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The main goal of this work is to study the existence and uniqueness of a positive
solution of a logistic equation including a nonlinear gradient term. In particular, we
use local and global bifurcation together with some a priori estimates. To prove
uniqueness, the sweeping method of Serrin is employed.

1. Introduction

We study the existence and possible uniqueness of positive solutions of the problem

−∆u = λu − up ± |∇u|q in Ω,

u = 0 on ∂Ω,

}
(P±)

where Ω ⊂ R
N is a bounded and regular domain and 1 < p, q. The constant λ ∈ R

will be regarded as a bifurcation parameter.
When the nonlinear gradient term does not appear, the above equation is the

classical logistic one that has been extensively studied in the literature. It is very
well known that there exists a positive solution if and only if λ > λ1, where λ1
denotes the principal eigenvalue of the Laplacian. In such a case, this solution is
unique and stable.

However, when the gradient term is included, the equation is less well known. It
was studied in [4,12,18] for the particular case λ = 0 and under a blow-up Dirichlet
condition. In the aforementioned papers, the solution is obtained as the limit of a
sequence of solutions of the corresponding non-homogeneous Dirichlet problems. In
each step, the authors use [17, theorem 8.3, p. 301], and so q � 2 must be imposed.
Some other papers consider similar problems with critical growth (q = 2), in which
a convenient change of variables works (see, for example, [20, 21,23]).

Generally speaking, equations of the form

−∆u = f(x, u,∇u) in Ω, u = 0 on ∂Ω, (1.1)
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have been studied extensively in the literature (see the classical works [3,5,6,8,11,15,
22]). Most of these works are concerned with a priori estimates, and existence from
those is obtained by using topological methods or sub–supersolution techniques.

In order to obtain our existence results, we use bifurcation methods (local and
global) and a priori bounds in C1. It is well known that these a priori estimates hold
for q � 2. However, as a special feature of our problem, we can even provide a C1

estimate for (P−) and any q > 1. In order to do that, we first find a supersolution,
greater than any solution u of (P−), and from this we can estimate the maximum
of the function w = 1

2 |∇u|2 (see, for example, [26, ch. 5] and [23]).
In general, the uniqueness of elliptic equations is a difficult problem, as remarked

on in [10]. For (1.1) one can easily obtain uniqueness from the maximum principle if
f is decreasing in u [13, theorem 8.1]. Clearly, the function f(u) = λu − up − |∇u|q
is not decreasing in u for λ > 0, and these results cannot be applied. In any case,
u = 0 is always a solution: we are looking for uniqueness of positive solutions.

We present here a result of the uniqueness of positive solutions for (1.1) which
generalizes a classical result for semilinear equations (see, for example, [2,7,14], [16,
theorems 7.14 and 7.15] and [24, p. 39] and references therein). Our proof makes
use of the sweeping method of Serrin [25, p. 12], as in [16, 24]. To the best of our
knowledge, the uniqueness result stated in theorem 4.1 is completely new.

Generally speaking, we show that in the case (P−) the results about existence
and uniqueness are similar to those for the semilinear equation. However, in the
case (P+) the presence of the gradient may have an important influence (depending
on the values of p and q; see theorem 3.3). In some cases there is no uniqueness of
positive solution.

An outline of the work is as follows: in § 2 we give some preliminaries regard-
ing the maximum principle; § 3 is devoted to existence and non-existence results
using bifurcation and a priori estimates; and the general result of uniqueness is
established in § 4.

2. Preliminaries

In this section we state the exact version of the maximum principle that will be
used throughout the paper. The results we present are classical; we include them
for the sake of clarity.

Let Ω be a bounded smooth domain in R
N , ci, d : Ω → R be L∞ functions

(i = 1, . . . , n) and consider the inequality

−∆u +
N∑

i=1

ci(x)
∂u

∂xi
+ d(x)u � 0. (2.1)

We begin with a generalized weak maximum principle. A more general statement
and the proof can be found in [13, theorem 8.1].

Theorem 2.1. Suppose that d � 0 and that u ∈ H1(Ω) is a weak solution of (2.1)
such that u � 0 on ∂Ω. Then, u � 0.

