
erties, and permitting, exhibited by the array noncomputable degrees, is
naturally extended to the nontotally �-c.a. degrees. Here multiple permit-
ting is replaced by a nonuniform version: we specify during the construction,
rather than in advance, how many times we need an instance of a request to
be granted. And indeed, the class of nontotally �-c.a. degrees captures the
combinatorics of a number of constructions. We defer discussing an impor-
tant one, that of critical triples, to Section 5, as it is related to definability
results; here we discuss other results.

4.1. Algorithmic randomness. One area of interest in computability the-
ory and theoretical computer science is algorithmic randomness. This is the
programme of study which gives meaning to the notion of randomness for
individual binary sequences, both finite and infinite. Another way to look at
it is as effective measure theory.

4.1.1. Presentations of left-c.e. reals. Tworelatedbasic notions in this area
are those of an effective open set and a left-c.e. real. An open set is effective

4X is computable Lipschitz reducible to Y (X �cL Y ) if it is Turing reducible to Y with
use identity + constant.
5X is reducible to Y with tiny use if for any order function h there is a Turing reduction

of X to Y with use bounded by h.
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(or c.e.) if one can effectively enumerate all of its basic clopen subsets (in
the real line, the rational intervals it contains). This is the lightface version
of the class of open sets. This is fundamental to randomness because the
effectively null sets used to define notions of randomness areΠ02, i.e., uniform
intersections of effective open sets. A real is left-c.e. if it is the limit of an
increasing sequence of rational numbers; equivalently, if the left cut it defines
is c.e. The left-c.e. reals are those which are the Lebesgue (fair coin) measure
of effectively open sets.
In practice, effectively open subsets of Cantor space 2� are usually pre-
sented using prefix-free sets of strings: antichains in 2<�, i.e., sets which
contain no comparable strings (under the relation of extension). This comes
up in many arguments involving effectively null classes (“tests for random-
ness”); they also appear as the domains of prefix-free machines, those that
are used to define prefix-free Kolmogorov complexity, which in turn gives an
equivalent characterisation of ML-randomness, the most useful notion of
randomness in this area. Indeed, the random left-c.e. reals are those which
are the measures of the domains of universal prefix-free machines (these
numbers are known as Chaitin’s Ω numbers, and are in a strong sense all
equivalent). For more see [31, 64].
Every effectively open set is generated by a c.e. prefix-free set of strings;
by padding (at stage s instead of enumerating a string 
, enumerate all of its
extensions of length s), one can require the set to actually be computable.
Bypassing the open sets, we say that a prefix-free set A is a presentation of a
left-c.e. real r if r is the measure of the open set generated by A; directly, if r
is the weight of A:

r =
∑


∈A
2−|
|.

Thus, every left-c.e. real has a computable presentation [70]. On the other
hand, bizarre things can happen. In [36], Downey and LaForte showed that
there exist noncomputable left c.e. reals r, all of whose c.e. presentations
are computable, but that any real of promptly simple degree has a non-
computable presentation; so do all K-trivial left-c.e. reals, as was shown by
Stephan and Wu [72]. We have the following:

Theorem 4.2 ([27]). Let d be a c.e. Turing degree.
(i) If d is totally �-c.a., then every left-c.e. real r ∈ d has a presentation
A ∈ d.

(ii) If d is not totally �-c.a., then there is a left-c.e. real r �T d and a c.e.
set B <T r which computes every presentation of r.

This result extends the Stephan–Wu Theorem since everyK-trivial degree
is totally �-c.a. The proof uses an elaboration of the “drip feed” strategy
used by Downey and LaForte for their result mentioned above.

4.1.2. Finite randomness. Another manifestation of total �-c.a.-ness in
algorithmic randomness is in the notion of finite randomness. Recall that
a Martin-Löf (ML) null set is a Π02 set which is effectively null. That is,
it is the intersection

⋂
n Un of a sequence of uniformly effective open sets
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whose measure tends to 0 with a computable bound; one usually requires
�(Un) � 2−n for simplicity. The ML-random sequences are those which
are not elements of ML-null sets (in fact, there is a greatest ML-null set, a
“universal ML-test”).
In [17], Brodhead, Downey, and Ng introduce a finite version of this
notion: instead of the sets Un being effectively open, they are required to be
clopen (here we discuss randomness in Cantor space). It is important that
despite being clopen, these sets are presented as open sets: as time passes
we see more strings enumerated into Un; there will be finitely many, but we
never know for sure that the enumeration has stopped. (In the language of
computability, we say thatUn is given by a c.e. index rather than a canonical
index for a finite set.) If we further require that there is a computable bound
on the number of strings in eachUn then we obtain the notion of computably
bounded finite randomness, CB-randomness for short. (Here and below we
willfully identify a set of strings and the open set that it generates.)

Theorem 4.3 (Brodhead, Downey, Ng [17]). The following are equivalent
for a c.e. degree d:

(1) d contains a CB-random sequence.
(2) d bounds a left-c.e., CB-random real.
(3) d is not totally �-c.a.

Sketch of Proof. We first sketch the permitting direction (3) → (2). We
are given g ∈ d which is not �-c.a. We enumerate a left-c.e. real r �T d. To
make r CB-random, a typical requirement will try to move r to the right as
to avoid a given CB test 〈Un〉: whenever we see some 
 ∈ Un,s and rs ∈ [
],
we want to move rs+1 sufficiently much to the right so as to avoid being
in [
]. Note that since �(Un) � 2−n, the total increase in r required to avoid
Un is bounded by roughly 2−n.
To make r �T d we need to seek permission from g before we move r. The
rough plan is to stipulate that if gs(n) is correct and will never change again,
then r − rs � 2−n. Since d is a c.e. degree, we can approximate g so that
its modulus is computable from d, and so r will be reducible to d. (In fact,
by standard manipulations, we may assume that g is lower semicomputable,
essentially its own modulus.)
Therefore, if a randomness requirement wants to move rs+1 away from
some 
 ∈ Un,s , it needs to await permission, in the form of a change in
our approximation for gs(n). Since the CB-test 〈Un〉 comes equipped with a
computable functionf bounding the number of strings in eachUn, we know
how many permissions we need to avoid each Un. More formally, we carry
out the construction; during the verification, we show that if the requirement
is not met then we can give an �-computable approximation to g: we belive
a value gs(n) each time we make a request to move away from a string in
Un. The computable bound on the number of changes is given by f.
The direction (2) → (3) tries to reverse the argument above, but there is a
small trick. Suppose that r is left-c.e. and has totally�-c.a. degree.We define
a function f as follows: to calculate f(n), first find the least s such that rs is
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correct on the first n digits. If ϕn,s(n) converges then we let f(n) = r�ϕn(n);
otherwise, we let f(n) = r�n.
Let 〈ft〉 be an �-computable approximation of f, say with bound h on
the number of mind-changes. Let I be an infinite computable set of indices
for h. We now capture r by a CB-test. For a typical component U of this
test, choose some large n ∈ I . Find some t0 such that ϕn,t0(n)↓. We let U
consist of rt0�n, and all strings of the form ft(n), provided that they have
length h(n).
The number of strings inU is bounded by h(n)+1; and the measure ofU
is bounded by 2−n + h(n)2−h(n), which can be made small by increasing n
and h(n) as necessary. It remains to show that r ∈ U . There are two cases.
If rt0�n= r�n then we are done. Otherwise, we know that f(n) = r�h(n), and
so r�h(n)∈ U . �
As an aside, we remark that one can look at variations of CB-randomness
as follows. If one removes the requirement of the computable bound on the
number of strings in Un, then we obtain a stronger notion of randomness
which is less well-understood; it coincides with ML-randomness on the
Δ02 sequences. If one requires that Un be given as a finite set, rather than
enumerated, we get Kurtz randomness [53,74]. If one requires that not only
the number of strings in Un is computably bounded, but their length is
too, then we get the notion of granular randomness [12]. Indeed, the proof
above gives a granular test, so in the c.e. degrees, bounding CB-randoms and
granular randoms are equivalent, even though these notions of randomness
do not coincide.

