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The linear stability of thermal buoyant flow in a fluid-saturated vertical porous slab
is studied under the assumption of weak and strong horizontal heterogeneities of
the permeability. The two end vertical isothermal boundaries are impermeable and
some paradigmatic cases of linear, quadratic and exponential heterogeneity models are
deliberated. The stability/instability of the basic flow is examined by carrying out a
numerical solution of the governing equations for the disturbances as Gill’s proof (A.E.
Gill, J. Fluid Mech, vol. 35, 1969, pp. 545–547) of linear stability is found to be ineffective.
The possibilities of base flow becoming unstable due to heterogeneity in permeability
are recognized, in contrast to Gill’s stability problem. The neutral stability curves are
presented and the critical Darcy–Rayleigh number for the onset of convective instability is
computed for different values of the variable permeability constant. The similarities and
differences between different heterogeneity models on the stability of fluid flow are clearly
discerned.

Key words: Buoyancy-driven instability, convection in porous media

1. Introduction

Over the last few decades, considerable research efforts have been devoted to studying
the stability of natural convection in a vertical porous slab because of its applications
in the analysis of contaminant diffusion in the soil, the extraction of hydrocarbons,
the CO2 sequestration processes, the use of metal foams for the optimized design of
heat exchangers, the design of packed bed reactors, building insulation involving an
unventilated air gap and for breathing walls to chemical engineering to mention a few.

The first proof that a vertical porous slab of Darcy type with constant permeability,
which is held at fixed but different temperatures on the impermeable vertical walls,
is stable to perturbations from the equilibrium state was presented by Gill (1969).
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Subsequently, several articles were dealt with other extensions on Gill’s problem
(Wolanski 1973; Rees 1988, 2011; Straughan 1988; Flavin & Rionero 1999; Scott &
Straughan 2013; Barletta & De B. Alves 2014). All these studies revealed that no instability
is possible in the sense that the basic solution is always linearly stable to two-dimensional
disturbances no matter how large the Darcy–Rayleigh number is and thus complemented
the results of Gill (1969). The state-of-the-art has been summarized in a monograph by
Nield & Bejan (2017).

The proof of stability drawn in Gill’s paper is shown to be ineffective if the vertical
boundaries are considered as permeable instead of impermeable and it was also displayed
that the basic state becomes unstable when the Darcy–Rayleigh number is larger than
197.081 (Barletta 2015). This work motivated many investigators to extend the study by
including other effects such as an internal heat source (Barletta 2016; Barletta & Celli
2017), local thermal non-equilibrium (Celli, Barletta & Rees 2017) and anisotropy (Barletta
& Celli 2021). Furthermore, the problem of Gill was analysed for an Oldroyd-B type of
viscoelastic fluid (Shankar & Shivakumara 2017), Brinkman model (Shankar, Kumar &
Shivakumara 2017), maximum density effect (Naveen, Shankar & Shivakumara 2020),
second diffusing component (Shankar, Naveen & Shivakumara 2022) and the possibility
of the basic flow becoming unstable was established in all these cases.

Another important topic that has attracted the attention of researchers in recent years
is the study of thermal convective instability in a heterogeneous porous medium. This
is because the permeability of the porous materials encountered in many practical
situations is heterogeneous, such as the artificial porous materials like pellets used in
chemical engineering processes, fibre material used for the insulating purposes and in
many geological systems. It is shown experimentally that the porosity near a solid wall
is not a constant but varies, due to which the permeability also varies (Schwartz &
Smith 1953, Roblee, Baird & Tierney 1958; Benenati & Brosilow 1962). Since then,
the significance and importance of heterogeneity for various aspects of convection in
porous media have been continued to be recognized by scientists and engineers. The
study of natural convection in horizontal porous media with variable permeability has
been studied extensively (Nield & Kuznetsov 2007; Nield 2008; Rionero 2011; Barletta,
Celli & Kuznetsov 2012; Barletta & Nield 2012). It has been observed that the effect
of heterogeneity of the permeability has a noticeable impact in promoting the onset of
instability.

