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In this article we consider the spectral behaviour of turbulence-driven power fluctuations
for a single horizontal-axis turbine. To this end, a small-scale instrumented axial-flow
hydrokinetic turbine model (diameter = 0.724 m) is deployed in the long water flume
situated in the laboratory facilities of IFREMER in Boulogne-sur-Mer, France, and
synchronous measurements of the upstream velocity and the rotor are collected for
different tip-speed ratios. The study confirms previous findings suggesting that the power
spectra follow the velocity spectra behaviour in the large scales region and a steeper
power law slope behaviour (—11/3) over the inertial frequency sub-range. However, we
show that both the amplitude of the power spectra and low-pass filtering effect over the
inertial sub-range also depend on the rotor aero/hydrodynamics (e.g. dC; /dw) and the
approaching flow deceleration and not solely on the rotational effects. In addition, we
present a novel semi-analytical model to predict the dominant blade-passing frequency
harmonics in the high-frequency regime using the rotationally sampled spectra technique.
For all calculations, the distortion of incoming turbulence is taken into account.

Key words: flow—structure interactions

1. Introduction

Flow unsteadiness is a major factor characterising both wind and tidal-stream energy
production. For example, dealing with wind resource variability remains one of the
biggest challenges in wind energy research, as the lack of long-term predictions can affect
production, storage and distribution of energy (van Kuik et al. 2016; Veers et al. 2019).
On the other hand, large-scale variations in tidal channels caused by ebb and flood are
highly predictable. Yet, site-specific and regional-scale flow phenomena can introduce
flow velocity variations beyond the tidal cycle and increase flow unsteadiness upstream
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of tidal turbines (Adcock, Drapper & Nishino 2015). At rotor scale, flow unsteadiness
is characterised by small-scale, turbulence-driven fluctuations. The level of turbulence
intensity within tidal channels has been reported to be as high as 15-20 % (Grant, Stewart
& Moilliet 1962; Heathershaw 1979; Osalusi, Side & Harris 2009a,b), while analogous
wind energy site measurements have reported values closer to 8—-12 % (Hansen et al.
2012; Milan, Wichter & Peinke 2013). To understand the effect of turbulence on wind
or tidal-stream power output variability, numerous studies have attempted to quantify the
impact of upstream turbulence on a single horizontal-axis turbine (Chamorro et al. 2013,
2015; Tobin, Zhu & Chamorro 2015; Payne et al. 2018) or turbine arrays (e.g. wind farms)
(Stevens & Meneveau 2014; Bossuyt et al. 2016; Stevens, Gayme & Meneveau 2016; Bandi
2017; Bossuyt, Meneveau & Meyers 2017; Tobin & Chamorro 2018). Moreover, indirect
measurements from the electrical power output for more than one wind farm (Apt 2007;
Katzenstein, Fertig & Apt 2010; Vigueras-Rodriguez et al. 2010) have also been obtained
and studied. These works have shown that both the individual and aggregate array power
output are strongly modulated by small-scale turbulence and larger coherent structures.
In particular, the time scales and magnitude of power output fluctuations that can both
be compactly described by the respective power spectra density functions of the power
fluctuations (power spectra) have shown to exhibit a behaviour that deviates from that of
the onset velocity spectra.

Studies of a single horizontal-axis turbine (HAT) interacting with onset turbulence have
shown that the rotor behaves as a low-pass filter by ignoring the small-scale fluctuations
and responding only to the larger coherent structures (Chamorro et al. 2015; Tobin et al.
2015; Anvari et al. 2016). To this end, Tobin et al. (2015) proposed a power law with a
slope of —11/3 to be more appropriate over the inertial sub-range, where the incoming
velocity fluctuates according to the well-known —5/3 power law of isotropic turbulence
(Kolmogorov 1941; von Kdrman 1948). Additionally, they attributed the resulting —2
slope difference between the velocity and power fluctuations to the rotational motion of
the blades, a behaviour that was later confirmed by the spectral behaviour of a different
rotating structure (rotating plate) (Jin, Ji & Chamorro 2016). Other studies have also
reported an excess of energy in the narrow band around the blade-passing frequency
(BPF) f, = N,§2/(2m), where §2 is the rotor angular speed and N, the number of
blades (Chamorro et al. 2013; Payne et al. 2018). On the other hand, power fluctuations
aggregated over arrays of turbines were found to exhibit a behaviour much closer to that
of the velocity fluctuations. Apt (2007) considered a small array of six turbines and found
a power law slope of —5/3 over the low-frequency regime and a —7/2 scaling over the
higher frequencies of the inertial sub-range. For larger turbine clusters however, Stevens &
Meneveau (2014) and Bossuyt et al. (2016) found that the power law of —5/3 is sustained
over the inertial sub-range whereas for the same frequency range, Liu et al. (2017) and
Bossuyt et al. (2017) found a power-law behaviour of f~!'/3, and between >3 and f2,
respectively. Even more interesting, the same studies found that the aggregate power
spectra exhibit characteristic peaks at integer multiples of the advective frequency f, =
2n/T,, where T, corresponds to the mean velocity-driven travel time between two adjacent
in-line turbines. To explain the existence of these peaks, first Bossuyt et al. (2017) and later
Tobin & Chamorro (2018) and Tobin ef al. (2019) used the random-sweeping hypothesis
of Kraichnan (1964) and Tennekes (1975) following previous studies that utilised the same
theory to obtained spatio-temporal spectral correlations in the logarithmic layer of wall
turbulence (Wilczek, Stevens & Meneveau 2015a,b).

In this study we present a novel semi-analytical model for the power spectra of a
single HAT. In particular, we consider both the turbulence immediately upstream of
the rotor and the forces that it induces on the rotor. First, in the case of the inflow
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FIGURE 1. Schematic representation of upstream turbulence approaching a horizontal-axis
turbine and the transformation process between velocity and power fluctuations. Figure adapted
from Tobin et al. (2015).

velocity field, the turbulence is distorted, as was recently shown by Graham (2017),
Milne & Graham (2019) and Mann et al. (2018). This is an effect of flow being blocked
and distorted by the projected thrust force, thereby leading to a pronounced decrease
in the spectral amplitude of the approaching velocity over the low-frequency regime.
Second, the effect of low-pass filtering that is observed in the inertial sub-range as
well as the energy amplification around the blade-passing frequency are both due to
rotational effects and will be calculated using the rotationally sampled spectra (RSS)
technique (Connell 1982). To validate the proposed model, a series of experiments
conducted in the water flume in the Institut Francais de Recherche pour I’Exploitation
de la MER (IFREMER) at Boulogne-sur-Mer, France are presented. The experiments
consider synchronous measurements of the approaching velocity field at different locations
upstream of the rotor and the respective rotor turbine’s generated torque.

The remaining sections of this paper are organised as follows. Section 2 introduces
the underlying theory of turbulence distortion, analytical derivation of the linearised
relationship between the velocity and power fluctuations and the application of RSS
analysis to derive a rotor velocity cross-correlation function and the power spectral density
function of the power fluctuations for a three-bladed turbine. In §3 we present the
experimental set-up as well as the methods used to obtain synchronised turbulence/turbine
measurements are presented. A parametric study for our semi-analytical model is
presented in §4 while an extensive comparison between the experimental data and the
model predictions is provided in § 5. Finally, a brief summary and discussion of our main
findings as well as the limitations of our model are presented in § 6.