4.1.3. DNC and cL reducibility. A variant of Theorem 4.1(4.1) was
proved by Ambos-Spies, Fang, Losert, Merkle, and Monath [3, 7]. A
sequence A is complex (see [51]) if C (A�n) � h(n) for some order func-
tion h. There are several equivalent formalisations, including computing
a diagonally noncomputable function with computable use on the bound
(wtt). Every ML-random sequence is complex.
Theorem 4.4 (Ambos-Spies, Fang, Losert, Merkle, and Monath). A c.e.
degree d is totally �-c.a. if and only if every left-c.e. real r ∈ d is cL-reducible
to a complex left-c.e. real.

4.2. Ranked sets. Barmpalias, Downey, and Greenberg showed that the
totally �-c.a. degrees are related to strong reducibilities and the Cantor–
Bendixson rank of reals in Π01 classes. A set is ranked if it is an element of
some countable Π01 class (and so it has a Cantor–Bendixson rank). A linear
ordering is scattered if it doesn’t contain a copy of the rationals (and so
repeating the Hausdorff derivative leaves an empty kernel at the end). A set
A ⊂ � is hyperimmune if it is infinite, and whenever 〈Fn〉 is a computable
sequence of pairwise disjoint finite sets, there is some n such that Fn ∩ A is
empty. Equivalently, the function which maps n to the nth element of A (by
magnitude) is not dominated by any computable function. Finally, a c.e. set
is hypersimple if its complement is hyperimmune.
These concepts are related: any initial segment of a scattered, computable
linear ordering is ranked [18]; If A is c.e. and noncomputable, and is the
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�-part of a computable linear ordering of order-type � + �∗, then A is
hypersimple. The linear ordering � + �∗ is the simplest example of a com-
putable scattered linear ordering which may have noncomputable proper
initial segments.

Theorem 4.5 (Barmpalias, Downey, and Greenberg [13]). The following
are equivalent for a c.e. degree d:
(1) Every set in d is wtt-reducible to a ranked set.
(2) Every set in d is wtt-reducible to a hypersimple set.
(3) Every set in d is wtt-reducible to a proper initial segment of a computable,
scattered linear ordering.

(4) d is totally �-c.a.
Moreover, the equivalence still holds if in any of (1), (2) or (3), “set” is replaced
by “c.e. set”.

This work extends work of Chisholm, Chubb, Harizanov, Hirschfeldt,
Jockusch, McNicholl, and Pingrey [18], who showed that every c.e. degree
which is not totally �-c.a. contains a c.e. set which is not wtt-reducible to
any ranked set. Independently, Afshari, Barmpalias, Cooper, and Stephan
[1] showed that if d is totally �-c.a. then every A �T d is wtt-reducible
to a hypersimple set; but Barmpalias [11] showed that not every c.e. set is
wtt-reducible to a hypersimple set.
We remark that weak truth-table reducibility is exactly the right kind of
reducibility which gives nontrivial results in this context. This is because
every nonzero c.e. Turing degree contains a hypersimple set and every c.e.
set is Turing reducible to a ranked set; but if A �tt B and B is ranked then
so is A.

4.3. Higher up. At present there are few examples of theorems whose
combinatorics involve ordinals above �. An important example involving
lattice embeddings into the c.e. degrees will be discussed in Section 5. Here
we discuss three others.

4.3.1. Indifference for Cohen genericity. Let P be a property of sets like
e.g., genericity or randomness. For sequences A,B and a set I ⊆ � of
positions, we will write A =I B to mean that for all x �∈ I , A(x) = B(x).
Following Figueira, Miller, and Nies [45], a set I is called indifferent for a
sequence A relative to P, if for all B =I A, B has property P. When P is
clear from the context, we say that I is indifferent for A.
This notion has been mainly investigated in the context of ML-
randomness. For every ML-random sequence Z there is a set indifferent
for Z (with respect to ML-randomness) [45]. Barmpalias, Lewis, and Ng
[15] used indifferent sets to allow coding in their proof that every PA degrees
is the join of two random degrees.
On the category side, recall the notion of Cohen 1-generic sequences:
these are the sequences that are sufficiently generic (with respect to Cohen
forcing) to decide all Σ01 statements. In terms of computability, these are the
sequences which either meet or avoid any Σ01 set of strings. Jockusch and
Posner [50] proved that some 1-generic has an indifferent set (with respect
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to 1-genericity); in fact, every 1-generic set has one (Figueira, Miller, and
Nies (unpublished); Day [24]).
Perhaps surprisingly, some 1-generic sets can actually compute indifferent
sets for themselves.

Theorem 4.6 (Day [24]). Let d be a c.e. degree.
(1) If d is not totally ��-c.a. then d computes a 1-generic sequence which
can compute an indifferent set for itself.

(2) If d is totally �-c.a. then d cannot compute a 1-generic sequence which
can compute an indifferent set for itself.

The reader might notice the rather large gap in the theorem above.

Question 4.7. What is the correct level for constructing c.e. degrees which
compute a 1-generic G which can compute an indifferent set for itself ?
Whilst we are mentioning indifferent sets, wemention the following which
seems very hard.

Question 4.8. Can any ML-random sequence compute an indifferent set
for itself ?

Unlike indifferent sets for 1-generics, indifferent sets for ML-randoms
have to compute ∅′ [45].
4.3.2. Variations on genericity. Michael McInerney [61] has demon-
strated other connections between genericity and our hierarchy of c.e.
degrees. He studied notions of multiple genericity related to pb-genericity
of Downey, Jockusch, and Stob [35]. In particular, he defines a notion of
�-change genericity, a strengthening of pb-genericity. Now a Turing degree
bounds a pb-generic sequence if and only if it is array noncomputable.

Theorem 4.9 (McInerney [61]). A c.e. degree bounds an �-change generic
sequence if and only if it is not totally �-c.a.
Note though that the characterisation mentioned above of bounding
pb-generics holds for all Turing degrees, not only the c.e. ones. Here we
have a partial result, using the domination properties mentioned above in
Section 3.2.

Theorem 4.10 (McInerney [61]). Let d be a Turing degree.
(1) If d is not uniformly �2-c.a. dominated then d computes an �-change
generic sequence.

(2) If d is �-c.a. dominated then it does not compute an �-change generic
sequence.

Whether (1) can be improved to �-c.a. domination remains open.

4.3.3. m-topped degrees. A c.e. degree a is called m-topped if a contains
a c.e. set A such that for all c.e. sets W �T A, W �m A. That is, a
contains a greatest c.e. m-degree (among all c.e. m-degrees in a). Clearly
∅′ is an example of such a degree. Downey and Jockusch [33] showed that
incomplete m-topped degrees exist, they are all low2, and cannot be low.
Later Downey and Shore [38] showed that every low2 c.e. degree is bounded
by an incomplete m-topped degree.
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Theorem 4.11 ([27, 28]).

(1) No totally < ��-c.a. c.e. degree is m-topped.
(2) There is an m-topped, totally ��-c.a. degree.

The proofs of these results are rather complex and are therefore omitted.
Note that the extra restriction regarding lowness means that characterising
bounding m-topped degrees is not possible purely in terms of our hierarchy.

Problem 4.12. Classify them-topped degrees, or the c.e. degrees bounding
m-topped degrees.

