
Math. Struct. in Comp. Science (2009), vol. 19, pp. 639–686. c© 2009 Cambridge University Press

doi:10.1017/S096012950900766X First published online 6 May 2009 Printed in the United Kingdom

From parametric polymorphism to models

of polymorphic FPC

RASMUS EJLERS MØGELBERG†

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Email: mogel@itu.dk

Received 26 November 2006; revised 9 December 2008

This paper shows how PILLY (Polymorphic Intuitionistic/Linear Lambda calculus with a

fixed point combinator Y) with parametric polymorphism can be used as a metalanguage

for domain theory, as originally suggested by Plotkin more than a decade ago. Using

Plotkin’s encodings of recursive types in PILLY , we show how parametric models of PILLY

give rise to models of FPC, which is a simply typed lambda calculus with recursive types

and an operational call-by-value semantics, reflecting a classical result from domain theory.

Essentially, this interpretation is an interpretation of intuitionistic logic into linear logic first

discovered by Girard, which in this paper is extended to deal with recursive types.

Of particular interest is a model based on ‘admissible’ pers over a reflexive domain, the

theory of which can be seen as a domain theory for (impredicative) polymorphism. We show

how this model gives rise to a parametric and computationally adequate model of PolyFPC,

an extension of FPC with impredicative polymorphism. This is to the author’s knowledge

the first denotational model of a non-linear language with parametric polymorphism and

recursive types.

1. Introduction

Parametric polymorphism is an important reasoning principle for several reasons. One

is that it provides proofs of modularity principles (Reynolds 1983) and other results

based on ‘information hiding’ such as security principles (see, for example, Tse and

Zdancewic (2004)). Another is that it can be used to make simple type theories surprisingly

expressive by encoding inductive and coinductive types using polymorphism. If, in

addition, parametric polymorphism is combined with fixed points at the term level,

inductive and coinductive types coincide, and Freyd’s theory of algebraically compact

categories (Freyd 1990b; Freyd 1990a; Freyd 1991) provides solutions to general type

equations. However, when introducing fixed points, the parametricity principle must be

weakened for the theory to be consistent. Plotkin (Plotkin 1993a; Plotkin 1993b) suggested

using the calculus PILLY (Polymorphic dual Intuitionistic/Linear Lambda calculus with a

fixed point combinator Y), which in combination with parametricity would have recursive

types in the linear part of the calculus. This theory was worked out in detail, along with

a category theoretic treatment, by Birkedal, Møgelberg and Petersen (see Birkedal et al.

† The work here was conducted while the author was associated with Università di Genova, Italy and was

sponsored by Danish Research Agency stipend no. 272-05-0031.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 640

(2006a), Birkedal et al. (2008) and Birkedal et al. (2006b); see also Møgelberg (2005)).

In Birkedal et al. (2007), a concrete model of PILLY was constructed using ‘admissible’

partial equivalence relations (pers) over a reflexive domain. The theory of admissible pers

can be viewed as a domain theory for (impredicative) polymorphism.

Plotkin suggested using PILLY with parametric polymorphism as an axiomatic setup

for domain theory. However, as mentioned, the solutions to recursive type equations that

PILLY provides are in a linear calculus, whereas, as is well known, domain theory also

provides models of non-linear lambda calculi with recursive types, such as FPC, which is

a simply typed lambda calculus with general recursive types equipped with an operational

call-by-value semantics. In this paper we test Plotkin’s thesis by showing that the solutions

to recursive type equations in the linear type theory PILLY can be used to model FPC.

The resulting translation of FPC into PILLY is an extension of Girard’s interpretation of

intuitionistic logic into linear logic presented in Girard (1987) and developed at the term

level in Maraist et al. (1999). In this paper we treat this translation semantically using

a category of coalgebras, and our first main result shows that the solutions to recursive

domain equations from PILLY can be given a coalgebra structure satisfying universal

conditions, as in Freyd’s work on algebraically compact categories. Using this result, we

can extend the Girard translation to recursive types.

The example of the model of admissible pers is particularly interesting for two reasons:

here the interpretation of FPC can be extended to an interpretation of PolyFPC, an

extension of FPC with polymorphism, and this model can be shown to be computationally

adequate. The model is to the author’s knowledge the first denotational model for the

combination of parametric polymorphism, recursive terms and recursive types with a

non-linear language. For many readers the construction of this model may be the main

result of the paper, but the earlier abstract analysis is needed to show that it models

recursive types. The computational adequacy result of the admissible per model also

implies computational adequacy for the interpretation of FPC into PILLY .

The adequate model of PolyFPC may be used to derive consequences of parametricity,

such as modularity proofs, up to ground contextual equivalence along the lines of the

proofs of Pitts (2005), but using denotational methods. The model is also interesting

because of the mix of parametricity and partiality, a combination that, as earlier research

has shown, requires an alternative formulation of parametricity, such as the one suggested

in Johann and Voigtländer (2004). This paper describes the resulting parametricity

principle derivable from the model, and sketches how the parametric reasoning in the

model can be lifted to a logic for parametricity for PolyFPC.

The research presented in this paper also reveals what appears to be a limitation of

PILLY as a meta language for domain theory and parametric polymorphism, as I have

not been able to extend the interpretation of FPC into PILLY to PolyFPC, so I have only

given the interpretation of full PolyFPC in the specific case of the per-model. It would

be an unfortunate setback if no such extension were possible since one would expect that

such a meta language would be able to express most constructions of domain theory plus

polymorphism.

A related paper is Abadi and Plotkin (1990), where a model of polymorphism and

recursion is constructed using admissible pers (as here) satisfying a uniformity property

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 641

as well as various other properties ensuring that recursive types may be constructed as

in domain theory. The main differences between that paper and the current paper is

that our model is parametric, and the recursive types in our model are constructed using

parametricity.

The paper is organised as follows. Section 2 recalls the language PILLY and the

theory of models for it, in particular, the per-model. The language PolyFPC is defined

in Section 3. Section 4 first recalls recursive domain equations and Freyd’s theory of

algebraically compact categories since we need to introduce vocabulary and recall results

needed for later developments. Using the introduced vocabulary, we present a general

notion of FPC model suitable for our purposes and prove soundness of the interpretation

of FPC in these. Section 5 introduces the general construction of models of FPC from

models of PILLY . Precisely, if C with the comonad ! is a parametric PILLY -model, we

prove that the co-Eilenberg–Moore category is an FPC model. In fact, what we prove is

more general, in that we show how an algebraic compactness property for a category C

with a given comonad induces an algebraic compactness result for a certain collection

of recursive domain equations in the Kleisli category for the derived monad on the

co-Eilenberg–Moore category.

Section 6 is a short section providing a sketch of the resulting interpretation of FPC

into PILLY , and in Section 7, the specific case of the per-model is treated. Here the two

main results are, as mentioned, that the model extends to PolyFPC and that this model is

computationally adequate. In Section 7 the interpretation of PolyFPC into the per-model

is presented in elementary terms, and it is our hope that even readers skipping the abstract

categorical treatment of Section 5 will be able to understand the interpretation and the

following proof of its adequacy.

In Section 8, we give a simple example of proving modularity principles in PolyFPC

using the per-model, together with a sketch of the parametricity principle for PolyFPC

derivable from the model, as advertised. Finally, Section 9 concludes and discusses the

limitations of PILLY as a meta language for domain theory and polymorphism as

mentioned above.

2. Polymorphic intuitionistic/linear lambda calculus

The calculus PILLY is a Polymorphic dual Intuitionistic/Linear Lambda calculus with a

fixed point combinator denoted Y . In other words, it is the calculus DILL of Barber (1997)

extended with polymorphism and fixed points for terms. This section just gives a sketch

of the calculus – see Birkedal et al. (2006a) and Møgelberg (2005) for full details.

Types of PILLY are given by the grammar

σ, τ ::= α | I | σ ⊗ τ | σ � τ | !σ |
∏

α. σ.

We use the notation α1, . . . , αn � σ : Type to mean that σ is a well-formed type with free

type variables among α1, . . . , αn. The grammar for terms is

t ::= x | � | Y | λ◦x : σ.t | t t′ | t ⊗ t′ |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ be t in t′ | let !x : σ be t in t′ | let � be t in t′.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 642

Terms have two contexts of term variables: a context of linear variables and a context

of intuitionistic variables. The variables of these contexts occur in terms linearly (as in

Girard’s linear logic (Girard 1987)) and intuitionistically (as in simply typed lambda

calculus), respectively. See loc. cit. for the term formation rules of the calculus and the

equality theory for terms. The term constructor λ◦x : σ.t constructs terms of type σ � τ

by abstracting linear term variables. Using the Girard encodings, one can define σ → τ

to be !σ � τ, and there is a corresponding definable λ-abstraction for intuitionistic term

variables. Under this convention, the type of the fixed point combinator is Y :
∏

α. (α →
α) → α. We refer to the subset of PILLY without the fixed point combinator Y as PILL.

One should think of PILLY as a type theory for domain theory in combination with

polymorphism. Types can be thought of as cpos (complete partial orders) with least

elements (also called pointed cpos), interpreting ⊗ as the smash product, I as Sierpinski

space, � as the domain of continuous bottom preserving (or strict) maps and ! as lifting.

The encoding of → using lifting introduces the collection of non-strict continuous maps,

so we think of PILLY as axiomatising the adjunction

Cppo⊥ ��⊥ Cppo
��

between the categories of pointed cpos with strict continuous maps (on the left-hand

side), and all continuous maps (on the right-hand side). In the adjunction, the left adjoint

is lifting and the right adjoint is the inclusion. Unfortunately, this interpretation does not

immediately extend to polymorphism, so for a model of full PILLY , we need to consider

admissible pers as in Section 2.2 below, but it is still good to keep the intuition from

domain theory in mind.

When Plotkin introduced PILLY and suggested it as a type theory for domain theory

and polymorphism, he also showed how to encode recursive types using parametric

polymorphism. The logic LAPL (Linear Abadi & Plotkin Logic) was introduced in

Birkedal et al. (2006a). In this logic, the parametricity principle for PILLY can be

formulated and Plotkin’s encodings of recursive types can be verified as consequences of

parametricity.

2.1. PILLY -models

The most general formulation of models of PILLY uses fibred category theory, but

here we will just consider a large class of PILLY -models, which, with the exception of

the syntactic models, includes most important models, since the theory of the following

sections is much simpler in this case; we will treat syntactic models in Section 6.

A linear category (Benton et al. 1992) is a symmetric monoidal closed category C

with a symmetric monoidal comonad ! and a given commutative comonoid structure on

each object of the form !A, such that the maps of the comonoid structure eA : !A � I ,

dA : !A �!A⊗!A are maps of coalgebras from the free coalgebra structure on A to

natural structures on I and !A⊗!A. See loc. cit. or the more recent Maneggia (2004) and

Møgelberg (2005) for details of the definition. As we have already done above, we shall

write f : σ � τ for morphisms in C. We say that C models polymorphism if any functor

F : |C|n+1 → C, where |C| denotes the objects of C considered as a discrete category, has

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 643

a right Kan extension (Mac Lane 1971) RKπ(F) along the projection π : |C|n+1 → |C|n,
satisfying the Beck–Chevalley condtion: if G : |C|m → |C|n, then the canonical natural

transformation

RKπ(F) ◦ G → RKπ(F ◦ (G × id |C|))

(constructed as in Jacobs (1999, Section 1.9)) is an isomorphism. This notion of a model

of polymorphism was used in Robinson and Rosolini (1994), and further details can also

be found in Birkedal and Møgelberg (2005).

A model of PILL is a linear category that models polymorphism, and a model of

PILLY (or a PILLY -model) is a model of PILL with a term modelling the fixed point

combinator Y . Given a PILLY model (C, !), types of PILLY with n free type variables are

modelled as functors |C|n → C (or equivalently maps |C|n → |C|) by modelling �α � αi as

the i’th projection, ⊗, I,� using the symmetric monoidal structure, ! using the comonad

and polymorphism using the Kan extensions.

When we refer to a parametric model of PILLY , we shall mean a PILLY -model that

extends to a parametric LAPL-structure in the sense of Birkedal et al. (2008). Parametric

LAPL-structures are models of the logic LAPL in which the parametricity principle holds,

and in loc. cit. it is shown how to solve recursive domain equations in parametric PILLY

models. Section 4.1 recalls this result in more detail.

2.2. A per-model

This section recalls the parametric PILLY -model constructed in Birkedal et al. (2007),

which should be referred to for details. The model is a variant of the parametric per-model

for second-order lambda calculus restricted to a notion of admissible pers to encompass

fixed points.

A reflexive domain is a pointed ω-complete partial order D such that the domain

[D → D] of continuous maps from D to D is a retract of D in the sense that there exist

continuous maps

[D → D]
Ψ

�� D
Φ��

such that Φ ◦ Ψ is the identity. We consider Φ,Ψ as part of the given structure.

Reflexive domains were first studied by Scott as models of the untyped lambda calculus

(Scott 1970; 1976). A reflexive domain D has a combinatory algebra structure with

application x · y defined by applying the function corresponding to x under the reflection

to y, that is, x · y = Φ(x)(y). We shall also need a strict continuous pairing function

〈−,−〉 : D × D → D with continuous projections π, π′ : D → D such that π(〈x, y〉) = x

and π′(〈x, y〉) = y. These are definable from the given data using standard constructions

as described in van Oosten (2008). A partial equivalence relation, or a per, on D is a

symmetric transitive (but not necessarily reflexive) relation. A per R defines an equivalence

relation on its domain |R| = {x ∈ D | R(x, x)}, and we can consider the equivalence classes

for this equivalence relation [x]R = {y ∈ D | R(x, y)}, and collect them in the set

D/R = {[x]R | x ∈ |R|}.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 644

We shall often denote a per by its set of equivalence classes. A map of pers from R to S is

a map f : D/R → D/S such that there exists an element e ∈ D tracking f in the sense that

f([x]R) = [e · x]S . This forms a category of pers denoted Per(D). The following intuition

may be useful. The equivalence classes of the per can be thought of as the elements of a

datatype, and elements of equivalence classes as different representatives of the same data

element. A function f of pers is then a map of data elements that is computable in the

sense that there exists a computable function tracking f on the level of representatives.

An admissible per is a partial equivalence relation R on D that relates ⊥ to itself and is

chain complete in the sense that if (xn)n∈� and (yn)n∈� are increasing chains of elements

in D such that R(xn, yn) for all n, then R(
⊔
xn,

⊔
yn) also. We define the category AP to

be the full subcategory of Per(D) on admissible pers on D, and we define the subcategory

AP⊥ to be the category of admissible pers with strict maps of pers, that is, maps satisfying

f([⊥]) = [⊥]. We write f : R � S to indicate that f is a strict map of admissible pers.

The category AP⊥ has products

R × S = {(〈x, y〉, 〈x′, y′〉) | R(x, x′) ∧ S(y, y′)},
and a symmetric monoidal closed structure with tensor product defined as a quotient of

the product such that strict maps from R ⊗ S correspond bijectively to bistrict maps out

of R × S . The closed structure is defined as

R � S = {(d, e) | d · ⊥ = e · ⊥ = ⊥ ∧ ∀x, y ∈ D.R(x, y) ⊃ S(d · x, e · y)}.
Finally, there is a symmetric monoidal comonad ! on AP⊥ defined as mapping R to

{(⊥,⊥)} ∪ {(〈ι, x〉, 〈ι, y〉) | R(x, y)}
where ι = Ψ(idD). This data defines a linear category structure on AP⊥. The coKleisli

category for ! is isomorphic to AP.

