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In Ramsey theory one wishes to know how large a collection of objects can be while
avoiding a particular substructure. A problem of recent interest has been to study
how large subsets of the natural numbers can be while avoiding three-term geometric
progressions. Building on recent progress on this problem, we consider the analogous
problem over quadratic number fields. We first construct high-density subsets of the
algebraic integers of an imaginary quadratic number field that avoid three-term
geometric progressions. When unique factorization fails, or over a real quadratic
number field, we instead look at subsets of ideals of the ring of integers. Our approach
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here is to construct sets ‘greedily’, a generalization of the greedy set of rational
integers considered by Rankin. We then describe the densities of these sets in terms
of values of the Dedekind zeta function. Next, we consider geometric-progression-free
sets with large upper density. We generalize an argument by Riddell to obtain upper
bounds for the upper density of geometric-progression-free subsets, and construct sets
avoiding geometric progressions with high upper density to obtain lower bounds for
the supremum of the upper density of all such subsets. Both arguments depend
critically on the elements with small norm in the ring of integers.

Keywords: geometric-progression-free sets; Ramsey theory;
quadratic number fields

2010 Mathematics subject classification: Primary 11B05; 11B75
Secondary 11Y60; 05D10; 11R04; 11R11

1. Introduction

In 1961, Rankin [10] introduced the problem of constructing large subsets of the
integers that do not contain geometric progressions. A set is free of geometric
progressions if it does not contain any three terms in a progression of the form
{n, nr, nr2} and r ∈ N \ {1}. A simple example of such a set is the square-free
integers, which have density 6/π2 ≈ 0.60793. Rankin constructed a larger set, with
asymptotic density approximately 0.71974. Modifying the construction of this set
slightly (see [4]), one can get a small improvement, producing a set with density
about 0.72195. It is not known what the greatest possible asymptotic density of such
a set is. However, several authors have considered sets with greater upper asymp-
totic density. Riddell [11], Brown and Gordon [2], Beiglböck et al . [1], Nathanson
and O’Bryant [7] and, most recently, McNew [4] have improved the bounds on the
greatest possible upper density of such a set. It is now known that the greatest
possible upper density of such a set lies between 0.81841 and 0.81922. Other papers
have considered progressions that are allowed to have rational ratios. However, these
will not be pursued further here.

In this paper, we generalize the problem to quadratic number fields. We study
the geometric-progression-free subsets of the algebraic integers (or ideals) and give
bounds on the possible densities of such sets. In an imaginary quadratic field with
unique factorization we are able to consider the possible densities of sets of algebraic
integers that avoid three-term geometric progressions, and so we have chosen to pay
special attention to such a field. Most of our results also apply to the ideals of any
quadratic number field, however, which we also state when possible. We begin by
characterizing the ‘greedy’ geometric-progression-free sets in each case, and then
give bounds for the greatest possible upper density of such a set. We conclude with
some numerical data and several open questions.

2. Rankin’s greedy set

Let
G∗

3 = {1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, . . . }
(see [9, A000452]) be the set of positive integers obtained greedily by including those
integers that do not introduce a three-term geometric progression with the integers
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already included in the set. Rankin [10] characterized G∗
3 as the set of those integers

with prime exponents coming only from the set A∗
3 = {0, 1, 3, 4, 9, 10, 12, 13, . . . }

(see [9, A005836]) of non-negative integers obtained by greedily including integers
that avoid three-term arithmetic progressions. The set A∗

3 consists of those integers
that do not contain a 2 in their base-3 expansion.

This characterization shows that the inclusion of any given integer in the set G∗
3

depends solely on the powers of the primes in its prime factorization. Thus, to find
the density of G∗

3, one needs only consider the density of those integers that contain
only primes raised to acceptable powers in their prime factorization. Because the
acceptable powers are the integers in A∗

3, we have that, for a fixed prime p, the
density of the positive integers whose factorization contains an acceptable power of
p is given by (

p − 1
p

) ∑
i∈A∗

3

1
pi

=
(

p − 1
p

) ∏
i�0

(
1 +

1
p3i

)
. (2.1)

By the Chinese remainder theorem, we can then compute the asymptotic density
of G∗

3 as an Euler product over all primes:

d(G∗
3) =

∏
p

(
p − 1

p

) ∞∏
i=0

(
1 +

1
p3i

)

=
∏
p

(
1 − 1

p2

) ∞∏
i=1

1 − 1/p2·3i

1 − 1/p3i

=
1

ζ(2)

∞∏
i=1

ζ(3i)
ζ(2 · 3i)

≈ 0.71974. (2.2)

Thus, the supremum of the densities of all geometric-progression-free subsets of
the natural numbers is bounded below by 0.71974.

3. Greedy set over quadratic number fields

We begin by generalizing Rankin’s calculation of the density of the greedy set of
integers to the algebraic integers OK over a quadratic number field, K = Q(

√
d),

where d is a square-free integer. (For a review of the algebraic number theory used
here, the reader is referred to [5].) If d < 0, K is an imaginary quadratic number
field with finitely many units, so there are finitely many algebraic integers with
bounded norm. It is thus possible in this case to define the density of a subset of
the algebraic integers.