Being nonlow and not totally < ��-c.a. seems a long shot.

§5. Natural definability. Some of the constructions captured by two lev-
els of our hierarchy yield objects, namely embedded lattices, that can be
described in the c.e. degrees using the language of ordering. This shows that
these two levels, the totally �-c.a. degrees and the totally <��-c.a. degrees,
are naturally definable in the structure of the c.e. degrees.
Natural definability results in degree theory are few. In terms of abstract,
general results on definability, there has been significant success in recent
years, culminating in the work of Nies, Shore, and Slaman [65], where the
following is proved.

Theorem 5.1 (Nies, Shore, Slaman [65]). Any relation on the c.e. degrees,
invariant under the double jump, is definable in the c.e. degrees if and only if it
is definable in first order arithmetic.

The proof of Theorem 5.1 involves interpreting the standard model of
arithmetic in the structure of the c.e. degrees without parameters, and a
definable map from degrees to indices (in the model) which preserves the
double jump. The beauty of this result is that it gives at one time a definition
of a large class of relations on the c.e. degrees. For example, it is used to
show that the classes lown for n � 2 are definable (so are the highn for all
n � 1; the case n = 1 needs an extra argument).
Theorem 5.1 has two shortcomings. One is the reliance on the invariance
of the relation under the double jump. It follows that no set of c.e. degrees
that contains some but not all low2 degrees can be defined using the theorem;
these are the kinds of sets we investigate here.
Another issue is that the definitions provided by the theorem are not
natural definitions of objects in computability theory, as outlined by Shore
[68]. Here we are thinking of results such as the following.

• A c.e. degree is promptly simple if and only if it is not cappable (Ambos-
Spies, Jockusch, Shore, and Soare [5]).

• Ac.e. degree is contiguous if andonly if it is locally distributive (Downey
and Lempp [36]) if and only if it is not the top of the pentagon (the
nonmodular, 5 element lattice N5) (Ambos-Spies and Fejer [4]).

• A c.e. truth table degree is low2 if and only if it has a minimal cover in
the c.e. truth table degrees (Downey and Shore [38]).
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5.1. Lattice embeddings and critical triples. These natural definitions are
closely related to embeddings of finite lattices into the c.e. degrees; see for
example Lempp and Lerman [57], Lempp, Lerman, and Solomon [58], and
Lerman [59]. The question of which finite lattices can be embedded into
the c.e. degrees remains open. All distributive lattices can be embedded.
The nondistributive lattices fall into two classes. Each nondistributive lat-
tice contains either the pentagon,N5; or the 1-3-1 lattice (also known asM5
or M3); see Figure 1. The key difference between the two kinds of nondis-
tributive lattices is the existence of a critical triple. In a lattice, a critical triple
consists of three incomparable elements a0, a1 and b such that a0∨b = a1∨b
but a0 ∧ a1 � b. We call b the centre of the critical triple. The middle three
elements of the 1-3-1 lattice form a critical triple (with any of the elements
serving as centre). The lattices which do not contain a critical triple are the
join-semidistributive ones. It is known that critical triples present a serious
impediment to embedding lattices into the c.e. degrees; for example, the lat-
tice S8 (Figure 2) cannot be embedded (Lachlan and Soare [56]). However,
the 1-3-1 itself can be embedded (Lachlan [54]). In particular, in the c.e.
degrees we can find critical triples. Note that the c.e. degrees do not always
have meets; in an uppersemilattice, the definition of a critical triple does not
require the meet to exist, rather we stipulate that any c � a0, a1 must also
be below the centre b. A related concept is that of a weak critical triple, in
which the meet condition is weakened to requiring the nonexistence of any
c � a0, a1 such that a0, a1 � b ∨ c.
Bounding critical triples requires some computational power; Downey
[26] showed that some nonzero c.e. degrees bound no critical triples;
Weinstein [75] did the same for weak critical triples. On the other hand,
some amount of permitting suffices. Downey noted that the embedding of
critical triples seemed to be tied up with multiple permitting in a way that
was similar to nonlow2-ness. Indeed this intuition was to some extent ver-
ified by Downey and Shore [39], who showed that any nonlow2 c.e. degree
bounds a critical triple, indeed a copy of 1-3-1. The notion of nonlow2-ness
seemed too strong to capture the class of degrees which bound the 1-3-1,
but it was felt that something like that should suffice. On the other hand,
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Figure 1. The 1-3-1 lattice.
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Figure 2. The lattice S8.

Walk [73] showed thatWeinstein’s degree can bemade array noncomputable,
andhence itwas already known that array noncomputabilitywas not enough
for such embeddings.
The authors, together with Weber, showed the following.

Theorem 5.2 ([30]). A c.e. degree bounds a critical triple if and only if it
bounds a weak critical triple if and only if it is not totally �-c.a.

Thus, the totally �-c.a. degrees are naturally definable in the c.e. degrees.
Before we discuss the dynamics of this result, we observe that these results
yield an answer to a question of Nies. Every superlow degree is array
computable, but some low degrees are not totally �-c.a. Hence:

Corollary 5.3 ([30]). The partial orderings of the low degrees and the
superlow degrees are not elementarily equivalent.

5.1.1. Embedding critical triples: tracing and permitting. Let us consider
how to construct critical triples in the c.e. degrees. We wish to enumerate c.e.
sets A0, A1 and B whose degrees will form the required triple. For the join
requirements, we need to ensure that A0 �T A1 ⊕ B and A1 �T A0 ⊕ B . To
make the embedding nontrivial, we need to ensure that A0, A1 �T B .
The latter is done by usual Friedberg requirements. Say we want to ensure
that Φ(B) �= A0 for some Turing reduction Φ.We pick a witness (a follower)
x and wait for Φ(B, x)↓. While we wait, we need to maintain a reduction
of A0 to A1 ⊕ B . This means that we promise that if we ever enumerate x
intoA0, we will put another number x1, called a trace for x, into eitherA1 or
B . But sincewe donot yet know the useϕ(B, x) of the potential computation
Φ(B, x), it would be a bad idea to target x1 for B . Now in turn, to maintain
A1 �T A0 ⊕B , we need to appoint an even larger number x2, a trace for x1,
and promise to put it into A0 if x1 goes into A1. And so we get a sequence
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of traces x, x1, x2, . . . which keeps growing until we see Φ(B, x)↓. When we
finally see the use, the next trace can be targeted for B , and then we can stop.
Now we would like to put all these numbers x, x1, x2, . . . , xk into the sets
forwhich they are targeted.Butwe cannot do this all at once. Forwe alsohave
minimal-pair-like requirements for the pseudo-meet: if Ψ0(A0) = Ψ1(A1)
equals some set C , then C �T B . Lachlan’s strategy for meeting such
a requirement is to allow, during an “expansionary” stage, enumerating
numbers into A0 or A1, but not both. This means that the computation
giving one side of the observed agreement is fixed; we then wait for new
agreement (the next expansionary stage; using the mechanism of pinball
machines, we wait for a gate to open), and then again allow only one side of
the computation to be destroyed.
We thus take our entourage of traces x, x1, . . . , xk and “peel it back”.
Rename the last trace xk to be b, to indicate that it is targeted for B . At
an expansionary stage (for Ψ0,Ψ1, a minimality requirement stronger than
Φ(B) �= A0), we enumerate xk−1 into the set it is targeted for (Ai for
i = (k − 1) mod 2) and b into B . We then appoint a new trace b′ for xk−2,
this time targeted for B . At the next expansionary stage we enumerate xk−2
and b′ into their target sets, and appoint a new B-trace for xk−3. After k
many such steps, we get to enumerate the original follower x = x0 into A0
and meet the requirement.
That is the sketch of the construction; of course in the general construction
we need to deal with several requirements, and so we coordinate their action
on a tree, or a pinball machine.
Now let us consider what happens when we want to build A0, A1, and B
all below a given c.e. degree d. The extra condition now is that whenever we
enumerate any number into any of these sets, we need to obtain permission
from d to do so. As in the proof of Theorem 4.3, this permission comes in
the form of a change in the approximation of some function g ∈ d on an
associated input, essentially the use of reducing A0, A1, B to g. And in the
context of multiple permitting, we need to analyse how many times does a
single positive requirement (of the kind Φ(B) �= A0) need to receive permis-
sion in order for it to be met. If we can tell in advance, for each requirement,
how many permissions we need, then this can be done below any array
noncomputable degree. But here we see that the number of enumerations
the requirement needed (the number k above) could not be computed in
advance: we know it once we see Φ(B, x) converge but not before. Giving
such permissions is the extra strength of non totally �-c.a. degrees.