On the other hand, Braester & Vadasz (1993) considered the effect of the general
form of stratification of the porous-medium permeability and thermal conductivity on
natural convection and showed that weak heterogeneity in permeability plays a relatively
passive role. Rees & Pop (2000) studied the effect of exponentially decaying permeability
on free convective boundary-layer flow induced by a vertical heated surface embedded
in a porous medium and held at a constant temperature. It was found that, near the
leading edge, the flow is enhanced and the rate of heat transfer is much higher than in
the uniform permeability case. The effect of spatial discretization and different types of
heterogeneous hydraulic conductivity fields on free thermal convection was examined by
Nguyen, Graf & Guevara Morel (2016). The global sensitivity analysis and uncertainty
quantification were used to study natural convection in heterogeneous porous media,
including velocity-dependent dispersion by Fajraoui et al. (2017). Salibindla et al. (2018)
conducted an experimental investigation of the dissolution convection in a porous medium
with multiscale heterogeneity and some important implications for the future estimation
of subsurface carbon sequestration were presented. Shafabakhsh et al. (2019) considered
the influence of a fractured heterogeneity effect on unstable density-driven flow. It was
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shown that the onset of instability and free convection occur with a lower critical Rayleigh
number, indicating the fractured networks have a destabilizing effect. Benham, Bickle &
Neufeld (2021) studied the effect of vertical heterogeneity in a porous medium on the
overall flow properties by way of upscaling and illustrated how and when heterogeneities
accelerate/decelerate the dynamic flow. The effect of permeability variation on natural
convection in a vertical porous layer subjected to constant heat fluxes along the sidewalls
was investigated by Damene et al. (2021). The results for the flow field, temperature
distribution and heat transfer rates were presented for various forms of the variable
permeability cases.

As envisaged by the previous studies, flows in porous media are particular in that the
velocity field and heat transfer are largely dictated by the medium properties. Practically
every porous domain exhibits heterogeneity with respect to permeability. It is thus
imperative to establish the implications of horizontal heterogeneities in controlling the
onset, growth and/or decay of thermal instabilities in a vertical porous layer, which have
not received any attention to the best of our knowledge. The intent of the present study
is to quantify the effect of both weak and strong heterogeneities of the permeability on
the stability of natural convection in a vertical Darcy porous layer. In the discussion,
three different models of permeability functions are considered viz. linear, quadratic and
exponential. The stability of basic parallel buoyant flow for these models is analysed
by adopting a modal analysis. The stability eigenvalue problem is solved numerically
by employing the Chebyshev collocation method. The effects of different models of
heterogeneities on the stability/instability characteristics are discussed for the neutral
stability curves and for the critical values of the Darcy–Rayleigh number, wavenumber
and wave speed.

2. Mathematical formulation

An infinite vertical porous slab of width 2h saturated with an incompressible Newtonian
fluid and bounded by a pair of impermeable left (x∗ = −h) and right (x∗ = h) vertical
walls which are maintained at constant temperatures T1 and T2(> T1), respectively is
considered (see figure 1). The origin of the coordinate axes is taken in the middle of
the slab with the z∗-axis pointing vertically upward and the gravitational acceleration g is
acting in the negative z∗ direction, while the x∗- and y∗-axes are horizontal. The flow
in the Darcy porous medium is driven by the buoyancy force due to the temperature
difference between the vertical walls. The local thermodynamic equilibrium and the
Oberbeck–Boussinesq approximation are assumed. Besides, the permeability of the
porous medium is assumed to vary horizontally within the porous medium. With asterisks
being used to denote the dimensional variables, the governing equations describing the
system behaviour are

∇∗ · u∗ = 0, (2.1)

−∇∗P∗ + ρ0β(T∗ − T0)gk̂ − μ

K∗(x∗)
u∗ = 0, (2.2)

χ
∂T∗

∂t∗
+ (u∗ · ∇∗)T∗ = κ∇∗2T∗. (2.3)

In the above equations, u∗ = (u∗, v∗,w∗) is the filtration velocity, P∗ is the pressure, ρ0
is the density at the reference temperature T0 = (T1 + T2)/2, β is the volumetric thermal
expansion coefficient, T∗ is the temperature, μ is the viscosity of the fluid, K∗(x∗) is the
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Fully developed flow
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Figure 1. Physical configuration.

horizontally varying permeability function, χ is the ratio of heat capacities and κ is the
thermal diffusivity.

The boundary conditions are:

u∗ = 0 at x∗ = ±h; T∗ = T1 at x∗ = −h; T∗ = T2 at x∗ = h. (2.4a–c)

We non-dimensionalize the above equations through the transformation

∇ = h∇∗, u = u∗

(κ/h)
, P = P∗

(μκ/K0)
, t = t∗

(χh2/κ)
.