We now state a version of the strong maximum principle for C1 weak solutions;
throughout the paper, η denotes the unit outward normal to ∂Ω.
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Theorem 2.2. Suppose that d � 0 and that u ∈ C1(Ω̄) is a weak solution of the
inequality (2.1). Assume also that u is not constantly equal to zero, and u(x) = 0
for all x ∈ ∂Ω.

Then
u(x) > 0 ∀x ∈ Ω and

∂u

∂η
(x) < 0 ∀x ∈ ∂Ω.

Proof. The proof follows that of [13, lemma 3.4]. Since the statement we have chosen
does not exactly match that in [13], we reproduce the proof in detail. There are
several steps.

Step 1. Define an open ball B = B(y, R) ⊂ R
N , and suppose that u verifies

inequality (2.1) in B, u(x) > 0 for all x ∈ B, u(x0) = 0 for some x0 ∈ ∂B. We
claim that ∂u(x0)/∂η < 0, where η is the unit outward normal to B at x0.

We can assume that y = 0. Let α > 0 be a constant to be determined later, and
define v(x) = e−α|x|2 − e−αR2

defined in the annulus A = {x ∈ R
N : 1

2R � |x| �
R}. For any x ∈ A, we compute

− ∆v +
N∑

i=1

ci(x)
∂v

∂xi
+ d(x)v

= e−α|x|2
(

− 4|x|2α2 + 2αN − 2α

N∑
i=1

ci(x)xi + d(x)[1 − e−α(R2−|x|2)]
)

� e−α|x|2(−4( 1
2R)2α2 + 2αN − 2αMR − M), (2.2)

where M is a constant such that M > ‖d‖L∞ , M > (
∑N

i=1 ‖ci‖2
L∞)1/2.

We now choose sufficiently large α such that (2.2) is negative. Clearly, v(x) =
0 � u(x) for |x| = R. Since u is positive in the ball, we can take ε > 0 small enough
that εv(x) < u(x) for |x| = 1

2R.
Now, apply theorem 2.1 to the function u−εv in A, to conclude that u(x) � εv(x)

for all x ∈ A. Recall now that u(x0) = v(x0) = 0, to conclude that

∂u

∂η
(x0) � ε

∂v

∂η
(x0) < 0.

Step 2 (u(x) > 0 for any x ∈ Ω). By theorem 2.1, we have u � 0. In order to prove
the strict inequality, we reason by contradiction. Take Ω0 = {x ∈ Ω : u(x) = 0},
Ω+ = {x ∈ Ω : u(x) > 0}. Observe that both previous sets are non-empty. Choose
y ∈ Ω+ such that R = d(y, Ω0) < d(y, ∂Ω). Then, B(y, R) ⊂ Ω+ and there exists
x0 ∈ ∂B ∩ Ω0. Obviously, u attains a minimum at x0, and hence ∇u(x0) = 0. We
then arrive to a contradiction with step 1.

Step 3 (∂u(x)/∂η < 0 for all x ∈ ∂Ω). Take x0 ∈ ∂Ω, and let B be an interior
sphere at x0. By step 2, u(x) > 0 for x ∈ B, and u(x0) = 0. We conclude by
applying step 1.

In the previous theorem, the condition d(x) � 0 is needed. In next theorem we
consider any L∞ function d(x) but assume that the function u is non-negative
(which is no longer given by theorem 2.1).
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Theorem 2.3. Suppose that u ∈ C1(Ω̄) is a weak solution of the inequality (2.1).
Assume also that u(x) � 0 but is not constantly equal to zero, and that u(x) = 0
for all x ∈ ∂Ω.

Then, u(x) > 0 for all x ∈ Ω and ∂u(x)/∂η < 0 for all x ∈ ∂Ω.

Proof. We define d+(x) = max{d(x), 0}. Since u is non-negative, it follows that

−∆u +
N∑

i=1

ci(x)
∂u

∂xi
+ d+(x)u � −∆u +

N∑
i=1

ci(x)
∂u

∂xi
+ d(x)u � 0.

Now we conclude the proof by applying theorem 2.2 to the operator:

L[z] = −∆z +
N∑

i=1

ci(x)
∂z

∂xi
+ d+(x)z.

3. Bifurcation of positive solution

First, we need some notation: λ1 and ϕ1 denote the principal eigenvalue of −∆
subject to the homogeneous Dirichlet boundary condition and its positive associated
eigenfunction, respectively.

