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SUMMARY

Spatial variability among experimental units is a common problem in field experiments on tree crops
such as tea (Camellia sinensis). Spatial variability is partly accounted for by blocks, but a substantial amount
remains unaccounted for and this may lead to erroneous conclusions. In order to capture spatial variability
in field experiments on tea, six commonly used spatial analysis techniques were investigated: Covariate
method with pre-treatment yield as the covariate, Papadakis and the Modified Papadakis nearest neighbour
adjustments, Moving means and Modified moving means methods, and Autoregressive method. The data
from long-term fertilizer experiments and cultivar evaluation trials, conducted at different locations by the
Tea Research Institute of Sri Lanka, were used in the study. Spatial techniques were evaluated by means
of their relative efficiency at each location and year. Evaluation of the four neighbour methods analysed
in conjunction with the pre-treatment yield, revealed that spatial variability due to both past and current
conditions are operative, especially in experiments with large blocks, and could be captured simultaneously.
Relative efficiencies averaging 141% clearly indicated that the neighbour techniques in combination with
pre-treatment yield would be effective in controlling the experimental error in tea experiments with large
blocks (nine plots per block or more). Experiments with small blocks were not affected by spatial variability
due to past conditions and only that due to current conditions need to be addressed. Neighbour techniques,
on their own, were found to be adequate to capture spatial variability due to current conditions. The mo-
dified Papadakis technique was found to be the best with an average relative efficiency of 145%. The
techniques investigated in the study can easily be implemented using standard statistical software. The
precision of tea experiments could be increased by using covariate analysis with pre-treatment yield and
any one of the four nearest neighbour adjustments tested, when the block size is large; and modified
Papadakis technique, on its own, when the block size is small.

I N T RO D U C T I O N

Tea (Camellia sinensis), a perennial tree crop, is generally cultivated in hilly areas.
Consequently, field experiments on tea have large plots sited mostly on moderately
to steeply sloping land. For these reasons, the variability of the terrain and the
physical and chemical soil properties, across experimental sites, is generally high.
Various experimental designs are used to capture this variability (Quinn and Keough,
2002). The randomized complete block design (RCBD) is commonly used for field
experiments because of its simplicity and applicability to field conditions (Basford and
Turkey, 1995). Other designs used often for field experiments are row and column
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designs such as Latin Square Design and incomplete block designs with confounded
factorial effects (Pearce, 2002). However, the control of error variation by means of
experimental designs per se does not always achieve a satisfactory level of precision in
large experiments, due to spatial variability between plots within a block and between
plants within a plot (Rong-Cai et al., 2004). Spatial variability should therefore be
taken into account when analysing such trials to increase their precision (Singh et al.,
2003).

The efficiency of spatial techniques, relative to block designs, has been evaluated
frequently (Ball et al., 1993; Bartlett, 1978; Cullis and Gleeson, 1989; 1991; Kempton
et al., 1994; Scharf and Alley, 1993). However, these evaluations have been mostly of
annual crop trials. When perennial crop experiments were evaluated, in any given
study, only a single spatial technique had been considered vis-à-vis the conventional
analysis. Also, the pattern and extent of spatial variability may differ considerably
between environments (Rong-Cai et al., 2004). In tea, especially, the size of plots, blocks
and consequently the size of experimental sites, varies with the type of experiment
(e.g. evaluation of fertilizers, cultivars). These variations may lead to differences in the
efficiency of spatial techniques. Clearly, there is a need to identify effective techniques
to control spatial variability in perennial crop field experiments. The objective of this
study was to assess six commonly used model-based spatial techniques and evaluate
the most efficient techniques for different types of experiments under different agro-
climatic conditions.

M AT E R I A L S A N D M E T H O D S

Yield data of a cultivar evaluation trial and two long-term fertilizer trials, testing
macronutrients (N, K and Mg) and micronutrients (Zn, B, Mn), conducted by the Tea
Research Institute of Sri Lanka, were used for the study. The cultivar trial had been
repeated at four locations and the fertilizer trials at 11 locations to cover different
climatic conditions that necessitate different agronomic practices. For instance, the
duration of the pruning cycle at these locations ranges from 2.5 to 5 years. Details
of the experiments are given in Table 1. The cultivar trial is recorded as a RCBD.
However, as a large number of genotypes were being tested, the blocks were not
compact; the plots were spread-out, in groups, due to limitations imposed by the
nature of the site. In effect, each block comprised of several sub-blocks of uneven size.