Following the intuition for pers given above, a relation on pers R, S is a subset of

D/R × D/S . An admissible relation on admissible pers is a subset A of D/R × D/S

containing ([⊥]R, [⊥]S) that is chain complete in the sense that if (xn)n∈� and (yn)n∈� are

increasing chains of elements in D such that R(xn, xn) and S(yn, yn) for all n, then if for

all n we have ([xn]R, [yn]S) ∈ A, we have ([
⊔
xn]R, [

⊔
yn]S) ∈ A also. Admissible relations

correspond bijectively to regular subobjects of R×S in AP⊥. We write A : AdmRelAP⊥ (R, S)

to indicate that A is an admissible relation from R to S .

The collection of all admissible relations on admissible pers form a category, denoted

AdmRelAP⊥ , whose morphisms from A : AdmRelAP⊥(R, S) to B : AdmRelAP⊥ (R′, S ′) are

pairs of morphisms (f : R � R′, g : S � S ′) in AP⊥ that maps related elements to

related elements, that is, if ([x]R, [y]S) ∈ A, then (f([x]R), g([y]S)) ∈ A′. The linear category

structure on AP⊥ can be extended to AdmRelAP⊥ . For example, if A : AdmRelAP⊥ (R, S),

then A : AdmRelAP⊥(!R, !S) is the relation relating [⊥]R to [⊥]S and relating [〈ι, x〉]!R to

[〈ι, x〉]!S if and only if A([x]R, [y]S)). There is a reflexive graph of categories

AdmRelAP⊥

��
�� AP⊥�� (1)

where the two functors from left to right map a relation to its domain and codomain,

respectively, and the last functor maps a per to the identity relation on the per. The

functors in (1) commute with the linear category structure.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 645

The parametric variant of the per-model models an open type σ with n free type

variables as a pair ([[σ]]r, [[σ]]p), where [[σ]]p : |AP|n → |AP| is a map and [[σ]]r is a map

taking an n-vector of admissible relations (Ai : AdmRelAP⊥(Ri, Si))i�n and producing an

admissible relation

[[σ]]r(�A) : AdmRelAP⊥ ([[σ]]p(�R), [[σ]]p(�S))

satisfying [[σ]]r(eqR1
, . . . , eqRn

) = eq[[σ]]p(�R). Most PILLY type constructors are interpreted

using the structure described above. For example, ! is interpreted using the comonads

defined as above on admissible relations and admissible pers

[[!σ]]p(�R) = ![[σ]]p(�R)

[[!σ]]r(�A) = ![[σ]]r(�A) .

Polymorphism is modelled using intersections of pers and relations

[[
∏

α. σ]]p(�R) = {(x, y) | ∀S : |AP⊥|. [[σ]]p(�R, S)(x, y)∧
∀S, S ′ : |AP|. ∀A : AdmRelAP⊥(S, S ′). [[σ]]r(�eq�R, A)([x], [y])}

[[
∏

α. σ]]r(�A) = {([x], [y]) | ∀S, S ′ : |AP⊥|. ∀A : AdmRelAP⊥(S, S ′). [[σ]]r(�A,A)([x], [y])}

For further details, see Birkedal et al. (2007) and Møgelberg (2005).

To see the parametric per-model as an instance of the definition of Section 2.1, one

must view this definition as interpreted in a realisability topos, as we now briefly describe.

Since D with the application defined as above is a combinatory algebra, one can form the

realisability topos RT(D) as in Hyland et al. (1980). The categories AP and AP⊥ are the

externalisations of internal categories in RT(D), by which we mean precisely that there

exist internal categories in RT(D) (see, for example, Jacobs (1999, Chapter 7) for a textbook

exposition of the theory of internal categories) such that AP and AP⊥ are isomorphic

to the categories obtained by applying the global sections functor Γ: RT(D) → Set to

the internal categories. The construction of these internal categories is similar to the

construction of the category of pers over � as an internal category in the effective

topos (see Hyland (1988); see also Jacobs (1999, Example 7.1.3)). Similarly, AdmRelAP⊥

is the externalisation of an internal category in RT(D). We shall also write AP, AP⊥
and AdmRelAP⊥ for the internal categories, relying on context to identify whether we are

referring to the internal or external categories.

In the theory of internal categories, one can talk about internal functors and internal

natural transformations, and use this to formulate notions such as an internal linear

category. All the structure on the categories mentioned above is externalisation of internal

structure, in the sense that there exist, for example, internal linear category structures on

AP⊥ and AdmRelAP⊥ such that the linear category structures described above arise by

applying the global sections functor to the internal structure. So there exists, for example,

an internal functor such that the lifting comonad ! on AP⊥ described above is the global

sections functor applied to the internal functor. Also the functors of diagram (1) are

externalisations of internal functors.

The viewpoint of AP⊥ and AdmRelAP⊥ as internal categories in RT(D) is important

because these categories do not model polymorphism when seen as categories in the usual

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 646

sense (there are simply too many functors and natural transformations in this world), but

they do if one restricts to internal functors and internal natural transformations. One can

either do this by simply reading the definition as if it refers purely to internal functors

and internal natural transformations, or one can use the fact that RT(D) is a topos to

interpret the whole definition of PILLY -model in the internal logic of RT(D) (see, for

example, Jacobs (1999), Lambek and Scott (1986) and Johnstone (2002) for the internal

logic of a topos). AP⊥ and AdmRelAP⊥ model polymorphism in both of these senses.

Consider the category RT(D)G of reflexive graphs over RT(D), that is, the category that

has as objects reflexive graphs in RT(D) and as morphisms pairs of morphisms making

the obvious diagrams commute. It is a well-known fact (used, for example, in Robinson

and Rosolini (1994)) that internal categories in RT(D)G correspond to diagrams of

internal categories in RT(D), and similarly for functors and natural transformations. As a

consequence, diagram (1) describes an internal linear category in RT(D)G. Diagram (1) is a

model of PILLY in the sense of Section 2.1 when this definition is interpreted in the internal

logic of RT(D)G, and, in fact, this model is parametric (as proved in Birkedal et al. (2007)).

Note that even though the definition of PILLY -model had to be understood in an

internal sense, the interpretation of PILLY that we obtain from this model (as sketched

above) is an interpretation in the usual (external) sense.

3. Polymorphic FPC

In this section we present the language PolyFPC, which is an extension of the language

FPC, which was first defined by Plotkin (see Plotkin (1985); see also Fiore (1996)), with

full impredicative polymorphism. Note that there are several ways of constructing such

an extension, since in the definition of the operational semantics one has to choose what

to do when a polymorphic lambda abstraction Λα. t is met: one can either stop evaluation

or continue evaluating t. In this paper, we will only consider the first of these forms of

polymorphism.

In later sections we will show how to interpret FPC into any parametric PILLY -model

of the form of Section 2.1, and how to interpret PolyFPC into the per-model sketched in

Section 2.2.

The language PolyFPC has polymorphism and general (nested) recursive types, and

therefore types in the languages may have free type variables (as in PILLY). Types are

formed using the grammar

σ, τ ::= α | 1 | σ + τ | σ × τ | σ → τ | rec α. σ |
∏

α. σ.

As usual, the constructions
∏

α. σ and rec α. σ bind the type variable α, and, as in PILLY ,

we use the notation �α � σ to mean that σ is a well-formed type with free type variables

among �α. The grammar for PolyFPC terms is

t ::= x | � | inl t | inr t | case t of inl x. t′ of inr x. t′′ | 〈t, t′〉 |
π1(t) | π2(t) | λx : σ. t | t(t′) | intro t | elim t | Λα. t | t(τ).

The typing rules for PolyFPC are listed in Figure 1.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 647

Fig. 1. Typing rules for PolyFPC

In the following, we shall use the word ‘programs’, to mean closed typable terms of

closed type. The language PolyFPC is equipped with a call-by-value operational semantics.

Formally, the operational semantics is a relation ⇓ relating programs to values, by which

we mean programs following the grammar

v ::= � | inl v | inr v | 〈v, v′〉 | λx : σ. t | Λα. t | intro v.

The operational semantics is given by the rules listed in Figure 2.

The sublanguage FPC is the part of PolyFPC not mentioning polymorphism, that is:

the grammar for types is the same as the grammar for PolyFPC except for
∏

α. σ; the

grammar for FPC terms does not include the Λα. t and t(τ); and the formation rules for

FPC are as in Figure 1 except for the last two rules. Similarly, the operational semantics

for FPC is defined by the obvious restriction.

Remark 3.1. The languages FPC and PolyFPC could easily be extended with recursion

on the level of terms. For example, one could add the term formation rule

�α |�x : �σ, f : τ → τ′, x : τ � t : τ′ �α |�x : �σ � t′ : τ

�α |�x : �σ � letrec fx = t in f t′ : τ′

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 648

Fig. 2. Operational semantics for PolyFPC

and add the rule

e′ ⇓ v′ e[λx : τ. letrec fx′ = e in f x/f, v′/x′] ⇓ v

letrec fx′ = e in f e′ ⇓ v

to the operational semantics. However, it is standard that recursion on the level of terms

can be encoded using recursion on the level of types, by defining for each type σ a fixed

point combinator fixσ : (σ → σ) → σ as λf : σ → σ. k(intro (k)) where k = λx : rec α. (α →
σ). f(elim (x)(x)) satisfying f(fixσf) ⇓ v if and only if fixσf ⇓ v for all programs f and

values v.

4. Recursive domain equations

This section recalls Freyd’s theory (Freyd 1990b; 1990a; 1991) of algebraically compact

categories and introduces the vocabulary we will need later in the paper. In the following,

we will use C to denote a category, which is usually assumed to be cartesian closed or

symmetric monoidal closed such that basic type constructors such as × or ⊗ and → or

� exists giving us an interesting collection of domain equations.

Syntactically, a recursive type equation is given by a type expression σ with a free

variable α, and a solution is a type τ such that σ[τ/α] ∼= τ. Usually, one is not just

interested in any solution, but rather a solution satisfying a universal condition. For the

formulation of such a universal condition, one considers positive and negative occurrences

of a variable in a type expression: α occurs positively in the type expression α and the

introduction of an arrow → reverses parity on the left of the arrow and preserves it on the

right. For example, α occurs only positively in the types σ = α + 1 and σ = (α → τ) → τ

if τ is a closed type, but it occurs negatively in (τ → α) → τ. If α occurs only positively in

σ, the interpretation of σ induces a functor C → C, and we can ask for initial algebras or

final coalgebras for this functor.

For the more general case of both positive and negative occurrences of α in σ (such

as σ = (α → α) + 1), one can split the occurrences of α in σ into positive and negative,

and obtain a type α, β � σ where α occurs only negatively and β only positively. The

interpretation of such a type induces a functor F : Cop × C → C. We cannot talk about

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 649

initial algebras or final coalgebras for F as it is not an endofunctor, but we can symmetrise

F to the functor F̆ : Cop × C → Cop × C defined as

F̆(X,Y) = (F(Y ,X), F(X,Y)),

and consider initial algebras and final coalgebras for F̆ . Writing out the category of

algebras for F̆ , we arrive at the category of dialgebras for F: a dialgebra for F is a

quadruple (X,X ′, f, f′) where X,X ′ are objects of C and f : F(X ′, X) → X and f′ : X ′ →
F(X,X ′) are morphisms. A morphism of dialgebras from (X,X ′, f, f′) to (Y , Y ′, g, g′) is a

pair of maps h : X → Y and h′ : Y ′ → X ′ such that the diagrams

F(X ′, X)

F(h′ ,h)

��

f �� X

h

��
F(Y ′, Y)

g �� Y

and Y ′ g′
��

h′

��

F(Y , Y ′)

F(h,h′)

��
X ′ f′

�� F(X,X ′)

commute. An initial dialgebra is an initial object in the category of dialgebras.

Initial dialgebras generalise initial algebras and final coalgebras because, given a functor

F : C → C, we can consider the composition of F with the projection Cop × C → C, and

(X,X ′, f, f′) is an initial dialgebra for this functor if and only if f is an initial algebra for

F and f′ is a final coalgebra for F . Freyd showed in Freyd (1990b; 1990a; 1991) that if

a category C is algebraically compact, that is, all endofunctors have initial algebras and

coalgebras and, moreover, these coincide in the sense that the inverse of an initial algebra

is a final coalgebra, then initial dialgebras exist on the diagonal, that is, there exist initial

dialgebras of the form (X,X, f, f−1) for some isomorphism f. For a precise formulation

of this result, see Theorem 4.5 below.

To solve general nested recursive type equations, we need to consider type equations

with variables. Syntactically, these are given by types �α, β � σ(�α, β), and a solution is a

type�α � τ such that σ(�α, τ) ∼= τ. The type equations induce functors F : (Cop × C)n+1 → C,

which can be symmetrised to

F̆ : (Cop × C)n+1 → Cop × C

defined by

F̆(A1, B1, . . . An+1, Bn+1) = (F(B1, A1, . . . Bn+1, An+1), F(A1, B1, . . . An+1, Bn+1)).

Below, we shall also use the notation F♦ : (Cop × C)n+1 → Cop for the functor that maps

(A1, B1, . . . An+1, Bn+1) to F(B1, A1, . . . Bn+1, An+1), for example, F̆ = 〈F♦, F〉. Similarly, if

F, F ′ : (Cop × C)n+1 → C are functors and h is a natural transformation from F to F ′,

we use the notation h♦ for the natural transformation from F ′♦ to F♦ given by the

components

h♦
(A1 ,B1 ,...An+1 ,Bn+1)

= h(B1 ,A1 ,...Bn+1 ,An+1).

The next definition states what we mean by being able to solve recursive domain

equations in a category. The definition is given with respect to a class functors F, which

we think of as our class of domain equations.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 650

Definition 4.1. A class F of functors of the form F : (Cop × C)n+1 → C is a collection

of recursive type equations if it contains all projections and is closed under composition

in the sense that if F : (Cop × C)n → C is in F and, similarly, Gi : (Cop × C)m → C and

G′
i : (Cop × C)m → C for i = 1, . . . n, then F ◦ 〈〈G′

1
♦
, G1〉, . . . , 〈G′

n
♦
, Gn〉〉 is in F also.

We say that C has solutions to the collection of recursive domain equations F if for

any functor F : (Cop × C)n+1 → C in F there exists a functor FixF : (Cop × C)n → C in F
such that

F ◦ 〈id (Cop×C)n , ˘FixF〉 ∼= FixF,

and, furthermore, FixF satisfies the initial dialgebra condition, meaning that for any pair

of functors

G,G′ : (Cop × C)n → C

in F and natural transformations

g : F ◦ 〈id , 〈G′♦, G〉〉 → G and g′ : G′ → F ◦ 〈id , 〈G♦, G′〉〉,
there exist unique natural transformations h : FixF → G, h′ : G′ → FixF making the

diagrams

F ◦ 〈id , ˘FixF〉

F(id ,h′♦ ,h)

��

∼= �� FixF

h

��
F ◦ 〈id , 〈G′♦, G〉〉

g �� G

and G′ g′
��

h′

��

F ◦ 〈id , 〈G♦, G′〉〉

F(id ,h♦ ,h′)

��
FixF

∼= �� F ◦ 〈id , ˘FixF〉

commute. The functor FixF is said to be the solution to the domain equation given by F .

The most famous example of a category with solutions to recursive domain equations

is the category of pointed cpos and strict continuous functions, where the collection of

equations is given by the locally continuous functors.

We now recall two well-known results from the theory of recursive types. Proofs of

Lemma 4.2 and Lemma 4.4 can be found in, for example, Fiore’s thesis (Fiore 1996).