T = (T∗ − T0)

(T2 − T1)
, K(x) = K∗(x∗)

K0
, (2.5 a– f )

where K0 is a reference permeability at the centre of the porous slab. In analysing
instability problems akin to the present investigation, Barletta (2015), Barletta, Celli
& Ouarzazi (2017) and Shankar, Shivakumara & Naveen (2021) have established
the validity of Squire’s theorem (i.e. two-dimensional disturbances are more unstable
than the three-dimensional ones). Motivated by these findings, we have restricted
our attention purely to two-dimensional analysis and accordingly the streamfunction
ψ∗(x∗, z∗, t∗) is introduced through u∗ = ∂ψ∗/∂z∗ and w∗ = −∂ψ∗/∂x∗. The pressure
term is then eliminated from the momentum equation by operating curl and the following
dimensionless equations are obtained:

1
K(x)

∇2ψ − DK(x)

[K(x)]2
∂ψ

∂x
= −RD

∂T
∂x
, (2.6)

∂T
∂t

− J(ψ, T) = ∇2T, (2.7)

where D denotes the derivative with respect to x, RD = βghK0(T2 − T1)/νκ is the
Darcy–Rayleigh number, J(ψ, T) = (∂ψ/∂x)(∂T/∂z)− (∂ψ/∂z)(∂T/∂x) is the Jacobian
and ν = μ/ρ0 is the kinematic viscosity.
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The boundary conditions now become

ψ = 0 at x = ±1 and T = ±1
2 at x = ±1. (2.8a,b)

It is convenient to introduce the following modified Darcy–Rayleigh number based on the
average permeability K̄(x) as R̃D = βghK̄(x)(T2 − T1)/νκ , where K̄(x) = bK0 with

b = 1
2

∫ 1

−1
K(x) dx. (2.9)

The Darcy–Rayleigh number is related to the modified Darcy–Rayleigh number R̃D by the
following expression:

R̃D = bRD. (2.10)

Natural and man-made porous domains exhibit heterogeneity in permeability and it can
vary by many orders of magnitude and sometimes rapidly over small spatial scales. As
such, the prediction of weak and strong heterogeneities in controlling the growth and/or
decay of instabilities may turn out to be important in many of the engineering applications
mentioned earlier. Accordingly, the following heterogeneity models, with m being the
variable permeability constant, are considered:

Linear heterogeneity of the permeability

K(x) = 1 + mx; b = 1. (2.11)

Quadratic heterogeneity of the permeability

K(x) = 1 + mx2; b = 1 + m/3. (2.12)

Exponential heterogeneity of the permeability

K(x) = emx; b = sinh m/m. (2.13)

3. Base state

The base state, about which the linear stability characteristics will be analysed,
corresponds to a steady, parallel, fully developed flow. Base state quantities are designated
by suffix b, and also ψb and Tb are considered to be functions of x alone. Equations
(2.6)–(2.8a,b), respectively become

1
K(x)

D2ψb − DK(x)

[K(x)]2 Dψb = − R̃D

b
DTb, (3.1)

D2Tb = 0, (3.2)

ψb = 0 at x = ±1 and Tb = ±1
2 at x = ±1. (3.3a,b)

The solutions of the above equations obtained analytically for linear, quadratic and
exponential heterogeneities of the permeability are, respectively, given by

ψb(x) = R̃D

12
[m2 − 2mx − 3](x2 − 1), Tb = x

2
. (3.4a,b)

ψb(x) = − R̃D

8(1 + m/3)
[m(x2 + 1)+ 2](x2 − 1), Tb = x

2
. (3.5a,b)
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ψb(x) = R̃D

4 sinh m
[−2 em − em(x+2)(x − 1)+ emx(x + 1)](coth m − 1), Tb = x

2
.

(3.6a,b)
One may easily check that the basic solution given by (3.4a,b)–(3.6a,b) coincides with that
of Gill (1969) when m = 0 (constant permeability). Equations (3.4a,b)–(3.6a,b) reveal that
ψb(x) is not symmetric about the z-axis for linear and exponential, while it is symmetric
for quadratic heterogeneities of the permeability. Moreover, ψb(x)/R̃D remains invariant
under the transformation

m → −m, x → −x, (3.7a,b)

for linear and exponential heterogeneities of the permeability.

4. Linear stability analysis

We perturb the basic state with small-amplitude disturbances given by

ψ = ψb + εψ̂, T = Tb + εT̂, (4.1a,b)

where the parameter ε is such that ε > 0 and ε � 1, while ψ̂ and T̂ are the perturbation
fields. We assume the perturbed streamfunction and temperature have the form of normal
modes

(ψ̂, T̂)(x, z, t) = (Ψ,Θ)(x) eia(z−ct), (4.2)

where a is the vertical wavenumber and c = cr + ici is the complex wave speed. The
growth rate ci marks the difference between stability (ci < 0) and instability (ci > 0). The
neutrally stable configuration is identified by ci = 0. Substituting equations (4.1a,b) and
(4.2) into (2.6)–(2.8a,b), we obtain the following eigenvalue problem for neutrally stable
modes:

1
K(x)

(D2 − a2)Ψ − DK(x)

[K(x)]2 DΨ + R̃D

b
DΘ = 0, (4.3)

ia(1
2Ψ − DψbΘ)− (D2 − a2)Θ = iacΘ, (4.4)

Ψ = Θ = 0 at x = ±1. (4.5)

We note that the above eigenvalue problem is endowed with symmetry if K(x) varies
linearly and exponentially, and in which cases (4.3)–(4.5) are left invariant by the
transformation

Ψ → −Ψ, x → −x, m → −m, a → −a, c → −c. (4.6a–e)

5. Gill’s growth rate analysis

It is not out of place to attempt to determine whether Gill’s proof of linear stability for
constant permeability can be extended to the cases of horizontal heterogeneity models of
the permeability. Following the analysis of Gill (1969), we operate (1/K(x))(D2 − a2)−
(DK(x)/[K(x)]2)D on (4.4) to eliminate Ψ and obtain a single fourth-order differential
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equation for Θ in the form

− iaR̃D

2b
Θ ′ − ia

{
1

K(x)
(ψ ′′′

bΘ + 2ψ ′′
bΘ

′ + ψ ′
bΘ

′′

−a2ψ ′
bΘ)− K′(x)

[K(x)]2 (ψ
′′

bΘ + ψ ′
bΘ

′)
}

− 1
K(x)

(Θ ′′′′ + a4Θ − 2a2Θ ′′)+ K′(x)
[K(x)]2 (Θ

′′′ − a2Θ ′)

= iac
{

1
K(x)

(Θ ′′ − a2Θ)− K′(x)
[K(x)]2Θ

′
}
,

(5.1)

where primes denote differentiation with respect to x. We multiply equation (5.1) by Θ̄ ,
the complex conjugate of Θ , and integrate it over the domain −1 ≤ x ≤ 1 to get

− iaR̃D

2b

∫ 1

−1
Θ ′Θ̄ dx − ia

∫ 1

−1

{
1

K(x)
(ψ ′′′

b|Θ|2 + 2ψ ′′
bΘ

′Θ̄ + ψ ′
bΘ

′′Θ̄ − a2ψ ′
b|Θ|2)

− K′(x)
[K(x)]2 (ψ

′′
b|Θ|2 + ψ ′

bΘ
′Θ̄)

}
dx

−
∫ 1

−1

{
1

K(x)
(Θ ′′′′Θ̄ + a4|Θ|2 − 2a2Θ ′′Θ̄)− K′(x)

[K(x)]2 (Θ
′′′Θ̄ − a2Θ ′Θ̄)

}
dx

= iac
∫ 1

−1

{
1

K(x)
(Θ ′′Θ̄ − a2|Θ|2)− K′(x)

[K(x)]2Θ
′Θ̄
}

dx.

(5.2)
The terms in (5.2) rule out the possibility of reaching any definite conclusion in
determining whether the sign of ci is positive or negative. Hence, Gill’s analysis of proving
the stability becomes ineffective owing to the consideration of horizontal heterogeneity of
the permeability. However, for a constant permeability case (K(x) = 1, R̃D = RD with
b = 1, ψb = ψb(x) = RD(1 − x2)/4) the above equation simply reduces to

iaRD

2

∫ 1

−1
x(|Θ ′|2 + a2|Θ|2) dx +

∫ 1

−1
(|Θ ′′|2 + a4|Θ|2

+ 2a2|Θ ′|2) dx = iac
∫ 1

−1
(|Θ ′|2 + a2|Θ|2) dx. (5.3)

Equating the real part of (5.3) allows one to conclude that ci < 0, indicating that all
infinitesimal perturbations decay. This conclusion is in conformity with Gill’s classical
proof of stability.

6. Numerical procedure

The ensued eigenvalue problem formulated through (4.3)–(4.5) is solved numerically by
means of the Chebyshev collocation method as Gill’s analysis is ineffective in establishing
the stability/instability of the base flow. The Chebyshev polynomial of kth order is given
by

ξk(x) = cos kθ, θ = cos−1x. (6.1)

The Chebyshev collocation points are given by

xj = cos
(

πj
N

)
, j = 0(1)N, (6.2)
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where N is any positive integer and j = 0 and j = N correspond to the right and left
wall boundaries, respectively. The field variables Ψ and Θ are approximated in terms
of Chebyshev polynomials as

Ψ (x) =
N∑

j=0

Ψjξj(x), Θ(x) =
N∑

j=0

Θjξj(x), (6.3a,b)

where Ψj andΘj are constants. Equations (4.3)–(4.5) are discretized in terms of Chebyshev
polynomials to get