We denote by E := C1(Ω̄) and P = {u ∈ E : u(x) � 0 ∀x ∈ Ω} its positive cone.
We look for u solution belonging to P . Observe that if u ∈ E is a solution of (P±),
by the elliptic regularity we have u ∈ C3,α(Ω̄) for some α ∈ (0, 1). On the other
hand, if u is a non-trivial solution in P , we have

−∆u ∓ |∇u|q−2∇u · ∇u − (λ − up−1)u = 0,

and therefore theorem 2.3 implies that u(x) > 0 for any x ∈ Ω, and also that
∂u(x)/∂η < 0. That is to say, u ∈ Int(P ); in such a case we say that u is positive.

Our first result provides us with the existence of a continuum of positive solutions
of (P±). We also obtain an a priori bound in L∞ for any solution of (P±) in E.

Proposition 3.1. There exists an unbounded continuum of positive solution C ⊂
R × E bifurcating from the trivial solution at λ = λ1.

Moreover, if (λ, u) is a solution of (P±), u 	= 0, then

λ > 0 and ‖u‖∞ � λ1/(p−1). (3.1)

Proof. Observe that (P±) can be written as

u = K(λu + N (u)) in E,

where K := (−∆)−1 : C(Ω̄) → E under homogeneous Dirichlet boundary condi-
tions, and

N : E → C(Ω̄), N (u) := (−up ± |∇u|q).
Observe that if f ∈ C(Ω̄), then u = K(f) belongs to W 2,p for all p > 1 [1], and
hence u ∈ C1,γ . Thus, the operator K is compact. The strong maximum principle
implies also that is strongly positive.
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The nonlinear operator N is continuous and bounded. Moreover, since p > 1, q >
1, we have N (u) = o(‖u‖E) as u → 0; we can apply, for example, [19, theorem 6.5.5]
and conclude the existence of an unbounded continuum C in R × P of positive
solution of (P±) emanating from (λ1, 0).

On the other hand, suppose that λ � 0 and that u ∈ P is a solution of (P±).
Then L[u] = 0, where L is defined as

L[z] = −∆z ∓ |∇u|q−2∇u · ∇z − (λ − up−1)z = 0.

Since (λ − up−1) � 0, we can apply theorem 2.1 to −u to conclude that u � 0.
Therefore, u = 0.

Finally, if xM ∈ Ω is such that u(xM ) = maxx∈Ω̄ u(x), then

λu(xM ) − u(xM )p ± |∇u(xM )|q � 0,

and now, taking into account that ∇u(xM ) = 0, we get (3.1).

The next result characterizes the existence and uniqueness of a positive solution
of (P−).

Theorem 3.2. Consider the case (P−). For all p, q > 1 there exists a positive
solution if and only if λ > λ1. Moreover, if λ > λ1, there exists a unique positive
solution of (P−) that is linearly asymptotically stable.

Proof. If u is a positive solution of (P−), then, multiplying the equation by ϕ1 and
integrating by parts, we have

(λ1 − λ)
∫

Ω

uϕ1 =
∫

(−up − |∇u|q)ϕ1,

which implies that λ > λ1.
Now, by proposition 3.1, the proof of existence for λ > λ1 concludes if we find a

priori estimates. Specifically, we claim that if (λ, u) is a positive solution of (P−)
and λ ∈ I ⊂ R is compact, then there exists C > 0 such that

‖u‖E � C. (3.2)

We prove the result for all q > 1 by estimating the derivative first in the boundary,
and then in the interior of Ω.

First of all, we claim that if u is a solution of (P−), then

u � θλ, (3.3)

where θλ is the unique positive solution of the logistic equation

−∆u = λu − up in Ω,

u = 0 on ∂Ω.

}
(3.4)

Indeed, if u is a solution of (P−), then u is a subsolution of (3.4). Clearly, a large
positive constant is a supersolution of (3.4). The sub–supersolution method yields a
solution of (3.4) greater than u and, since θλ is the unique positive solution of (3.4),
(3.3) is verified.
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Hence, it follows that
∂θλ

∂η
� ∂u

∂η
< 0 on ∂Ω. (3.5)

This gives us an a priori bound of ∇u on the boundary.
In order to estimate the gradient in the interior of Ω, define

w := 1
2 |∇u|2.

It is not hard to show that

∆w = 2w(pup−1 − λ) + q|∇u|q−2∇u · ∇w +
N∑

i,j=1

(
∂2u

∂xi∂xj

)2

.