Lemma 4.2. Taking fixed points commutes with reindexing, that is, if

F : (Cop × C)n+1 → C and Gi : (Cop × C)m → C

for i = 1, . . . n, then

Fix(F ◦ (〈Ğ1, . . . , Ğn〉 × id ((C)op×C))) ∼= (Fix F) ◦ 〈Ğ1, . . . , Ğn〉.

Definition 4.3. A collection of recursive domain equations has a strict choice of solutions if

it comes equipped with a choice of solutions for each equation such that the isomorphisms

of Lemma 4.2 are identities.

Lemma 4.4. If F : D × C → C is a functor such that for each object X in D, the functor

F(X,−) : C → C has an initial algebra inX : F(X, μY . F(X,Y)) → μY . F(X,Y), then

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 651

the assignment X �→ μY . F(X,Y) extends to a functor μY . F(−, Y) : D → C mapping

f : X → X ′ in D to the unique map μY . F(f, Y) making

F(X, μY . F(X,Y))

F(idX ,μY .F(f,Y))

��

inX �� μY . F(X,Y)

μY .F(f,Y)

��
F(X, μY . F(X ′, Y))

F(f,id) �� F(X ′, μY . F(X ′, Y))
inY ′ �� μY . F(X ′, Y)

commute.

Finally, we formulate Freyd’s theorem in the language of this section. In the theorem,

when we refer to functors of the form F : (Cop ×C)n×C → C in F where F is a collection

of recursive domain equations, we shall mean functors F such that F◦π : (Cop×C)n+1 → C

is in F, where π is the projection (Cop × C)n+1 → (Cop × C)n × C.

Theorem 4.5. A category C has solutions to a class of domain equations F if and only

if each F : C → C in F has an initial algebra whose inverse is a final coalgebra and,

furthermore, for each F : (Cop × C)n × C → C in F, the functor μX. F : (Cop × C)n → C

obtained by taking pointwise initial algebras as in Lemma 4.4 is in F.

4.1. Recursive domain equations in PILLY

This subsection reviews results for solutions to recursive domain equations in models of

PILLY , and presents them in the language of Definition 4.1. Thus, in the following, we

use C to denote a model of PILLY in the sense of Section 2.1. Following the convention

of PILLY , we write � for maps in C and reserve → for maps in the co-Kleisli category,

that is, f : σ → τ is shorthand for f : !σ � τ.

Any PILLY type α � σ in which α occurs only positively induces a functor C → C, or,

more generally, any type α1, . . . , αn � σ induces after a splitting of occurrences of variables

into positive and negative a functor (Cop × C)n → C. More precisely, in Birkedal et al.

(2006a), a term

Mσ :
∏
�α,�β,�α′,�β′ : Type. (�α′ ��α) → (�β � �β′) → σ(�α,�β) � σ(�α′,�β′)

is defined for each type σ by induction over the structure of σ such that, writing σ(�f,�g)

for

Mσ�α�β�α
′ �β′ (!�f) (!�g),

we have σ(�id , �id) = id and σ(�f ◦�f′,�g′ ◦�g) = σ(�f′,�g′) ◦ σ(�f,�g). This term induces the

functorial action of σ. In general, we shall say a functor F : (Cop × C)n → C is strong if

there exists a term in the model inducing it. For example, all constant functors are strong

because for any object X in the model, the constant map to the identity on X is a term

in the model. For further details, see Birkedal et al. (2008) and Møgelberg (2005).

Theorem 4.6. If C is a parametric PILLY model, it has solutions to the class of recursive

domain equations given by strong functors.

Theorem 4.6 is due to Plotkin, who showed how to encode initial algebras and final

coalgebras in PILLY . Because of the fixed point combinator in PILLY , initial algebras and

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 652

final coalgebras coincide, so Freyd’s theory of algebraically compact categories applies

and gives solutions to recursive domain equations. Syntactically, the solutions to recursive

type equations produce for any type σ a type rec α. σ satisfying σ[rec α. σ/α] ∼= rec α. σ.

This syntactic construction commutes with reindexing in the sense that rec α. (σ[�τ/�β]) =

(rec α. σ)[�τ/�β]. In PILLY models are strict in the sense that it is given with a choice of

Kan extensions such that the maps of the Beck–Chevalley condition are all identities,

substitution in types is interpreted as composition in the sense that

[[�β � σ[�τ/�α]]] = [[�α � σ]] ◦ 〈[[�β � τ1]], . . ., [[�β � τn]]〉,

so these PILLY models come equipped with a strict choice of solutions to the recursive

domain equiations given by strong functors. For a detailed proof of Theorem 4.6,

see Birkedal et al. (2006a) and Birkedal et al. (2008).

4.2. Models of FPC

This section defines the notions of FPC model and PolyFPC model that will be used in

this paper. In axiomatic domain theory, FPC is usually interpreted in a category C where

a given collection of subobjects gives rise to a category of partial maps in which the

original category C forms a full-on-objects subcategory of total maps (see Fiore’s thesis

(Fiore 1996)). In these models, terms of FPC are interpreted as partial maps, but the

category of total maps still plays a key role as the values of FPC are interpreted as total

maps, which is a fact used in establishing soundness.

In many cases there exists a monad L on C such that the category of partial maps

is isomorphic to the Kleisli category CL. The main example that the reader may know,

and should keep in mind, is that of the category Cpo of complete partial orders and

continuous maps with the lifting monad L. Therefore, the notion of an FPC model given

below may be seen as an axiomatisation of the properties of the Kleisli adjunction

Cpo ��� CpoL
��

Note that CpoL is isomorphic to the category of pointed cpos with strict maps Cppo⊥, so

one often sees FPC interpreted in the latter category.

Our definition of an FPC model differs from that of Fiore by taking the notion of the

lifting monad as primitive rather than the notion of partiality. This definition is chosen

because we want to construct FPC models from PILLY models, and in the definition of

a PILLY model, the comonad is taken as primitive and could a priori be any comonad.

The comonad can be used to construct categories with monads. On the other hand, there

is no natural notion of partiality in the definition of a PILLY model, so we prefer monads

for the definition of FPC models.

In the following, if C is a category and L is a monad on C, we use i : C → CL to

denote the left adjoint of the usual adjunction, and use the notation f : X → Y for maps

of C and f : X ⇀ Y for maps of the Kleisli category CL. Even though L can be any

monad, it is still a useful intuition that CL is a category of partial maps, and, following

this intuition, we say that a map f : X ⇀ Y in CL is total if it is in the image of i.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 653

Recall that if C is cartesian and L is commutative, the product on C induces a symmetric

monoidal structure on the Kleisli category CL: on objects, the tensor product is given by

the cartesian product on C and for morphisms f : X ⇀ Y , g : X ′ ⇀ Y ′ the tensor product

f ⊗ g : X ⊗ Y ⇀ X ′ ⊗ Y ′ is given by the composition

X × Y
f×g �� LX ′ × LY ′ dst �� L(X ′ × Y ′)

where dst is the double strength (see Jacobs (1994) for further details).

Definition 4.7. A cartesian category C with coproducts and a commutative monad L is:

— an FPC-model if:

– The Kleisli category CL has Kleisli exponentials, that is, for every object X of C,

the composite

C
X×(−) �� C

i �� CL

has a right adjoint X ⇀ (−) : (C)L → C.

– There exists a class of recursive domain equations F on CL containing Kleisli

exponentials (see Lemma 4.8 below) and the ⊗ induced by the product on C such

that F has solutions. Moreover, all components of the isomorphisms

F ◦ 〈id (Cop×C)n , ˘FixF〉 ∼= FixF

must be total, that is, in the image of i.

— a PolyFPC model if:

– It is an FPC-model

– It models Kleisli polymorphism in the sense that for any map τ : |C|n+1 → |C|
(where we use |C| to denote the collection of objects of C) the composite

L ◦ τ : |C|n+1 → C considered as a functor from the discrete category on |C|n+1

has a right Kan extension (Mac Lane 1971) RKπ(L ◦ τ) : |C|n → C along the

projection π : |C|n+1 → |C|n. The Kan extensions must satisfy the Beck–Chevalley

condition: that is, if τ : |C|n+1 → |C| and σ : |C|m → |C|n, the canonical natural

transformation

RKπ(L ◦ τ) ◦ σ → RKπ(L ◦ τ ◦ (σ × id |C|))

(constructed as in Jacobs (1999, Section 1.9)) is an isomorphism.

– The class of domain equations for which we can solve recursive domain equations

is closed under Kleisli polymorphism, that is, if F : (CL
op × CL)n+1 → CL is in F,

then so is i ◦
∏̃
F : (CL

op × CL)n → CL where
∏̃
F is the induced functor defined as

in Lemma 4.12 below.

— An FPC model is strict if the class of domain equations comes equipped with

a strict choice of solutions. A PolyFPC model is strict if it is strict as an FPC

model and it comes equipped with a canonical choice of Kan extensions modelling

Kleisli polymorphism such that the isomorphisms of the Beck–Chevalley condition

are identities.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 654

Lemma 4.8. The Kleisli function space induces a functor

(−) ⇀ (=): CL
op × CL → C.

Lemma 4.8 is proved by a standard verification.

Lemma 4.9. The correspondence between the maps X ⊗ Y ⇀ Z in CL and the maps

X → [Y ⇀ Z] in C is natural in X for total maps.

Lemma 4.9 follows from (−) ⊗ Y being adjoint to Y ⇀ (−).

Lemma 4.10. If (C, L) is an FPC model, then CL has coproducts and the tensor product

distributes over coproducts, that is, X ⊗ (Y +Z) ∼= X ⊗ Y +X ⊗ Z . This isomorphism is

natural in Y and Z for total maps and in X for partial maps.

Proof. Since X × (−) : C → CL has a right adjoint X ⇀ (−), it preserves coproducts,

and since coproducts in C and CL agree, we get the desired isomorphism.

In the following, given categories A,B, we shall write [A,B] for the category of functors

from A to B with natural transformations as morphisms. We shall also write Nat[A,B](F,G)

for the collection of natural transformations from F to G when both F,G are functors

A → B. Finally, we shall use the notation |C| for both the collection of objects for C and

the discrete category on |C|. Note that maps |C| → |C| are the same as functors |C| → C,

which are the same as functors |C| → CL.

Lemma 4.11. If (C, L) is a PolyFPC model, then the mapping (τ : |C|n+1 → |C|) �→
(RKπ(L ◦ τ) : |C|n → |C|) extends to a functor [|C|n+1,CL] → [|C|n,C], which is right

adjoint to the functor mapping σ : |C|n → C to i ◦ σ ◦ π, where π : |C|n+1 → |C|n is the

projection. In other words, if σ : |C|n → |C| and τ : |C|n+1 → |C| are maps, then there

exists a bijective correspondence

Nat[|C|n+1 ,CL](σ ◦ π, τ) ∼= Nat[|C|n,C](σ,RKπ(L ◦ τ)),

which is natural in transformations of total maps in σ and natural transformations of

partial maps in τ.

Proof. From the theory of Kan extensions (see Mac Lane(1971, X.3)), we get the

bijective correspondence

Nat[|C|n+1 ,C](σ ◦ π, L ◦ τ) ∼= Nat[|C|n,C](σ,RKπ(L ◦ τ)),

which is natural in σ and L ◦ τ. The lemma follows from composing this with the

isomorphism

Nat[|C|n+1 ,CL](i ◦ σ ◦ π, τ) ∼= Nat[|C|n+1 ,C](σ ◦ π, L ◦ τ)

natural in σ and τ.

Lemma 4.12. Suppose (C, L) is a PolyFPC model and F : (CL
op × CL)n+1 → CL is a

functor. Define |
∏̃
F | : |C|2n → |C| to be

RKπ(L ◦ |F | ◦ (id |C|2n × Δ|C|)),

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 655

Fig. 3. Auxiliary interpretation of types as functors.

where Δ|C| : |C| → |C|2 is the diagonal, and for �f : �X ′ → �X and �g : �Y → �Y ′, define∏̃
F1(f1, g1, . . . , fn, gn) : |

∏̃
F |(X1, Y1, . . . , Xn, Yn) → |

∏̃
F |(X ′

1, Y
′
1 , . . . , X

′
n, Y

′
n)

to be the total map corresponding to the family

(|
∏̃
F |(X1, Y1, . . . , Xn, Yn) ⇀ F(X1, Y1, . . . , Xn, Yn, X,X)

⇀ F(X ′
1, Y

′
1 , . . . , X

′
n, Y

′
n , X,X))X∈|C|

where the first arrow is the counit of the adjunction of Lemma 4.11 and the second is

F(f1, g1, . . . , fn, gn, idX, idX). Then (|
∏̃
F |,

∏̃
F1) defines a functor∏̃

F : (CL
op × CL)n → C.

Theorem 4.13. FPC can be modelled soundly in any strict FPC-model, and PolyFPC can

be modelled soundly in any strict PolyFPC-model.

By soundness of the interpretation, we mean that if t ⇓ v, then [[t]] = [[v]].

In the following, we will describe the interpretation of PolyFPC into a PolyFPC model,

and prove it to be sound. The interpretation of FPC into FPC models is the restriction of

the interpretation of PolyFPC to FPC, which will make sense in any strict FPC model.

The interpretation is defined as follows. Open types will be interpreted as maps |CL|n →
|CL| or, equivalently, functors |CL|n → CL. However, for the interpretation of recursive

types, we first define an auxiliary interpretation of open types as functors ([�α � σ]) : (CL
op ×

CL)n → CL as in Figure 3. In the figure, ⊗ refers to the tensor product induced on CL

by the product on C (on objects this is just the product) and + refers to the coproduct

inherited from C. The
∏̃

refers to the definition in Lemma 4.12.

We can now define for any open type �α � σ with n free variables the interpretation

[[�α � σ]] : |CL|n → |CL| to be, as advertised,

[[�α � σ]](�X) = ([�α � σ])(X1, X1, . . . , Xn, Xn).

In particular, we get

[[�α �
∏

β. σ]] = RKπ(L ◦ [[�α, β � σ]]). (2)

An open term �α |�x : �σ � t : τ will be interpreted as an indexed family of maps

([[�α |�x : �σ � t : τ]]�X :
⊗
i

[[�α � σi]](�X) ⇀ [[�α � τ]](�X))�X∈|CL|n

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 656

Fig. 4. Interpretation of PolyFPC terms.

in CL. The interpretation is defined by induction over the structure of the term, and is

presented in Figure 4, where typings as in Figure 1 are assumed. We will now explain the

notation used in Figure 4.

Notice first that since the ⊗ is given on objects by the product from C and I: the

neutral object for ⊗ is given by the terminal object in C; we have projections out of

tensor products πn,i
L = i(πn,i) :

⊗
j�n Xj ⇀ Xi (for πn,i the i’th projection in C); we have for

any object X a map i(�) : X ⇀ I given by � the unique map in C to the terminal object;

and we have a diagonal i(ΔX) : X → X⊗X in CL, where ΔX is the diagonal in C. The latter

can be used to define a pairing 〈f, g〉L : X ⇀ Y ⊗Z of maps in CL as f⊗g ◦ i(ΔX), but we

need to bear in mind that all this does not in general define a product structure on CL.

In the interpretation of the introduction rules for coproducts, inl and inr refer to the

coprojections. In the interpretation of case, the notation d refers to the isomorphism

⊗
i[[�α � σi]](�X) ⊗ [[τ + τ′]](�X)

∼= �� ⊗
i[[�α � σi]](�X) ⊗ [[τ]](�X) +

⊗
i[[�α � σi]](�X) ⊗ [[τ′]](�X)

(Lemma 4.10) and the notation [−,−] refers to copairing.