2. Problem definition

We consider a spatially uniform velocity field, #, = (4100, U200, U3no), approaching
a horizontal-axis turbine with diameter D (see figure 1). By applying Reynolds
decomposition to the uniform velocity field, we obtain a mean (U;,) and a fluctuating
part, u.._. As the incoming flow approaches the rotor, the fluctuating velocity field gets
distorted, thanks to the combined effects of the rotor’s blockage and projected mean
strain (Graham 2017; Milne & Graham 2019), thus altering the incoming mean flow
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and turbulence characteristics that eventually reach the rotor. The distorted velocity field
at some location, x = (xy, xp, x3), upstream the rotor is denoted by u = (uy, us, u3).
The interaction of the distorted velocity field with the rotor system thereafter leads
to time-varying power generation that can be accurately calculated through the rotor’s
torque, Q(¢), so that P(f) = Q(¢)S2. Here, we have assumed that the turbine rotates with
a constant angular velocity, £2.In the absence of time-dependent torque measurements,
however, the time-varying power output of a single turbine can be calculated based on the
inflow velocity, as the two are inherently related. A commonly used approach to calculate
the power fluctuations from the approaching velocity field is to utilise the steady-state,
disk-averaged expression,

P(t) = L pCpAu; (1), (2.1)

where p is the fluid density, Cp is the mean power coefficient and A = 7R? is the rotor
area. Such an approach has been successfully employed by Bossuyt et al. (2016, 2017) for
the spatially averaged power fluctuations over large wind farms. Because (2.1) is derived
from steady-state analysis and represents disk-averaged quantities, it is not expected to be
able to capture small-scale fluctuations and its true effect on the power output. Equation
(2.1) can be more suitably used for power output calculations of a rotor interacting with
larger coherent structures (typically with length scales greater than one rotor diameter).
Nonetheless, the turbine power time series from these two approaches may be used
to calculate the power spectra via the Fourier transform of the signal’s autocovariance
function (P(t)P(t + 7)) as

Sp(f) = / (P(t)P(t + 7)) exp(—i27tf1) dr, (2.2)

o0

where (x) denotes the expected value and f the frequency in hertz (Hz). Using
experimental data from this study for a single, optimally operated red (based on the
rotor’s tip-speed ratio A = £2D/2U,,), three-bladed, horizontal-axis turbine, we find large
discrepancies in both the estimated power fluctuations and power spectra between the
‘disk-averaged’ and torque-based estimations. The ‘disk-averaged’ calculations are done
using the turbine-synchronous instantaneous upstream velocity, u(t) at x; = —D (one
diameter upstream of the rotor), and then shifted in time according to Taylor’s frozen
turbulence hypothesis (Ax = —U;,,At). On the other hand, the torque-based calculation
uses the time-averaged but nearly constant rotational speed, §2, and the experimentally
measured instantaneous turbine torque. The comparison of these two methods reveals
discrepancies between the two approaches, which are highlighted in figure 2. The two
approaches appear to differ significantly over short time scales, with the ‘disk-averaged’
formula failing to reproduce both the spectral filtering and spectral amplification over the
inertial and BPF regimes, respectively. In fact, the two approaches agree well only for
the larger time scales (low-frequency regime). To address these discrepancies, we employ
standard analytical tools from turbulence theory and aerodynamics and propose a novel
semi-analytical model, which accurately captures the spectral behaviour of the power
fluctuations and reveals the underlying mechanisms that affect it. For our analysis, we shall
assume that the rotor is always aligned with the mean incoming flow, Uyo, = Usoo = 0, as
well as that the velocity fluctuations, u; = u; — Uj, can be best described by isotropic and
homogeneous turbulence in the far-upstream velocity fields. Finally, any aeroelastic effects
of the rotor blades and other supporting structures will be neglected.
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FIGURE 2. Comparison between measured power fluctuations and estimated ones based on the
mean power formula. (a) Time series of the power fluctuations with a zoomed-in plot showing
the large discrepancies over short time scales. (b) Power spectral density functions of power
fluctuations with annotations for the respective scaling law slopes and spectral content over the
BPF.

2.1. Distortion of the approaching turbulence upstream of the rotor

As free-stream turbulence approaches the rotor, it becomes distorted as it gets subjected
to the mean velocity strain (vorticity distortion) and the rotor’s blockage effect. In a
recent study, Graham (2017) applied the rapid distortion theory of Batchelor & Proudman
(1954) to a general length-scale turbulence approaching the rotor and calculated the
distorted spectra of the streamwise velocity. Their study concluded that by considering
only the turbulent vorticity distortion effect and for a small turbulence integral length
scale to rotor diameter ratio L,/D, the magnitude of the large-scale’s fluctuations can be
amplified. A subsequent analysis by Milne & Graham (2019), however, considered both
effects (blockage and vorticity distortion) by decomposing the streamwise fluctuations
into a rotational and irrotational velocity field (Helmholtz decomposition). They showed
that in turbulent flows characterised by larger integral length scales, the blockage effect
dominates, resulting in a substantial attenuation of the low-frequency components. Here,
we argue that turbulence-to-rotor interactions are most commonly characterised by large
integral length scales, ignore vorticity distortion and make all of our consequent analysis
by only considering the rotor’s blockage distortion effect. To that extent, we postulate that

the root mean square (r.m.s.) of the upstream velocity fluctuations, / u?, can be adequately
calculated by analogy to the upstream mean velocity field, U; = (1 — afy(x1)) U)o,

\/M:? = @(1 —afs(x1)), (2.3)

where f;(x;) represents a dimensionless mean perturbation velocity function at a distance
x1 upstream of the rotor, and a the axial induction factor. This assumes that the steady flow
theory can be applied to the unsteady flow components in turbulence for low frequencies
similar to Mann et al. (2018). To approximate f;, we shall make use of the actuator disk
solution of Conway (1995),

.X]/D
U =Ux|1— 1 , 0 2.4
1(x1) 1 |: a ( + DT 1/4>j| X < 24
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and calculate the axial induction factor through the rotor’s thrust coefficient, Cr, a =

1/2(1 — /1 — Cy), while

X1 /D
L) =1+ , x1 <0. (2.5)
(x1/D)* +1/4
Furthermore, we may also define a distortion factor, y, as
U,
= —) 2.6
Us (2.6)

and thereupon the one-dimensional, streamwise, autocorrelation function, R =
(u)(xy,t 4+ 7)1t} (x1, 1)), by considering both the local distortion factor and the shifted
coordinates,

uy (e, D (e, 1+ 7)) = Y2 (i (1 = X (2), Dty (61 — x (T), 14 7)), 2.7)

where x (7) is the travel distance (spatial shift) of turbulence by the local mean velocity.
The spatial shift function, x (7), obeys the following equation:

dx (1) x/D

UOO —————————————
ar +aUis(X) %(X/D)Z‘FU“

which is a first-order nonlinear ordinary differential equation (ODE) that we solve here
numerically using the explicit fourth-order Runge—Kutta (RK4) method. The solution is
shown in figure 3 for different axial induction factor values: a = 0.1, 0.3 and 0.4 together
with the undistorted solution, @ = 0. From the autocorrelation function we may also obtain
the velocity spectra through a Fourier transform so that

(I -a)Ux (2.8)

Siu(f) = St (), (2.9)

arelationship between the distorted, S, (f), and undistorted spectra, S11(f), which agrees
well with Mann et al. (2018) for below-rated conditions (da/dU;,, = 0). Finally, for all of
our subsequent calculations of both the far-upstream undistorted and near-rotor distorted
velocity spectra, we shall use the von Kédrman spectrum model,

AU Liso/Uroe

[1 4 70.8(fLi/Uioo)?1/¢" (2.10)

Su(f) = V2

Note that, for x; - —oo, ¥ — 1 and, thus, the far-upstream undistorted spectrum is
restored.