5.1.2. Nonembedding of critical triples: certification. The flip-side of this
argument is adapting the construction of a degree which does not bound a
critical triple and showing that it can be applied to any totally�-c.a. degree.6

Here we are given three incomparable sets A0, A1, and B , all below some
c.e. set D whose degree is totally �-c.a.; We assume that Ai �T B ⊕ A1−i
6In this sketch we discuss critical triples rather than weak critical triple. The ideas are simi-

lar, but the argument sketchedhere is better suited as an introduction to the nonembeddability
of the 1-3-1 lattice.
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for i = 0, 1; our aim is to build some set Q �T A0, A1 but Q �T B . To meet
the latter, a typical requirement Ψ(B) �= Q appoints a follower x, waits
for realisation, namely Ψ(B, x)↓= 0, and then, remembering that we keep
Q �T A0, A1, hopes for a double change, in A0 and in A1, that allows us to
enumerate x into Q. Now there are two questions:

• Why would we get such a double change?
• If we do, how do we keep the computation Ψ(B, x) = 0 valid?
The overall idea is for us to define a function g = Λ(D), and nonuniformly
guess an �-computable approximation 〈gs〉 for g. The use of computing
g(n) = Λ(D, n) from D will bound the use of reducing a certain amount of
A0, A1 and B to D. If the configuration of sets changes, this necessitates a
change in D below that use; this allows us to redefine Λ(D, n) with a new
value. We then wait for the approximation 〈gs(n)〉 to catch up and correctly
guess the new value. This gives us a certification of sorts that D, up to
the use, is correct. Since we know a bound on the number of changes on
〈gs(n)〉, we know a bound on how many times a desirable configuration will
be destroyed.
In the current situation, a basic idea is that of setting up layers to protect
a computation. We know that Ai �T B ⊕ A1−i . This allows us, for any
number x, to calculate an increasing sequence of numbers x(1), x(2), . . .
such that any change in some Ai below x(m) necessitates a change in either
B or A1−i below x(m+1). See Figure 3.
We now act as follows. Fixing n, we calculate a bound m on the number
of changes in gs(n). We set upm+1many layers. The use for reducingQ(x)
to A0, A1 is x(m+1). After x is realised, two things can happen. If we get a
double change (a change in both A0 and A1), we can enumerate x into Q
and then meet the requirement. Otherwise, we claim that provided B�x(m+1)
never changes, A0�x is correct too. The point is that if B �x(m+1) is correct,
then the next change in some Ai must happen above x(m): otherwise either
a B-change or an A1−i -change is guaranteed. After this happens, we will
have lost a layer; but since we set the use of Λ(D, n) to be sufficiently large,
this peeling of the last layer allows us to change Λ(D, n). The next change

A0

A1

B

x x(1) x(2) x(3)

Figure 3. Three layers.
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will happen above x(m−1), and so on. Overall, we see that if the requirement
is never met (over infinitely many independent attempts to meet it), then
A0 �T B , which we assumed is not the case.
This sketch is necessarily rough, as there are several other delicate points
to the argument. For details see [27].

5.2. The 1-3-1. What about embeddings of the 1-3-1 lattice itself ? We
note that previously, it was not known that there is a difference between
bounding a copy of 1-3-1 in the c.e. degrees and bounding a critical triple.
Our hierarchy results, together with Theorem 5.2 and the following result,
show these are not equivalent.

Theorem 5.4 ([27]). A c.e. degree bounds a copy of the 1-3-1 lattice if and
only if it is not totally <��-c.a.

Again, this shows that the totally<��-c.a. degrees are naturally definable.

5.2.1. Embedding the 1-3-1 lattice. Wenowwish to embed the 1-3-1 lattice
into the c.e. degrees. How is the construction different from that of a critical
triple? We now build A0, A1, A2 and need to ensure that Ai �T Aj ⊕ Ak
for {i, j, k} = {0, 1, 2}. This means that every number targeted for some Ai
needs a trace targeted for either Aj or Ak . So even though the nontriviality
requirements are just Ai �= ϕ for a partial computable function ϕ, without
an oracle B this time, we still need the continuous tracing: at each stage we
add another trace to the end of the entourage.
Something interesting starts happening when we consider two minimal-
pair requirements, occupying two gates in a pinball machine used in this con-
struction. An entourage consisting of numbers x00 , x

1
1 , x

0
2 , x

1
3 , x

0
4 , x

1
5 , . . . , x

0
m

(with xik targeted for Ai) arrives at a gate which works toward showing that
A0 and A1 form a minimal pair. For a while the entourage waits for the gate
to open. The gate will not allow numbers targeted for A0 and numbers tar-
geted for A1 to pass at the same time. While the entourage waits for the gate
to open, new traces must continually be added. We have a choice, though: a
trace for x0k can be targeted for either A1 or A2. So the rest of the entourage
from x0m onwards is targeted for A0, A2, A0, A2, . . . .
The gate opens, allowing the rest of the entourage: x0m, x

2
m+1, x

0
m+2, . . . , x

2
k

to pass. This second part of the entourage now arrives at a closed gate (of
stronger priority), working for a minimal-pair requirement for A0 and A2.
Againwe redirect our targeting and target new traces toA1 andA2.When the
gate opens, x2k and the third part of the entourage pass and get enumerated
into their sets. We then are left with x0k−1, to which we add a (A0, A1)-
entourage, and repeat. After (k − m) many such steps, all of the traces
waiting at the lower (stronger) gate have been dealt with, and the entourage
now consists of x00 , x

1
1 , . . . , x

1
m−1. After appointing more traces, x

1
m−1 and

the rest of the entourage passes the upper gate, lodges at the lower gate, and
the process repeats.
How many permissions do we need? We see that the answer, in the case of
two gates, is “roughly �2 many”. When x00 , the original follower, is realised,
we find out the numberm. And then, for each l < m, when xl passes the top
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gate, we know the length of the entourage at that time (roughly, the stage
number). We will update the number of required permissions m times. And
in general, to pass n gates we need �n-permission. If the function giving
permissions to the entire construction is not �n-c.a. for any n, then the
construction will work.
Again, we skip many important details; for example, why the bottom of
the embedding cannot actually be 0, and a more careful analysis, involving
more than one follower, which shows that actually we need �2n to deal with
n gates; all is explained in [27].