Definition 3.1. Let K be an imaginary quadratic number field. The density d(A)
of a set A ⊂ OK is

d(A) = lim
n→∞

|A ∩ In|
|In| , (3.1)

where In = {m ∈ OK : N(m) � n} and N(m) is the norm of m.
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Most of our results require unique factorization and so, when studying subsets
of algebraic integers of an imaginary quadratic number field that avoid geometric
progressions, we must restrict our attention to those imaginary quadratic number
fields that have class number 1, of which there are only nine (d = −1,−2,−3,−7,
−11,−19,−43,−67,−163). When either unique factorization fails or K is a real
quadratic number field we can instead consider subsets of the ideals of OK that avoid
three-term geometric progressions, and obtain similar results about the densities of
the ideals in this case that apply to all quadratic number fields. The density of a
subset of the ideals of OK is defined similarly.

Definition 3.2. Let K be a number field. The density d(A) of a set of ideals A of
OK is defined to be

d(A) = lim
n→∞

|A ∩ In|
|In| , (3.2)

where

In = {I ⊆ OK : N(I) = |OK/I| � n}.

Before stating our results about the possible densities of sets avoiding geomet-
ric progressions, we make a note about progressions with unit ratios. Throughout
this paper, we restrict our study of geometric progressions to those progressions,
{n, nr, nr2}, where the ratio, r, is not a unit in the number field. Over the integers,
this distinction is made by insisting that every term in a three-term geometric pro-
gression be unique. However, that is not necessarily the case here, since one can
find progressions, such as {2, 2i,−2} over the Gaussian integers with ratio i, that
have unit ratio and distinct terms. Nevertheless, our decision is motivated by the
additional structure that progressions with non-unit ratios possess, the fact that
each such progression is naturally ordered by starting with the element with least
norm and, most importantly, the consequence that this choice yields results directly
comparable with the ideal case discussed in greater generality below.

Also, note that the norm does not totally order the algebraic integers (or ideals) in
a number field, and hence the notion of a greedy set is not necessarily well defined,
as it is over the integers. However, as we shall see, inclusion in the greedy set
avoiding geometric progressions depends only on the norm, so all elements with the
same norm are either included or excluded. Thus, the order in which the elements
(integers or ideals) of the same norm are taken is irrelevant.

Suppose first that K is an imaginary quadratic number field with class number 1.
Then the density of the set GK,3 ⊂ OK , which greedily avoids three-term geometric
progressions with non-unit ratios r ∈ OK , can be found as follows.

Theorem 3.3. Let K be an imaginary quadratic number field with class number 1,
and let f : N → R be defined by

f(x) =
(

1 − 1
x

) ∞∏
i=0

(
1 +

1
x3i

)
. (3.3)
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Then the density of the greedy set, GK,3, of algebraic integers that avoid three-term
progressions with non-unit ratios in OK is given by

d(GK,3) =
( ∏

p inert

f(p2)
)( ∏

p splits

f(p)2
)( ∏

p ramifies

f(p)
)

, (3.4)

where the product is taken over rational primes p depending on whether p splits,
ramifies or remains inert in K.

Proof. The method of proof is similar to that of Rankin’s result. If {n, nr, nr2} ⊂
OK forms a geometric progression with non-zero, non-unit r ∈ OK , then any prime,
p, of OK that divides n exactly a times and r exactly b times will appear to the
power a, a+b and a+2b, respectively, in the terms of the progression. In particular,
these exponents will form an arithmetic progression. So, greedily avoiding geomet-
ric progressions amounts to greedily avoiding arithmetic progressions among the
exponents of the primes. Thus, as in Rankin’s set over the integers, an algebraic
integer is included in the greedy set, GK,3, if and only if the exponents on the
primes in its prime factorization come from A∗

3.
Now, for a fixed prime q of OK , we determine, analogously to (2.1) over the

integers, that the density of the algebraic integers that have an acceptable power
of q in their prime factorization is

(
N(q) − 1

N(q)

) ∑
i∈A∗

3

1
N(q)i

= f(N(q)). (3.5)

So, by the Chinese remainder theorem, the density is now given by a product of
factors of f(x), as described above. This product can be converted from a product
over the primes in K to a product over rational primes using the fact that each
prime of K lies above a rational prime. The contribution of each rational prime will
depend upon whether it remains inert, splits or ramifies in K.

If a rational prime, p, remains inert in K, then the factor representing this prime
is the same as in Rankin’s product, with one modification: instead of p residues
modulo p, there are now N(p) = p2 residues modulo p in OK . Thus, this prime
contributes a factor of f(p2) rather than f(p).

If a rational prime, p, splits, it splits into two conjugate primes of norm p, each
of which can be raised to different powers and for each of which we have a factor of
f(p). Multiplying these together, the contribution from this kind of rational prime
is f(p)2.