2.2. Relating power to velocity fluctuations: a lift force linearisation approach

To relate the generated torque to the rotor-incident velocity fluctuations, we make use of
the blade-element momentum (BEM) theory. Again, we shall ignore turbulence vorticity
distortion and base our prediction of the fluctuating forces on a quasi-static model derived
from BEM theory using the velocity fluctuations at the rotor. We start by considering an
azimuthally averaged rotor disk consisting of blade elements which exhibit negligible drag
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FIGURE 3. Numerical solution of the velocity fluctuations spatial shift distance, x, by the mean
flow, Uy, as a function of time lag, T. Assuming a constant upstream velocity, Ujo, the solution
yields the standard, x (7) = —UjoT. Both the spatial shift, x, and time lag, 7, are presented in
a non-dimensionalised form.

force and negligible three-dimensional behaviour. The sectional lift force per unit width
on the blade element at radius r is then calculated as

L(r) = 1pCre(nW?, (2.11)

where W = /(£2r)2 4 [U;oo(1 — a)]? is the quasi-steady velocity relative to the blade
element, C; is the lift coefficient, ¢(r) is the blade-element chord size and §2 is the rate of
rotation. Assuming a ‘frozen wake’ for the turbine, W does not change with the streamwise
velocity fluctuations; therefore, we may calculate the rate of change of the lift force by the
velocity fluctuations as

dL 1 dc, d
O _ L rpwrdir 9o 2.12)
du} 2 do du)
The ‘frozen wake’ assumption also allows us to estimate the angle of attack « via
Uio(1 — !
a + B = arcsin ( 1oo( Wa) + ul) , (2.13)

where f is the blade pitch angle (considered constant) and a is the axial induction factor.
Equation (2.13) allows us to compute do/du; = 1/(£2r). Note here that to derive the
previously mentioned expression, no assumption about the magnitude of « + 8 has been
made (e.g. small angle assumption), but only that u} /W <« 1. Using the earlier expression,
we may compute an expression for the lift force fluctuations,

JAL() 1 WP dC

—p—c(r)—u,. (2.14)

L =y, — =
D=t =272

Here, we have also linearised the lift gradient, such as dL/du| = L’/u). Subsequently, the
blade-element torque contribution may be calculated via

N, W? dc
Q'(r) = N,L'(r)rsing = —b,o—c(r)r—L sin gu), (2.15)
25 Q2r do
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where ¢ = « + B is the angle that the velocity acts relative to the plane of rotation, such
that
Uiso(1 — !
sing = 21 W“) T (2.16)

allowing us to redefine the blade-element torque as

Q' (r) = NyL'(r)rsing = N EMc(r)u/l + 0(1/12), (2.17)
2" da 2
where a = 1/2(1 — 4/1 — Cr) and N, = 3 correspond to the number of rotor blades. The
second right-hand side term, O(M’lz), will be dropped from the above expression as a
higher-order small-remainder term. Thus, the blade-element (radial) contribution to the
rotor’s power fluctuations may be computed equal to

P(r) = ép(1—a)2—U2 (MU ()2 + 1, (2.18)

where A*(r) = £2r/U (1 — a) is the local radius tip-speed ratio. The respective power
fluctuations’ variance can now be calculated as

2 3 ZdCL 2 R R#
oP=<5p(1—a> o Ut /0 /0 1y (rO)uy (r2)e(r)e(r)V/ 5 (r)? + 1/ 4% (r2)? + 1 dry dra.
(2.19)

To calculate the power variance from (2.19), the velocity cross-correlation u/ (ry)u (r2)
needs to be known a priori for all two-point combinations. A technique to obtain

an expression for u|(r)u)(r,) will be presented in §2.3 using rotationally sampled
spectra. However, what is worth noting here, is that the magnitude of the power
fluctuations depends on geometric (e.g. chord size), rotational (tip-speed ratio) as well
as aero/hydrodynamic characteristics (lift slope) of the rotor.

2.3. Rotationally sampled spectra

The method of rotationally sampled spectra (Connell 1982) will be used to provide a
link between the cross-correlation of two rotating points (at different radii) and of an
upstream fixed-point autocorrelation function. The starting point of our derivation is to
introduce the cross-correlation functions, R;;(s, T), between two points at distance s apart.
We start by assuming local isotropy and homogeneity, considering the velocity correlation
tensor, R;(s) (von Kdrman 1948; Batchelor 1959), and calculate the streamwise velocity

correlation as
AN A
Ry (s) = F(s) (E) + G(s) |:1 — (;) i| , (2.20a)

0F(s)

2.20b
P ( )

G(s) = F(s) + = (s)

where F(s) = uy(x)uy (x + s) and G(s) = ur(x)ur(x + s) are the longitudinal and lateral
velocity correlation functions for two points at distance s apart in any direction. In the
case of the rotor velocity cross-correlations, the two points of interest are considered to be
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FIGURE 4. Schematic representation of the velocity cross-correlation function calculation
using the RSS technique.

along the rotor disk at different radii, 7; and r;, as shown in figure 4. The two rotor co-plane
points at radii r; and r, are considered with a time lag, t, and are separated by a distance,
[, which can be calculated using trigonometry as

P =71 +7r;—2rr;cos(N,827). (2.21)

Here, the angular speed, §2, has been multiplied by the number of blades to take into
account the blade-passing angular velocity. In other words, the distance, /, accounts for the
distance between two radii, (ry, r»), after time, t. Thus, using Taylor’s frozen turbulence
hypothesis (turbulence is transported by the mean velocity), we may calculate the distance,
s, between one rotating point and the upstream fixed one as

s =x; + = x(t)* +r] + 715 — 2rir, cos(N,27). (2.22)

Note from figure 4 that the upstream point is separated by the second co-planar point (at
radius r,) by a streamwise distance, x; = x (7), which is the spatial shift as calculated
numerically by (2.8) of §2.1. We can now compute the cross-correlation function using
the longitudinal correlation functions,

1 (1\*oF
Ry (ry, 12, 7) = Ry (s) = F(s) + 3 (—) (s). (2.23)
Ry as

However, up until this point no assumptions have been made for the upstream fixed-point
autocorrelation function. A natural candidate model is that of von Karman,

202 (1/2\"° T
(1) = —— | — Kisl=), 2.24
©=Ta3 ( T ) s (7) (2.24)
where 7" is the integral time scale defined as
ra/3d) L Ly
o LA Loy 3a9lace (2.25)
'(5/6)/m Ui Ui

Here I' is the Gamma function and K, 3 is a modified Bessel function of the second kind
and order 1/3. Translating the temporal autocorrelation, @ (t), to spatial autocorrelation,
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FIGURE 5. Plots of (a) the normalised velocity cross-correlation function and (b) the power
spectral density of the power fluctuations. Plots are shown for typical cases, where a = 0,
Liso/D = 1 and the tip-speed ratios vary from 4 = 0 to 8.

F(s), will need to again take into account the mean local velocity, U, (x). However, at this
time we need to calculate the time lag 7 via

t 1 S odx
0 Ui Jo v (x)

which again is computed numerically. Thus, by substituting (2.26) to the temporal
autocorrelation function (2.24) and using this expression in (2.23), we obtain the
cross-correlation relationship between two points rotating in the plane of the rotor

disk,
200 [ s(r)/2\"" s@

R =
ne e 1= <1.339L1) [KW (1-339Lm>

s(7) s(7) P
+2(1.339L100)IC2/3 (1.339L100) (s(r)Z)] ' 227)

Here, we have computed the derivative of F(s) using the identity

d
ds (s"PKC13(9) = 5P Koy5(s), (2.28)

whereas because of the local turbulence isotropy, correlations over one direction (e.g.
streamwise) should be identical to that of another direction (e.g. over distance s(7)), as
only the radial distance affects the autocorrelation function. More importantly, we can
compute the power spectral density (PSD) of the power fluctuations by integrating over
all blade elements and time, t, using the power-to-local-velocity (2.18) as well as the
cross-correlation (2.27) to obtain

3 2de L N Rt ,
Sp(f) = (59(1 —a) d_U”") / / / Ry (r1, 12, T) exp(—i27fT) (ry)c(r2)
o —00J0 Jo

VA(r)? 4+ 1/ ()2 + 1dry dry dr. (2.29)
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FIGURE 6. Picture of the turbine being tested in the flume with simultaneous flow
measurements using the LDA system. The flag on the LDA mast is designed to break the structure

of the vortex downstream of the mast and, therefore, to minimise vortex-induced vibration of the
LDA probe.