Assume that the maximum of w is attained at xM ∈ Ω. Then using ∆w(xM ) � 0
and ∇w(xM ) = 0, we get

2w(xM )(λ − pup−1(xM )) �
N∑

i,j=1

(
∂2u

∂xi∂xj
(xM )

)2

. (3.6)

On the other hand, there exists a C > 0 such that

N∑
i,j=1

(
∂2u

∂xi∂xj
(xM )

)2

� C(∆u(xM ))2 = C(−λu(xM ) + u(xM )p + |∇u(xM )|q)2.

By taking into account the L∞ bound of u, there exist positive constants C1, C2 > 0
such that

2w(xM )(λ − pup−1(xM )) � C1w(xM )q − C2. (3.7)

Inequalities (3.5) and (3.7) imply the a priori estimate in C1 of the solutions of
(P−) for any λ fixed.

The uniqueness of positive solution follows from theorem 4.1, whose statement
and proof are postponed to the next section.

Let u0 > 0 be a positive solution of (P−). We now plan to prove that u0 is
asymptotically stable. It is well known (see, for example, [24]) that for stability
it suffices to show that the first eigenvalue of the problem linearized around u0 is
positive, i.e. the first eigenvalue of the problem

L[v] = σv in Ω,

v = 0 on ∂Ω

}
(3.8)

is positive, where

L[v] := −∆v + q|∇u0|q−2∇u0 · ∇v + (pup−1
0 − λ)v.

Thus, it suffices to find a positive supersolution ū of L, that is, a positive function ū
such that L[ū] � 0 in Ω and ū � 0 on ∂Ω with some strict inequality. Take ū = u0.
Then

L[ū] = (q − 1)|∇u0|q + (p − 1)up
0 > 0 in Ω and ū = 0 on ∂Ω.

The proof is completed.
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Observe that, for (P−), the bifurcation is always supercritical for any values of p
and q; that is, there exists a neighbourhood V of (λ1, 0) such that every positive
solution (λ, u) ∈ V of (P−) satisfies λ > λ1 (we can define subcritical similarly).
The case for (P+) is different.

Theorem 3.3. Consider the case (P+).

(i) With respect to the local bifurcation, we find that

(a) if p > q (respectively, p < q) the bifurcation is subcritical (respectively,
supercritical),

(b) if p = q, and (λn, un) is a solution of (P+) such that λn → λ1 and
‖un‖E → 0 as n → ∞, then

0 < (λn − λ1)
( ∫

Ω

ϕp+1
1 −

∫
Ω

|∇ϕ1|qϕ1

)
.

whenever the last term is non-zero,

(ii) If q � 2, then there exists at least a positive solution for λ > λ1.

Proof. It is clear that solutions of (P+) are the zeros of the regular operator F :
E × R �→ E defined by

F(u, λ) := −∆u − λu + up − |∇u|q.

Observe that F(0, λ) = 0. Denoting by N [·] and R[·] the kernel and rank of the
operator, respectively, we can can show that

N [DuF(0, λ1)] = [spanϕ1].

We claim that
DλuF(0, λ1)ϕ1 = −ϕ1 /∈ R[DuF(0, λ1)].

Indeed, if there exists u ∈ E satisfying

DuF(0, λ1)u = −ϕ1 ⇐⇒ −∆u − λ1u = −ϕ1,

then, by multiplying this equation by ϕ1 and integrating, we obtain∫
Ω

ϕ2
1 = 0,

which is a contradiction. Now we are in a position to apply the Crandall–Rabinowitz
theorem [9], and so, if Y is any closed subspace of E such that E = [spanϕ1] ⊕ Y ,
there exist ε > 0 and two continuous functions

λ : (−ε, ε) �→ R and u : (−ε, ε) �→ Y

with
λ(s) = λ1 + µ(s), u(s) = s(ϕ1 + v(s)), s ∈ (−ε, ε) (3.9)
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and µ(0) = v(0) = 0 and, in a neighbourhood of (λ1, 0), all the solutions are of
the form (λ(s), u(s)). Introducing this expression into the equation for (P+), taking
into account the fact that that −∆ϕ1 = λ1ϕ1 and dividing by s, we obtain

(−∆ − λ1)v(s) = µ(s)(ϕ1 + v(s)) − sp−1(ϕ1 + v(s))p + sq−1|∇(ϕ1 + v(s))|q.