5.2.2. Nonembedding the 1-3-1. How do we show, for example, that a
totally �2-c.a. degree d does not bound a copy of the 1-3-1 lattice? After
all, it may bound a critical triple. As pointed out above, any of the middle
elements of the 1-3-1 lattice can serve as the centre of a critical triple, together
with the other two elements. The plan is now, givenB0, B1 andA below d, to
show that either B0 is not the centre of a critical triple, flanked by B1 and A;
or B1 is not the centre of a critical triple, flanked by B0 and A. This adds a
level of nonuniformity to the construction. We build Q �T A,B0, and try to
ensure thatQ �T B1.Wemight fail. For each e < � (representing a potential
failure, i.e., Φe(B1) = Q), we build another c.e. set Qe , this time reducible
to A and B1, and try to ensure that Qe �T B0. Somewhere we must succeed,
or we will have shown that B0 �T B1. Each instance will now consider two
followers (forQ and forQe), and will set up two levels of layers, inner layers
for Qe and outer layers for Q. The inner layers reflect the coefficient of � in
an ordinal below �2 which bounds the number of changes in gs(n); when
one inner layer is peeled (the number of changes left drops below a limit
ordinal), we get a new constant coefficient, which tells us how many new
outer layers we need to set up. If we guess that g = Λ(D) is�m-c.a., then we
needm steps of nonuniformity, constructing Q, Qe1 ,Qe1,e2 , . . . ,Qe1,e2,...,em−1 ;
at each step we alternate between treating B0 or B1 as the centre.

5.3. The L7 lattice. Recently, Ambos-Spies and Losert have shown that
there is a lattice embedding (rather than a configuration like a critical triple)
which captures being totally �-c.a.

Theorem 5.5 (Ambos-Spies and Losert [6]). A c.e. degree is not totally
�-c.a. if and only if it bounds a copy of the lattice L7 (see Figure 4).

5.4. A question.

Question 5.6. Is there an n > 1 such that being totally �n-c.a. is
(naturally) definable?

We remark that if the methods we have used can also be used to answer
this, what would be needed would be a lattice or partial ordering whose
embedding needed “n-gates”. For example, something that might define
totally �2-c.a. could be a structure whose embedding needed two gates and
could not be done with one. In spite of concerted efforts on our part, we have
not been able to find such a structure. On the other hand if natural is left off
definability then perhaps there is some more delicate way to use the methods
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Figure 4. The lattice L7.

of Nies, Shore, and Slaman [65], which may involve strong reducibilities.
The reader should treat this last paragraph as speculation on our part.

§6. Weak truth table triples. Downey and Stob [41] observed that there
seemed to be a connection between lattice embeddings and the structure
of the c.e. weak truth table degrees within a c.e. Turing degree. To wit,
they showed that if a c.e. Turing degree a is the top of a 1-4-1 lattice with
bottom degree 0 then a contains a pair of c.e. sets A1 and A2 such that
degwtt(A1) and degwtt(A2) form a minimal pair. In fact, the original proof of
the construction of a pair of noncomputable c.e. sets A1 ≡T A2 forming a
wtt-minimal pair was a direct one, and it was only when the authors noticed
that the combinatorics of the construction were similar to the embedding of
1-3-1 that the proof using 1-4-1 was found.
Mimicking critical triples, in [30] we gave the following definition.

Definition 6.1. Three c.e. setsA0, A1 andB form awtt triple ifA0 ≡T A1,
Ai �T B , and for all C �wtt A0, A1 we have C �wtt B .

An analogue of weak critical triples was also discussed.

Theorem 6.2 ([30]). A c.e. degree d is not totally �-c.a. if and only if there
are A0, A1, B �T d which form a wtt-triple.
In fact, this theorem can be improved. Going back to the original idea of
wtt minimal pairs inside a Turing degree, we strengthen the notion of a wtt
triple.
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Definition 6.3. Three c.e. sets A0, A1 and B form a wtt infing triple if
A0 ≡T A1, B <T A0, A1, and

degwtt(A0) ∧ degwtt(A1) = degwtt(B).
The following appears here for the first time.

Theorem 6.4. Every c.e. degree which is not totally �-c.a. bounds three c.e.
sets which form a wtt infing triple.

It follows of course that bounding wtt triple and bounding wtt infing
triples are both equivalent to being not totally �-c.a.

Proof. The proof is amodification of the permitting direction of Theorem
6.2. We give details here as this theorem is new.
We are given a c.e. degree which contains a function g which is not �-c.a.
We have a computable approximation 〈gs〉 of g and we may assume that g
itself is the initial-segment modulus for this approximation, indeed every
stage of its approximation is: for all s and n, gs(n) is the least t � s such
that gr�n is constant for r ∈ [t, s].
We enumerate three c.e. sets A0, A1 and B , and ensure that they are all
computable from g. The wtt infinig triple will consist of A0 ⊕ B , A1 ⊕ B
and B . Thus we need to ensure that Ai �T B and Ai �T B ⊕ A1−i ; and of
course the inf requirements:

NΔ: If Δ(A0, B) = Δ(A1, B) is total then it is wtt-reducible to B .

Here Δ ranges over all wtt functionals; we denote by � the (possibly par-
tial) computable bound on the use of Δ. To ensure that Ai �T B we meet
requirements

PΦ,i : Φ(B) �= Ai ,
where now Φ ranges over the Turing functionals.
To meet the negative requirements we use a tree of strategies. Nodes
working for negative requirements Ne have two possible outcomes on the
tree,∞ and fin, with∞ stronger. Nodes working for positive requirements
only have one outcome.
To keep track of our reduction of these sets to g, we define moving mark-
ers ax,s < �. The rules for the markers are that if gs+1�ax,s= gs �ax,s then
we must have ax,s+1 = ax,s . Otherwise we are allowed to increase it. We
increase it to “take over space” from cancelled (weaker) followers for the
same strategy.
Here x denotes a potential follower for a strategy (node) 
 working for a
positive requirement PΦ,i . While a follower is waiting for realisation, namely
Φ(B, x)↓= 0, we keep appointing traces, gradually building an entourage
of traces x0, x1, x2, . . . with x = x0 being the follower, and the targeting of
followers alternating betweenAi andA1−i .When the follower is realised and
then 
 is visited, we stop this process, and instead appoint a last trace bk ,
targeted for B . After that we are ready to start enumerating traces into the
sets for which they are targeted. When 
 wants to enumerate traces, we say
that we put them into a permitting bin. We then wait for the follower x to be
permitted, which means that gs+1�ax,s �= gs�ax,s .
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Construction.
At any stage of the construction there are two options, depending on
whether some traces in the permitting bin are permitted.

Option A: permission
If there is a pair xk, bk of traces of an entourage for some follower x = x0
which are currently waiting at the permitting bin and x is permitted, then
we choose the strongest such follower. We then:

(1) Enumerate the two traces into their target sets.
(2) If k = 0 (the follower has just been enumerated) then we declare the
node 
 which appointed the follower satisfied, and cancel all of its
other followers.

(3) We also cancel all followers for 
 which are weaker than x; we redefine
ax,s+1 = s + 1.

(4) In any case, we initialise all nodes weaker than 
. This causes the
cancellation of the followers of all these nodes; and none of these
nodes is now satisfied.

We then end the stage.

Option B: no permission
We construct the path of nodes accessible at stage s .

First, suppose that a node 	 which works for a negative requirement NΔ is
accessible at stage s . Let (Δ, s) be the length of agreement betweenΔ(A0, B)
and Δ(A1, B). Let t be the last 	ˆ∞-stage (also known as a 	-expansionary
stage); t = 0 if there was no such stage. If (Δe, s) > t then we let 	ˆ∞ be
the next accessible node. Otherwise, we let 	ˆfin be the next accessible node.

Next, suppose that a node 
 which works for a positive requirement PΦ,i
is accessible at stage s . If 
 is satisfied, or if it has an unrealised follower,
then 
 does nothing and its only child is accessible. Otherwise:

• If all followers for 
 have some traces waiting in the permitting bin (this
includes the case that there are no followers appointed), then 
 appoints
a new (large) follower x, and defines ax,s+1 = s + 1.