This equation will be evaluated numerically using a discrete Fourier transform. In
particular, we integrate (2.29) up to a time period, T = 100 s, with 4096 points using
the fast Fourier transform (FFT) technique. Typical plots of the autocorrelation function,
Ry, and the produced spectra using different tip-speed ratio values, A =0to 8§, a =0,
and L,./D = 1 are shown in figure 5. For this analysis, we have also assumed constant
values for all other parameters (e.g. Ui, dCp/da) so that both the amplitude of the
low-frequency spectral amplitude and the spanwise variable of the integrand in (2.29)

(i.e. c(r)y/A*(r)? + 1) are set to unity.

3. Experiments

We present experimental data for a small-scale turbine of rotor diameter D = 0.724 m
placed in the recirculating flow facility of IFREMER in Boulogne-sur-Mer, France. The
flow channel is 4 m wide, has a usable length of 18 m and was operated at a 2m depth
(Germain 2008). The channel-to-turbine blockage ratio, taking also into account the tower
and hub, was found to be as low as 0.0512. The measurements presented herein were
carried out with a nominal mean flow velocity of 0.779 ms~! and turbulence intensity
(based on the streamwise component of the velocity only) equal to / = 13 %. The spatial
variation of the streamwise velocity over the rotor area was estimated from measurements
carried out at the location of the rotor and in the absence of the turbine, and were found to
be below 4 %. Hence, we may assume that the rotor experiences a spatially uniform inflow.
Based on the above measurements, we can estimate the channel (bulk flow) Reynolds
number to be as high as Re,, = U;ooh/v = 1.6 x 10° (where h is the flume water depth)
and the diameter-based Reynolds number, Rep, = U,,D/v = 580 800. Figure 6 shows the
turbine being tested.
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FIGURE 7. (a) Power coefficient curve as a function of the tip-speed ratio, A4, symbols showing
the ensemble-average coefficients obtained from these measurements, whereas the continuous
dashed lines shows the rotor’s power coefficient curve according to Gaurier ef al. (2020) and the
Betz limit. (b) Lift coefficient as a function of the angle of attack (in rad) for the NACA 63418
hydrofoil. Hydrofoil data for the different Re. have been calculated using XFoil (Drela 1989)
while the theoretical estimates for dCy /da are shown for reference.

3.1. Turbine specifications

The turbine used in the experiments was developed by IFREMER, with a strong focus on
load and torque measurements. The blades are made of moulded carbon-fibre re-enforced
plastic and are based on a NACA 63-418 profile. The turbine model is fitted with multiple
force sensors (Gaurier, Germain & Facq 2017). The root of each blade is instrumented with
a load transducer measuring forces in the flapwise and lead-lag directions and bending
moments along three orthogonal directions. Thrust and torque experienced by the rotor as
a whole are also measured separately by a torque and thrust transducer. The load sensors
were specially developed by the French company Sixaxes in collaboration with IFREMER.
The load instrumentation described above is located, in terms of load path, upstream of
the shaft seal so that the measurements are not affected by the friction associated with
the seal. The transducers are therefore made waterproof as they have to be in contact with
water. The turbine model generator is simulated by a permanent-magnet brushed motor
fitted with a 1:26-ratio gearbox, both supplied by the company Maxon. The motor is
controlled in speed to ensure near constant rotor speed. The closed-loop speed control
relies on an encoder mounted at the back of the motor. Forty-eight shielded cables coming
from the rotating turbine transducers are routed through a 52-channel slipring (as shown
in figure 6), enabling the measurement signals to be transmitted to the stationary part of
the turbine. These low-voltage signals are amplified by an electronic signal processing unit
that is located outside of the turbine and of the water at the side of the flume.

The turbine performance and hydrodynamic characteristics, such as the power
coefficient curve and the lift curve coefficients, are also presented in figure 7. The
symbols in the power coefficient curve plot represent time-averaged measurements
taken during the course of the present experiments, whereas the continuous dashed
line provides a more complete picture of the turbine performance that was obtained
during previous measurements reported in figure 4 of Gaurier et al. (2017). The two
measurements are shown to be in excellent agreement. Moreover, in an attempt to estimate
the hydrodynamic characteristics of the individual blade elements (hydrofoils), three
tip-speed-ratio scenarios are considered and their collective chord Reynolds number,
Re. = £2rc/v, was found to range from 5 x 10* to 2 x 10°. Using the potential flow solver,
XFoil (Drela 1989), we are able to extract the lift coefficient as a function of the angle of
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attack, o, for the upper and lower bounds of chord Reynolds number values as shown on
the right-hand side of figure 7. The slope of the lift curve coefficient, dC; /d«, is shown
to be close to the theoretical value of 27 up until stall, after which the slope decreases
to a value approximately equal to unity. More details on the turbine model can be found
in Gaurier et al. (2017) and Gaurier, Germain & Pinon (2018) as well as in the appendix
of this article, where a complete table of the radial distribution of the blade’s geometric
characteristics is provided.

3.2. Synchronous laser Doppler anemometry—turbine measurements

3.2.1. Flow measurements

We measure flow velocity using a two-dimensional optical fibre laser Doppler
anemometry (LDA) system that comprises a FiberFlow transmitter and manipulators
produced by the company Dantec and of two Genesis MX SLM series lasers made by
the company Coherent. One of the lasers is green, with a wavelength of 514 nm, and the
other is blue, with a wavelength of 488 nm. Laser Doppler anemometry measurements
were taken using a downward-looking probe mounted on a motorised gantry, which
allows automated probe movements in the vertical and transverse directions. The distance
between the end of the probe and the measurement point is 500 mm, which allows for flow
measurements close to the turbine with minimum interference with the flow experienced
by the rotor. The LDA probe was set up so that the two velocity components measured
were streamwise and transverse. The LDA sampling frequency is not constant, as each
measurement takes place when a seeding particle crosses the measurement volume in the
direction of interest (streamwise and/or transverse). In order to carry out FFT frequency
analysis of the LDA measurements, the signal is first resampled at a constant frequency
corresponding to the average of the non-constant sampling frequency of the raw signal.
This signal processing operation is done on a test-run-by-test-run basis. For the LDA
measurements used in this study, the average LDA sampling frequency associated with
each run ranges from 601 Hz to 1351 Hz in the streamwise direction and from 435 Hz
to 846 Hz in the transverse direction. The higher sampling frequency in the streamwise
direction can be explained by the fact that the flow is predominantly streamwise; therefore,
more seeding particles cross the measurement volume in that direction than in the
transverse direction. For a given flow direction, the large range in average sampling
frequency between runs is a result of the fact that the tests were carried out over a period
of two weeks and the seeding particle concentration evolved over that period (seeding
particles were actually added at some point between tests to ensure that the sampling
frequency would not drop too low).

3.2.2. Data acquisition

All signals from the turbine sensors were logged using a National Instruments PXI
express 4339 analogue voltage card mounted into a PXI express 1078 chassis also
manufactured by National Instruments. The measurements were logged at 256 Hz and no
hardware filtering was applied. For each run, the start of the turbine sensors measurements
was triggered by the start of the LDA measurements, thus ensuring a synchronised start
between the flow and turbine measurements.