Spatial analysis

According to Brownie et al. (1993), the linear model describing spatial trend is:

y ij = μ + ρi + αj + Tij + εij (1)

where, yij = the yield of jth treatment in the ith block, μ = grand mean, ρi = ith block
effect, αj = jth treatment effect, Tij = trend effect representing spatial variation in the
ith block and the jth plot εij = random error where εij ∼ N (0,σε

2).
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Table 1. Details of the experiments and their respective locations.

Location AER† Cultivar
Study
period Design No of blocks

Plants
per plot‡ No. of treatments

N, K and Mg trial
Courtlodge Estate WU3 PK 2 2000–2002 Confounded block design; 9 blocks (3 replicates) 40 27 (common to all 6 experiments – N: 240,420 and

600 Kg ha−1a−1; K2O: 120, 210 and 300 Kg
ha−1 a−1; MgO: 60,105 and 150 Kg ha−1 a−1)

Houpe Estate WL2 TRI 2025 2000–2002 three-way interaction 40
Lumbini Estate WM1 TRI 2026 2000–2001 confounded 40
Talgaswala Estate WL1 TRI 2027 2000–2002 40
Tokatiyamulla WL2 TRI 2026 2000–2002 40
Ury Estate IM2 TRI 3019 2000–2002 30

Micro-nutrient trial
Baddegama Estate WL1 TRI 2025 2000–2001 RCBD 4 blocks 40 6 (common to Baddegama, Greenwood, and

Madulkele: ZnSO4, ZnSO4 + Epsom salts,
Multiplex, Kiecite, Chelamin, Water (control))
5 (common to Indola and St. Coombs: ZnSO4,
Multiplex, Kiecite, Chelamin, Water (control))

Greenwood Estate WU1 TRI 2025 2000–2003 40
Madulkelle Estate WL1 TRI 2025 2000–2004 40
Indola Estate IU1 TRI 2025 2000–2003 40
St Coombs Estate WU2 TRI 2025 2000–2004 50

Cultivar evaluation trial
St Coombs WU2 2001–2003 RCBD 2 blocks 24 46 genotypes
Passara IU3C 2002–2003 25 22 genotypes
St Joachim1 WL1 2000–2002 25 45 genotypes
St Joachim2 WL1 2002–2004 24 61 genotypes

†AER: Agro-ecological region; WU: Upcountry wet zone; WL: Low country wet zone; WM: Mid country wet zone; IU: Up country intermediate zone; IM:– Mid country
intermediate zone.
‡At the spacing of 4′×2′.
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A distinctive feature of this model is that it can be used to describe most spatial
techniques. The six spatial techniques considered in the present study were:

(i) Classical covariate method (CCM) where pre-treatment yield (yield over the six-
month period prior to the experiment) is used as the covariate. In this technique
Tij of the model (1) is defined as θ(x ij − x̄ ) where xij is the pre-treatment yield of jth
plot in the ith block, x̄ is the mean of the pre-treatment yield and θ is the regression
coefficient.

(ii) Papadakis nearest neighbour method (PNNM) (Papadakis, 1984) where Tij is
defined as with CCM but xij is the mean plot residuals of eastern and western
neighbours after fitting the model without accounting for spatial effect, i.e. x ij =
(e ij −1 + e ij +1)/2.

(iii) Modified Papadakis nearest neighbour method (MPNNM) (Wilkinson et al., 1983)
where xij is the mean of four plot residuals of eastern and western neighbours, i.e.
x ij = (e ij −2 + e ij −1 + e ij +1 + e ij +2)/4.

(iv) Moving average method (MAM) (Townley-Smith and Hurd, 1973) where xij is
the arithmetic mean of two unadjusted plot yields of eastern and western nearest
neighbours, i.e., x ij = (y ij −1 + y ij +1)/2

(v) Modified moving average method (MMAM) where xij is the arithmetic mean of
four unadjusted plot yield values of eastern and western nearest neighbours, i.e.
x ij = (y ij −2 + y ij −1 + y ij +1 + y ij +2)/4

(vi) Autoregressive method (AR(1)) (Gilmour et al., 1997; Gleeson and Cullis, 1987).
AR(1) is known to be capable of fitting the field trends directly. This technique
assumes that the residuals are distributed according to spatial correlation models.
The commonly used spatial correlation model for AR(1) is:

Co v (εij , εij ′ ) = σ2Co rr (εij , εij ′ ) = σ2ρ|i−j |

where, σ2 is the residual variance and ρ is the autocorrelation parameter. The presence
of a spatial trend suggests that the neighbouring plots tend to be more alike than those
further apart (ρ> 0). In the AR(1) procedure, blocks are considered as a random factor
so that only the within block spatial variability will be taken into consideration.