Finally, applying the Fredholm alternative, we get

µ(s) =
sp−1

∫
Ω

(ϕ1 + v(s))pϕ1 − sq−1
∫

Ω
(∇ϕ1 + ∇v(s))qϕ1∫

Ω
(ϕ1 + v(s))ϕ1

,

whence we deduce (i).
In order to prove (ii), recall that (P+) has no non-zero solutions if λ � 0 (see

theorem 3.1).
Moreover, since q � 2, the nonlinearity f(x, ξ, η) = λξ − ξp + |η|q satisfies

|f(x, ξ, η)| � c(|ξ|)(1 + |η|2) for (x, ξ, η) ∈ Ω̄ × R × R
N ,

for some increasing function c : R+ �→ R+, and so, by [3, proposition 2], it follows
that

‖u‖E � γ(‖u‖∞) � C,

where γ : R+ �→ R is an increasing function and C a positive constant. Thus, the
result follows by proposition 3.1 and the fact that there exists no solution for λ � 0
(see (3.1)).

Corollary 3.4. If q � 2 and p > q, then there exist at least two positive solutions
of (P+) in (λ1 − δ, λ1) for some small δ > 0.

Proof. Define C ⊂ R
+ × Int(P ), the connected set of solutions bifurcating from

(λ1, 0). As stated in the proof of theorem 3.3, in a neighbourhood U of (λ1, 0), all
solutions of (P+) are of the form (λ(s), u(s)), where λ(s) < λ1 and u(s) are defined
in (3.9). We may assume that this neighbourhood is given by

U = (λ1 − δ, λ1 + δ) × (B(0, ε) ∩ P )

for some ε > 0, δ > 0. By taking smaller δ if necessary, we may also assume that
(P+) has no solutions (λ, u) such that λ ∈ (λ1 − δ, λ1 + δ), ‖u‖E = ε.

Recall that C does not cross the λ = 0 line, and cannot blow up for finite λ,
since we have obtained a priori estimates. Thus, the unbounded continuum C has
an unbounded projection [λ

¯
, +∞) on the real λ-axis with λ

¯
> 0.

Reasoning by contradiction, suppose that there exists δ0 ∈ (0, δ) such that (P+)
has a unique positive solution for λ = λ1 − δ0. Define

S1 = {(λ, u) ∈ R
+ × P : λ ∈ [λ1 − δ0, λ1], ‖u‖E = ε},

S2 = {(λ, u) ∈ R
+ × P − {0} : λ = λ1, ‖u‖E � ε},

S3 = {(λ, u) ∈ R
+ × P : λ = λ1 − δ0, ‖u‖E � ε},

S = S1 ∪ S2 ∪ S3.

Clearly, S separates R
+ × P − {0} into two connected components, and C ∩ S = ∅.
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Moreover, we find that the branch (λ(s), u(s)) is in one of these components,
whereas any solution (λ, u) ∈ C with λ > λ1 is in the other component. This is a
contradiction of the fact that C is connected.

4. A uniqueness result

In this section we prove the uniqueness of positive solution of (1.1) under a cer-
tain condition on f , extending the result of [2, 7, 14, 16] to the case of quasi-linear
equations.

Theorem 4.1. Consider the problem

−∆u = f(x, u,∇u) in Ω, u = 0 on ∂Ω, (4.1)

where f : Ω̄ × R
+
0 × R

n → R is a continuous function that is locally Lipschitz with
respect to (u, η) ∈ R

+
0 × R

n. Suppose that f also verifies the following condition:

for any x ∈ Ω, (u, η) ∈ R
+ × R

n,

the function t �→ f(x, tu, tη)
t

is strictly decreasing in t ∈ R
+. (4.2)

There then exists at most one non-negative non-zero solution of problem (4.1) in E.

Proof. First, let us show that (4.2) implies that f(x, 0, 0) � 0 for any x ∈ Ω.
Otherwise, if there exists x0 ∈ Ω such that f(x0, 0, 0) < 0, we would have

lim
t→0+

f(x0, tu, tη)
t

= −∞

for any (u, η) ∈ R
+ × R

n. This would contradict (4.2).
We now prove that any non-negative non-zero solution of (4.1) must be positive,

that is, it must belong to Int(P ). Given any u ∈ P a solution, we can write

−∆u = f(x, u,∇u) − f(x, u, 0) + f(x, u, 0) − f(x, 0, 0) + f(x, 0, 0)

=
f(x, u,∇u) − f(x, u, 0)

|∇u|2 ∇u · ∇u +
f(x, u, 0) − f(x, 0, 0)

u
u + f(x, 0, 0).