• Suppose that there is a follower x that is realised, but no elements of
x’s entourage lie in the permitting bin (necessarily x will be 
’s weakest
follower). Let the entourage be x = x0, x1, . . . , xm.
– If this is the first time at which 
 is accessible and x is realised, then
we reserve a set of potential traces b0, b1, . . . , bm (consisting of large
numbers).
We then drop the pair xm, bm into the permitting bin.

In either case, all weaker nodes are initialised and the stage is ended.

At the endof the stage, for any as yet uncancelled andunrealised followerx
with an entourage x = x0, . . . , xm (so with no B-traces bk defined yet), we
appoint a new, large trace xm+1, targeted for the set Ai for which xm is not
targeted.
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Verification.
First, let us observe that Ai �T B ⊕A1−i . Let y < �. To see if y ∈ Ai , we
look at stage y to see if y = xk is currently an element of some entourage
x0, . . . , and is targeted for Ai . If not, then y ∈ Ai ⇐⇒ y ∈ Ai,y . If so, at
stage y, y has a trace, either xm+1 or bm. In the latter case, y ∈ Ai ⇐⇒
bm ∈ B . Suppose otherwise. If xm+1 /∈ A1−i then y /∈ Ai . If xm+1 ∈ A1−i
then we can find the stage t at which z is enumerated into A1−i . By that
stage, the number bm has been defined and we are back in the previous case.

Next, let us observe that all three setsA0, A1 andB are computable from g.
For let y be any number. To see if y will enter any of these sets, we first go
to stage y and see if y = xm or y = bm for some entourage which is
already present at stage y. Again, if not then at that stage we can see y’s
fate. Otherwise, let x be the follower, the first number in that entourage. We
observe that the marker ax,s can only be updated finitely many times: the
number of times is bounded by the length of the entourage when x is realised.
The rules of the markers show that g can find a stage t such that gt�ax,t will
never change, or by which time x was cancelled. Then y is enumerated into
its target set if and only if this has happened by stage t.

Now let us consider positive requirements. By induction on the length of
nodes, we show that the true path is infinite and that nodes on the true path
act only finitely many times; and all positive requirements aremet. Note first
that option A cannot be taken cofinally many times; eventually we would
run out of pairs in the permitting bin. So it remains to show that if a node 
,
working for PΦ,i , is accessible infinitely often, but is not initialised infinitely
often, then 
 acts only finitely often.
It is a standard argument to show that if 
 is satisfied (after the last stage
at which it is initialised) then the requirement is met. The point as always is
that the markers b0, . . . , bm are chosen late and so are greater than the use
φ(B, x).
We may assume that every follower that 
 appoints is later either realised
or cancelled. Every follower receives attention only finitely often. Suppose
that 
 is never satisfied (after the last stage it is initialised). Then 
 has
infinitely many followers that are never cancelled (for every stage, con-
sider the strongest follower ever to receive attention after that stage). These
followers eventually have traces stuck forever in the permitting bin.
Under these assumptions, we argue that g is �-c.a.
Let n < �. To approximate g(n) we pick out stages during which we
believe gs(n). Let r∗ be the last stage at which 
 is initialised. Find a stage
s∗ = s∗(n) > r∗ at which 
 is accessible and has a follower x∗ = x∗(n)
which is already realised and has some traces waiting at the permitting bin.
We then let S(n) be the set of stages s > s∗ at which 
 is accessible. Suppose
that s < t are successive stages in S(n); suppose that gs(n) �= gt(n). Let
x � x∗ be the strongest follower for 
 that received attention since stage s∗
(x = x∗ if there is no such x). Then at the end of stage s , traces from x’s
entourage are waiting at the permitting bin, and ax,s > n. Thus, between
stages s and t, x, or a stronger follower for 
, is permitted, and traces are
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enumerated into sets. The number of times this can happen is bounded by
the sum of the lengths of the entourages of all followers y � x∗ at stage s∗
(essentially, bounded by (s∗)2). Thus, restricting to the stages in S(n), we
can effectively put a bound on the number of changes in gs(n).
It remains to show that every negative requirement Ne is met. It is here
where the construction diverges from that of a critical triple. Fix a wtt
functional Δ, and let 	 be the node on the true path which works for NΔ; we
assume that Δ(A0, B) = Δ(A1, B) = Z is total. We know that 	ˆ∞ also lies
on the true path. Let r∗ be a stage after which 	 is never initialised.
Given n < �, let s∗ = s∗(n) be the least 	ˆ∞-stage s > r∗ at which
the length of agreement (Δ, s) is greater than n. By convention, we assume
that s∗ bounds the size of all of theB-traces for all followers which have been
appointed by stage s∗, and of course also the use �(n). Let t∗ = t∗(n) � s∗
be a 	ˆ∞-stage at whichB�s∗ is correct.We claim thatZ(n) = Δ(Ai , B, n)[s].
Note that n �→ s∗(n) is computable, so this is a wtt reduction.
The basis of the argument is of course Lachlan’sminimal pair argument of
preserving one side of the computation from one expansionary stage to the
next. We claim that if s < t are successive 	ˆ∞-stages, with s � t∗, then it
cannot be that numbers y0 and y1, both smaller than �(n), enter A0 and A1,
respectively, both between stages s and t. Suppose for a contradiction that
this happens. When and where do these traces originate? They have to have
been appointed before stage s∗, and so they belong to followers x0 and x1
which belong to nodes extending 	ˆ∞. On the other hand, they were not
in the permitting bin at stage s∗, since then their B-trace would be smaller
than s∗, and as s � t∗, that trace not being in B would mean that they
cannot be enumerated into the sets Ai . Also, x0 �= x1, as no two traces for
the same follower for a node extending 	ˆ∞ can be in the permitting bin
between two successive 	ˆ∞-stages.
Assume, without loss of generality, that x0 is stronger than x1. This means
that x1 was appointed after the 	ˆ∞-stage t0 at which y0 was placed in the
permitting bin. But we just argued that t0 � s∗, which in turn implies that
y1 > x1 > �(n), a contradiction. �

Remark 6.5. Note that this proof used the special features of wtt
reducibility. It is not the case that if Δ were a Turing functional, then we
could argue that Z �T B . Once successive A0 and A1 changes occur, the
use of a Turing computation goes up, and then a B-change, too large to be
previously comprehended even by B itself, destroys both sides of the com-
putation. This is why we cannot prove the existence of a paradoxical critical
triple: Turing degrees a0, a1 and b such that a0 ∨ b = a1 ∨ b, but b < a0, a1
and b = a0 ∧ a1.
On the other hand, note that when we embed the 1-3-1 lattice, it seems that
we exactly do run this hypothetical, paradoxical construction using Turing
reductions. The difference, the reason it works, is the existence of the third
set A2. This third set allows us to retarget traces not to B but to A2. This
means that B-traces are now appointed only when traces already arrive in
the permitting bin, not immediately after the last trace of the entourage is
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enumerated (and we are still waiting for the gate to open). This allows B to
catch its own tail and correctly certify computations.

§7. Maximality in the new hierarchy. Remarkably, it turns out that the
hierarchy we introduced gives new noncontinuity results. From now on, all
degrees are c.e.

Definition 7.1. We say that a degree a is maximal totally α-c.a. if
• a is totally α-c.a., and
• For all b > a, b is not totally α-c.a.
Cholak, Downey, andWalk [20] constructed maximal contiguous degrees.
This result hints at the following.