The residuals are usually used instead of means in nearest neighbourhood
estimation. However, some studies (Lawrence and Townley-Smith, 1975; Mack
et al., 1978; Rosielle, 1980) have suggested that means could also be potential variates
to be considered in nearest neighbour estimation. This was the main reason for
moving average methods to be considered in the study. Obviously it is easier to use
means than residuals. Due to the undulating nature of tea experimental sites, blocks
are established along the contour. Thus, often several blocks are found in a single
contour with a considerable distance between blocks. As spatial adjustments cannot
be done here for both north–south and east–west directions, only one direction, the
direction of the block, was considered. This often happened to be the east–west
direction. To determine the extent to which spatial correlations are influenced by past
and current conditions, all four neighbour methods were evaluated with and without
CCM.
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Though CCM is considered as a spatial method in the present study, it is not an
explicit spatial approach. CCM can explain non-spatial variation also and is used
extensively as an error reduction technique in tea experimentation.

The calculations and analysis described above were performed with SAS Version
8.1. PROC MIXED was employed for the restricted maximum likelihood (REML)
analysis of the AR(1) method and PROC GLM was used for rest of the analysis.

Efficiency of spatial methods

An appropriate measure of relative efficiency is essential to evaluate the different
models. Relative efficiency measured in terms of s.e.d. seems most relevant because it
is directly used for comparisons between treatments, has the same scale as the original
attributes and includes the efficiency factor (Qiao et al., 2000). Therefore, relative
efficiency of spatial analysis methods is computed as, s.e.d.u/s.e.d.a, where s.e.d.u and
s.e.d.a are unadjusted (classical analysis) and adjusted (after taking account of spatial
effect) standard error of the difference, respectively. In the case of AR(1), relative
efficiency was computed using REML, where residual variance is directly estimated
without explicitly considering the degrees of freedom.

Comparison of different spatial models

The comparison of models was carried out using the Akaike Information Criterion
(AIC) (Akaike, 1974). PROC MIXED of SAS was used to compute the AIC values –
the lower the AIC value, the better the model.

R E S U LT S

Application of CCM to the macronutrient trial showed that pre-treatment yield was
a highly significant covariate (p < 0.01) at all the locations and years studied, except
at Ury Estate. However, in the micronutrient trial, CCM was significant only on 9
out of 20 occasions (locations × years). The relative efficiency of CCM ranged from
100% to 145% in the macronutrient trial and 101% to 158% in the micronutrient
trial, across all locations and years. CCM of course was not applicable to the cultivar
evaluation trial.

In the macronutrient trial, PNNM made a significant improvement (p < 0.01) in
controlling error variation at all locations and on 11 of 17 occasions. However, in the
micronutrient trial, PNNM did not produce any significant improvement (p > 0.1) on
almost all occasions; the exceptions were Indola in 2000 and 2003, Madulkelle in 2000
and St Coombs in 2000. In the cultivar evaluation trial, PNNM was significant only
at St Joachim 1, St. Joachim 2 and Passara, in 2003. The relative efficiencies ranged
from 99% to 122% in the macronutrient trial, 97% to 116% in the micronutrient trial
and 102% to 115% in the cultivar trial (Table 2).

In the macronutrient trial, MPNNM produced a significant (p < 0.05) improvement
at all locations except Lumbini and Court Lodge in 2000 and Talgaswala in 2001. In
the micronutrient trial too, MPNNM was significant (p < 0.05) on all occasions except
Indola in 2001 and 2004 and Madulkelle in 2003. In the cultivar evaluation trial,
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Table 2. Mean relative efficiency of spatial techniques.