Finally, if a prime, p, ramifies, it corresponds to exactly one prime of K of norm
p. Thus, we account for divisibility by powers of this prime with the factor f(p).

Then, as in Rankin’s argument, the density of this greedy set serves as a lower
bound for the greatest possible density of a set free of this kind of geometric pro-
gression. Approximations of the resulting lower bounds in each of the nine class 1
imaginary quadratic number fields are given in table 1.

For the general case of quadratic number fields, we use the Dedekind zeta function
in place of the Riemann zeta function. It is defined as follows.
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Table 1. Density of the greedy set, GK,3 ⊂ OK , of algebraic integers that avoid three-term
geometric progressions with ratios in OK for each of the class number 1 imaginary
quadratic number fields K = Q(

√
d).

d Density of the greedy set

−1 0.762340
−2 0.693857
−3 0.825534
−7 0.674713

−11 0.742670
−19 0.823728
−43 0.898250
−67 0.917371

−163 0.933580

Definition 3.4. Let K be an algebraic number field. Then the Dedekind zeta
function for K is defined as

ζK(s) =
∑

I⊂OK

1
(NK/Q(I))s

, (3.6)

where I ranges through the non-zero ideals of the ring of integers OK of K, and
NK/Q(I) is the absolute norm of I.

The ring of integers of a quadratic number field is a Dedekind domain, so the ide-
als factor uniquely into prime ideals. Using this unique factorization, the Dedekind
zeta function can be expressed as an Euler product over all the prime ideals P of
OK , that is

ζK(s) =
∏

P⊂OK

1
1 − (NK/Q(P))−s

(3.7)

for Re(s) > 1.
In order to state the result, we shall also need the quadratic character of a number

field, which is defined as follows.

Definition 3.5. Let K be a quadratic field with discriminant DK . The quadratic
character of K is χK : Z+ → C, χK(m) = (DK/m), where (DK/m) is the Jacobi
symbol.

With these definitions in place, we can now state the general case of the density of
the greedy set of ideals avoiding geometric progressions where the ratios are ideals.

Theorem 3.6. Let K be a quadratic number field and let f : N → R be defined by

f(x) =
(

1 − 1
x

) ∞∏
i=0

(
1 +

1
x3i

)
. (3.8)
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Then the density of the greedy set of ideals, G∗
K,3, of OK that avoid three-term

geometric progressions with ratio a (non-trivial) ideal of OK is

d(G∗
K,3) =

1
ζK(2)

∞∏
i=1

ζK(3i)
ζK(2 · 3i)

. (3.9)

Proof. The method of proof is essentially the same as that of theorem 3.3. As before,
an ideal is in G∗

K,3 if and only if the exponents on the prime ideals in its prime
factorization appear only with exponents from A∗

3. For a fixed prime ideal P of
OK , the density of the ideals divisible by P is 1/N(P) and, likewise, the density of
ideals exactly divisible by an acceptable power of P is given by f(N(P)). Thus, the
density is again given by a product of factors of f(x) as described above. We can
likewise write this product as a product over rational primes depending on whether
the rational primes remain inert, split or ramify in K, with the norms behaving
exactly as they did in the case of class number 1 imaginary quadratic number fields,
so the product has the same structure as that of theorem 3.3. We now characterize
the behaviour of the rational primes using the quadratic character. In particular, a
prime ideal with χK(p) = −1 remains inert, an ideal with χK(p) = 1 splits and an
ideal with χK(p) = 0 ramifies. So we get that

d(G∗
K,3) =

( ∏
χK(p)=−1

f(p2)
)( ∏

χK(p)=1

f(p)2
)( ∏

χK(p)=0

f(p)
)

.

The Euler product (3.7) and the steps used to derive (2.2) can be used to transform
this product into the product

d(G∗
K,3) =

1
ζK(2)

∞∏
i=1

ζK(3i)
ζK(2 · 3i)

in terms of values of the Dedekind zeta function.

3.1. Two universal bounds

We can use theorem 3.6 to give both upper and lower bounds for the density of
the greedy set of ideals avoiding three-term geometric progressions in any quadratic
number field. First, an observation.

Remark 3.7. Define f(x) as in theorem 3.6. Then, for all primes p, we have

0 < f(p)2 < f(p) < f(p2) < 1. (3.10)

With that said, we may proceed.

Corollary 3.8. Let K be a quadratic number field, and G∗
K,3 be the greedy set of

ideals of OK that avoid three-term geometric progressions. Then∏
p

f(p)2 < d(G∗
K,3) <

∏
p

f(p2) (3.11)

and, approximating these products, we find that

0.518033 < d(G∗
K,3) < 0.939735. (3.12)
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Proof. We use the remark above to give upper and lower bounds for the product
in (3.9). By theorem 3.6, we have

d(G∗
K,3) =

( ∏
χK(p)=−1

f(p2)
)( ∏

χK(p)=1

f(p)2
)( ∏

χK(p)=0

f(p)
)

>
∏
p

f(p)2 > 0.518033, (3.13)

and likewise
d(G∗

K,3) <
∏
p

f(p2) < 0.939735. (3.14)

Note that the inequalities of corollary 3.8 are strict because it is neither possible
for all of the rational primes to split in a quadratic number field nor for all to remain
inert. Interestingly, however, we find that the upper bound of inequality (3.11) is
achieved by a different greedily constructed set: the greedy set of algebraic integers
(or ideals) which avoid progressions where the ratio between consecutive terms is a
rational integer, which we shall see in theorem 3.10.