Theorem 7.2 ([27]). Let α < ε0 be a power of �. There exists a maximal
totally α-c.a. degree. Indeed, there is such a degree which is uniformly totally
α-c.a.
On the other hand, maximality has its limits. No degree is maximal for
the next level:

Theorem 7.3 ([27]). Let � < ε0. For any degree a which is totally �� -c.a.
there is a degree b > a which is totally ��+1-c.a.
And the intermediate classes at limits of powers of � have no maximal
elements:

Theorem 7.4 ([27]). If α < ε0 is a limit of powers of �, then there is no
maximal <α-c.a. degree.
Applying Theorem 7.2 to α = �, and Theorem 7.4 to α = �� (and also
Theorems 5.2 and 5.4), yields

Corollary 7.5. There are degrees, maximal with respect to not bounding
critical triples; but there are no degrees which are maximal with respect to not
bounding copies of the 1-3-1 lattice.
Our definability results show

Corollary 7.6. The maximal totally �-c.a. degrees form a naturally
definable antichain in the c.e. degrees.
Combining standard lower-cone avoiding techniques with the proof of
Theorem 7.2 below show that this antichain is infinite.

Sketch of Proof of Theorem 7.2. We enumerate a c.e. set D whose
degree should be maximal totally α-c.a. As stated, by a small modifica-
tion we can in fact make degT(D) uniformly totally α-c.a., but we do not
discuss this here.
To understand the construction, first think of what goes wrong if we try
to make D both totally α-c.a. and not totally α-c.a. For the former, we
meet negative requirements QΦ which measure the length of convergence of
Φ(D) and at various stages “certify” observed computations Φ(D, x). These
requirements live on a tree of strategies and have Σ2/Π2 outcomes.
For the latter, we build a functional Λ and try to diagonalise Λ(D) against
all possibleα-c.a. functions, which we can list. If 〈fs, os〉 is anα-computable

https://doi.org/10.1017/bsl.2017.41 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.41


A HIERARCHY OF COMPUTABLY ENUMERABLEDEGREES 81

approximation, then a requirement Pf,o appoints a follower p, and each
time we observe that Λ(D,p) = fs(p), it enumerates the use �(p) into D,
redefines Λ(D,p) to have large value, and repeats. (In the language of one of
the authors, we “beatfs(p) to death”.) It will not need to do this more than
o0(p) “many times”. (As usual, “number of times” is in terms of ordinal
counts; this term is literally correct in the case α = �.)
So what indeed does go wrong? The issue is of uniformity and tim-
ing. We cannot effectively enumerate all α-c.a. functions, each with a
total α-computable approximation (exactly as we cannot list all total
computable functions). In the arguments above (Theorem 3.2), we used
(α + 1)-computable approximations. These are essentially potentially par-
tial approximations: we wait for o0(p)↓. If it never converges then we needn’t
do a thing. When it does converge we can start the diagonalisation process.
Now’s the timing problem: a Q-requirement stronger than the
P-requirement tries to certify some computation Φ(D, x) and give some
bound on the number of changes it will allow, i.e., the number of times it
anticipates weaker requirements, such as P, will injure a certified computa-
tion by their positive action. To do so, we need to see the value o0(p). But it
is possible that P has appointed p but is still waiting to see o0(p) converge
(in other words, to see os(p) < α). On the other hand, upon appointing p,
P must declare a use �(p); regardless of anything, we need to ensure that
Λ(D) is total. Really, what we would like is to only define �(p) when o0(p)↓,
or at least to be able to change the use �(p) to something large at that stage—
sufficiently large so that P-action will not affect any certified computations,
whose use would be smaller.
Well, we can’t, and therefore mathematics is still apparently consistent.
But essentially, we do get our wish when we construct a maximal totally
α-c.a. degree.
In this construction, for each c.e. setW we define a functional ΛW , and
the aim is to show one of the two: either Λ(D,W ) is not �-c.a. (and so
D ⊕W is not totally �-c.a.); or W �T D. A typical positive requirement
PW,(f,o) appoints a follower and tries to show that ΛW (D,W,p) �= f(p).
What we do, once we see that o0(p)↓, is wait for a future change inW below
the use �(p). This future change allows us to lift the use �(p) to something
large; then we can start diagonalising against f(p) by enumerating uses
intoD. Φ(D, x) computations certified prior to theW -change are protected
from this diagonalisation action, because their uses are smaller than the new
�(p). Computations which are certified later, have already seen the value of
o0(p) and can take into account how many times P will act. If, on the other
hand, we keep appointing followers p but never get theW -change that we
ask for, then we show thatW is computable from D.
There are some several other delicate issues, such as explaining why we
need D to compute W—it would appear that no changes would make W
computable; the problem is timing of permissions, compared to when nodes
are accessible, and which computations we see at such stages. It turns out
that during verification, this complication means that we first have to show
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that D is low2, and only after can we show that positive requirements are
met, and that D is totally α-c.a. �
Recent work of the authors together with Katherine Arthur [9, 10] has
explored the relationship of maximal α-c.a. degrees and the rest of the hier-
archy. One basic question is understanding what happens to our hierarchy
when we restrict it to upper cones. Say a degree is properly totally �-c.a. if it
is totally �-c.a., but not totally �-c.a. for any � < � .

Question 7.7. Let α < � < ε0 be powers of �. Let a be a totally α-c.a.
c.e. degree. Must there be a c.e. degree b > a which is properly totally �-c.a.?
In light ofTheorem7.3, this question is related to the question of bounding
by maximal degrees. Namely, suppose that α, � and a witness the failure of
an instance of Question 7.7: say that no b � a is properly totally �-c.a. Then
a is bounded by nomaximal totallyα-c.a. degree (and in fact, by nomaximal
totally �-c.a. degree for any � ∈ [α, �]). This motivates the following.
Question 7.8. For which pairs α � � < ε0 of powers of � is it the case
that every totally α-c.a. degree is bounded by a maximal totally �-c.a. degree?
Here we have partial answers.

Theorem 7.9 (Arthur, Downey, and Greenberg [9, 10]). Let α < ε0 be a
power of �.
(1) There are totally α-c.a. degrees which are not bounded by any maximal
totally α-c.a. degrees.

(2) For any � � α� which is a power of �, every totally α-c.a. degree is
bounded by a maximal totally �-c.a. degree.

We note that there is quite a gap there. The following would be nice.

Conjecture 7.10. There is a totally �-c.a. degree which is bounded by no
maximal totally �n-c.a. degree, for any n < �.
Theorem 7.9(2) implies that if � � α� is a power of �, then every totally
α-c.a. degree is bounded by a properly totally �-c.a. degree. The question
remains open for lower levels; note that in Theorem 7.3, we cannot ensure
that b > a is properly totally ��+1-c.a. Again we have a partial result:
Theorem 7.11 (Arthur, Downey, and Greenberg [9, 10]). Every totally
�-c.a. degree is bounded by a totally �4-c.a. degree which is not totally �-c.a.
We do not know whether the degree constructed for Theorem 7.11 is
totally �2-c.a. or totally �3 or neither. Note that this result shows that
a naive plan for resolving Conjecture 7.10 cannot work. That plan would
construct a totally �-c.a. degree a such that for all n, every totally �n-c.a.
degree b � a is totally �-c.a.
Further results concern degrees which are maximal not only with respect
to themselves, but with respect to smaller degrees:

Theorem 7.12 ([9, 10]). There are degrees a < b such that b is totally
�-c.a., and such that if c � a is totally �-c.a., then c � b.
This is related to the proof of Theorem 7.9(1). Indeed, paradoxically,
the proof of Theorem 7.9(1) is made by adapting the construction proving
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Theorem 7.12 and creating a “maximal ideal”: a sequence a0 < a1 < a2 <
· · · of totally �-c.a. degrees, with the property that every b � a0 which is
totally �-c.a. lies below an for some n; so a0 is bounded by no maximal
totally �-c.a. degree.