4. A parametric study of the semi-analytical model

In §2 we presented the derivation of our semi-analytical model for the power
fluctuations’ PSD based on a lift linearisation approach and the RSS technique. The final
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FIGURE 8. Effect of the rotor’s tip-speed ratio, A, on the power spectra. (a) Plots of the power
spectral densities scaled by f~>/3 and plotted against the relative frequency, f/fr. (b) Power
spectral density functions, Sp(f), are plotted against the relative frequency, fD/U]so, Which
reveals the fact that the onset of low-pass filtering is independent of the tip-speed-ratio value.
Plots are shown for A = 2, 4, 6, 8, 10, 12, 16 and 20.

PSD function (2.27) depends on a number of parameters that will ultimately affect the
solution. In fact, three parameters are believed to have a significant impact on the results.
These are the magnitude of the rotor tip-speed ratio, 4 = 2D/(2U,), the upstream
streamwise integral length scale normalised by the rotor diameter, D, Li»/D, and the
axial induction factor, a, which affects the solution through the turbulence translation
function, s(t). By varying one of these parameters individually while keeping the other
two constant, we may infer their effect on the PSD functions. For simplicity in (2.29), we
have assumed that ¢(r)/A*(r)? + 1 is constant across the blade and equal to unity while
the amplitude, A = % p(1 —a)*(dC/da) U7, = %(1 — a)?, after setting all parameters
other than the axial induction factor equal to unity. This representation of the rotor is
not a realistic one and we will show later that these parameters are inter-connected and
can have a great impact on the shape and magnitude of the final PSD functions.

Starting with the rotational speed effect in figure 8(a), we have plotted Sp(f) scaled
by £°/3 for different tip-speed ratios ranging from A = 2 to 20, taking L., = D and the
axial induction factor a set equal to zero so that x(t) = —U,, 7. The use of pre-multiplied
spectra (i.e. f73S(f)) in figure 8(a) is intended to highlight the regions where low-pass
filtering between the velocity and power fluctuations takes place. In addition, we should
note that while the assumption of a zeroth axial induction factor and the extension of the
tip-speed ratio range to larger values (e.g. 4 = 20) allow us to test our model’s asymptotic
behaviour, such scenarios are of little practical use. Both wind and tidal-stream turbines
are designed to operate within a certain range of small tip-speed ratios (e.g. 4 < 10)
and the axial induction factor would also depend on both tip-speed ratio and the rotor
aero/hydrodynamics. Nonetheless, in figure 8(a) we observe that the power spectra are
strongly impacted by an increase in the tip-speed-ratio value. In particular, as we increase
A, the power spectral densities reach a slope, f =273, over the inertial sub-range before
transitioning to the high-frequency BPF regime. Here, the power spectra are plotted against
the normalised frequency, f/fr, where fr = £2/2m; thus, it is important to notice that the
normalised transition frequency appears to be the same irrespective of the tip-speed-ratio
value. In addition, all cases experience a region in which f>3S,(f) remains constant,
implying that in the lower inertial range, the low-pass filtering effect does not occur
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FIGURE 9. Power spectra plotted for increasing values of the ratio between the upstream
integral turbulence length scale, Lo, and the rotor diameter, D. Plots are shown for different
values of Li»/D = 0.05, 0.1, 0.25, 0.5, 1, 2, 5 and 10, whereas the tip-speed ratio and axial
induction factor remain constant and equal to 4 = 6 and @ = 0, respectively.

for a sub-range of the inertial frequency range. This is an effect of only the relative
magnitude of the upstream turbulence integral length scale, L;.,, and the rotor diameter,
D, which we will examine next. The increasing tip-speed ratio does not appear to have
an effect on determining the frequency where low-pass filtering starts. The shift of the
curves to lower relative frequencies (f/fr) in figure 8(a) is merely an effect of frequency
normalisation. This is better highlighted in figure 8(b), where the power spectra Sp(f) are
plotted against f D/ U, and it can be clearly seen that the filtering effect starts at the same
frequency irrespective of the A value, which is around f ~ U, /D. In the same figure,
we observe that the amplitude of the high-frequency spectral peaks remain unchanged
with increasing tip-speed ratios. Their amplitudes are estimated to be around 1 % of the
respective low-frequency amplitude. Yet, the spectral energy associated with these modes
can be as large as 20 % of the overall spectral energy thanks to their presence in the
higher-frequency regime.

Next, we look at the effect of the integral length scale by gradually increasing the ratio
Ly /D from 0.05 to 10 (figure 9). The effect of the integral length scale on the fluctuations
was found to affect both the low- and high-frequency range (e.g. BPF peaks). In particular,
the amplitude of the spectral peaks was found to be smaller with increasing L. /D.
On the other hand, we observed an increase of the low-frequency spectral amplitude for
f < Uix/D, as we increase the value of L. /D. In addition, for a smaller L,,,/D ratio,
the low-frequency ‘plateau’ region extends to higher frequencies; therefore, the energy
cascade of the power fluctuations becomes shorter. Conversely, as L,,/D increases, the
energy cascade of power fluctuations extends beyond the filtering frequency, f ~ U, /D,
and reveals a region where the power spectra fall of as f ~5/3. We should also mention here
that by increasing the integral length scale, the fast Fourier transforms exhibit numerical
instabilities over the higher frequencies; therefore, a finer resolution is required to properly
resolve all modes.

Lastly, the impact of the induction factor and, therefore, the role of the rotor’s blockage
and turbulence distortion is examined as well. For our parametric analysis, we have
chosen L;,, = D and A = 7, which are representative values that will yield a converged
solution in terms of the rotational or upstream turbulence effects. To this end, we vary
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FIGURE 10. The cross-correlation function and respective power spectra with and without
considering the effect of inflow distortion. Results are shown for 4 = 7, L1 /D = 1 and taking
an induction factor, a = 0.4. The power spectra in the right-hand side plot are scaled by £ /3.

the induction factor from a = 0 to 0.4 and present results for both the cross-correlation
and power spectral density functions in figure 10. For clarity, we plotted only the
solutions for @ =0 and a = 0.4, which are indicated in figure 10 as ‘no-induction’
and ‘induction’, respectively. With the increase of the axial induction factor, the rotor
cross-correlation function is moved upward, as a result of the velocity delay that shows
the effect at the intermediate time scales, || > 0.1. For 7 = 0, the two normalised
cross-correlation functions attain a value of unity while as 7 — oo the two solutions
collapse, as shown in the zoomed-in plot of figure 10(a). This implies that blockage does
not affect the interaction of the large flow variations with the rotor. The impact of the
axial induction factor on the cross-correlation function is also shown to affect the shape of
the derived PSD function. Inherently, the collapse between the cross-correlation function
for small and large values of |t| would mean that the low- and high-frequency spectral
amplitudes will not be affected significantly as confirmed by figure 10(b). Conversely,
the intermediate-frequency range is shown to be impacted the most, with the PSD being
pushed downward. Moreover, for an induction factor of a = 0.4, we were able to recover
the £~ slope at the same range from the previously found f~32. Therefore, it can be
argued that the final low-pass filtering effect and the respective f~!/3 scaling law stems
not only from the angular velocity of the rotor (rotational effects) but also from the flow
deceleration induced by the rotor’s blockage.