3.2. Greedy set avoiding geometric progressions with ratios in Z

We first consider the Gaussian integers, Z[i], which are the algebraic integers
of the quadratic number field Q(

√
−1), and look at the subset, H∗

Q(i),3, chosen
greedily to avoid geometric progressions with common ratios contained in Z\{±1}.
For example, the Gaussian integers 3+i, 6+2i, 12+4i form a geometric progression
in the Gaussian integers with common ratio 2. We shall calculate below the density
of this greedy set. Consider the Gaussian integers as lattice points in the complex
plane, and note that any geometric progression of Gaussian integers with ratios
in Z \ {±1} will lie on a line through the origin with rational slope. Scaling a
Gaussian integer by a rational integer twice produces three collinear points. We
then characterize the greedy set H∗

Q(i),3 as follows.

Lemma 3.9. A Gaussian integer a+ bi is excluded from H∗
Q(i),3 exactly when it can

be written in the form a + bi = k(c + di), where k is an element excluded from G∗
3

and (c, d) = 1.

Proof. This follows from the definition of G∗
3, since it greedily avoids rational inte-

gral ratios.

Having characterized this greedy set, we can now compute its density.

Theorem 3.10. The density of H∗
Q(i),3, the greedy set of Gaussian integers that

avoid geometric progressions with rational integral ratios, is equal to
∏

p f(p2),
approximately 0.939735.

Proof. Consider a circle of radius R and area A centred about the origin. By Gauss’s
circle problem [3], the number of lattice points contained in this circle is

πR2 + O(R1+ε). (3.15)
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A generalization of Gauss’s circle problem to counting primitive lattice points (that
is, solutions to the equation m2 + n2 � R2 with m and n coprime [12]) shows that
the number of such solutions is

6
π

R2 + O(R1+ε). (3.16)

Therefore, in the limit as R goes to infinity, we find that the proportion of primitive
lattice points tends to 6/π2. By lemma 3.9 we know that if a + bi ∈ H∗

Q(i),3, then
a + bi = k(c + di), where c + di is a primitive lattice point and k ∈ G∗

3.
Suppose a + bi ∈ H∗

Q(i),3 with a2 + b2 < R2 and let k = (a, b) ∈ G∗
3. Then a/k +

(b/k)i is a primitive lattice point in a circle of radius R/k and area A/k2. Since
the proportion of such primitive lattice points tends to 6/π2, each k ∈ G∗

3 will
contribute a factor of 6/π2k2 to the density of H∗

Q(i),3. Thus,

d(H∗
Q(i),3) =

6
π2

∑
k∈G∗

3

1
k2 =

1
ζ(2)

∏
p

∑
i∈A∗

3

1
p2i

=
∏
p

(
1 − 1

p2

) ∞∏
i=1

(
1 +

1
p2·3i

)

=
∏
p

f(p2) ≈ 0.939735. (3.17)

This result is not unique to the Gaussian integers. For any quadratic number field
K, let H∗

K,3 denote the greedy set of ideals of OK that avoid progressions whose
ratio is an ideal generated by a rational integer. If we use the method of the proof
of theorem 3.6, we find that, because the ideal generated by each rational prime
p has norm N(p) = p2, the density of those ideals of OK exactly divisible by an
acceptable power of the ideal (p) is f(p2). Thus, the Euler product for the density
of H∗

K,3 behaves as it would in theorem 3.6 if each prime p were to remain inert.
Thus, we have the following generalization of theorem 3.10.

Theorem 3.11. Let K be a quadratic number field. The density of H∗
K,3, the greedy

set of ideals of OK that avoid progressions whose ratio is an ideal generated by a
rational integer, is

d(H∗
K,3) =

∏
p

f(p2) ≈ 0.939735. (3.18)

4. Bounds on the upper density

We now turn our attention back to geometric progressions whose ratios lie in
the quadratic number field, and consider the supremum of the upper densities of
geometric-progression-free sets in this setting.

4.1. Upper bounds for the upper density

In 1969, Riddell [11] gave the first upper bound for the upper density of a subset
of the natural numbers that avoids three-term geometric progressions. Here we
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generalize his arguments to give upper bounds for the upper density of a set of
algebraic integers (or ideals) that avoid three-term geometric progressions in a
quadratic number field.