1
K(xj)

N∑
k=0

(BjkΨk − a2Ψj)− K′(xj)

[K(xj)]2

N∑
k=0

AjkΨk + R̃D

b

N∑
k=0

AjkΘk = 0, j = 1(1)N − 1,

(6.4)

ia
2
Ψj − iaψ ′

bj
Θj −

( N∑
k=0

Bjk�k − a2�j

)
= iacΘj, j = 1(1)N − 1, (6.5)

Ψ0 = ΨN = 0, (6.6)

Θ0 = ΘN = 0, (6.7)

where

Ajk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj(−1)k+j

ck(xj − xk)
j /= k

− xj

2(1 − x2
j )

1 ≤ j = k ≤ N − 1

2N2 + 1
6

j = k = 0

−2N2 + 1
6

j = k = N

, (6.8)

and

Bjk = Ajm · Amk, (6.9)

with

cj =
{

1 1 ≤ j ≤ N − 1
2 j = 0,N . (6.10)

The discretized equations lead to a generalized eigenvalue problem of the form

AX = cBX , (6.11)

where c and X are the complex eigenvalue and eigenfunction, respectively, and A and
B are square complex matrices of order 2N + 2. The differential eigenvalue problem then
becomes an algebraic eigenvalue problem that can be solved in different ways. In this study,
the QZ algorithm is used to obtain the eigenvalues inbuilt in MATLAB software with the
eig command. The imaginary part of the eigenvalue c is used to determine the critical value
of parameter R̃D using criticality conditions of temporal linear stability analysis (Shankar,
Kumar & Shivakumara 2020, 2021; Shankar & Shivakumara 2020, 2021).
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7. Discussion of the results

This section examines the linear temporal stability results of fully developed natural
convection flow in a differentially heated heterogeneous vertical porous slab. The effect
of linear, quadratic and exponential heterogeneities of the permeability is discussed on the
flow instability by searching for disturbances in the form of normal modes. The present
study contains the following two important non-dimensional parameters: the modified
Darcy–Rayleigh number (R̃D) and the variable permeability constant (m).

7.1. Base flow

The scaled basic streamfunction ψb(x)/R̃D is plotted in figures 2(a), 2(b) and 2(c) for
linear, quadratic and exponential heterogeneity models of the permeability, respectively,
for different positive and negative values of m and note that the base flow is greatly
affected. Figure 2(a) demonstrates that the basic streamfunction profile gets suppressed
and starts showing an inflection point near the walls as the magnitude of m increases.
Furthermore, the inflection points gradually move towards the centre of the slab from the
cold and hot walls as the value of m and −m increase, respectively. For the quadratic
heterogeneity model, the basic streamfunction profiles are quartic functions that contain
only even powers of x (figure 2b). In this case, the inflection points are found to appear
only for negative values of m and move towards the z-axis with increasing −m. Moreover,
the profiles attain some maximum value at the centreline of the porous slab and this value
increases with increasing m but decreases with increasing −m. Figure 2(c) reveals that the
exponentially varying permeability compresses the streamfunction profiles towards the
hot wall as m increases while it moves in the direction of the cold wall as −m increases.
Besides, these profiles become steeper near the boundaries at higher values of |m| and also
exhibit inflection points. Figures 2(a) and 2(c) show the invariance of ψb/R̃D as visualized
by (3.7a,b). The appearance of inflection points for various models of heterogeneity is
linked to the instability of base flow.

7.2. Validation of the code
The convergence analysis of the numerical calculations is presented by varying the order
of the Chebyshev polynomials for different forms of heterogeneity of the permeability
function K(x) and for various values of the variable permeability constant m in table 1.
From the table, it is evident that the critical values of R̃D are independent of the order of
polynomial N in the approximation of different field variables varying from 30 to 60. In
particular, the numerical scheme needs a good number of collocation points as m → 0;
otherwise, N = 30 collocation points are found to be sufficient for achieving four decimal
point accuracy. Due to the lack of benchmark solutions in the open literature with which
to compare our results, numerical computations are also carried out using the Galerkin
method with Legendre polynomials as trial functions (see Appendix A). The results
achieved by both the Galerkin and Chebyshev collocation methods for different forms
of K(x) and m values are tabulated in table 2 and note that they are in good agreement.