Given

([[�α |�x : �σ, y : σ′ � t : τ]]�X :
⊗
i

[[�α � σi]](�X) ⊗ [[�α � σ′]](�X) ⇀ [[�α � τ]](�X))�X∈|CL|n ,

the interpretation of λy : σ′. t is defined using the family of corresponding total maps

([[�α |�x : �σ, y : σ′ � t : τ]]�X
†
:

⊗
i

[[�α � σi]](�X) →
[
[[�α � σ′]](�X) ⇀ [[�α � τ]](�X)

]
)�X∈|CL|n .

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 657

The interpretation of function application refers to the evaluation map

evX,Y : [X ⇀ Y] ⊗ X ⇀ Y ,

which is the counit of the adjunction X ⊗ (−) � X ⇀ (−). In the interpretation of the

introduction and elimination rules for recursive types, the terms fold and unfold refer to

the components of the isomorphisms for recursive domain equations as in Definition 4.1.

This typechecks by Lemma 4.14 below.

For the interpretation of polymorphic lambda abstraction, we suppose

([[�α, β |�x : �σ � t : τ]]�X,Y :
⊗
i

[[�α, β � σi]](�X, Y) ⇀ [[�α, β � τ]](�X, Y))(�X,Y)∈|C|n+1 .

In the typing rule for Λα. t, we assume that β does not occur free in the σi’s, so, by

Lemma 4.14 below,
⊗

i[[�α, β � σi]](�X, Y) =
⊗

i[[�α � σi]](�X). By (2) and Lemma 4.11, the

family [[�α, β |�x : �σ � t : τ]]�X,Y corresponds to a family of total maps

([[�α, β |�x : �σ � t : τ]]†
�X

:
⊗
i

[[�α � σi]](�X) → [[�α �
∏

β. τ]](�X))(�X)∈|C|n ,

and we define [[�α �|�x : �σ � Λα. t : τ]]�X = [[�α, β |�x : �σ � t : τ]]†
�X
. In the type application of

polymorphic terms, t(τ) is interpreted as composition of the interpretation of t and the

component

ev[[�α�τ′]](�X) : [[�α �
∏

β. σ]](�X) ⇀ [[�α, β � σ]](�X, [[�α � τ]](�X))

of the counit of the adjunction of Lemma 4.11. This type checks by Lemma 4.14 below.

Lemma 4.14. If�α � σ, then [[�α, β � σ]] = [[�α � σ]]◦π, where π is the projection π : |C|n+1 →
|C|n. For �α, β � σ and �α � τ types of PolyFPC,

[[�α � σ[τ/β]]] = [[�α, β � σ]] ◦ 〈id |C|n , [[�α � τ]]〉,
and if �α, β |�x : �σ � t : ω, then

[[�α |�x : �σ[τ/β] � t[τ/β] : ω[τ/β]]]�X = [[�α, β |�x : �σ � t : ω]](�X,[[�α�τ]](�X)).

Proof. This is an easy induction on τ and t, respectively. The case of recursive types in

the first induction follows up to isomorphism from Lemma 4.2, which we have assumed to

be an identity. The case of polymorphic types follows from the Beck–Chevalley condition

in the usual way, and, again to get equality in the lemma, our assumption that the

isomorphism of the Beck–Chevalley condition is an identity.

By construction, terms are, in general, interpreted in CL, but values are interpreted

in C.

Lemma 4.15. For any value v of any closed type σ of PolyFPC, the interpretation [[v]]

considered as a map from 1 to [[σ]] is total.

Proof. The proof is an easy induction on v.

Lemma 4.16. Suppose�α |�x : �σ, x : σ′ � t : τ is an PolyFPC term and v : σ′ is a value. Then

[[�α |�x : �σ � t[v/x]]] = [[�α |�x : �σ, x : σ′ � t]] ◦ 〈id⊗i[[σi]], [[�α |�x : �σ � v]]〉L.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 658

Proof. The proof is again an easy structural induction on t, but we will give the case

of lambda abstractions since it shows why the reindexing only holds for values.

Suppose we are given�α |�x : �σ, x : σ′, y : σ′′ � t : τ, and v : σ′ is a value. By the induction

hypothesis,

[[�α |�x : �σ, y : σ′′ � t[v/x] : τ]] =

[[�α |�x : �σ, x : σ′, y : σ′′ � t : τ]] ◦ (〈id⊗i[[�α�σi]], [[v]]〉L × id [[�α�σ′′]]).

The map corresponding to the left-hand side under the adjunction for Kleisli function

space is the interpretation of λy : σ′′. t[v/x]. Using Lemma 4.9, the right-hand side

corresponds to

[[�α |�x : �σ, x : σ′ � λy : σ′′. t : τ]] ◦ 〈id⊗i[[�α�σi]], [[v]]〉L

since, by Lemma 4.15, 〈id⊗i[[�α�σi]], [[v]]〉L is a total map.

Finally, we will sketch the proof of Theorem 4.13.

Proof of Theorem 4.13. We need to show that if t ⇓ v, then [[t]] = [[v]]. The proof is by

induction on the derivation of t ⇓ v. Most cases are easy, so we will just go through a few

of them.

Consider the rule

e ⇓ 〈v, v′〉
π1(e) ⇓ v

.

By the induction hypothesis, [[e]] = 〈[[v]], [[v′]]〉L, and by Lemma 4.15, [[v]] and [[v′]] are

total maps. Since pairing and projections are inverses for total maps, [[π1(e)]] = [[v]].

For the rule

e ⇓ λx. e′′ e′ ⇓ v e′′[v/x] ⇓ v′

e(e′) ⇓ v′
,

we compute

[[e(e′)]] = ev ◦ 〈[[λx : e′′]], [[v]]〉L
= [[e′′]] ◦ [[v]]

= [[e′′[v/x]]].

The first equation follows from the induction hypothesis; the second from general

arguments about adjunctions; and the last from Lemma 4.16.

To prove soundness of the rule

t ⇓ Λα. t′ t′[τ/α] ⇓ v

t(τ) ⇓ v
,

we observe that [[(Λα. t′)(τ)]] = [[α | − � t′]][[τ]], which by Lemma 4.14 is [[t′[τ/α]]].

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 659

5. Modelling FPC in categories of coalgebras

In this section we address the problem of interpreting the intuitionistic calculus FPC into

parametric models of the linear calculus PILLY . Before presenting our solution, we will

discuss the domain theoretic intuition.

As mentioned in Section 2, the domain theoretic intuition for the PILLY is that the types

are pointed cpos, and, indeed, the notion of a PILLY model axiomatises properties of the

category Cppo⊥ of pointed cpos with strict continuous maps and the lifting comonad on

Cppo⊥.

On the other hand, the notion of an FPC model axiomatises properties of the

category Cpo of complete partial orders that do not necessarily have a least element,

and continuous maps between them. The problem in constructing FPC models from

parametric PILLY models is that in PILLY there is no way of talking of cpos that are not

pointed.

Thinking of domain theory, this may not seem like such a big problem. After all,

one can go from pointed cpos to cpos via an unlifting operation inverse to the lifting

operation. But such unlifting operations do not exist for general PILLY models. Consider,

for example, the admissible per given by the equivalence classes {{⊥, b}, {a}} for some

elements a, b such that ⊥ < a < b. This per is not isomorphic to the lift of any other per.

Our solution is to construct the category corresponding to Cpo from a PILLY model as

the co-Eilenberg–Moore category for the lifting comonad. Recall that the co-Eilenberg–

Moore category for a comonad ! on a category C is the category whose objects are

coalgebras for the comonad (maps ξ : X →!X satisfying ε ◦ ξ = id and (!ξ) ◦ ξ = δ ◦ ξ,

for ε, δ are counit and comultiplication) and whose morphisms are the C morphisms

that commute with the coalgebra structure. If ξ : X →!X is a coalgebra, X is said to be

the carrier of the monad. We write C! for the co-Eilenberg–Moore category for ! on C.

The domain theoretic intuition for why constructing the category of predomains as the

co-Eilenberg–Moore category is right is that (Cppo⊥)! is isomorphic to Cpo, and later

we shall prove a similar theorem in the theory of admissible pers (Proposition 7.2 and

Theorem 7.4).

We now aim to prove that if (C, !) is a parametric PILLY -model, then (C!, L) is an FPC

model. First we need the following lemma.

Lemma 5.1. Let ! be a comonad on a category C. Using L to denote the monad induced

by ! on the co-Eilenberg–Moore category C!, the Kleisli category (C!)L for L is isomorphic

to the category that has the same objects as C! but has as morphisms from ξ : X →!X

to χ : Y →!Y all morphisms of C from X to Y , and composition and identity as

in C.

Proof. By definition, (C!)L has the same objects as C! and has as morphisms from

ξ : X →!X to χ : Y →!Y coalgebra morphisms from ξ to δY : !Y →!!Y . Since δ is the

cofree coalgebra on Y , such maps correspond to morphisms from X to Y in C, as

required. It is a simple exercise to show that this correspondence preserves composition

and identity.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 660

Lemma 5.2. Suppose (C, !) is a linear category. Then the induced monad L on C! is

strong and commutative, and the category C! is cartesian and has finite coproducts. The

category (C!)L has Kleisli exponentials in the sense of Definition 4.7.

Proof. In this proof, since C is a linear category, we write f : X � Y for morphisms in

C and reserve X → Y as a shorthand for !X � Y .

In the definition of the notion of linear category, ! is a symmetric monoidal comonad

on C, so L becomes a symmetric monoidal monad on the symmetric monoidal category

C!. A theorem by Kock (Kock 1972) now shows that it is commutative.

As the product and coproduct structure is well known (the proof can be found in, for

example, Benton (1995, Lemma 9)), we will just show the constructions. Given ξ : X �!X

and ξ′ : X ′ �!X ′, the product of ξ and ξ′ is

X ⊗ Y
ξ⊗ξ′

◦ !X⊗!Y
m ◦ !(X ⊗ Y)

where m is the comparison map, which is part of the structure of a symmetric monoidal

comonad. The terminal object is the coalgebra mI : I �!I , which is also part of the

structure of a symmetric monoidal comonad.

The coproduct is

X + Y
ξ+ξ′

◦ !X+!Y
[!inl,!inr]

◦ !(X + Y) .

The functorial actions of the product and coproduct are simply given by the tensor and

coproduct from C, respectively.

For ξ : X �!X a coalgebra, the functor ξ ⇀ (−) maps χ : Y �!Y to the cofree

coalgebra δ : !(X � Y) �!!(X � Y). This satisfies the required universal property as

can be seen from the following isomorphisms of homsets

C!(ξ′, ξ ⇀ χ) ∼= C(X ′, X � Y) ∼= C(X ′ ⊗ X,Y) ∼= (C!)L(ξ′ × ξ, χ),

which hold for any coalgebra ξ′ : X ′ �!X ′.

Lemma 5.2 is the first step towards showing that (C!, L) is an FPC model when (C, !)

is a PILLY model. The next step is to identify a collection of recursive domain equations

on (C!)L that can be solved.

Definition 5.3. A functor Fcoalg : ((C!)
op × C!)n → C! is a lift of F : ((C)op × C)n → C to

coalgebras if the diagram

((C!)
op × C!)n

Fcoalg ��

��

C!

��
(Cop × C)n

F �� C

commutes, where the vertical functors are the obvious forgetful functors. Similarly, we

say that Fcoalg : C! → C! is a lift of F : C → C to coalgebras if U ◦ Fcoalg = F ◦ U for U

the forgetful functor.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 661

Note that Fcoalg is a lift of F , so F determines Fcoalg on carriers in the sense that if ξ, ξ′ are

coalgebras with the same carrier, then Fcoalg(ξ) and Fcoalg(ξ
′) also have the same carrier.

But F can also be seen as an extension of Fcoalg to maps that are not necessarily maps of

coalgebras. The latter means that if Fcoalg is a lift of F , then Fcoalg extends to a functor

(Fcoalg, F) : (((C!)L)
op × (C!)L)n → (C!)L, whose action on morphisms is given by F (by

Lemma 5.1).

We show that for a parametric PILLY model (C, !), the collection of recursive domain

equations on (C!)L given by pairs (Fcoalg, F) where Fcoalg lifts F to coalgebras and F is a

strong functor as in Section 4.1 can be solved. For the proof, we will apply Theorem 4.5,

so we begin by considering initial algebras.

Proposition 5.4. Suppose C is a category and ! is a comonad on C, and suppose that

Fcoalg : C! → C! is a lift of F : C → C to coalgebras. If F has an initial algebra, then so

does Fcoalg. Moreover, the image of the initial algebra for Fcoalg under the forgetful functor

U : C! → C is the initial algebra for F .

Proof. In this proof, whenever we write Fcoalg(ξ), we mean the functor Fcoalg applied to a

coalgebra considered as an object of C!. The action of Fcoalg on morphisms of coalgebras

is always denoted F , as F and Fcoalg agree on morphisms. The maps ε, δ denote counit

and comultiplication for the comonad !.

Suppose in : F(μX. F(X)) → μX. F(X) is an initial algebra for F . We will show that

ξ : μX. F(X) →!μX. F(X) defined as the unique map making the diagram

F(μX. F(X))
in ��

F(ξ)

��

μX. F(X)

ξ

��
F(!μX. F(X))

Fcoalg(δ)�� !F(!μX. F(X))
!F(ε) �� !F(μX. F(X))

!in �� !μX. F(X)

commute is the carrier of an initial algebra for Fcoalg. First we must show that ξ in fact

defines an object of C!, that is, that ε ◦ ξ is the identity and that δ ◦ ξ =!ξ ◦ ξ. The algebra

is given by in, and we must show that this actually defines a map in C!, that is, that the

diagram

F(μX. F(X))

Fcoalg(ξ)

��

in �� μX. F(X)

ξ

��
!(F(μX. F(X)))

!in �� !μX. F(X)

(3)

commutes. Finally, to show that this is an initial algebra, we should show that given any

other algebra, that is, a commutative diagram of the form

F(X)

Fcoalg(χ)

��

f �� X

χ

��
!F(X)

!f �� !X

(4)

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 662

there exists a unique map g : μX. F(X) → X making the diagram

F(μX. F(X))

Fcoalg(ξ)

��

in ��

F(g)

		����������� μX. F(X)

ξ

g

����������

F(X)

Fcoalg(χ)

��

f �� X

χ

��

!(F(μX. F(X)))
!in

!F(g) 		����������� !μX. F(X)

!g

���
���

���
�

!F(X)
!f �� !X

(5)

commute. Of course, since in is an initial algebra for F , there exists a unique map g

making the top square (5) commute, and we just need to show that the rest of the

diagram commutes with g being this map. Showing all this is an easy diagram chase,

which can be found in Appendix A.

Theorem 5.5. Suppose C is a category and ! is a comonad on C, and let L denote the

monad on C! induced by !. Suppose C has solutions to recursive domain equations as

given by the collection of functors F, and suppose F : (Cop × C)n+1 → C is in F. If F

has a lift to coalgebras Fcoalg, then FixF also has a lift Fix(Fcoalg). Moreover, for any 2n
vector �ξ of coalgebras with carriers denoted �X, the isomorphism

F ◦ 〈id , ˘FixF〉(�X) ∼= FixF(�X)

is an isomorphism of coalgebras

Fcoalg ◦ 〈id , ˘Fix(Fcoalg)〉(�ξ) ∼= Fix(Fcoalg)(�ξ).