Location CCM PNNM MPNNM MAM MMAM AR (1)

N, K and Mg trial
Court Lodge 127 122 (145)† 115 (139) 143 (160) 127 (146) 137
Houpe 128 120 (148) 120 (148) 132 (154) 125 (150) 133
Lumbini 129 99 (128) 100 (128) 103 (130) 104 (129) 101.5
Talgaswala NA‡ 114 (NA) 107 (NA) 117 (NA) 110 (NA) 124
Tokatiyamulla 145 110 (151) 110 (150) 119 (155) 115 (151) 129
Ury 100 108 (108) 108 (109) 115 (115) 111 (112) 115

Average efficiency across the locations 126 112 (139) 110 (137) 122 (146) 115 (140) 123
Micronutrient trial

Baddegama 158 97 (155) 105 (154) 100 (161) 97 (153) 99.5
Greenwood 103 105 (108) 131 (130) 107 (116) 121 (128) 100
Indola 101 116 (118) 126 (131) 103 (102) 116 (116) 102
Madulkelle 111 116 (129) 149 (170) 104 (117) 115 (127) 100
St Coombs 124 113 (136) 216 (211) 97 (124) 125 (144) 101

Average efficiency across the locations 119 110 (126) 145 (158) 102 (119) 115 (131) 101
Cultivar evaluation trial

St Coombs NA 103 103 99 99 102
Passara NA 102 102 99 99 100
St Joachim1 NA 115 121 110 113 105
St Joachim2 NA 109 106 106 105 105

Average efficiency across the locations NA 107 108 104 104 103

†Values in the parenthesis are relative efficiencies for four neighbour methods in conjunction with CCM.
‡NA – Not applicable.

MPNNM was effective only at St. Joachim 1 and St. Joachim 2. In the micronutrient
trial, the relative efficiency of MPNNM was much higher (105–216%) than in
the macronutrient trial (100–120%) and the cultivar evaluation trial (102–121%)
(Table 2).

MAM gave a significant (p < 0.05) improvement in the macronutrient trial on all
occasions, except Lumbini and Ury in 2000. In the micronutrient trial, MAM was
not significant except on three occasions: Greenwood in 2003, Indola in 2000 and
Madulkelle in 2000. In the cultivar evaluation trial, MAM was significant (p < 0.05)
only at St. Joachim 1 and St. Joachim 2. The relative efficiency ranged from 103% to
143% in the macronutrient trial, 97% to 107% in the micronutrient trial and 99% to
110% in the cultivar evaluation trial (Table 2).

In the macronutrient trial, MMAM produced a significant (p < 0.05) improvement
except at Houpe in 2001, Lumbini in 2000, Talgaswala in 2001 and 2002, and Ury in
2000. In the micronutrient trial, MMAM gave a significant (p < 0.05) improvement on
11 out of 20 occasions, and on seven out of 11 occasions in the cultivar evaluation trial.
The relative efficiencies were 104–127%, 97–125% and 99–113% in macronutrient,
micronutrient and cultivar evaluation trials respectively (Table 2).

The AR(1) method produced very little improvement except in the macronutrient
trial, where it was significant (p < 0.05) on 11 out of 15 occasions and the relative
efficiency ranged from 101.5% to 137% (Table 2). It is noteworthy that the Newton
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Raphason algorithm in PROC MIXED failed to converge on two occasions. In the
other two trials, AR(1) did not produce any significant improvement. The relative
efficiency was 100–105% in the cultivar evaluation trial and 99.5–102% in the
micronutrient trial.

Serial correlation analysis was also performed in order to confirm the effectiveness of
AR(1). In the macronutrient trial this gave a significant r = >0.33 (p < 0.05) correlation
on 16 out of 17 occasions, but it was significant only on three out of 16 occasions and
none in the micronutrient and cultivar evaluation trials respectively.

The four neighbour spatial methods, PNNM, MPNNM, MAM and MMAM, were
also evaluated in conjunction with CCM. The combination with CCM did not bring
about any change in significance of the neighbour methods in the macronutrient trial.
However, in the micronutrient trial, the significance of CCM changed on 12 out of
80 occasions. CCM which was significant when applied separately, turned out to be
non significant (p > 0.1) when applied in conjunction with neighbour methods. With
MPNNM, the significance changed five times in 20 occasions (significant without
CCM and non significant with CCM). With PNNM, MAM and MMAM there were
no changes. In the macronutrient trial, CCM in conjunction with spatial methods
produced relative efficiencies of 139, 137, 146 and 140% with PNNM, MPNNM,
MAM and MMAM respectively. In micronutrient trials the corresponding values
were 126, 158, 119 and 131% respectively (Table 2). Overall, combining with CCM
did not bring about a substantial difference between neighbour methods, with respect
to the number of times each method was found to be significant as well as in their
relative efficiency.