7.3. Growth rate analysis
We could not find the analytical proof that the solution of (4.3)–(4.5) yields ci < 0 , as was
found for a constant permeability case (Gill 1969). As a result, numerical computations
of the complex eigenvalue ci for the assigned values of a, R̃D and m which allow one
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Figure 2. Plots of the scaled basic streamfunction profiles for different heterogeneity models of the
permeability: (a) linear, (b) quadratic and (c) exponential.

to track the growth rate of the normal modes were taken up. The variation of ci as a
function of a is displayed in figures 3(a–c), 4(a–c) and 5(a–c) for linear, quadratic and
exponential forms of K(x), respectively, for different combinations of values of R̃D and
m. These figures reveal the possibility of horizontal heterogeneities of the permeability
instilling instability of the base flow depending on the values of R̃D and m. For the linear
form of K(x), the flow is always stable for all the considered values of R̃D when |m| = 0.3
(figure 3a). But the same cannot be said when |m| = 0.4 as the sign of ci changes from
negative to positive, for some values of R̃D, indicating the possibility of the flow becoming
unstable (figure 3b). The values of |m| dominate in enforcing flow instability, as is evident
from figure 3(c). Nonetheless, the positive and negative values of m alter the stability of
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Chebyshev collocation method Galerkin method

K(x) m R̃Dc ac cc R̃Dc ac cc

Linear 0.4 32425.8937 1.1278 −10467.9340 32425.8938 1.1278 −10467.9341
0.6 742.2006 1.9197 −188.8948 742.2006 1.9197 −188.8948
0.8 324.7667 1.6677 −72.8429 324.7667 1.6677 −72.8429

Quadratic −0.3 22140.0729 3.1667 ±8323.2419 22140.0730 3.1667 ±8323.2419
−0.5 1255.9550 3.2956 ±402.1926 1255.9551 3.2956 ±402.1927
−0.8 493.4198 2.4741 ±139.7542 493.4199 2.4741 ±139.7543

Exponential 0.6 24025.2370 0.7147 −6893.5068 24025.2371 0.7145 −6893.5069
2 175.1176 1.2698 −25.9326 175.1176 1.2698 −25.9326
5 434.4397 2.6039 −56.7243 434.4398 2.6039 −56.7243

Table 2. Comparison of critical values computed by Chebyshev collocation and Galerkin methods.

the fluid flow if K(x) varies quadratically (figure 4a–c). Figure 4(a) shows that the base
flow is stable for all values of R̃D when m = ±0.2. Whereas for m = −0.3 the chance of
the flow becoming unstable cannot be ruled out as ci changes its sign for some values of
R̃D (figure 4b). The results presented for negative and positive values of m in figure 4(c)
evidence some interesting facts. It is seen that the flow transition from stable to unstable
occurs only for negative values of m, while the growth rate remains negative for all positive
values of m, indicating the basic flow is stable according to linear stability analysis. This is
expected as there is no inflection point in the basic streamfunction for the quadratic form of
heterogeneity for values of m ≥ 0. The results portrayed for the exponential form of K(x)
in figure 5(a–c) are similar to those of the linear form of K(x) but the flow is found to be
unstable at slightly higher values of |m|. Despite the flow becoming unstable at moderate
values of |m|, it is noted that the base flow remains stable (ci < 0) to disturbances of all
wavenumbers for all values of the Darcy–Rayleigh number at lower values of |m| and thus
complement the results of constant permeability (Gill 1969).

7.4. Neutral stability curves

The transition to instability is described through the neutral stability curves in the (a, R̃D)
parametric plane and such curves bound the instability region. Typically, instability occurs
for values of R̃D larger than those lying above the neutral stability curve. Hence, the
point of minimum R̃D at neutral stability is the endpoint for instability i.e. the instability
arises within the region entrapped by the neutral stability curve. Hence, the minimum
value of R̃D along each neutral stability curve defines the critical triplets (ac, R̃Dc, cc)
which depend on the heterogeneity models and values of m. Instability is possible for
R̃D > R̃Dc. Figures 6(a), 6(b) and 6(c), respectively, display the neutral stability curves
for linear, quadratic and exponential forms of K(x) for various values of m. For linear
and exponential forms of the permeability functions, it is quite evident that the neutral
stability curves exhibit a uni-modal shape and move upwards with decreasing |m| and the
same behaviour persists for the quadratic form of K(x) but only for negative values of
m. The linear (figure 6a) and quadratic (figure 6b) forms of K(x) also demonstrate that
the normal modes activating the instability correspond to decreasing wavenumber with
increasing |m| and −m, respectively, whereas a contradicting impact ensues when K(x)
varies exponentially (figure 6c).
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Figure 3. Growth rate ci versus wavenumber a for different values of (a) R̃D with |m| = 0.3, (b) R̃D with
|m| = 0.4 and (c) |m| with R̃D = 105 for a linear heterogeneity of the permeability.