Proof. The first half of the theorem states that the class of domain equations F′ ⊆ F
consisting of functors with lifts to coalgebras has solutions, and we will use Theorem 4.5

to prove this. By assumption, all functors F : C → C in F have initial algebras whose

inverses are final coalgebras, so the same condition holds for all F in F′. We still need to

verify that if F : (Cop × C)n × C → C is in F′, so is μX. F(−, X) : (Cop × C)n → C formed

using Lemma 4.4. So suppose Fcoalg : (C!op × C!)n × C! → C! is a lift of F to coalgebras.

By Proposition 5.4, each Fcoalg(�ξ,�ξ
′,−) : C! → C! has an initial algebra, so we can form

μξ. Fcoalg(−, ξ) : (C!op × C!)n → C! using Lemma 4.4. We claim that

((C!)
op × C!)n

μξ.Fcoalg(−,ξ) ��

��

C!

��
(Cop × C)n

μX.F(−,X) �� C

commutes, verifying μX. F(−, X) ∈ F′. The diagram commutes on objects by the last

statement of Proposition 5.4. Inspection of the proof of Proposition 5.4 shows that

the unique maps out of the initial algebras given by μξ. Fcoalg(−, ξ) are computed as for

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 663

μX. F(−, X), so, since the morphism parts of μξ. Fcoalg(−, ξ) and μX. F(−, X) are computed

using these, the diagram commutes for morphisms as well.

To prove the last statement of the theorem, we need to have a closer look at the

construction in the proof of Theorem 4.5. Since the construction is pointwise, we will just

consider the case of domain equations with no variables. So suppose Fcoalg : C!op×C! → C!

is a lift of F : Cop×C → C to coalgebras. Consider the functor G = μX. F(−, X) : Cop → C.

Define the object X ′ of C as μY . F(G(Y), Y) and define X = G(X ′). Since these are

obtained as initial algebras, we get maps h : F(X ′, X) → X and h′ : F(X,X ′) → X ′ in C,

and we can show that (X,X ′, h, (h′)−1) as well as (X ′, X, h′, h−1) are initial dialgebras for

F . This implies that there exists an isomorphism of dialgebras (k, k′) : (X ′, X, h′, h−1) →
(X,X ′, h, (h′)−1). Now, the solution to the recursive domain equation given by F is X with

isomorphism h ◦ F(k, id) : F(X,X) → X.

By Proposition 5.4, we know that X and X ′ have coalgebra structures for !, so F(X,X ′)

and F(X ′, X) also get coalgebra structures by application of Fcoalg. We also know that h

and h′ preserve these coalgebra structures, and what we need to prove is that h ◦ F(k, id)

does also. In fact, to do this, it is enough to show that k preserves coalgebra structures,

because in this case the map Fcoalg(k, id) = F(k, id) preserves coalgebra structures.

The construction of k is as follows. Using out : G(X) → F(X,G(X)) to denote the final

coalgebra for F(X,−), we construct a : X ′ → G(X) as the unique map making the diagram

X ′

a

��

(h′)−1

�� F(X,X ′)

F(id ,a)

��
G(X)

out �� F(X,G(X))

(6)

commute. Now, k is defined as the unique map making the diagram

F(X,X ′)
h′

��

F(G(k),k)

��

X ′

k

��
F(G(X), X)

F(a,id) �� F(X ′, X)
h �� X

(7)

commute. The map k′ is defined as G(k)◦a, but one can prove that k = k′. Since (k, k) is an

isomorphism of dialgebras, k is an isomorphism also, implying that a is an isomorphism

since k = G(k) ◦ a.

We first prove that a is a map of coalgebras. Since both vertical maps in (6) are

invertible, we can use initiality of out−1 to construct a map b : G(X) → X ′ satisfying

a ◦ b = id , which implies that b is the inverse of the isomorphism a. By Proposition 5.4,

since the vertical maps of (6) preserve coalgebras, so does b, and so does a. This implies

that both vertical maps in (7) preserve coalgebra structure, so, again by Proposition 5.4,

k preserves coalgebra structures, which concludes the proof.

Corollary 5.6. If (C, !) is a parametric PILLY model, then (C!, L) is an FPC model.

Proof. Using Lemma 5.2, all that remains to be proved is that there exists a rich class

of recursive domain equations on (C!)L that can be solved. To do this, we consider the

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 664

collection G of functors induced by pairs (F, Fcoalg) where Fcoalg is a lift of F to coalgebras

and F is strong. By Theorem 4.6 and the first half of Theorem 5.5, for any pair (F, Fcoalg),

we get a pair (FixF,Fix(Fcoalg)) providing a fixed point of the functor (F, Fcoalg) up to

an isomorphism. Moreover, the isomorphism consists of total maps, that is, maps of

coalgebras. For the universal condition, since the morphisms of (C!)L are simply those

of C, and the morphism part of (F, Fcoalg) is given by F , the universal condition of

(FixF,Fix(Fcoalg)) reduces to that of FixF , which is satisfied by assumption.

Finally, we must show that G is closed under products, coproducts and Kleisli

exponentials. This can be seen from the constructions in the proof of Lemma 5.2.

For example, for the case of Kleisli exponentials, the functor obtained by Lemma 4.8 is

induced by the pair (F, Fcoalg) defined as

Fcoalg(ξ : X �!X, ξ′ : Y �!Y) = δ(X�Y)

F(X,Y) = !(X � Y).

Unfortunately, the FPC model obtained from a PILLY model (C, !) need not be strict,

even if we have a strict choice of solutions to recursive domain equations on C. The

problem is that a functor on (C!)L that can be represented by a pair (F, Fcoalg) need not

have a unique such representation, so the solution to a recursive domain equation given

by (F, Fcoalg) as constructed in the proofs above can depend on the representation. In

the following we present a slight variant of the interpretation of Section 4.2 that gives a

sound interpretation of FPC into any PILLY model.

We will first give an auxiliary interpretation of each FPC type α1, . . . , αn � σ as a pair

of functors

([�α � σ]) : (Cop × C)n → C

([�α � σ])coalg : (C!op × C!)n → C!

with the property that ([�α � σ])coalg lifts ([�α � σ]). This interpretation is given in Figure 5,

where in the definition of ([�α � σ])coalg, the symbols 1,+,× refer to the terminal object,

coproducts and products of C!, respectively, the notation δZ is used for the cofree

coalgebra on Z , and U denotes the forgetful functor C! → C.

Using the auxiliary interpretation of types as pairs of functors, we define

[[�α � σ]] : |(C!)L|n → |(C!)L|
as [[�α � σ]](�ξ) = ([�α � σ])coalg(ξ1, ξ1, . . . , ξn, ξn). The interpretation of terms is exactly as in

Section 4.2.

6. Interpreting FPC into PILLY

In this short section we show how the theory of Section 5 gives rise to an interpretation

of FPC into PILLY .

We use PILLY to denote the category whose objects are the closed types of PILLY

and whose morphisms from σ to τ are equivalence classes of closed PILLY terms of type

σ � τ under the equivalence relation relating terms if they are provably equal in LAPL

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 665

Fig. 5. Auxiliary interpretation of FPC types in PILLY models

using parametricity. This category is symmetric monoidal closed and the type constructor

! induces a symmetric monoidal comonad on it such that (PILLY , !) is, in fact, a linear

category. As above, we will use PILL!
Y to denote the co-Eilenberg–Moore category and

L to denote the induced monad on PILL!
Y .

Theorem 6.1. The category (PILL!
Y , L) is an FPC-model.

Theorem 6.1 follows from Lemma 5.2 and Proposition 4.6 together with Theorem 5.5.

The collection of domain equations is in this case given by the functors

F : (PILL!
Y

op × PILL!
Y)n → PILL!

Y

for which there exists a PILLY type α1, . . . , αn, β1, . . . , βn � σ in which the α’s occur only

negatively and the β’s only positively, such that we have, when (ξi : τi �!τi)i�n and

(χi : ωi �!ωi)i�n are vectors of coalgebras, the carrier of F(ξ1, χ1, . . . , ξn, χn) is σ[�τ/�α, �ω/�β],

and such that the action of F on morphisms of coalgebras is given by the term Mσ as in

Section 4.1.

Theorem 6.1 gives an interpretation of FPC into PILLY interpreting a closed FPC type

σ as a closed PILLY type σ∗ and an FPC program t : σ as a closed PILLY term t∗ : σ∗.

The interpretation is sound in the sense that t ⇓ v implies t∗ is provably equal to v∗ in

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 666

LAPL using parametricity. Later we shall prove that this interpretation is computationally

adequate (Corollary 7.9).

A priori, the interpretation does not interpret open FPC types and terms as PILLY types

and terms. Instead of this, open FPC types are interpreted as maps |PILL!
Y |n → |PILL!

Y |.
But the interpretation can also be presented more syntactically by interpreting an open

FPC type �α � σ as a pair

(�α � σ∗, σ∗
coalg :

∏
�α. (α1 �!α1) → . . . → (αn �!αn) → σ∗ �!σ∗)

where the first component is a PILLY type with n free variables, and σ∗
coalg is a closed

PILLY -term such that the statement

if for all i, fi : αi �!αi is a coalgebra, then so is σ∗
coalg�α(!

�f),

is provable in LAPL. An open FPC term, say�α | x : σ � t : τ, is then interpreted as a term

t∗ :
∏
�α. (α1 �!α1) → . . . → (αn �!αn) → σ∗ � τ∗.

7. Polymorphic FPC in the per-model

As a special case, the abstract analysis of Section 5 shows that our main example,

the per-model, models FPC. This particular model is interesting for three reasons: the

interpretation of FPC extends to an interpretation of full PolyFPC; the concrete model has

a simple presentation; and we can show that this model of PolyFPC is computationally

adequate. In this section, we first give the more concrete presentation of the model, and

show that it also models full PolyFPC. In Section 7.1, we present the resulting PolyFPC

model in elementary terms, and computational adequacy is proved in Section 7.2.

Recall that in order to see the per-model as an example of the notion of PILLY -model of

Section 2.1, we must interpret this definition in the internal logic of RT(D)G. Since RT(D)G

is a topos, its internal language is an expressive intuitionistic type theory in which we can

interpret most constructions known from set theory (again, see Jacobs (1999), Lambek

and Scott (1986) and Johnstone (2002) for details). This means, for example, that one can

form the co-Eilenberg–Moore category for an internal comonad on an internal category

RT(D)G as an internal category. Moreover, since the arguments of Section 5 were all

constructive, we can interpret all this theory in the internal logic of the topos RT(D)G,

and this gives us an FPC model. As was the case of the PILLY model, the results in

the internal logic of RT(D)G give rise to an interpretation of FPC in the usual (external)

sense. If you are only interested in the elementary description of the model, you should

now skip to Section 7.1.

To understand the model, we will first give a concrete description of the co-Eilenberg–

Moore category. To be precise, since we interpret the constructions of Section 5 inside

RT(D)G, the category we are interested in is the externalisation of a co-Eilenberg–Moore

category as formed in the internal logic of RT(D)G. Fortunately, there is no difference

between considering the externalisation of the co-Eilenberg–Moore category as formed

internally, and the co-Eilenberg–Moore category as formed in the usual sense from the

external data, as the next lemma states. Because of this, in the following we shall not

specify which of the two is meant in statements of theorems.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 667

Lemma 7.1. Suppose � is a topos, C is an internal category in � and ! is an internal

comonad on C. Then the externalisation of the co-Eilenberg–Moore category as formed

internally in � is isomorphic to the co-Eilenberg–Moore category as formed in the usual

sense from the externalisation of C and !.

Proof. An object of the externalisation of the co-Eilenberg–Moore category as formed

internally is a global element of the object of objects of C and a global element of

the object of morphisms of C satisfying equations stating that the latter is a coalgebra

structure on the former. This is precisely what is needed to specify an object of the

co-Eilenberg–Moore category as formed in the external sense. We leave it to the interested

reader to write out the isomorphisms in detail.

We start by considering the co-Eilenberg–Moore category for ! on AP⊥. The first result

states that this is equivalent to CCP, the full subcategory of Per(D) on chain complete

pers. This is a nice result as CCP seems a natural choice of a category of predomains

in the theory of admissible pers, and so, as we have already mentioned, this can be

seen as parallel to the isomorphism (Cppo⊥)L ∼= Cpo from classical domain theory. Like

the other categories of pers in this paper, CCP is the externalisation of an internal

category of RT(D), and this equivalence of categories is also true in the stronger internal

sense.

Proposition 7.2. The co-Eilenberg–Moore category AP!
⊥ for the lifting comonad ! on AP⊥

is equivalent to CCP. Moreover, the category AP!
⊥ as formed in the internal logic of

RT(D) is equivalent to the internal category CCP in the usual sense of internal categories

of RT(D), that is, there exist internal functors F : CCP → AP!
⊥ and G : AP!

⊥ → CCP and

invertible internal natural transformations α : G ◦ F → idCCP, β : F ◦ G → idAP!
⊥
.

Proof. We show that AP!
⊥ is isomorphic to the category of admissible pers R for which

the equivalence class [⊥] is a downward closed subset of the domain of R – that is, if

R(x, x), x � y and R(y,⊥), then R(x,⊥) – and maps that preserve and reflect [⊥]. This

category is equivalent to CCP, with one map of the equivalence lifting a chain complete

per, and the other discarding the equivalence class [⊥] from an admissible per.

Recall from Section 2.2 that the comonad ! on AP⊥ maps an admissible per R to

{(⊥,⊥)} ∪ {(〈ι, x〉, 〈ι, y〉) | R(x, y)} where ι = Ψ(idD). Suppose ξ is a coalgebra on an

admissible per R, e tracks ξ and R(x, x), x � y and R(y,⊥). Since [⊥]!R = {⊥} and since

ξ is a strict map, we have e · y = ⊥, so, by monotonicity, we have e · x = ⊥. Since ε ◦ ξ

is the identity, where ε is the counit, R(x,⊥). On the other hand, if [⊥] is a downward

closed subset of the domain of R, it is easy to check that the tracker

e(x) =

{
⊥ if y � x, R(y,⊥) for some y

〈ι, x〉 else

defines a unique coalgebra structure on R. Continuity of e follows from admissibility

of R.

Suppose f : R � S is a map between such pers with coalgebra structures, denoted ξR
and ξS , respectively, and that f preserves coalgebra structure. Since f is strict, it must

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 668

preserve the equivalence class of ⊥. To see that it also reflects it, suppose f([x]R) = [⊥]S .

Then also !(f)(ξR([x])) = [⊥]!S , implying that ξR([x]) = [⊥]!R . Clearly, this then gives us

R(x,⊥).

We omit the straightforward verification of the second statement of the theorem.

Note that the composition CCP → AP!
⊥ → AP⊥ of the equivalence and the forgetful

functor is the lifting functor, as can be seen by inspection of the above proof.

Proposition 7.2 also holds on the level of relations, as we will now show. As admissible

relations on chain complete pers R and S , we shall consider subsets A ⊆ D/R × D/S

such that if (xn)n∈� and (yn)n∈� are increasing chains such that for all n, R(xn, xn) and

S(yn, yn) and ([xn]R, [yn]S) ∈ A, then ([
⊔

n xn]R, [
⊔

n yn]S) ∈ A also. Admissible relations on

chain complete pers form a category AdmRelCCP where maps are pairs of maps mapping

related elements to related elements as in Section 2.2. We write A : AdmRelCCP(R, S)

to indicate that A is an admissible relation between chain complete pers R, S . As with

AdmRelAP⊥ , the category AdmRelCCP is the externalisation of an internal category of

RT(D).

Proposition 7.3. The co-Eilenberg–Moore category for ! on AdmRelAP⊥ is equivalent to

AdmRelCCP. The equivalence is an externalisation of an internal equivalence of categories

in RT(D).