Riddell’s argument gives an upper bound by excluding the smallest number of
integers necessary to avoid progressions with ratios that are a power of 2. We use the
same argument, replacing the prime 2 with whichever prime in the given number
field has the smallest norm. We also need an estimate for how many ideals in our
number field have norm at most x. This is a well-studied problem, going back to
the work of Dedekind and Weber. It is known (see, for example, [6, theorem 5])
that for a quadratic number field, K, the count, N(x, K), of the number of ideals
of OK with norm at most x satisfies

N(x, K) = ρkx + O(x1/2), (4.1)

where ρK is a constant that depends on the number field. In the specific case when
K = Q(i), OK = Z[i] denotes the Gaussian integers and every ideal is principal. So
N(x, Q(i)) counts the Gaussian integers with norm up to x, which correspond to
lattice points with distance less than

√
x from the origin. Thus, in this special case,

(4.1) follows from Gauss’s circle problem, which tells us that the number of integer
lattice points contained in a circle centred at the origin with radius r is πr2 +O(r).
(Note that the error term here can be improved, but this number suffices for our
argument.)

In particular, when K is any of the imaginary quadratic number fields with class
number 1, (4.1) tells us that the count of the algebraic integers with norm up to x
will grow linearly with x.

We can now see how the powers of the smallest prime element of a number field
can be used to give an upper bound for the upper density of the set of algebraic
integers (ideals) avoiding three-term geometric progressions. We consider first the
representative case of the Gaussian integers.

Theorem 4.1. The upper density of a subset of the Gaussian integers avoiding
geometric progressions with non-unit ratios contained in Z[i] is at most 0.857143.

Proof. We consider a subset of the Gaussian integers with norm at most M and fix
an element r ∈ Z[i] with smallest possible non-unit norm, N(r) = 2. (So r is some
associate of 1 + i.) Then, if b ∈ Z[i] is any Gaussian integer coprime to 1 + i with
N(b) � 1

4M , we have that each element in the progression {b, br, br2} has norm at
most M and, furthermore, that distinct values of b result in disjoint progressions.
Thus, we must exclude at least one Gaussian integer with norm at most M for each
such value of b.

We can then use Gauss’s circle problem to count the number of such b, and so
see that the proportion of Gaussian integers excluded in this way is

1
2

#b with N(b) � 1
4M

#b with N(b) � M
=

1
2

1
4Mπ + O(

√
M)

Mπ + O(
√

M)
=

1
2

1
22 + O

(
1√
M

)
, (4.2)

or 1
8 in the limit as M → ∞. Thus, the upper density cannot be greater than 1

8 .
This is a crude bound, but we can improve upon it by considering additional

progressions. Note that, so long as N(b) � 1
32M , each element of a progression
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Table 2. Upper bounds for the upper density of three-term geometric-progression-free sub-
sets of the algebraic integers in the class number 1 imaginary quadratic number fields,
Q(

√
d).

d Upper bound Approximation

−1 6/7 0.857143
−2 6/7 0.857143
−3 12/13 0.923077
−7 6/7 0.857143

−11 12/13 0.923077
−19 20/21 0.952381
−43 20/21 0.952381
−67 20/21 0.952381

−163 20/21 0.952381

of the form {br3, br4, br5} will also have norm at most M , and furthermore these
progressions will be disjoint not only from each other but also from the first set of
progressions described above. This results in an additional proportion of (1

2 )( 1
25 )

Gaussian integers that must be excluded. Continuing this process yields an infinite
series, which gives the following upper bound:

1 − 1
23

∞∑
n=0

1
23n

= 1 −
1
23

1 − 1
23

=
6
7

≈ 0.857143. (4.3)

We can extend this argument to give a corresponding upper bound for the upper
density of a subset of algebraic integers in any class number 1 imaginary quadratic
number field, or for the upper density of the ideals of any quadratic number field.
Using (4.1), we have that the number of algebraic integers (or ideals) with norm less
than some given N grows linearly with N . We can therefore apply this argument,
replacing the common ratio, r, with an algebraic integer (or ideal respectively)
with smallest possible non-unit norm. By considering the possible behaviour of the
rational primes 2 and 3 in the quadratic number field, we see that this least non-unit
norm must be one of 2, 3 or 4.

In any quadratic number field containing an algebraic integer (ideal) of norm 2,
we obtain the same upper bound as for the Gaussian integers, 6

7 ≈ 0.857143. In
the case where the smallest non-unit element has norm 3, we have, by arguments
analogous to the case with norm 2, that the proportion of excluded elements is
bounded above by

1 − 2
33

∞∑
n=0

1
33n

= 1 −
2
33

1 − 1
33

=
12
13

≈ 0.923077, (4.4)

and in the case where the smallest non-unit element has norm 4 we have that the
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proportion of excluded elements is bounded above by

1 − 3
43

∞∑
n=0

1
43n

= 1 −
3
43

1 − 1
43

=
20
21

≈ 0.952381. (4.5)

The results for the class number 1 quadratic fields are summarized in table 2.

4.2. Improvements on upper bounds for the upper density

By generalizing Riddell’s argument in our new setting, we were able to derive
upper bounds for the upper density of sets of ideals containing no three terms in
geometric progression. Note, however, that this argument only takes into account
progressions involving a ratio of the smallest non-unit norm. We can conceivably
improve these bounds by taking into account more possible ratios. We do so, gen-
eralizing an argument made over the integers in [4].