7.5. Linear stability boundaries

The plots of R̃Dc, ac and cc are demonstrated as a function of m for linear, quadratic and
exponential forms of K(x) in figures 7(a), 7(b) and 7(c), respectively. The base flow is
stable in the region lying below the curves of R̃Dc (figure 7a) wherein the value of ci
is always negative, but in the region above these curves the flow is unstable as there
exists at least one positive value of ci. An evident feature that follows from figure 7(a)
is that the magnitude of m plays a crucial role on the stability of fluid flow. The flow is
found to be always stable in a certain range of values of m as the perturbations ensure a
negative growth rate: −0.3754 < m < 0.3754, −0.2498 < m < ∞ and −0.5695 < m <

0.5695 for linear, quadratic and exponential forms of K(x), respectively. This is because
the effect of horizontal heterogeneity of the permeability may not be strong enough
to induce instability. However, there exists a self-excited mode of disturbances beyond
these ranges of values of m and the flow becomes unstable; a result of the contrast
observed in the case of constant permeability (Gill 1969). We note that the curves of R̃Dc
decrease rapidly for linear and quadratic forms of K(x) with increasing |m|(≤ 0.99) and
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Figure 4. Growth rate ci versus wavenumber a for different values of (a) R̃D with m = ±0.2, (b) R̃D with
m = −0.3 and (c) m with R̃D = 105 for a quadratic heterogeneity of the permeability.

−m(≤ 0.94), respectively. For these two cases, the curves, after bending a little upward,
end at some point after which no more critical values exist as ci > 0. For an exponential
form of K(x), the curve of R̃Dc decreases suddenly and reaches its minimum value at
|m| = 1.9. In other words, there exists a finite range of values of |m| in which the flow
is destabilizing. While for values of |m| > 1.9, R̃Dc increases gradually (i.e. flow is
stabilizing) and finally reaches an asymptotic value 86.92|m| for sufficiently large values
of |m|. It is thus evident that the results are independent of the sign of m both for linear and
exponential heterogeneities of the permeability, as implied by the symmetry formulated by
(3.7a,b) and the results tabulated in table 3 also confirm this. From the foregoing results, it
is evident that the stability of the base flow can be controlled by the permeability functions.

The variation of the corresponding critical wavenumber ac is shown as a function of m in
figure 7(b). For linear and quadratically varying permeability models, ac increases sharply
at the beginning and then starts decreasing with increasing |m| and −m, respectively. For
the permeability model varying exponentially, ac increases initially then starts decreasing
and again increases steadily for values of |m| ≥ 2.21, and eventually attains the value
ac = 0.5207|m| for sufficiently large values of |m|. Thus the size of the convection
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Figure 5. Growth rate ci versus wavenumber a for different values of (a) R̃D with |m| = 0.5, (b) R̃D with
|m| = 0.6 and (c) |m| with R̃D = 105 for an exponential heterogeneity of the permeability.

cell diminishes as |m| takes larger values. The critical wave speed cc is found to
increase steadily with decreasing −m but decreases with decreasing m for both linear
and exponential permeability models (figure 7c). In these cases, the sign of cc becomes
negative when m is positive and vice versa but its modulus does not change. Thus cells
move up the vertical porous slab when the solutions correspond to cc < 0 and move
down when cc > 0. For a quadratic form of permeability, ±cc exists for each value of
−m, indicating wave disturbances travelling vertically both upward and downward with
equal speed. This is because, if c = c1 + ic2 is an eigenvalue of B−1A for a given value of
−m and the wavenumber a, then c = −c1 + ic2 is also an eigenvalue of B−1A as ψb is an
even function of x.

8. Conclusions

An analysis of the stability of natural convection has been carried out for a vertical porous
slab considering linear, quadratic and exponential heterogeneities of the permeability. The
boundaries of the slab are impermeable and kept at constant but different temperatures.
The stability eigenvalue problem has been formulated and solved numerically by
employing the Chebyshev collocation method. The neutral stability condition and the
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Figure 6. Neutral stability curves in the (a, R̃D)-plane for different values of the variable permeability
constant m and for the heterogeneity models of (a) linear, (b) quadratic and (c) exponential.

critical Darcy–Rayleigh number for different heterogeneity models are determined. The
suitable symmetries of the stability eigenvalue problem for linear and exponential models
of heterogeneity have been established, allowing us to gather information on the regime
m < 0 from the results of m > 0. Some of the important results of this analysis can be
outlined as follows.

(i) Gill’s proof of stability, for the case of constant permeability, has been restated. It
has been evidenced that this proof turns out to be ineffective if heterogeneity in
permeability exists.