According to the conventional analysis of RCBD, significant block effect was
observed in 14 out of 16 occasions in large blocks (macronutrient trial). However,
for small blocks (micronutrient trial), the block effect was significant only on two
occasions out of 20. In cultivar trials this was 8 out of 13 occasions.

The AIC values for goodness-of-fit of different models are presented in Table 3.
Low AIC values were recorded with MAM and CCM in the macronutrient trial
and with MPNNM in the micronutrient and cultivar evaluation trials. Specifically,
in the micronutrient trial, MPNNM exhibited highly consistent results. The pattern
of AIC was exactly the same when the four methods were combined with CCM.
However, AIC values decreased substantially when they were in combination with
CCM, especially in the years and locations where CCM by itself was significant.

D I S C U S S I O N

Generally, the methods tested had a positive impact on experimental precision but
with different levels of efficiency. This no doubt reflects the fact that different methods
capture different aspects of spatial variability. Nevertheless, efficiency values greater
than 100%, in most years and across locations, establish the potential of these methods
to capture spatial variability in block designs.

The micronutrient and macronutrient experiments had a similar plot size (about
40 bushes per plot) and shape. An undulating terrain was also a common feature of
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Table 3. Akaike Information Criterion (AIC) values with different methods of analysis.

Location RCBD CCM PNNM MPNNM MAM MMAM AR(1)

N, K and Mg trial
Court Lodge 827 803 808 (790)† 810 (795) 790 (780) 802 (789) 798
Houpe 730 703 712 (690) 712 (690) 702 (687) 707 (689) 716
Lumbini 853 822 839 (839) 853 (823) 850 (823) 849 (822) 843
Talgaswala 808 NA‡ 795 (NA) 801 (NA) 794 (NA) 799 (NA) 786
Tokatiyamulla 831 792 821 (789) 820 (788) 813 (787) 816 (788) 809
Ury 750 749 743 (742) 741 (740) 736 (737) 738 (738) 736

Micronutrient trial
Baddagama 235 219 234 (219) 231 (218) 234 (219) 234 (219) 285
Greenwood 212 210 209 (208) 203 (202) 209 (206) 206 (204) 254
Indola 164 164 160 (160) 158 (157) 163 (163) 160 (160) 192
Madulkelle 215 211 211 (207) 203 (202) 214 (211) 210 (207) 251
St Coombs 166 158 162 (156) 148 (147) 166 (158) 160 (155) 196

Cultivar evaluation trial
St Coombs 488 NA 486 485 488 487 502
Passara 364 NA 363 363 368 364 380
St Joachim1 1043 NA 1027 1021 1032 1028 1050
St Joachim2 1191 NA 1183 1187 1184 1186 1196

†Values within the parenthesis are AIC values for neighbour methods in conjunction with CCM.
‡NA – Not applicable.

the sites of both experiments. The main difference between the experiments was in
the block size – five or six treatment plots per block in the micronutrient trial and nine
plots per block in the macronutrient trial. Most of the methods tested were effective
in the macronutrient trial where the block size was relatively large. This shows that
spatial techniques can be used effectively in experiments with large blocks. However,
this advantage was not seen in the cultivar evaluation trial with very large blocks
containing 22 to 61 genotypes. This can be ascribed to the improper layout of the
cultivar evaluation trial where a block consisted of several sub-blocks containing 2–10
plots each. The plot size was also smaller than in the nutrient trials.

In the macronutrient trial, all the methods tested were effective with CCM being the
most effective. This shows that CCM is the most effective method to capture spatial
variability when the block size is large (at least with nine plots per block).

MPNNM performed better than the other methods in the micronutrient trial
indicating that MPNNM is effective in capturing spatial variability in small blocks.
MPNNM was moderately effective in the macronutrient trial indicating that MPNNM
can account for spatial variability even when the block size is large.

MAM was found to be moderately effective with large bocks but not effective with
small blocks. PNNM and MMAM seem to be equally effective, at a moderate level,
with large blocks as well as small blocks.