Since u and ∇u are both bounded and f is locally Lipschitz, the functions

f(x, u,∇u) − f(x, u, 0)
|∇u|2 ∇u and

f(x, u, 0) − f(x, 0, 0)
u

are uniformly bounded. Therefore, u is a solution of the problem L[u] = f(x, 0, 0),
where L is a linear operator defined as

L[z] = −∆z − f(x, u,∇u) − f(x, u, 0)
|∇u|2 ∇u · ∇z − f(x, u, 0) − f(x, 0, 0)

u
z.

Recall now that u vanishes in ∂Ω and is non-negative and non-zero. Theorem 2.3
implies that u ∈ Int(P ).
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We now prove uniqueness by using Serrin’s sweeping method. Suppose that u
and v are two non-negative solutions of (4.1), both non-zero. By direct computa-
tion (using (4.2)), we conclude that the functions su, with s ∈ (0, 1), are strict
subsolutions of (4.1). Define the set

D = {s ∈ [0, 1] : su(x) � v(x) for any x ∈ Ω}.

From the definition, it is obvious that D is closed. Since u, v ∈ Int(P ), there exists
ε > 0 belonging to D. Take γ = max D > 0: we claim that γ = 1. Reasoning by
contradiction, suppose that γ ∈ (0, 1). Let us set w = γu, w � v, and recall that w
is a subsolution of (4.1).

Then we have

−∆(v − w) � f(x, v,∇v) − f(x, w,∇w)
= f(x, v,∇v) − f(x, v,∇w) + f(x, v,∇w) − f(x, w,∇w)

=
f(x, v,∇v) − f(x, v,∇w)

|∇v − ∇w|2 ∇(v − w) · ∇(v − w)

+
f(x, v,∇w) − f(x, w,∇w)

v − w
(v − w).

We now argue as above. Since u and v belong to E, the functions

f(x, v,∇v) − f(x, v,∇w)
|∇v − ∇w|2 ∇(v − w),

f(x, v,∇w) − f(x, w,∇w)
v − w

are uniformly bounded. Therefore, we find that L̄[v − w] � 0, where L̄ is defined
by

L̄[z] = −∆z− f(x, v,∇v) − f(x, v,∇w)
|∇v − ∇w|2 ∇(v−w)·∇z− f(x, v,∇w) − f(x, w,∇w)

v − w
z.

Recall now that v − w vanishes in the boundary and v − w � 0. Therefore, the
maximum principle (theorem 2.3) yields either v−w = 0 or v−w ∈ Int(P ). Observe
now that the first possibility does not hold, since v is a solution of (4.1) and w = γu
is not. Therefore, v − γu ∈ Int(P ). However, this implies that v − (γ + ε)u � 0 for
ε > 0 small enough. Thus, γ + ε ∈ D, contradicting the definition of γ.

Then, u � v. We can also apply the preceding argument, but change the roles of
u and v, to obtain v � u. This concludes the proof.

Remark 4.2. In the case in which f does not depend on ∇u, condition (4.2) is the
same as that given in [7, 16].

Remark 4.3. Condition (4.2) can be relaxed in different ways. For instance, theo-
rem 4.1 is also true if (4.2) is replaced with the following condition:

for any (u, η) ∈ R
+ × R

n, the function t �→ f(x, tu, tη)
t

is decreasing for any x ∈ Ω and strictly decreasing for any x ∈ Ω′, (4.3)

where Ω′ ⊂ Ω is a subset with non-zero measure.
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Furthermore, if (4.2) is relaxed to the condition that

For any x ∈ Ω, (u, η) ∈ R
+ × R

n,

the function t �→ f(x, tu, tη)
t

is decreasing in t ∈ R
+, (4.4)

then the arguments laid out in the proof of theorem 4.1 imply the following result.
Suppose that u and v are non-negative solutions of (4.1) in E, and assume that

(4.4) holds. Then, u and v are proportional functions.
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