Proof. We will again just show the first part of the proposition. Suppose R, S are

admissible pers and (ξ, ξ′) defines the coalgebra structure on A : AdmRelAP⊥ (R, S). Then

ξ, ξ′ define the coalgebra structures on R, S , respectively, so the analysis from the proof of

Proposition 7.2 applies. We show that A is a lifted relation in the sense that A([⊥], [⊥]) and

if A([x], [⊥]) then [x] = [⊥], and, similarly, A([⊥], [x]) implies [x] = [⊥]. The first follows

from admissibility. For the second, we suppose A([⊥]R, [x]S). Then !A([⊥]!R, ξ
′([x]S)),

implying ξ′([x]) = [⊥]!S , and thus [x]S = [⊥]S . So we can extend the equivalence of

categories defined above to map A : AdmRelCCP to !A, and map A ∈ AdmRel!AP⊥ to

A \ {([⊥], [⊥])}.

Now recall that we wanted to apply the theory of Section 5 to the diagram

AdmRelAP⊥

��
�� AP⊥�� (8)

considered as an internal category in the category RT(D)G of reflexive graphs over

the realisability topos over D. So we were interested in a concrete description of the

co-Eilenberg–Moore category for the lifting comonad on (8). Fortunately, co-Eilenberg–

Moore categories in RT(D)G are constructed pointwise†, so Propositions 7.2 and 7.3 imply

the following theorem.

Theorem 7.4. The co-Eilenberg–Moore category for the lifting comonad on

AdmRelAP⊥

��
�� AP⊥��

† Technically, constructing the co-Eilenberg–Moore category in the internal logic amounts to a limit

construction, and limits in presheaf categories such as RT(D)G are computed pointwise. Similar arguments

are used in Robinson and Rosolini (1994).

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 669

in the category RT(D)G is equivalent to

AdmRelCCP

��
�� CCP�� . (9)

The maps of diagram (9) are the usual domain, codomain and identity relation maps,

which one can show define internal functors.

Theorem 7.5. Diagram (9) considered as an internal category in RT(D)G models poly-

morphism. As a consequence, the per model of FPC models full PolyFPC.

Proof. In this proof we shall use the notation C for the internal category in RT(D)G

given by the diagram (8), and D for the one given by (9). A map from |D|n to |D| inside

RT(D)G is a pair of maps (fp, fr) where fp is a map |CCP|n → |CCP| and fr is a map

taking an n-vector of admissible relations (Ai : AdmRel(Ri, Si)) (admissible in the sense of

objects of AdmRelCCP) on objects of CCP and produces an admissible relation

fr(�A) : AdmRel(fp(�R), fp(�S))

satisfying fr(eq�R) = eqfp(�R), and a natural transformation from (fp, fr) to (gp, gr) is a family

of maps (t�R : fp(�R) → gp(�R))�R∈|CCP|n with a common tracker, which respects relations in

the sense that for all vectors �R, �S , (Ai : AdmRel(Ri, Si))i, if ([x]fp(�R), [y]fp(�S)) ∈ fr(�A) then

(t�R([x]fp(�R)), t�S ([y]fp(�S))) ∈ gr(�A).

We show that any such functor (fp, fr) : |D|n+1 → |D| has a right Kan extension along

the projection π : |D|n+1 → |D|n of the first n coordinates. The Kan extension is given by

(RKπ(f
p, fr))p(�R) = {(x, y) | ∀S : |CCP|. fp(�R, S)(x, y)∧

∀S, S ′ : |CCP|. ∀A : AdmRelCCP(S, S ′). fr(�eq�R, A)([x], [y])}
(RKπ(f

p, fr))r(�A) = {([x], [y]) | ∀S, S ′ : |CCP|. ∀A′ : AdmRelCCP(S, S ′).

fr(�A,A′)([x], [y])}

and showing that this works is quite standard (see, for example, Jacobs (1999, Chapter 8)

or Birkedal and Møgelberg (2005)). Since Definition 4.7 only calls for the existence of Kan

extensions of functors obtained by composing with lifting, this construction gives us all the

Kan extensions we need. For the Beck–Chevalley condition, suppose (gp, gr) : |D|m → |D|n.
Then, clearly, RKπ((f

p, fr) ◦ ((gp, gr) × id |D|)) = RKπ((f
p, fr)) ◦ (gp, gr) and the map of

the Beck–Chevalley condition, which is required to be an isomorphism, is in fact an

identity.

To show that the per-model models full PolyFPC, we need to show that the collection

of solvable recursive domain equations is closed under Kleisli polymorphism. Birkedal

et al. (2007) showed that the class of solvable recursive domain equations in the PILLY

model C is exactly the collection of internal functors in RT(D)G. This means that the

collection of solvable recursive domain equations in the FPC model (C, L) is the collection

of functors (CL
op × CL)n+1 → CL induced by internal functors (fp, fr) : (Cop × C)n+1 → C

and (gp, gr) : (Dop × D)n+1 → D such that (gp, gr) lifts (fp, fr). The latter means that

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 670

the diagrams

(CCPop × CCP)n+1

(Lop×L)n+1

��

fp �� CCP

L

��
(AP⊥

op × AP⊥)n+1
gp �� AP⊥

(AdmRelCCP
op × AdmRelCCP)n+1

(Lop×L)n+1

��

fr �� AdmRelCCP

L

��
(AdmRelAP⊥

op × AdmRelAP⊥)n+1
gr �� AdmRelAP⊥

commute (using the fact that the composition of the equivalence CCP → APL
⊥ and the

forgetful functor APL
⊥ : AP⊥ is lifting, as noted earlier). Consider

∏̃
f = ((

∏̃
f)p, (

∏̃
f)r)

and
∏̃
g = ((

∏̃
g)p, (

∏̃
g)r) defined as follows:

(
∏̃
f)p(�R) =L{(x, y) | ∀S : |CCP|. fp(�R, S, S)(x, y)∧

∀S, S ′ : |CCP|. ∀A : AdmRelCCP(S, S ′). fr(�eq�R, A, A)([x], [y])}
∏̃
fr(�A) =L{([x], [y]) | ∀S, S ′ : |CCP|. ∀A′ : AdmRelCCP(S, S ′).

gr(�A,A′, A′)([x], [y])}
∏̃
gp(�R) =L{(x, y) | ∀S : |CCP|. gp(�R, LS, LS)(x, y)∧

∀S, S ′ : |CCP|. ∀A : AdmRelCCP(S, S ′). gr(�eq�R, LA, LA)([x], [y])}
∏̃
gr(�A) =L{([x], [y]) | ∀S, S ′ : |CCP|. ∀A′ : AdmRelCCP(S, S ′).

gr(�A, LA′, LA′)([x], [y])}.

One can verify that
∏̃
g lifts

∏̃
f, and that the functor (

∏̃
f,

∏̃
g) : (CL

op × CL)n → CL

induced by the two is the one constructed from the Kan extension using Lemma 4.12.

This shows that the class of solvable recursive domain equations is closed under Kleisli

polymorphism, as required.

7.1. The per-model of PolyFPC

We now describe the resulting interpretation of PolyFPC in the per-model. Types of

PolyFPC are modelled as pairs ([[�α � σ]]p, [[�α � σ]]r), where [[�α � σ]]p is a map |CCP|n →
|CCP| and [[�α � σ]]r is a map taking an n-vector (Ai : AdmRel(Ri, Si)) of admissible relations

(admissible in the sense of objects of AdmRelCCP) on objects of CCP and produces an

admissible relation

[[�α � σ]]r(�A) : AdmRel([[�α � σ]]p(�R), [[�α � σ]]p(�S))

satisfying [[�α � σ]]r(eq�R) = eq[[�α�σ]]p(�R).

Figure 6 shows the interpretation of all the PolyFPC types in the per-model except the

recursive types. These recursive types are determined uniquely up to isomorphism by their

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 671

Fig. 6. Interpretation of PolyFPC in per-model

universal properties (as initial dialgebras), a property shown to be useful in Pitts (1996),

and we shall not present a more concrete description of them in this model. In the figure,

〈·, ·〉 denotes the pairing function D × D → D definable using the combinatory algebra

structure on D, and the symbols 1 and 2 denote incomparable elements of D (explicitly,

these could be 〈ι,⊥〉 and 〈⊥, ι〉, respectively, where ι denotes a code for the identity

function on D).

The monad induced by the comonad on AP⊥ and AdmRelAP⊥ is denoted L. Explicitly,

this monad maps a chain complete per R to {(⊥,⊥)} ∪ {(〈ι, x〉, 〈ι, y〉) | R(x, y)}, and an

admissible relation A on chain complete pers R, S is mapped to the relation on LR,LS

that relates [⊥] to [⊥] and [〈ι, x〉] to [〈ι, y〉] if A([x], [y]).

Terms of PolyFPC are modelled in the Kleisli category for L. To be more precise, a

term �α |�x : �σ � t : τ is modelled as an indexed family of maps

([[t]]�R :
∏

i[[�α � σi]]
p(�R) → L[[�α � τ]]p(�R))�R

where the product refers to the product in CCP. Such a family must have a common

tracker, and must preserve relations, which means that if �A : AdmRel(�R,�S), and for each

i, ([xi], [yi]) ∈ [[�α � σi]]
r(�A), then

([[t]]�R([x1], . . . , [xm]), [[t]]�S ([y1], . . . , [ym])) ∈ L[[�α � τ]]r(�A).

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 672

Theorem 7.6. The interpretation of PolyFPC types defined in Figure 6 extends to a sound

interpretation of PolyFPC.

7.2. Computational adequacy

A τ-σ context of PolyFPC for types σ, τ, where σ is closed, is an expression C[−]

containing a place holder − such that whenever an expression t of type τ is substituted

for the place holder such that the result C[t] is a closed term, it has type σ. Two terms

t, t′ : τ of PolyFPC of the same type are called contextually equivalent (written t ≡ t′), if

for any type σ and any τ-σ context C[−],

C[t] ⇓ iff C[t′] ⇓
where t ⇓ means that there exists a v such that t ⇓ v.

Theorem 7.7 (Adequacy). For any program t of PolyFPC, [[t]] �= [⊥] in the per-model if

and only if t ⇓.

The following corollary giving a tight connection between the operational and denotational

semantics is easily proved from Theorem 7.7.

Corollary 7.8. Suppose t, t′ are two PolyFPC terms of the same type. If [[t]] = [[t′]], then

t ≡ t′.

Proof. Since the interpretation of terms is defined by structural induction, one may

easily prove that for any τ-σ context C[−], and terms t, t′ of type τ, if [[t]] = [[t′]], then

[[C[t]]] = [[C[t′]]]. So, if [[t]] = [[t′]], then, for any context C[−],

C[t] ⇓ ⇐⇒ [[C[t]]] �= [⊥] ⇐⇒ [[C[t′]]] �= [⊥] ⇐⇒ C[t′] ⇓,
which proves the corollary.

One can define a contextual equivalence relation on FPC as the contextual equivalence

for PolyFPC by restricting to the contexts of FPC. Since this equivalence relation is

obtained by quantifying over fewer contexts, it is weaker than the contextual equivalence

relation inherited from PolyFPC by restriction. Corollary 7.8 now gives a computational

adequacy result of the interpretation of FPC into PILLY with respect to this contextual

equivalence relation.

Corollary 7.9. The interpretation (−)∗ of FPC into PILLY of Section 6 is computationally

adequate in the sense that for two FPC programs t, t′ of the same type, if t∗ is provably

equal to t′∗ in LAPL using parametricity, then t and t′ are contextually equivalent.

Proof. The restriction to FPC of the interpretation of PolyFPC into the per model

can be factorised as (−)∗ followed by the interpretation of PILLY into the per-model.

This means that if t∗ is provably equal to t′∗, then, by soundness of the per-model

interpretation of Linear Abadi & Plotkin Logic, [[t]] = [[t′]], so the corollary then follows

from Corollary 7.8.

We now proceed to prove Theorem 7.7.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 673

In the following, we shall refer to admissible relations between chain complete pers R

and sets Y , writing AdmRelCCP(R, Y) for the collection of all such. By this, we mean

subsets A of (D/R) × Y such that for each y ∈ Y , the collection {[x]R | ([x]R, y) ∈ A}
defines a chain complete per.

For the proof of Theorem 7.7, we construct for each open type of PolyFPC an

approximation relation �σ , which for each vector of closed PolyFPC-types �τ and vector

of admissible relations (ρi : AdmRelCCP([[τi]]
p,Valτi))i gives an admissible relation

�(�τ,�ρ)
σ : AdmRelCCP([[σ]]p([[�τ]]p),Valσ[�τ/�α]),

where Valτ denotes the set of values of PolyFPC of type τ.

In the following, when we use notation such as x : [[σ]]p or x : R for pers R or x �(�τ,�ρ)
σ v,

the variable x ranges over the collection of equivalence classes for the per in question. This

follows the intuition mentioned above in which equivalence classes are the elements of a

per. If x : [[σ → τ]]p and d : [[σ]]p, we shall use the notation x(d) : L[[τ]]p for the equivalence

class obtained by applying any representative of x to any representative of d. This is

well defined by the definition of [[σ → τ]]p. Similarly, if x : [[
∏

α. σ]]p and R is any chain

complete per, we shall write x(R) : L([[α � σ]]p(R)) for the equivalence class represented

by any representative of x. If x : LR, we shall write x ↓ for x �= [⊥]LR . Finally, we shall

write Type for the set of closed PolyFPC types.

Lemma 7.10. The approximation relations indexed over PolyFPC types can be defined

such that:

— x �(�τ,�ρ)
αi

v ⇐⇒ xρiv

— x �(�τ,�ρ)
1 ∗ ⇐⇒ �

— x �(�τ,�ρ)
σ×τ 〈v, v′〉 ⇐⇒ π1x �(�τ,�ρ)

σ v ∧ π2x �(�τ,�ρ)
τ v′

— x �(�τ,�ρ)
σ+τ inl v ⇐⇒ ∃x′. x = inl (x′) ∧ x′ �(�τ,�ρ)

σ v

— x �(�τ,�ρ)
σ+τ inr v ⇐⇒ ∃x′. x = inr (x′) ∧ x′ �(�τ,�ρ)

τ v

— x �(�τ,�ρ)
σ→τ λy : σ. t ⇐⇒ ∀d, v′. (d �(�τ,�ρ)

σ v′ ∧ x(d) ↓) ⊃ ∃v′′. t[v′/y] ⇓ v′′ ∧ x(d) �(�τ,�ρ)
τ v′′

— x �(�τ,�ρ)∏
α.σ

Λα. t ⇐⇒ ∀τ : Type. ∀ρ : AdmRelCCP([[τ]]p,Valτ). x([[τ]]p) ↓⊃ ∃v′. t[τ/α] ⇓
v′ ∧ x([[τ]]p) �(�τ,τ,�ρ,ρ)

σ v′.

— x �(�τ,�ρ)
rec α.σ intro v ⇐⇒ unfold(x) �

(�τ,rec α.σ[�τ/�α],�ρ,�(�τ,�ρ)
rec α.σ)

σ v

where inl, inr denote, respectively, the left and right inclusions into the coproduct, and in

the last condition, unfold is the isomorphism [[rec α. σ]]p → [[σ[rec α. σ/α]]]p (that is, the

interpretation of elim).

Lemma 7.10 may at first appear to be a definition of �σ , but since the case of recursive

types involves the relation being defined on the right-hand side of the equation, the proof

of the lemma below involves finding a fixed point for a certain map of predicates, as in

Pitts (1996).