AR(1) was found to be moderately effective in the macronutrient trial but not in
the micronutrient trial. AR(1) specifically accounts for linear trends. Linear trends
being less likely with small blocks could explain the poor performance of AR(1) in the
micronutrient trial. AR(1) being moderately effective in the macronutrient trial, and
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the results of the serial correlation analysis lend support to the view that a linear trend
can be detected only with large blocks. It may be concluded that AR(1) is appropriate
only for experiments with large blocks.

In the micronutrient trial MPNNM performed considerably better than PNNM.
MPNNM uses four neighbouring plots to adjust a plot value while PNNM uses only
two. Using four plots considerably reduces the probability of bias in trend estimation
and is the likely basis for MPNNM’s superiority.

MMAM is expected to estimate the trend better and thereby perform better than
MAM. In fact this was observed in the micronutrient trial, but it was not the case in
the macronutrient trial. A possible explanation is that spatial variability due to past
conditions was dominant in the macronutrient trial.

Since CCM captures initial variability, it can be viewed as a method that captures
spatial variability due to past conditions. The other methods tested can be considered
as methods that capture the spatial variability due to current conditions or the long-
term nature of the experiments.

An important finding that stems from this study is that both past and current spatial
variability can be captured simultaneously. This became evident when the neighbour
methods were evaluated in conjunction with CCM. When the neighbour methods
were evaluated in conjunction with CCM, especially in the macronutrient trial, seven
out of 14 times both CCM and neighbour methods became significant proving that
past and current spatial variability are two separate aspects. However, this was not
clearly evident in the micronutrient trial. In the micronutrient trial, CCM and other
neighbour methods were rarely significant when analysed together. Thus it seems both
aspects of spatial variability can be detected simultaneously only when the block size
is large, not when it is small. In micronutrient trials, CCM was not significant when
it was evaluated with other methods. This indicates that spatial variability due to past
conditions is significant only when the block size is large. In fact, on 12 occasions in
the micronutrient trial, CCM which was significant when analysed separately, became
non significant when analysed in conjunction with the neighbour methods. However,
a non significant CCM never turned significant when analysed in conjunction with
neighbour methods. This also supports the contention that spatial variability due to
past conditions is either not operative or cannot be detected when the block is small. In
the macronutrient trial, when neighbour methods were evaluated along with CCM,
the error reduction by CCM was greater than that by neighbour methods. This shows
that spatial variability due to past conditions is more dominant than current spatial
variability when the block size is large. On the whole, all four neighbour methods,
analysed along with CCM, were more or less of the same efficiency. Therefore, any of
the four neighbour methods studied could be used to increase the efficiency of field
experiments on tea.

In large block experiments, comparing RCB with spatial methods, the majority of
the trials with significant spatial trends also had significant RCB block effects. But in
small block experiments, non significant RCB block effects had significant field trends.
Though these experiments were designed assuming that major trends differences are
between blocks as happened in well-designed experiments, due to the undulating
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nature of tea experimental sites spatial variability (specifically trends due to current
conditions) with in blocks might be prominent though block size is small.

One of the results found in this study is that blocking often performs poorly in the
function of reducing experimental error. It is clear that adjustment by neighbouring
methods can often be effective especially on irregular experimental sites.

Inconsistency in efficiency across time suggests that the spatial variability within a
block may be transient in nature. This may arise from numerous biological and/or
physical phenomena that interact to influence differences in soil characteristics among
plots (Smith and Casler, 2004). Despite the transient nature of spatial variability,
spatial methods evaluated in the study were found to be effective. Hence the methods
evaluated have a potential use under varied conditions.

C O N C L U S I O N S

Spatial analysis techniques, in conjunction with the standard practice of using pre-
treatment yield as a covariate (CCM), have an important role in reducing error in
long-term field experiments on tea.

Spatial variability due to both past (inherent) and current conditions are
encountered, especially in experiments with large blocks (nine plots per block or
more). Efficiency of these experiments can be increased by addressing both aspects of
spatial variability simultaneously.

Neighbour techniques in combination with CCM were effective in controlling
experimental error in experiments with large blocks. Experiments with small blocks
were not affected by spatial variability due to past conditions, and only that due to
current conditions was operative and need to be addressed. Neighbour techniques,
on their own, were found to be adequate to capture spatial variability due to current
conditions; MPNNM was the most effective.

The precision of tea experiments may be increased by using CCM and any one
of the four nearest neighbour adjustments tested, when the block size is large; and
modified Papadakis technique (MPNNM), on its own, when the block size is small.
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