For a quadratic number field K = Q(
√

d) and an integer n ∈ Z, we define an
element (or ideal) of the ring of integers OK to be n-smooth if its factorization into
irreducible elements consists entirely of elements with norm at most n.

For the ring of integers in any class number 1 imaginary quadratic number field,
we consider the n-smooth numbers up to a fixed norm and determine the exact
number of integers that must be excluded from this set to ensure it is progression-
free. We derive the following improvement to theorem 4.1.

Theorem 4.2. The upper density of a subset of the Gaussian integers avoiding
geometric progressions with non-unit ratios contained in Z[i] is at most 0.85109.

Proof. The 5-smooth elements of Z[i] consist of those elements whose only prime
factors are 1 + i, 2 + i and 2 − i, that is, the three non-unit irreducible elements
in this ring with smallest norm. Define the set SN to be the set of all elements of
Z[i] (up to associates) with norm less than or equal to N such that their prime
factorization consists only of these three smallest elements. That is, SN is the set
of all 5-smooth numbers in Z[i] with norm less than or equal to N . Considering
S4 = {1, 1+ i, 2} we see that these three elements form a progression, and therefore
at least one element must be excluded from S4 to ensure a set free of geometric
progressions. Considering larger values of N , the next additional exclusion occurs
when we hit S20 = {1, 1 + i, 2, 2 + i, 2 − i, 2 + 2i, 1 + 3i, 3 + i, 4, 4 + 2i, 4 − 2i}, at
which point two additional exclusions must be made in order to obtain a set free
of geometric progressions, bringing the total number of exclusions necessary up to
three.

Now, corresponding to the set S4, for any Gaussian integer b with N(b) � 1
4M

and such that (b, 5 + 5i) = 1 (where 5 + 5i = (1 + i)(2 + i)(2 − i)) we see that we
must necessarily exclude one element, which will have norm at most M , from the
set b ·S4 = {b, (1+ i)b, 2b}. As in Riddell’s argument, we see that for distinct values
of b the sets b · S4 are disjoint, and since the proportion of Gaussian integers, b,
coprime to 5 + 5i is

(2 − 1)(5 − 1)(5 − 1)
2 · 5 · 5

=
16
50

, (4.6)

we must exclude at least
16
50

(
Mπ

4

)
+ O(

√
M) (4.7)
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Table 3. Norms up to 500 at which additional exclusions have to be made when avoiding
5-smooth geometric progressions in the Gaussian integers.

# of integers
N excluded from SN

4 1
20 3
32 4
64 5

100 8
128 9
160 11
256 12
320 14
500 18

of the Mπ + O(
√

M) Gaussian integers with norm at most M , a density of 16
200 =

0.08, which gives us an upper bound of 0.92 for the upper density of a geometric-
progression-free set.

Similarly, corresponding to the set S20, because we must exclude two additional
elements corresponding to those b where N(b) � 1

20M , we get an improved lower
bound on the number of excluded elements of

16Mπ

50

(
1
4

+
2
20

)
+ O(

√
M), (4.8)

which in turn gives us the upper bound

1 − 16
50 ( 1

4 + 2
20 ) = 0.888. (4.9)

We can continue in this fashion, calculating each value of N for which additional
exclusion(s) are needed. The results for the Gaussian integers are summarized in
table 3.

Using all these necessary exclusions, we must exclude

16Mπ

50

(
1
4

+
2
20

+
1
32

+
1
64

+
3

100
+

1
128

+
2

160
+

1
256

+
2

320
+

4
500

)
+O(

√
M) (4.10)

elements. So any geometric-progression-free subset of the Gaussian integers with
norms less than or equal to M can have size at most 0.85109Mπ +O(

√
M). There-

fore, we find the upper bound for the upper density of sets of Gaussian integers con-
taining no three terms in geometric progression to be 0.85109, which is an improve-
ment over the previously computed upper bound of 0.857143.

While this computation was done in Z[i], we can easily repeat this approach to
find bounds for all other class number 1 imaginary quadratic number fields. In each
case we have used the three elements of smallest non-unit norm and computed
the values of N at which additional exclusions were required. The results of this
computation are summarized in table 4.
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Table 4. Improved upper bounds for the upper density of a set free of three-term geometric
progressions in each of the class number 1 imaginary quadratic number fields Q(

√
d).

Smallest
d non-unit norms Upper bound

−1 2, 5, 5 0.851090
−2 2, 3, 3 0.839699
−3 3, 4, 7 0.910089
−7 2, 2, 7 0.858880

−11 3, 3, 4 0.917581
−19 4, 5, 5 0.949862
−43 4, 9, 11 0.945676
−67 4, 9, 17 0.946772

−163 4, 9, 25 0.946682

4.3. Lower bounds for the maximal upper density

We next establish lower bounds on the supremum of the upper densities of sub-
sets of imaginary quadratic number fields that avoid geometric progressions by
generalizing an argument from [4], also discussed more recently by Nathanson and
O’Bryant [8]. For illustration, we first consider the Gaussian integers and construct
a subset S ⊂ Z[i] that has a large upper density and avoids geometric progressions.