Lemma 7.11. For any term

�α |�x :�σ � t : τ

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 674

of PolyFPC, for all vectors of closed types�τ and all vectors of relations

(ρi : AdmRelCCP([[τi]]
p,Valτi))i

and all (di : [[σi[�τ/�α]]]
p))i, (vi : Valσi[�τ/�α])i, if for all i

di �(�τ,�ρ)
σi

vi,

then [[t]][[�τ]]p (�d) ↓ implies

∃v : Val. t[�τ/�α][�v/�x] ⇓ v ∧ [[t]][[�τ]]p (�d) �(�τ,�ρ)
τ v.

Assuming Lemma 7.10 and Lemma 7.11 are correct (proofs follow below), Theorem 7.7

is now easy.

Proof of Theorem 7.7. The ‘only if’ direction is the special case of Lemma 7.11 for

closed terms.

For the ‘if ’ direction, suppose t : τ and t ⇓ v. By soundness, [[t]] = [[v]], and by

Lemma 4.15, [[v]] considered as a map from 1 to [[τ]] is a map of coalgebras, meaning in

this case that it is total, that is, [[v]] �= ⊥.

We now proceed to prove first Lemma 7.10 and then Lemma 7.11. Recall that each

PolyFPC type σ(α, β) in which α occurs only negatively and β only positively induces a

functor σ : CCPL
op × CCPL → CCPL. In the following, for R, S chain complete pers, A,B

admissible predicates on R, S , respectively, in the usual sense, and f : R ⇀ S in CCPL, the

notation f : A ⇀ B means for all x ∈ A, f(x) ↓ implies f(x) ∈ B. In fact, A ⇀ B defines

an admissible predicate on the chain complete per R ⇀ S .

The next lemma is a consequence of a more general induction/coinduction principle

for recursive types, as in Pitts (1996).

Lemma 7.12. Suppose σ(α, β) is a PolyFPC type in which α occurs only negatively and

β only positively, and A,B are admissible predicates on [[rec α. σ(α, α)]]p in the usual

sense. Suppose also that for all maps e : [[rec α. σ(α, α)]]p ⇀ [[rec α. σ(α, α)]]p in CCPL, if

e : A ⇀ B, then fold ◦ σ(e, e) ◦ unfold : A ⇀ B, where

unfold : [[rec α. σ(α, α)]]p → [[σ(rec α. σ(α, α), rec α. σ(α, α))]]p

is the isomorphism and fold = unfold−1. Then A ⊆ B.

Proof. Consider the map

e �→ fold ◦ σ(e, e) ◦ unfold :

([[rec α. σ(α, α)]]p ⇀ [[rec α. σ(α, α)]]p) → (10)

([[rec α. σ(α, α)]]p ⇀ [[rec α. σ(α, α)]]p).

Since CCPL is equivalent to a subcategory of AP⊥ (namely, the full subcategory of objects

of the form L(R) for R a chain complete per), this map must have a fixed point, since all

endomaps in AP⊥ have fixed points. Moreover, since A ⇀ B is an admissible predicate, it

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 675

corresponds to an admissible predicate on the corresponding object in AP⊥, and thus, by

fixed-point induction in AP⊥, the fixed point of (10) satisfies A ⇀ B.

Now, dinaturality of the solutions to recursive domain equations implies that the identity

is the only fixed point of (10), and thus A ⊆ B, as required.

Lemma 7.10 will be proved by synchronous induction on the structure of σ with the

following Lemma.

Lemma 7.13. Suppose σ(�α, α, β) is a type of PolyFPC in which α occurs only negatively

and β only positively. Suppose also that we are given closed types�τ, τ−, τ+ and relations

�ρ : AdmRelCCP([[�τ]]p,Val�τ)

ρ−, ρ
′
− : AdmRelCCP([[τ−]]p,Valτ−)

ρ+, ρ
′
+ : AdmRelCCP([[τ+]]p,Valτ+

)

and maps e− : [[τ−]]p ⇀ [[τ−]]p, e+ : [[τ+]]p ⇀ [[τ+]]p in the model . If e− : ρ′
− ⇀ ρ− and

e+ : ρ+ ⇀ ρ′
+ in the sense that

∀x, v. (x, v) ∈ ρ′
− ∧ e−(x) ↓⊃ (e−(x), v) ∈ ρ−

∀x, v. (x, v) ∈ ρ+ ∧ e+(x) ↓⊃ (e+(x), v) ∈ ρ′
+,

then

σ(�τ, e−, e+): ��τ,τ− ,τ+ ,�ρ,ρ− ,ρ+
σ ⇀�

�τ,τ− ,τ+ ,�ρ,ρ
′
− ,ρ

′
+

σ

in the same sense

Proof of Lemma 7.10 and 7.13. As we have already said, these are proved by synchronous

structural induction over σ.

We start with Lemma 7.10. The conditions listed in the lemma basically give an inductive

definition, except for the case of recursive types. For this case we adapt the proof from

Pitts (1996).

We will assume that we have split the occurrences of α in σ into positive and negative,

that is, that we are working with a type σ(�α, α, β) where α occurs only negatively and β

only positively. We will write rec α. σ to mean �α � rec α. σ(�α, α, α). To aid readability of

the following lines, we will write A for

AdmRelCCP([[rec α. σ]]p([[�τ]]p),Valrec α.σ[�τ/�α]).

Consider the map Ψ: A × A → A defined to map (ρ−, ρ+) to

(x, intro v). unfold(x) �(�τ,rec α.σ[�τ/�α],rec α.σ[�τ/�α],�ρ,ρ− ,ρ+)
σ v.

By Lemma 7.13 (or one could say, the Lemma 7.13 part of the induction hypothesis), this

is actually a functor

Ψ: Aop × A → A

with respect to the ordering on relations.

We need to construct a Δ such that Ψ(Δ,Δ) = Δ. Define Φ: Aop × A → Aop × A by

Φ(ρ−, ρ+) = (Ψ(ρ+, ρ−),Ψ(ρ−, ρ+)). Since A is closed under intersections, it is a complete

lattice, and hence Aop ×A is a complete lattice also. This means that since Φ preserves the

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 676

ordering, the Tarski–Knaster theorem states that there exists a least fixed point (Δ−,Δ+)

for Φ. We aim to show that Δ− = Δ+.

By the symmetry of the definition of Φ, we have Φ(Δ+,Δ−) = (Δ+,Δ−), which implies

(Δ−,Δ+) � (Δ+,Δ−), meaning Δ+ � Δ− since (Δ−,Δ+) is the least fixed point.

Finally, we need to show that Δ− � Δ+. By Lemma 7.12, it suffices to show that if

e : Δ− ⇀ Δ+, then fold ◦ σ(e, e) ◦ unfold : Δ− ⇀ Δ+ also. So suppose e : Δ− ⇀ Δ+ and

(x, intro v) ∈ Δ−. Since Δ− = Ψ(Δ+,Δ−), this means that

unfold(x) �(�τ,rec α.σ[�τ/�α],rec α.σ[�τ/�α],�ρ,Δ+ ,Δ−)
σ v.

By Lemma 7.13, if σ(e, e) ◦ unfold(x) ↓, then

σ(e, e) ◦ unfold(x) �(�τ,rec α.σ[�τ/�α],rec α.σ[�τ/�α],�ρ,Δ− ,Δ+)
σ v,

which, since Δ+ = Ψ(Δ−,Δ+), implies Δ+(fold ◦ σ(e, e) ◦ unfold(x), intro v).

Now we will prove Lemma 7.13. As we have already said, the proof is by induction on σ,

but we have just proved the cases of the type constructors → and recursive types. For the

case of σ → σ′, suppose x �(�τ,τ− ,τ+ ,ρ− ,ρ+)
σ→σ′ λy. t. If (σ → σ′)(id�τ, e−, e+)(x) ↓, we must show that

(σ → σ′)(id�τ, e−, e+)(x) �
(�τ,τ− ,τ+ ,ρ

′
− ,ρ

′
+)

σ→σ′ λy. t.

By definition,

(σ → σ′)(id�τ, e−, e+)(x) = σ(id�τ, e−, e+) ◦ x ◦ σ′(id�τ, e+, e−).

Assume also that we are given d, v such that d �
(�τ,τ+ ,τ− ,ρ

′
+ ,ρ

′
−)

σ v (where we have swapped

appearances of + and − since (σ → σ′)(�τ, τ−, τ+) = σ(�τ, τ+, τ−) → σ′(�τ, τ−, τ+)), and

(σ → σ′)(id�τ, e−, e+)(x)(d) ↓. By the induction hypothesis on σ′, we have

σ′(id�τ, e+, e−)(d) �(�τ,τ+ ,τ− ,ρ+ ,ρ−)
σ′ v.

So, since x(σ′(id�τ, e+, e−)(d)) ↓, there exists a v′ such that t[v/y] ⇓ v′ and

x(σ′(id�τ, e+, e−)(d)) �(�τ,τ− ,τ+ ,ρ− ,ρ+)
σ v′.

The rest of the proof now follows from the induction hypothesis for σ.

For the recursive types, the pairs (ρ−, ρ+) and (ρ−, ρ+) define functors Φ and Φ′,

respectively, for which �(�τ,τ− ,τ+ ,ρ,ρ− ,ρ+)
rec α.σ and �(�τ,τ− ,τ+ ,ρ,ρ− ,ρ+)

rec α.σ , respectively, are defined to be least

fixed points. By the induction hypothesis, rec α. σ(e−, e+) defines a natural transformation

between the two, and hence also a map between the fixed points.

Lemma 7.14. For any pair of PolyFPC types �α, α � σ and �α � ω, any�τ,�ρ,

�(�τ,ω[�τ/�α],�ρ,��τ,�ρ
ω)

σ ⇐⇒ ��τ,�ρ
σ[ω/α] .

As a consequence,

x �(�τ,�ρ)
rec α.σ intro (v) ⇐⇒ unfold(x) �(�τ,�ρ)

σ[rec α.σ/α] v.

Proof. The proof is an easy induction on σ.

Proof of Lemma 7.11. The proof is by induction on the structure of the term t:

t = xi.

This case is trivial.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 677

t = inl (t′).

Here τ = τ′ + τ′′. Suppose [[t]][[�τ]]p (�d) ↓. Then [[t′]][[�τ]]p(�d) ↓ also, so, by induction, there

exists v such that t′[�τ/�α] ⇓ v and [[t′]][[�τ]]p (�d) �(�τ,�ρ)
τ′ v. This implies that t[�τ/�α] ⇓ inl v and

[[t]][[�τ]]p (�d) �(�τ,�ρ)
τ′+τ′′ inl (v).

t = case t′ of inl x. t′′ of inr x. t′′′.

Suppose the whole expression has type τ, and t′ has type τ′ + τ′′. Suppose [[t]][[�τ]]p (�d) ↓.

Then [[t′]][[�τ]]p (�d) ↓ also, so, by the induction hypothesis, there exists a v′ such that

t′[�τ/�α][�v/�x] evaluates to either inl v′ or inr v′. Let us say it evaluates to inl v′. Then

also, by the induction hypothesis,

[[t′]][[�τ]]p (�d) �(�τ,�ρ)
τ′+τ′′ inl v′.

This means that there exists an s such that [[t′]][[�τ]]p (�d) = inl s and s �(�τ,�ρ)
τ′ v′. Since

[[t′′]][[�τ]]p (�d, s) = [[t]][[�τ]]p (�d) ↓, the induction hypothesis on t′′ tells us that there exists a v

such that t′′[�τ/�α][�v/�x, v′/x] ⇓ v and

[[t′′]][[�τ]]p (�d, s) �(�τ,�ρ)
τ v.

This implies t[�τ/�α][�v/�x] ⇓ v and [[t]][[�τ]]p (�d) �(�τ,�ρ)
τ v, as required.

t = 〈t′, t′′〉.
This case is an easy analysis as above.

t = π1(t
′).

This case is an easy analysis as above.

t = �.

This case is trivial.

t = λx : σ. t′.

Suppose [[t]][[�τ]]p (�d) ↓. By Lemma 7.10, we must show that if we are also given v, d such

that d �(�τ,�ρ)
σ v and [[t]][[�τ]]p (�d)(d) ↓, then there exists a v′ such that t′[�τ/�α][�v/�x, v/x] ⇓ v′

and [[t]][[�τ]]p (�d)(d) �(�τ,�ρ)
τ v′. But since [[t]][[�τ]]p (�d)(d) = [[t′]][[�τ]]p (�d, d), this is just the induction

hypothesis on t′.

t = t′(t′′).

Suppose [[t]][[�τ]]p (�d) ↓. Then [[t′]][[�τ]]p (�d) ↓ and [[t′′]][[�τ]]p (�d) ↓ also, so, by the induc-

tion hypothesis, there exists v, e such that t′′[�τ/�α][�v/�x] ⇓ v, [[t′′]][[�τ]]p (�d) �(�τ,�ρ)
τ′ v and

t′[�τ/�α][�v/�x] ⇓ λx : τ′. e and [[t′]][[�τ]]p (�d) �(�τ,�ρ)
τ′→τ λx : τ′. e. This means that since

[[t′]][[�τ]]p (�d)([[t
′′]][[�τ]]p (�d)) = [[t]][[�τ]]p (�d) ↓,

there exists a v′ such that e[v/x] ⇓ v′, which implies that t[�τ/�α][�v/�x] ⇓ v′ and

[[t]][[�τ]]p (�d) �(�τ,�ρ)
τ v′.

t = elim (t′).

Suppose [[t]][[�τ]]p (�d) ↓. Then [[t′]][[�τ]]p (�d) ↓ also, and by the induction hypothesis, there

exists a v′ such that t′[�τ/�α][�v/�x] ⇓ v′ and [[t′]][[�τ]]p (�d) �(�τ,�ρ)
rec α.σ v′. Since t′ is of recursive

type, v′ = intro (v) for some v, which means that t[�τ/�α][�v/�x] ⇓ v, and, by Lemma 7.14,

[[t]][[�τ]]p (�d) �(�τ,�ρ)
σ[rec α.σ/α] v.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 678

t = intro (t′).

Suppose [[t]][[�τ]]p (�d) ↓. Then [[t′]][[�τ]]p (�d) ↓ also, and, by the induction hypothesis, there

exists a v′ such that t′[�τ/�α][�v/�x] ⇓ v′ and [[t′]][[�τ]]p (�d) �(�τ,�ρ)
σ[rec α.σ/α] v′. This implies

t[�τ/�α][�v/�x] ⇓ intro v′, and, by Lemma 7.14, [[t]][[�τ]]p (�d) �(�τ,�ρ)
rec α.σ intro v′.

t = t′(τ).

In this case �α � τ and t′ is of polymorphic type, say t′ :
∏

α. σ. Suppose we have

[[t′(τ)]][[�τ]]p(�d) ↓. Then [[t′]][[�τ]]p (�d) ↓ also, so the induction hypothesis tells us that there

exists a t′′ such that t′[�τ/�α][�v/�x] ⇓ Λα. t′′ and [[t′]][[�τ]]p (�d) �(�τ,�ρ)∏
α.σ

Λα. t′′. By Lemma 7.10,

and since [[t′]][[�τ]]p (�d)([[τ[�τ/�α]]]) = [[t′(τ)]][[�τ]]p (�d) ↓, there exists a v such that

t′′[τ[�τ/�α]/α] ⇓ v

and

[[t′(τ)]][[�τ]]p (�d) �(�τ,τ[�τ/�α],�ρ,�(�τ,�ρ)
τ)

σ v.