Finally, we see that nonbounding bymaximal degree requires at least some
complexity.

Theorem 7.13 ([9, 10]). Every superlow degree is bounded by a maximal
totally �-c.a. degree.

We note that the proofs of some results in this section, for example The-
orem 7.11, are of technical interest, since they involve infinitary positive
activity at nodes along the true path; this does not occur in [27].

§8. Promptness. One fundamental characteristic of our results is that in
our lattice embedding results, the bottom degree cannot always be 0. For
example, consider the bottom degree in the embedding of the 1-3-1 lattice.
The classical proof of Lachlan [54] embeds 1-3-1 with bottom 0. The
situation is akin to the difference between minimal pairs and branching
degrees. Lachlan [55] proved that there are nonzero c.e. degrees that do
not bound minimal pairs, whereas Slaman [69] proved that the branching
degrees are dense.
The two natural classes of c.e. degrees which bound minimal pairs are the
high degrees, as proven by Cooper [23], and the promptly simple degrees,
as proven by Ambos-Spies, Jockusch, Shore and Soare [5]. The situation
here is similar. Every high degree bounds a copy of the 1-3-1 lattice. But
for an analogue of promptly simple degrees, we need a notion of prompt
multiple permitting, at the correct level. Roughly speaking, what we need is
that when we attempt to give an α-computable approximation to a function
in the degree, not only do we fail to do so, but this failure is witnessed
promptly; each time we make a guess, the opponent’s function changes
within a number of steps which is computably bounded. The details are
a wee bit messy, but relatively straightforward; and at the end we get a
reasonably robust definition of what it means for a degree to be promptly not
totally α-c.a., and similar definitions for promptly not totally <α-c.a. and
so on. See [27].

Here are two representative results.

Theorem 8.1 ([27]). Every degree which is promptly array noncomputable
computes a pair of Π01 separating classes C1, C2 such that any X ∈ C1 and
Y ∈ C2 form a minimal pair.
(Compare with Theorem 4.1(4.1)).

Theorem 8.2 ([27]). Every degree which is promptly not < ��-c.a. bounds
a copy of the 1-3-1 lattice with bottom 0.

We remark that sometimes having the bottom not be 0 significantly sim-
plifies the dynamics of a construction. This is why we suspect the following
(which should be straightforward but has not been written down).
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Conjecture 8.3. Every degree which is promptly not < ��-c.a. bounds a
noncomputable left c.e. real, all of whose presentations are computable.
Compare with Theorem 4.2. The dynamics of the original construc-
tion [36] of a noncomputable left-c.e. real, all of whose presentations are
computable, has similar dynamics to the embedding of the 1-3-1, namely
<��-c.a. permitting; once we allow a noncomputable B <T r bounding the
presentations, the dynamics simplify to the level of �-c.a. permitting.
Similarly, the construction of a wtt minimal pair inside a Turing degree,
as mentioned above, strongly resembles the construction of a 1-4-1 lattice;
hence we surmise

Conjecture 8.4. Every degree which is promptly not< ��-c.a. bounds two
Turing equivalent, noncomputable c.e. sets whose wtt-degrees form a minimal
pair.
Again, in contrast with Theorem 6.4, we suspect that being promptly not
totally �-c.a. is insufficient.

As with embeddings of 1-3-1, all of these constructions can be performed
below any high c.e. degree. It would be interesting to formulate a common
generalization of prompt nonlow2-ness, and highness.

§9. Joining totally α-c.a. degrees. The classes in our hierarchy, the totally
α-c.a. degrees, are closed downward under Turing reducibility, but they
do not induce ideals in the c.e. degrees: they are not closed under join. A
natural question is, what kind of degrees can we get when we join totally
α-c.a. degrees?
Long ago, Bickford and Mills [16] showed that 0′ is the join of two super-
low c.e. degrees. But not every c.e. degree is the join of two superlow c.e.
degrees. Downey and Ng [37] proved that there are superhigh c.e. degrees
which are not the join of two superlow c.e. degrees; they also showed the
following result:

Theorem 9.1 (Downey and Ng [37]).

(1) Every high c.e. degree is the join of two array computable c.e. degrees.
(2) However, there are c.e. degrees which are not the join of two totally
�-c.a. c.e. degrees.

(3) If A is c.e. and degT(A) is totally �-c.a. then degwtt(A) is not cuppable
in the c.e. wtt degrees.

Sacks’s Splitting Theorem is a fundamental result in computability theory.
It says that every c.e. set A can be split as A = A1 � A2, with A1, A2 low
and Turing incomparable c.e. sets. It is always given as a classic example
of a finite injury construction of unbounded type: there is no computable
bound on the number of injuries to a given requirement, and so there is no
computable bound on approximating the answer to the question of how a
given requirement was met. Theorem 9.1(2) above improves this by saying
that in fact, the setsA1 andA2 themselves cannot always have�-computable
approximations; and this holds not only for set splits but even for degree
splits.
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However, somewhat counter-intuitively, the following result was recently
proven.

Theorem 9.2 (Ambos-Spies, Downey, andMonath [2]). Every c.e. set can
be split into a pair of c.e. sets of totally �3-c.a. degrees.

We remark that it is unknown if�3 can be replaced by �2, even for degree
splittings.

§10. An application to admissible computability. Combinedwith results of
the second author, our work has an application to admissible computability.
This is a generalisation of traditional computability to ordinals beyond �.
In [47] it is shown that for any admissible ordinalα, theα-c.e. degrees are not
elementarily equivalent to the c.e. degrees. This was done in cases, depending
on the proximity of α to �. In one case the separation between the theories
is not natural but relies on coding models of arithmetic. However one result
is

Theorem 10.1 ([47]). Let α > � be an admissible ordinal, and let a be an
incomplete α-c.e. degree. The following are equivalent:

(1) a computes a cofinal �-sequence in α.
(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result.
The basic idea is the following. Consider again the embedding of a critical
triple: as time goes by, a longer and longer entourage is built for a follower.
When the follower is realised, the entourage is peeled back (from the end
to the beginning), one member at a time. Trying to do this when time goes
beyond � presents a completely new problem: after � many stages, we will
have an entourage of order-type �, that is, one without a last element. We
cannot then peel it back, each step removing only the last element. It turns
out that this blockage is fundamental. The only case it might be possible
for a degree a to bound a copy of the 1-3-1 lattice is if it itself can see
that α is far from being a regular cardinal—if it can essentially re-order time
and space to order-type �, so that the construction can be (at least after
the fact) seen to have taken � steps, avoiding infinite entourages. In one
direction, effective closed and unbounded sets are used to show that this is
necessary. In the other direction, a fine-structural result of Shore’s [67] says
that an incomplete degree of computable cofinality � must be high, and can
compute a bijection between α and�. Working below such a degree, we can
translate back to�-computability, and use nonlow2 permitting to embed the
1-3-1 lattice (for a technical reason, we cannot quite use high permitting).
To sum up, what this says is that once we go beyond �, the fine distinc-
tions between totally�-c.a. degrees and totally<��-c.a. degrees completely
disappear. Combined with the current work, this gives us a single, natural
sentence which separates the elementary theory of the c.e. degrees from the
theory of the α-c.e. degrees for any admissible α > �.
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Theorem 10.2. Let α � � be admissible. The following are equivalent:
(1) There is an incomplete α-c.e. degree which bounds a critical triple but
not the 1-3-1 lattice.

(2) α = �.

In closing wewonder if the classes we have introduced will have interesting
connections with reverse recursion theory in the sense of understanding the
proof theoretical strength of constructions in computability theory in weak
systems of arithmetic.
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