Fix a bound M > 0 and note that if x1, x2 and x3 are Gaussian integers whose
norms satisfy 1

4M < N(x1) < N(x2) < N(x3) � M , then (x1, x2, x3) cannot
form a three-term geometric progression with non-unit ratio in Z[i]. This is because
any non-unit ratio r will have norm N(r) � 2, and hence N(x3) = N(x1r

2) =
N(x1)N(r)2 > M . Thus, any three elements with norm in the interval (1

4M, M ] do
not make up a geometric progression. So, by including all such elements in S, S can
include three-quarters of the Gaussian integers with norm at most M . In fact we
can include more elements in S fairly easily, using the fact that the norm of any
Gaussian integer lies in Z. We can also piece together sets of this sort for widely
separated values of M to produce a set avoiding these progressions with high upper
density.

Theorem 4.3. We have that 0.844662 is a lower bound for the supremum of the
upper densities of all subsets of Z[i] that avoid three-term geometric progressions.

Proof. We construct here a set S that has the claimed upper density while avoiding
three-term geometric progressions over the Gaussian integers. Let

TM =
(

M

6728
,

M

6656

]
∪

(
M

3712
,

M

3364

]
∪

(
M

3328
,

M

928

]
∪

(
M

841
,

M

832

]

∪
(

M

32
,
M

8

]
∪

(
M

4
, M

]
(4.11)

and consider the set
SM = {x ∈ Z[i] : N(x) ∈ TM}. (4.12)
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We have already argued that the set {x ∈ Z[i] : N(x) ∈ ( 1
4M, M ]} is free of three-

term geometric progressions, for a given M , using only the fact that the smallest
non-unit ratio is 2. One can similarly check, using the fact that the complete list of
the possible norms of Gaussian integers up to 83 is

2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40,

41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82,

that if any two terms of a geometric progression have norms contained in TM above,
then the third element’s norm must be greater than M , less than M/6728 or lie in
one of the omitted gaps. We can visualize SM as the lattice points in a set of six
annuli centred about the origin. Applying Gauss’s circle problem, it follows that as
M → ∞ the proportion of Gaussian integers (up to norm M) with norm in TM is
given by

1
Mπ

((
Mπ

1
− Mπ

4

)
+

(
Mπ

8
− Mπ

32

)
+

(
Mπ

832
− Mπ

841

)

+
(

Mπ

928
− Mπ

3328

)
+

(
Mπ

3364
− Mπ

3712

)
+

(
Mπ

6656
− Mπ

6728

))
≈ 0.844662. (4.13)

We can now construct concentric, expanding sets of six annuli that still avoid
geometric progressions in their union. Fix M0 = 1 and recursively define Mi =
6728M2

i−1 for i � 1. Each SMi forms a set of six annuli, with radii increasing
as i increases. Furthermore, these annuli are sufficiently separated to avoid any
geometric progressions in their union S :=

⋃∞
i=1 SMi

. To see this, suppose x1 ∈ SMj

and x2 = x1r ∈ SMk
for some j � k. We have already argued that if j = k, then

x3 = x1r
2 /∈ SMk

. Suppose then that x3 ∈ SMl
for some l > k. Then

N(r) =
N(x3)
N(x2)

>
1

Mk

Mk+1

6728
= Mk, (4.14)

and so N(x2) = N(x1r) � N(r) > Mk. But this contradicts x2 ∈ SMk
and so we

cannot have x3 ∈ SMl
for any l.

Therefore, S is free of three-term geometric progressions by construction, and
has upper density 0.844662.

The arguments for the other imaginary quadratic number fields follow similarly.
Care must be taken to ensure that the intervals TM are constructed to avoid intro-
ducing progressions with norms in the given imaginary quadratic number field. The
results are summarized in table 5.

5. Conclusions and future work

In § 3, we characterized the greedy set of ideals of the ring of integers over a
quadratic number field avoiding three-term geometric progressions, and thus obtain-
ed lower bounds for the supremum of the densities of geometric-progression-free
sets. We believe, as in the case of the rational integers, that it is possible to con-
struct sets with greater density by considering non-greedy sets.
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Table 5. Lower bounds for the supremum of the upper densities of
geometric-progression-free subsets of class number 1

imaginary quadratic number fields Q(
√

d).

d Intervals used Lower bound

−1
(

M

6728
,

M

6656

]
∪

(
M

3712
,

M

3364

]
∪

(
M

3328
,

M

928

]
∪

(
M

841
,

M

832

]
0.844662

∪
(

M

32
,
M

8

]
∪

(
M

4
, M

]