(ii) The heterogeneities of the permeability change the basic flow dramatically and also
make the base flow unstable depending on the heterogeneity model as well as the
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Figure 7. Plots of (a) R̃Dc, (b) ac and (c) cc versus m for different heterogeneity models of permeability:
linear (black), quadratic (red) and exponential (blue).

variable permeability constant m. In the limit of vanishingly small m, the results for
constant permeability are retrieved.

(iii) For quadratic form of heterogeneity, the base flow remains stable for all positive
values of m and the instability occurs only for negative values of m.

(iv) For linear heterogeneity of the permeability, the value of R̃Dc decreases in the
range 0.3754 ≤ |m| ≤ 0.99 but it pinches upward slightly in a smaller range of
|m| > 0.99, after which the flow remains unstable. A similar behaviour is noticed
for the permeability varying quadratically but only for negative values of m.

(v) For the exponentially varying permeability, the base flow becomes destabilized
by manifesting itself as a minimum in the (m, R̃Dc)-plane in a parametric space
0.5695 ≤ |m| ≤ 1.9 and instead stabilizes for |m| > 1.9. Also, R̃Dc and ac attain
asymptotic values 86.92|m| and 0.5207|m|, respectively, at sufficiently large values
of |m|.

(vi) The instability sets in always via a travelling-wave mode for all heterogeneity models
of the permeability.

Finally, considering the novelty of the present study, we believe that additional
research is needed to better understand the stability of this class of basic states. In
particular, the transition to absolute instability, the dynamics of spatial modes and the
nonlinear development of the disturbances are possible tasks for future work. One of
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Linear heterogeneity of the permeability

m R̃Dc ac cc m R̃Dc ac cc

0.4 32425.8937 1.1278 −10467.9340 −0.4 32425.8937 1.1278 10467.9340
0.5 1991.9150 1.9703 −560.7646 −0.5 1991.9150 1.9703 560.7646
0.6 742.2006 1.9197 −188.8948 −0.6 742.2006 1.9197 188.8948
0.8 324.7667 1.6677 −72.8429 −0.8 324.7667 1.6677 72.8429

Exponential heterogeneity of the permeability

m R̃Dc ac cc m R̃Dc ac cc

0.6 24025.2370 0.7147 −6893.5068 −0.6 24025.2370 0.7147 6893.5068
0.8 1130.7046 1.2448 −267.5941 −0.8 1130.7046 1.2448 267.5941
2 175.1176 1.2698 −25.9326 −2 175.1176 1.2698 25.9326
5 434.4397 2.6039 −56.7243 −5 434.4397 2.6039 56.7243

Table 3. Critical values of (R̃D, a, c) for various selected parametric values.

the most intriguing breakthroughs of this study is the introduction of a model for
permeable/partially permeable boundary conditions. Also, one may extend the present
problem by considering the time-dependent velocity term in the momentum equation and
also horizontal heterogeneity in thermal conductivity.
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Appendix A

The Galerkin method has been employed alternatively to solve the resulting eigenvalue
problem constituted by (4.3)–(4.5). Accordingly, Ψ (x)and Θ(x) are expanded in a series
of basis functions

Ψ (x) =
N∑

n=0

anξn(x), Θ(x) =
N∑

n=0

bnξn(x), (A1a,b)

where an and bn are constants and the basis functions ξn(x) are represented in terms of
Legendre polynomials Pn(x) satisfying the boundary conditions in the form

ξn(x) = (1 − x2)Pn(x). (A2)

Equation (A1a,b) is substituted back into (4.3) and (4.4), and the resulting momentum
and heat transport equations are multiplied by ξm(x) and integrated by parts with respect to
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x between −1 and 1. This procedure gives two simultaneous algebraic equations governing
the coefficients an and bn, which can be written in the matrix form

AX = cBX , (A3)

where

A =
(

Cmn Dmn
Emn Fmn

)
; B =

(
Gmn Hmn
Imn Jmn

)
; X =

(
an
bn

)
. (A4a–c)

The coefficients Cmn–Jmn involve the inner products of the basis functions given by

Cmn =
〈

1
K(x)

(ξmξ
′′

n + a2ξmξn)

〉
−
〈

K′(x)
[K(x)]2 ξmξ

′
n

〉
,

Dmn = R̃D

b
〈ξmξ

′
n〉, Emn = ia

2
〈ξmξn〉,

Fmn = −ia〈ψ ′
bξmξn〉 + 〈ξmξ

′′
n + a2ξmξn〉, Gmn ≈ 0,

Hmn = 0, Imn = 0, Jmn = ia〈ξmξn〉, (A5)

where the inner product is defined as 〈· · · 〉 = ∫ 1
−1 (· · · ) dx. Equation (A3) is solved

numerically, as explained in § 6, to obtain the critical stability parameters.
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