5. Comparison with experiments
5.1. Distortion of the approaching turbulence

We start the comparison between the model and the experimental results by comparing
the inflow velocity field at different locations upstream of the rotor. Measurements of
the inflow velocity have been collected along the rotor axis and at the locations x,/D =
(-4, -3, -2, -1, —0.5, —0.15) upstream of the rotor for all three tip-speed-ratio cases,
A = 2,4 and 7. By excluding the near-rotor measurements (i.e. x;/D = —0.5 and —0.15) to
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FIGURE 11. Autocorrelation function of the streamwise velocity fluctuations upstream of the
rotor. The black thick solid line represents an ensemble average of the autocorrelation functions
from all upstream locations and tip-speed ratios, whereas the vertical dashed line is the upper
limit, T & 2.93 s, up to which the ensemble-average autocorrelation function is integrated in
order to compute the integral time scale, T'jxc-

avoid the rotor’s time scale interference, we may compute the upstream integral turbulence
time scale,

Tioo = /OO M dr. (5.1)
0

2
u;

To obtain a representative value for the integral time scale, 7)., we use an

ensemble-averaged estimator of the mean autocorrelation function, u|(#)u|(t + 7), and
integrate in time until it crosses zero for the first time (r & 2.93 s). This limit has
been chosen in an arbitrary fashion and one could extend integration to higher values
of 7. However, we have found that integration of the ensemble-averaged autocorrelation
function beyond our selected value yields very small differences for the magnitude of
the integral time scale. The ensemble average of the autocorrelation function together
with all other recorded cases as well as the ensemble-average function’s ‘zero-crossing’
point are shown in figure 11. For the calculation of the integral length scale, we invoke
the ‘frozen turbulence’ assumption, L, = UjsoT100, Where T, is an integral time scale

extracted from the temporal autocorrelation function, u|(f)u) (¢ + 7). According to the
present calculations, the integral length scale is found to be equal to L., = 0.7D.

Next, in figure 12 we present the mean velocity and r.m.s. of the velocity fluctuations
both from measured and model predictions as a function of the non-dimensionalised
distance, x;/D. The three tip-speed-ratio cases are presented separately, as the
rotational speed of the turbine affects the axial induction factor, a, through an
increasing thrust force, (4, a) = (2,0.13), (4,0.3) and (7, 0.41). Nonetheless, in all
cases the same pattern is observed. The mean velocity (U,/U),) remains unchanged
up until x;/D = —1, after which it starts reducing to almost half its value as it
reaches the rotor plane. This is confirmed by the analytical solution of Conway
(1995). It is noticeable that Conway’s model underpredicts the velocity reduction
for A =2, especially for smaller values of x;/D. A possible explanation for this
phenomenon is that the geometry of the nose cone is not taken into account in
the model. Indeed, for x;/D = —0.5 and —0.15, the distance between the LDA
measurement volume and the tip of the nose cone is only 270 mm and 16 mm,
respectively. Such a close proximity of the nose cone (especially for x;/D = —0.15) will
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FIGURE 12. (a)_Mean normalised velocity, U1 /U, upstream of the rotor and (b) mean square

intensity ratio, u’12 Ju) 002. Both quantities are plotted against the normalised upstream distance,
x1/D, and shown for all three tip-speed ratios. Symbols are the measurements, solid lines are the
quasi-steady predictions and dashed lines follow the work of Milne & Graham (2019).

lower the velocity measured by the LDA system. The discrepancy between the model
and the experimental measurements for low values of x,/D is also larger for 4 = 2. At
a higher tip-speed ratio, the reduction in streamwise flow velocity close to the upstream
of the rotor is dominated by the effect of the rotor, which is taken into account by the
model. Whereas for 4 = 2, the flow deceleration is comparatively lower and the effect of
the nose cone becomes significant. Nevertheless, Conway’s model provides an accurate
enough solution for the mean upstream rotor velocity for 4 = 4 and 7. Likewise, for the
r.m.s. of the velocity fluctuations, a similar picture is drawn with the velocity fluctuations
reducing significantly more as they near the rotor. To model this behaviour, we have
considered two approaches. The first considers a quasi-steady approach for the r.m.s. of

the velocity fluctuations, u’12 / u’loo2 = y%(x;), whereas the second approach (plotted as a
dashed line in figure 12b) uses the methodology of Milne & Graham (2019). The two
approaches follow the same trend, with the latter appearing to be different only in the
vicinity of the rotor. This is due to the fact that both the vorticity distortion (amplification
of the low-frequency turbulence spectral content) and blockage effects can be captured
by this model. Nonetheless, the good agreement between the two approaches and the
experimental data validates our hypothesis regarding the quasi-steady behaviour of the
velocity fluctuations presented in § 2.1.

Looking at the inflow velocity spectra of figure 13, three operational cases are again
presented. For each case, the streamwise velocity spectra are plotted for different locations
upstream together with the undistorted and distorted theoretical spectra computed using
the von Kdarman (VK) model spectrum of (2.10). The distorted spectrum is taken at
the closer location to the rotor (x;/D = —0.15) for which we have measurements. As
expected, the undistorted von Karmén spectrum is found to provide an excellent fit to the
experimental data using the measured integral length scale, L, = 0.7D, for all velocity
spectra at locations x;/D < —0.5. Conversely, the distorted velocity spectra show that
the approach is only valid at the low-frequency regime and for the 4 = 4 and 7 cases.
This is because, in general, our quasi-steady model becomes incapable of capturing the
velocity spectra for higher frequencies, f > U, /L, Whereas for 4 = 2 the inference
of the noise cone appears to have the same effect we pointed out previously when we
presented the mean velocity and r.m.s. of the velocity fluctuations comparisons with the
respective measured data.
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FIGURE 13. Spectra of streamwise turbulent velocity in the inflow region at various distances
upstream the rotor plane, x1/D = (—0.15, —0.5, —1, —2), at hub height. Results are shown for
all three tip-speed ratios (4 = 2, 4 and 7).

5.2. Power spectra

We present a comparison between our semi-analytical solution and the experimentally
measured PSD functions. Additionally, we will present a comparison with the PSD model
of Tobin et al. (2015). Tobin et al. (2015) proposed a first-order stochastic ODE, which
they derived using basic energy balance arguments,

dP+P ! CpAu’ (1) (5.2)
— 4 —=— u (1), .
a L 2Pt

where #; = 1§2/(2Q) is a constant rotor inertial time scale. By solving the ODE using the
impulse response function, Tobin er al. (2015) showed that the transfer function between
the velocity and power fluctuation spectra approaches the £~ behaviour over the inertial
and high-frequency regimes. In addition, they proposed using a second-order Butterworth
filter for the transfer function between the power and velocity spectra and combined it with
the von Kdrman model velocity spectrum to finally obtain a model for the rotor’s power
spectrum,

[3/2C,pAU 41 Lioo/Uroo

1+ Qfin* [14+70.8(fLiso/Uio)?PP/0°

The proposed model spectrum effectively captures the low-pass filtering behaviour
over higher frequencies; however, it does not predict the spectral peaks around the
blade-passing frequencies. At the end of this section, we will show that Tobin’s model
agrees well with our semi-analytical, however only for ideal conditions and in the low and
inertial-range frequencies.