−2
(

M

19 008
,

M

16 896

]
∪

(
M

8448
,

M

2212

]
∪

(
M

48
,
M

36

]
∪

(
M

32
,
M

27

]
0.818648

∪
(

M

24
,
M

12

]
∪

(
M

9
,
M

8

]
∪

(
M

4
, M

]

−3
(

M

252
,
M

63

]
∪

(
M

49
,
M

36

]
∪

(
M

9
, M

]
0.908163

−7
(

M

29 696
,

M

7424

]
∪

(
M

3712
,

M

928

]
∪

(
M

32
,
M

8

]
∪

(
M

4
, M

]
0.844659

−11
(

M

405
,
M

45

]
∪

(
M

9
, M

]
0.908641

−19
(

M

2816
,

M

176

]
∪

(
M

16
, M

]
0.942826

−43
(

M

1472
,

M

1377

]
∪

(
M

576
,

M

208

]
∪

(
M

81
,
M

64

]
∪

(
M

16
, M

]
0.943897

−67
(

M

1024
,

M

729

]
∪

(
M

576
,

M

144

]
∪

(
M

81
,
M

64

]
∪

(
M

16
, M

]
0.946382

−163
(

M

2304
,

M

2025

]
∪

(
M

1600
,

M

1296

]
∪

(
M

1024
,

M

729

]
0.946589

∪
(

M

576
,

M

144

]
∪

(
M

81
,
M

64

]
∪

(
M

16
, M

]

Question 5.1. Is it possible to construct subsets of the integral ideals of a quad-
ratic number field with density greater than that of the greedy set? If so, how much
greater?

We computed the densities of the greedy sets of ideals containing no three-term
geometric progressions over various quadratic number fields with small discrimi-
nant. In figure 1 we plot the distribution of densities of the greedy sets of ideals
in all imaginary quadratic number fields, Q(

√
−d), with 1 � d � 10 000. The his-

togram suggests some interesting structure, and we conjecture that it arises partly
from the distribution of elements with small norms in a given number field. It would
be interesting to examine the emergent patterns more rigorously.

In § 4, we generalized arguments by Riddell and by McNew to derive upper and
lower bounds for the supremum of the upper densities of geometric-progression-free
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Figure 1. Distribution of densities of greedy sets of ideals of imaginary
quadratic number fields with discriminant at most 10 000.

subsets of a quadratic number field, which depend on the splitting behaviour of
small primes.

The questions we have answered in this paper leave us with many more poten-
tial avenues to explore. We end with the following open questions that we find
interesting.

As mentioned, we restricted our study to geometric progressions whose ratios are
non-unit-algebraic integers. However, sets free of progressions with different ratios
are also of interest and may require different methodologies to study.

Question 5.2. How would considering progressions with unit ratios change our
results about the possible densities of geometric-progression-free subsets of the alge-
braic integers in an imaginary quadratic number field?

Question 5.3. How would these results change if one considered all progressions
with non-unit ratios (not necessarily integral) in an imaginary quadratic number
field, or fractional-ideal ratios in an arbitrary quadratic number field?

We note that Rankin’s set, G∗
3, also avoids all geometric progressions over the

integers with rational ratio, although up to this point we have only used the fact that
it avoids integral-ratio geometric progressions. In the same way, over a quadratic
number field, K, one finds that the greedy set, G∗

K,3, constructed to avoid progres-
sions with integral-ideal ratio, is also the greedy set avoiding progressions whose
ratio is any fractional ideal of K.

Question 5.4. Is it possible to construct subsets of the ideals of the ring of integers,
OK , of a quadratic number field K, avoiding progressions with fractional-ideal ratio,
with density greater than that of the greedy set G∗

K,3?

On the other hand, the arguments we used to give lower bounds for the supremum
of the possible upper densities would no longer apply in the fractional-ideal-ratio
case, as they depend on the existence of a minimum norm for a ratio.

Moving beyond quadratic number fields, one can consider geometric-progression-
free sets over number fields of higher degree or even over other rings, such as
polynomials or matrices. Depending on the ring one considers, one may lose certain
useful properties, such as commutativity, associativity, a nice lattice structure or
unique factorization.

https://doi.org/10.1017/S030821051600010X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051600010X


262 A. Best and others

Question 5.5. What results can be obtained about geometric-progression-free sets
over a number field of arbitrary degree? Or over the quaternions? Or over the
octonions?

Question 5.6. How do these results generalize to sets free of longer geometric
progressions?

For other progressions of prime length, the situation should be very similar to the
results presented here. However, in the case of progressions of composite length, the
results may be more complicated, as the greedy set of integers avoiding arithmetic
progressions of composite length is not as predictable as A∗

3 is.

Question 5.7. What can be said about the geometric-progression-free subsets of
the algebraic integers (not the ideals) in an imaginary quadratic number field with-
out unique factorization? Can the greedy set be characterized? Can its density be
determined?

Question 5.8. What issues are introduced when studying geometric-progression-
free subsets of a matrix ring, such as M2(Z), which is no longer commutative?

Question 5.9. In a more general sense, how does the structure of a ring affect the
possible sizes of its geometric-progression-free subsets?
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