Looking at the measured velocity and power power spectral densities of figure 14,
we observe that indeed the low-pass filtering behaviour between power and velocity
fluctuations exists and that the effect is more pronounced for the high tip-speed-ratio cases
(1 =4 and 7). A clearer picture of the three power spectral densities can be obtained
by collapsing all data together (by dividing with the turbine frequency, fr = £2/(2n)),
as shown in figure 15(a). The collapsed spectral functions (shown on the left-hand side
of the figure) confirm the existence of the three distinct regions: a low-frequency regime
(D) in which power fluctuations follow those of the velocity, an intermediate regime (II),

Se(f) = (5.3)


https://doi.org/10.1017/jfm.2020.681

https://doi.org/10.1017/jfm.2020.681 Published online by Cambridge University Press

904 A13-20 G. Deskos, G. S. Payne, B. Gaurier and M. Graham

— Power

1 — Velocity 4=2 102

10°
102

PRI

104

106

102 1000 10° 10! 102 102 10! 109 10' 102 102 10! 10° 10! 102

/ (Hz) Jf(Hz) J (Hz)
FIGURE 14. Power spectral density functions for the power and upstream velocity fluctuations
(at hub height).

often coinciding with part of the inertial sub-range, in which the power fluctuation scale
as f~!1/3, and a high-frequency regime (IIT) containing the BPF and their harmonics, 3fr,
6fr, 9fr and so on. Such characterisation of the power spectra is consistent with previous
observations in both small- and large-scale experiments (Chamorro et al. 2013, 2015;
Tobin et al. 2015). The presence of the BPF around multiples of 3f; is independent of the
vertical shear profile, as was shown numerically by Churchfield er al. (2012), and stems
from the fact that power fluctuations are the result of torque fluctuations over all three
turbine blades. A potential shift of the peaks away from the 3f; frequency multiples would
mean that one of the blades exhibits a different aero/hydrodynamic behaviour either by
design (e.g. variation of shape/mass between blades) or by control (e.g. individual blade
pitch). We may also notice that a critical frequency exists that separates regimes (II) and
(III). This critical frequency also concurs for all three cases and it can approximately be
placed at f, = 3f;/2. This observation agrees with Chamorro et al. (2013), who reported
a linear relationship between f. and fr. A more instructive way to encapsulate the physical
characteristics of the three regimes can be obtained by defining a transfer function,
T(f/fr), between the power and velocity spectral density functions as in Chamorro et al.
(2015),

Sp(f/fr)
Su (f/fT) .

Figure 15(b) shows that the measured transfer function for 4 = 4 and 7 collapse together,
thereby further emphasising the existence of the three regimes. However, for 1 = 2,
the spectral density function deviates from the previously mentioned description. In the
lower-frequency regime, a positive cascade of spectral energy exists as d7 /df > 0. This
is believed to be a result of the vortex shedding from individual blade elements that
undergo dynamic stall with substantial flow detachment. Dynamic stall tends to transfer
low-frequency velocity fluctuations toward the higher-frequency power spectral regime
through lift fluctuations and instabilities introduced by the trailing- and leading-edge
vortex shedding.

In the same figures, we also plot the power spectra and the respective transfer functions
using the present semi-analytical model. For our model calculations, we used 20 blade
elements following the blade radial characteristics of table 1, whereas we extract the
induction factors from the experimental data based on the mean thrust force. Finally,
by monitoring the local angle of attack, we assign a lift coefficient slope to the local
blade elements that switches between dC;/do = 27 for o < @y and dC;/da =1 for
o > gy From figure 15(a) we can also see that our semi-analytical solution reproduces

Tr(f/fr) = (5.4
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FIGURE 15. (a) Power spectral functions of the turbine power fluctuations, Sp(f), plotted
against the normalised frequency, f/fr. (b) The transfer function, 7p(f/fr), as a function of
the normalised frequency, f/fr. In both plots, the measured PSD are plotted together with the
model predictions from Tobin et al. (2015) and the present work.

the power spectral peaks associated with the spectral amplification around the BPF and
its harmonics exhibited by the experimental measurements. This is particularly true when
it comes to the frequencies of these peaks. However, we notice that the model tends to
overpredict the amplitude of the peaks. This is an inherent limitation of our semi-analytical
model. The proposed linear relationship between inflow velocity fluctuations and the
rotor’s torque (see (2.17)), as well as the application of quasi-steady theory to the inflow
velocity distortion, results in the overprediction of the interactions between small-scale
turbulence and the blade aero/hydrodynamics. To this end, our model prediction for the
energy content within these peaks is found to be 10 % more than the respective value
found using the experimental data. In addition, for the optimal tip-speed-ratio case (1 = 4),
our model predicts that approximately 21 % of the overall energy is contained within the
BPF modes, whereas using the experimental data reveals a smaller energy content that is
approximately 8 % of the total energy.

In figure 15 we also plot the power spectra and the respective transfer functions
using the Butterworth filter proposed by Tobin et al. (2015). To make the power spectra
predictions using Tobin’s model, we extracted the experimental power coefficients, Cp,
for the different tip-speed ratios, as well as compute the ‘inertial’ time scale based on the
experimentally obtained, time-averaged torque and rotor speed. The two model predictions
(present and Tobin’s) are shown to exhibit an overall good agreement. However, important
differences exist with the most significant one being that Tobin’s model ignores the
spectral amplification around the BPF and its harmonics. Moreover, the dependence of
Tobin’s transfer function on the mean power coefficient, Cp, appears to underpredict the
low-frequency amplitude of the transfer function for 4 = 7 while overpredicting the one
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r/R r (mm) c¢/R ¢ (mm) t/c (%) t(mm)  twist (°)

0.1620 58.65  0.0548 19.84 80.0 15.88 29.57
0.1782 64.50  0.0548 19.84 100.0 19.84 29.57
0.1830 66.25  0.0548 19.84 100.0 19.84 29.57

0.2249 81.41 0.1471 53.23 36.0 19.16 25.63
0.2668 96.59  0.2392 86.59 21.3 18.44 22.15
0.3087 111.75  0.2296 83.12 21.4 17.79 19.30
0.3506 126.90  0.2184 79.07 21.7 17.16 16.97
0.3925 142.10  0.2070 74.94 22.0 16.49 15.05
0.4344 157.25  0.1962 71.01 222 15.77 13.46
0.4763 172.41 0.1861 67.38 22.4 15.09 12.12
0.5182 187.59  0.1768 64.01 22.5 14.40 10.98
0.5601 202.75 0.1685 61.00 22.5 13.73 10.01
0.6019 217.91 0.1610 58.28 22.4 13.05 9.18
0.6439  233.10 0.1541 55.79 222 12.39 8.45
0.6858  248.25 0.1478 53.51 21.9 11.72 7.82
0.7276 263.40  0.1422 51.49 21.5 11.07 7.26
0.7696 278.59  0.1371 49.63 20.9 10.37 6.77
0.8115 293.75 0.1325 47.95 20.2 9.69 6.34
0.8533  308.91 0.1281 46.38 19.5 9.04 5.95
0.8953  324.09  0.1242 44.97 18.6 8.37 5.61
09372 339.25  0.1206 43.64 18.0 7.86 5.29
0.9790  354.40 0.1173 42.45 18.0 7.64 5.01
1.0000  362.00  0.0633 22.93 25.0 5.73 4.87

TABLE 1. Blade dimensions based on NACA 63-418 profile. Here r is the local radius, R the
overall blade radius (362 mm), ¢ the chord length and ¢ the thickness.

for A = 2. By revisiting our analysis in § 2, we may argue that the mean power coefficient
is not a good estimator of the power fluctuations, as it does not provide any information on
the aero/hydrodynamics of the individual blade elements. Conversely, the lift curve slope,
dC;/da, provides a better estimate for the amplitude of the spectra, as shown by the ability
of the current model to better capture the low-frequency amplitude of the experimental
power spectral densities for all three tip-speed ratios. Surprisingly, the two models agree
well for A = 4, which corresponds to the optimal rotor case (e.g. axial induction factor
a ~ 1/3). For Tobin’s model, the amplitude of the transfer function at the lower-frequency
regime can be obtained by taking the limit of f — 0 to obtain

7-Tohin(0) = (%pCpAUlzoo)z (5.5)

On the other hand, to obtain the low-frequency magnitude from the present model, we will
need to take the limit of T — oo for the cross-correlation function, Ry (r;, r», T), which
allows us to drop the time integral (Fourier transform) of the autocorrelation function to
obtain

dc, :

3 2 R
%resent(o) = (Ep(l - a)zaUlzoo> |:/(; C(r) /l*(r)Z + ldr] . (56)
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Dividing the two, we obtain

— 2 R :
Tyreon(0) _[g =o' | C(r)mdr} | (57)
0

Trovin(0) | da ACp

Finally, considering a theoretical power coefficient, Cp = 4na(l — a)?, where n is an
efficiency coefficient (ratio between the actual Cp and the theoretical Betz formula), a
is the axial induction factor, dC;/do = 27, and considering the blade’s optimal design
equations from Burton er al. (2001, Chapter 3, equation (3.67)), we may equate the
integrand to a constant value,

W41 = R 2R (5.8)

3¢,

which leads to the final

Tyresent 0 4\
/"—() - (E ) ~1 (5.9)
IZ—Tohin (O) 3 n/lCL

for the optimal case, where A = 4, n = 0.64 and C; = 1.5. A final point can also be made
for Tobin’s ‘inertial’ time scale, t;, which is proportional to the rotor’s structural moment
of inertia, /. This time scale controls the width of the transfer function’s low-frequency
‘plateau’ region and, therefore, the critical frequency after which low-pass filtering starts.
The ‘inertial’ time scale is found to be different for each tip-speed ratio, as the ratio
between the mean torque, Q, and the mean rotor speed, §2, varies with A. Again, for all
three cases, our semi-analytical model and that of Tobin er al. (2015) agree well only
for the optimal tip-speed ratio, 4 = 4. In the present semi-analytical model, this critical
‘transition’ frequency is found to be fi,-pass = 0.25U /D for A = 4. On the other hand,
in Tobin’s model low-pass filtering is activated when 2ft; = 1. By substituting fj,,.pass into
Tobin’s model, we find that t;, = 4D/(2U ) ~ 1.8, which agrees with the value found for
A =2 and 4 but not 4 = 7, which was found to be ¢, = 8.16 s. This is caused by the fact
that the mean torque, Q, is reduced when the rotor operates beyond its optimal tip-speed
ratio, whereas the rotor speed continues to increase. Lastly, we should emphasise that our
experiments were conducted at constant values of angular speed, §2; hence, the rotational
kinetic energy was also constant, and, therefore, the rotational inertia of the structure was
found to be irrelevant.

6. Concluding remarks

In this work we examined the interaction between onset turbulence and a horizontal-axis
turbine’s power fluctuations under different tip-speed-ratio scenarios. The problem was
studied both experimentally and through a novel semi-analytical model. The focus was
on the power spectral density function of the power fluctuations (power spectra), and, in
particular, the rotor’s so-called low-pass-filtering behaviour in the inertial sub-range as
well as the phenomena that affect it. The analysis showed that the turbine’s rotational
speed (i.e. tip-speed ratio), blade aero/hydrodynamic characteristics and distortion of
the approaching turbulence all contribute to the filtering mechanism. In particular, we
show that only a combined effect of inflow distortion and turbine rotation results in the
experimentally observed —11/3 scaling over the inertial sub-range. In addition, a detailed
comparison with the present experimental data shows that the proposed semi-analytical
model can also go beyond the inertial sub-region and effectively capture the behaviour
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around the blade-passing frequency and its high-frequency aliasing modes. To this end,
the model also provides a pathway to calculating high-frequency torque fluctuations that
are associated with rotor fatigue.

A parametric study for the proposed semi-analytical model highlighted the importance
of the tip-speed ratio, upstream turbulence integral length scale and onset turbulence
distortion/deceleration in shaping the power spectra. The magnitude of the tip-speed
ratio was found to affect the intermediate- and higher-frequency regime. An increasing
tip-speed ratio results in low-pass filtering of the power spectra in the inertial sub-range
while it also generates pronounced spectral peaks around the blade-passing frequencies
(3fr, 6fr, 9fr, . ..). Inherently, these spectral peaks will occur at higher frequencies as the
tip-speed ratio increases. Conversely, the incipience of the low-pass filtering was found
to be independent of the tip-speed-ratio magnitude and instead depends on the rotor
diameter, D, and the undistorted upstream velocity, U,.,. The magnitude of the integral
turbulence length scale, L;.,, was found to play a key role in determining the shape and
the spectral amplitude in the low-frequency regime. For instance, larger values of L
will extend the power spectra to low frequencies and may reveal a region where the —5/3
power law prevails. Such a region cannot be seen when L., < D as low-pass filtering is
active everywhere in the inertial sub-range. Again, the onset of low-pass filtering remains
independent of the magnitude of the integral streamwise turbulence length scale. The
—11/3 scaling law observed in our experimental results as well as in previous studies
(Chamorro et al. 2015; Tobin et al. 2015) over the ‘filtered’ region of the inertial sub-range
was obtained only when flow distortion was taken into account in our calculations.

Previous studies undertaken on the same problem (Chamorro et al. 2015; Tobin et al.
2015) have characterised the high-frequency regime as comprising uncorrelated and
low-energy content disturbances. Dismissing the existence of the spectral peaks around the
BPF in the high-frequency regime may result in ignoring a large amount of spectral energy
contained within these frequencies. According to our model predictions, the BPF energy
content can be as large as 21 % of the overall spectral energy, whereas our experimental
data suggest a figure closer to 8 %. This percentage difference between the model and
the experimental data stems from discrepancies around the BPF peaks. Our model
overpredicts these peaks, as it lacks the ability to capture the unsteady blade-hydrodynamic
phenomena present in these higher frequencies. Nonetheless, a number of studies (Stevens
& Meneveau 2014; Bossuyt et al. 2016, 2017; Liu et al. 2017) have also suggested
that time or space averages of the power output over multiple turbines (turbine arrays)
may smear out the BPF peaks in the array-aggregate power spectra and give way to
spectral peaks around the advective frequency (AF), f, ~ Ui~/S:, where S, is the distance
between rows of turbines. An interesting analogy for the formation of these two types of
spectral peaks (BPF and AF) can be drawn here as they are both a result of the velocity
sampling. In the former (BPF), the spectral peaks happen because the velocity is sampled
rotationally and with a constant angular speed, whereas in the latter (advective frequency),
the velocity sampling corresponds to the convective travel time between rows having a
constant spacing, S,. Likewise, the —11/3 scaling law present in the inertial frequency
range of the array-aggregate power spectra measured by Liu et al. (2017) may also be
partially attributed to the velocity sampling between rows of turbines. More importantly,
the presence of the f~2 scaling in the transfer function between the power and velocity
spectra, which is prevalent across the low and inertial frequency regimes in the data
reported by Liu et al. (2017), can also be ascribed to the relatively small length scale
to diameter ratio, L,,/D, which was used in their experiments and allows the low-pass
filtering effect to dominate. This is analogous to our model’s spectral behaviour for a
single turbine power output, and indicates the important role of the velocity sampling scale
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(e.g. frequency, length etc.) and its relative magnitude to the turbulence length scale, in
shaping the spectra of a single turbine or multiple turbines’ array-aggregate power output.

Finally, this study seeks to provide a benchmark for comparison between high-fidelity
computational fluid dynamics models with the ability of blade phase-resolving
simulations, e.g. actuator line models (Churchfield er al. 2012; Deskos, Laizet & Palacios
2020), and the presented solution for both wind and tidal energy applications. This will be
complementary to many existing validation tests already undertaken by model developers
that involve wake and performance statistics. Future studies will focus on time-series
predictions of the power fluctuations by utilising the derived PSD functions.
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Appendix

The turbine used for these experiments is similar to that used in previous studies
(Gaurier et al. 2018, 2017). For completeness, we present in table 1 the chord and thickness
sizes both in a dimensional and non-dimensional format, as well as the twist angle for each
blade radius, r.
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