But t′′[τ[�τ/�α]/α] ⇓ v implies t′(τ)[�τ/�α] ⇓ v, and since, by Lemma 7.14,

�(�τ,τ[�τ/�α],�ρ,�(�τ,�ρ)
τ)

σ ⇐⇒ �(�τ,�ρ)
σ[τ/α],

we have proved that there exists a v such that

t′(τ)[�τ/�α] ⇓ v

and

[[t′(τ)]][[�τ]]p (�d) �(�τ,�ρ)
σ[τ/α] v,

as required.

t = Λα. t′.

Since t is a value, it is clear that [[t]][[�τ]]p (�d) ↓ and t[�τ/�α][�v/�x] ⇓. What we need to show

is that if we are given a closed type τ′ such that [[t]][[�τ]]p(�d)([[τ
′]]p) ↓ and an admissible

relation ρ, then there exist v such that

t′[�τ/�α][�v/�x][τ′/α] ⇓ v

and

[[t]][[�τ]]p (�d)([[τ
′]]p) �(�τ,τ′ ,�ρ,ρ)

σ v.

But since

[[t]][[�τ]]p (�d)([[τ
′]]p) = [[t′]][[�τ]]p,[[τ′]]p (�d)

and

t′[�τ/�α][�v/�x][τ′/α] = t′[�τ/�α, τ′/α][�v/�x],

this is just the induction hypothesis for t′.

8. Reasoning using the model

The per-model of PolyFPC is parametric by construction since the interpretations of

types have a built-in relational interpretation ([[�α � σ]]r) satisfying identity extension

([[�α � σ]]r(eq�R) = eq[[�α�σ]]p(�R)). This means that the model can be used to verify parametricity

arguments about PolyFPC programs, as the next example shows.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 679

Example 8.1. This is an adaptation of a standard argument for showing data abstraction

results using parametricity. We will use a type for natural numbers, which can be defined

to be the recursive type nat = rec α. α + 1. Using standard arguments, one can define

terms representing the usual arithmetic operations on this type. Birkedal et al. (2007) and

Birkedal et al. (2006b) showed that the type nat considered as a PILLY type is interpreted

as the admissible per {(⊥,⊥)} ∪ {(n, n) | n ∈ �}, for n a family of distinct incomparable

elements of D. This means that in the PolyFPC model, [[nat]]p is the chain complete per

{(n, n) | n ∈ �}.
Suppose we are writing an FPC program P computing a natural number using an

abstract data type Counter with operations New : Counter, Increment : Counter →
Counter and Read : Counter → nat. We could write P as a polymorphic program of type

∏
Counter. Counter → (Counter → Counter) → (Counter → nat) → nat

which can be instantiated later with a concrete implementation of the type Counter. We

aim to show that the result of running P on the obvious implementation of Counter as

nat with New = 0, Increment being the successor function, and Read being the identity,

is the same as running P on the intuitively equivalent implementation of Counter in

which Increment adds two to the counter, and Read is division by two (rounded up to

an integer). More precisely, we show that the programs

P nat 0 (λx : nat. x + 1) (λx : nat. x) (11)

P nat 0 (λx : nat. x + 2) (λx : nat. Div(x, 2)) (12)

are contextually equivalent, which in this case means that one terminates if the other

does, and if they do terminate, they return the same number. Here Div denotes an

implementation of division.

Consider the relation A : AdmRelCCP([[nat]]p, [[nat]]p) given by the set {([n], [2n]) | n ∈
�}. Clearly, we have ([[0]], [[0]]) ∈ A, and the pair ([[λx : nat. x + 1]], [[λx : nat. x + 2]])

maps elements related in A to elements related in LA. Similarly, the pair ([[λx : nat. x]],

[[λx : nat. Div(x, 2)]]) maps elements related in A to elements related in L(eq[[nat]]p). We

know that in the model, [[P]] is related to itself in

L([[
∏

Counter. Counter → (Counter → Counter) → (Counter → nat) → nat]]r).

This, together with the above observations, implies that the pair

([[P nat 0 (λx : nat. x + 1) (λx : nat. x)]], [[P nat 0 (λx : nat. x + 2) (λx : nat. Div(x, 2))]])

is in L[[nat]]r . Since nat is a closed type, [[nat]]r is simply equality on [[nat]]p, so the

programs (11) and (12) have equal denotation and thus by adequacy (Corollary 7.8) are

contextually equivalent.

The use of parametricity in this model is unusual because of the mix of parametricity and

partiality. Very often, when reasoning with parametricity, one instantiates the parametricity

principle with graphs of functions, but since only total functions between chain complete

pers by their graphs give rise to well-defined relations between the pers, when reasoning

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 680

about the graph of a PolyFPC-term, we must first prove that it is total. Example 8.2

shows how the reasoning fails when we use graphs of partial functions.

Example 8.2. Consider the PolyFPC program P = Λα. λx : α. (λy : α. ∗)x, which has type∏
α. α → 1. By parametricity, one would expect, for any pair of types α, β, and any relation

R between them, that if R(x, y), then P (α)(x) = P (β)(y). But consider for the relation R

the graph of the function λx : 1.Ω1 : 1 → 1, where Ω1 denotes a non-terminating program

of type 1. Then R(�,Ω1), but P (1)(�) terminates, whereas P (1)(Ω1) does not.

In future work it will be interesting to lift the parametricity principle of the model to a

logic on PolyFPC. Corollary 7.8 should verify the logic in the sense that two terms that

are provably equal in the logic should be ground contextually equivalent. Since the logic

reasons about partial functions, it needs to include a termination predicate (−) ↓. The mix

of parametricity and partiality will have the following consequences for the logic:

— Only total functions will have graphs that can be used to instantiate the parametricity

principle.

— The relational interpretation of the → type constructor will relate f to g in R → S

for relations R and S if and only if f ↓ ⇐⇒ g ↓, and, furthermore, for all (x, y) ∈ R,

f(x) ↓ ⇐⇒ g(y) ↓ and f(x) ↓ implies S(f(x), g(y)).

— The parametricity principle in the logic will say that two terms e, f of, say, closed type∏
α. σ, are ground contextually equivalent if and only if e ↓ ⇐⇒ f ↓ and, furthermore,

for all pairs of types τ, τ′ and any relation R between them, e(τ) ↓ ⇐⇒ f(τ′) ↓ and

e(τ) ↓ implies (e(τ), f(τ′)) ∈ σ[R].

In addition to the parametricity principle, the logic should also include reasoning

principles for recursive types, as in Pitts work (Pitts 1996). These are verified by the model

because, as we have proved, the recursive types in the model are initial dialgebras.

Related recent work by Johann and Voigtländer (Voigtländer and Johann 2006)

develops similar parametricity principles using operational methods, but in a setting

without general recursive types as here.

Remark 8.1. The recursive types of PolyFPC were modelled here using encodings in

PILLY . In particular, they were not encoded in PolyFPC using parametricity principles.

In fact, the usual encodings of inductive and coinductive types using parametricity known

from second-order lambda calculus cannot be used to encode recursive types in PolyFPC.

For example, the type
∏

α. α → α, which in second-order lambda calculus is a unit type,

is interpreted in our model as the three point per

{{⊥}, {〈ι,⊥〉}, {〈ι, ι〉}}.

Syntactically, this corresponds to the three observationally different terminating programs

of this type:

Λα.Ωα→α, Λα. λx : α.Ωα, Λα. λx : α. x,

where Ωσ denotes the non-terminating program of type σ.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 681

9. Conclusions

By showing that the solutions to recursive domain equations in the linear part of the

calculus PILLY can be used to interpret recursive types in languages with no linearity,

we have shown that PILLY with parametric polymorphism is a useful axiomatic setup

for domain theory. However, since PILLY is a type theory with polymorphism, it would

be reasonable to expect that the constructed interpretation of FPC into PILLY could

be extended to PolyFPC, and indeed this would help justify the theory as a theory for

domain theory and polymorphism since this would be something that could not be done

in classical domain theory. Unfortunately, I see no way of doing so in general. The

problem seems to be that there is no way of quantifying over all coalgebras in PILLY .

The polymorphic types give a way of quantifying over all types, and the type constructors

give a way of talking about all maps of type α �!α for a given type α, but there is no

way to quantify over all coalgebra maps on a given type in PILLY .

As we have seen, in the special case of the admissible per model, the interpretation

of FPC does extend to full PolyFPC. This particular model is interesting for two other

reasons: the resulting PolyFPC model has a particularly simple presentation in this case,

and it is computationally adequate. The latter result gives a strong connection between

the syntax and semantics of PolyFPC, which is similar to that known for FPC in classical

domain theory, and it means that the reasoning principles for parametricity and recursive

types present in the model can be lifted to a logic for PolyFPC. The parametricity principle

in the model can be used to prove modularity principles for PolyFPC along the lines of

Pitts (2005).

As mentioned in the introduction, other models of languages with recursive types

have been suggested using pers over reflexive domains (Abadi and Plotkin 1990). The

models mentioned in loc. cit. are based on a different category of pers, namely, admissible

pers satisfying a uniformity condition among other axioms, which makes possible an

adaptation of the solution of recursive domain equations from domain theory to the

category of pers in question. The definition of the category of pers used in the model

presented here is surprisingly simple in comparison because we use parametricity to solve

recursive domain equations. But the real difference between the two models is that this

paper presents a parametric model of PolyFPC.

Appendix A. Proof of Proposition 5.4

Recall that we use F to denote the action of Fcoalg on morphisms of coalgebras as these

functors agree on morphisms, so whenever we write Fcoalg(ξ) in this proof, we actually

mean Fcoalg applied to a coalgebra ξ considered as an object in C!.

We first show that ξ is a coalgebra for the comonad. Note first that ε is a map of

F-algebras in the sense that

F(!μX. F(X))
Fcoalg(δ)��

F(ε)

��

!F(!μX. F(X))
!F(ε) �� !F(μX. F(X))

!in �� !μX. F(X)

ε

��
F(μX. F(X))

in �� μX. F(X)

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 682

commutes since

in ◦ F(ε) = in ◦ F(ε) ◦ ε ◦ Fcoalg(δ)

= in ◦ ε◦!F(ε) ◦ Fcoalg(δ)

= ε◦!in◦!F(ε) ◦ Fcoalg(δ).

So ε ◦ ξ is a map of algebras from in to itself, which means that it is the identity since in

is the initial algebra.

To show the second equation !ξ ◦ ξ = δ ◦ ξ, we first show that δ is a map of F-algebras

in the sense that the outer diagram in

F(!μX. F(X))
Fcoalg(δ) ��

F(δ)

��

!F(!μX. F(X))

!F(δ)

��

!F(ε) �� !F(μX. F(X))
!in �� !μX. F(X)

δ

��
F(!!μX. F(X))

Fcoalg(δ)�� !F(!!μX. F(X))
!!in◦!!F(ε)◦!Fcoalg(δ)◦!F(ε) �� !!μX. F(X)

(13)

commutes. The inner diagram on the left commutes since δμX.F(X) is a morphism of

coalgebras from δμX.F(X) to δ!μX.F(X), so, since Fcoalg is a functor, F(δμX.F(X)) is a morphism

of coalgebras from Fcoalg(δμX.F(X)) to Fcoalg(δ!μX.F(X)). The outer diagram commutes by the

following computation

δ◦!in◦!F(ε) ◦ Fcoalg(δ) = !!in◦!!F(ε) ◦ δ ◦ Fcoalg(δ)

= !!in◦!!F(ε)◦!Fcoalg(δ) ◦ Fcoalg(δ)

= !!in◦!!F(ε)◦!Fcoalg(δ)◦!F(ε)◦!F(δ) ◦ Fcoalg(δ)

= !!in◦!!F(ε)◦!Fcoalg(δ)◦!F(ε) ◦ Fcoalg(δ) ◦ F(δ)

(in the step going from the first to the second line we have used the fact that Fcoalg(δ) is

a coalgebra for the comonad). We show that !ξ is a map of F-algebras in the same way,

that is, by showing that the diagram

F(!μX. F(X))
Fcoalg(δ)

��

F(!ξ)

��

!F(!μX. F(X))

!F(!ξ)

��

!F(ε) �� !F(μX. F(X))
!in ��

!F(ξ)

��

!μX. F(X)

!ξ

��
F(!!μX. F(X))

Fcoalg(δ)
�� !F(!!μX. F(X))

!F(ε) �� !F(!μX. F(X))
!!in◦!!F(ε)◦!Fcoalg(δ)

�� !!μX. F(X)

(14)

commutes. The inner diagram on the right is just ! of the defining diagram for ξ, and

thus commutes. The inner diagram in the middle is commutative by ε being a natural

transformation. Finally, the inner diagram on the left is commutative as !ξ is a map of

coalgebras from δμX.F(X) to δ!μX.F(X) (this is just naturality of δ), so F(!ξ) must be a map

of coalgebras from Fcoalg(δμX.F(X)) to Fcoalg(δ!μX.F(X)).

From (13) and (14) we see that δ ◦ ξ and !ξ ◦ ξ are both maps of F-algebras from in to

the same algebra, and thus, by the initiality of in, they must be equal. We conclude that

ξ is a coalgebra for the comonad !, and thus an object of C! as required.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 683

To see that (3) commutes, note first that since ξ is a map of coalgebras from ξ to

δμX.F(X), the diagram

F(μX. F(X))
F(ξ) ��

Fcoalg(ξ)

��

F(!μX. F(X))

Fcoalg(δ)

��
!F(μX. F(X))

!F(ξ) �� !F(!μX. F(X))

commutes. Now,

!in ◦ Fcoalg(ξ) = !in◦!F(ε)◦!F(ξ) ◦ Fcoalg(ξ)

= !in◦!F(ε) ◦ Fcoalg(δ) ◦ F(ξ)

= ξ ◦ in

(the last equation by the defining diagram for ξ), which proves the commutativity of (3).

Finally, we must prove the commutativity of (5) for the case where g is the unique map

making the top square commute. The bottom square is just ! applied to the top square,

and thus commutes. We show that the right-hand side of the cube commutes, which shows

that g is a map of coalgebras from ξ to χ. From this it follows that F(g) is a map of

coalgebras from Fcoalg(ξ) to Fcoalg(δ), that is, commutativity of the left-hand side of the

cube, since Fcoalg is a functor.

We prove equality of χ ◦ g and !g ◦ ξ by showing that they are both F-algebra maps

from in to

F(!X)
Fcoalg(δX) �� !F(!X)

!F(ε) �� !F(X)
!f �� !X ,

and then appealing to the initiality of in. To see that !g ◦ ξ is a map of algebras, consider

the diagram

F(μX. F(X))
F(ξ) ��

in

��

F(!μX. F(X))
F(!g) ��

Fcoalg(δ)

��

F(!X)

Fcoalg(δX)

��
!F(!μX. F(X))

!F(!g) ��

!F(ε)

��

!F(!X)

!F(ε)

��
!F(μX. F(X))

!F(g) ��

!in

��

!F(X)

!f

��
μX. F(X)

ξ �� !μX. F(X)
!g �� !X.

The outer diagram is the one we should prove commutes. The inner diagram on the left

is the defining diagram for ξ, the topmost inner diagram to the right is the functor Fcoalg

applied to the coalgebra map !g from δμX.F(X) to δX (it is a coalgebra map by naturality

of δ), and the two other inner diagrams on the right are !F(−) applied to the naturality

diagram for ε and !, respectively, applied to the defining diagram for g.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 684

To see that χ ◦ g is a map of F-algebras, consider the diagram

F(μX. F(X))
F(g) ��

in

��

F(X)
F(χ) ��

Fcoalg(χ)

����
��

��
��

�

f

��

F(!X)

Fcoalg(δX)

��
!F(X)

���������

���������
!F(χ) �� !F(!X)

!F(ε)

��
!F(X)

!f

��
μX. F(X)

g �� X
χ �� !X

We need to show that the outer diagram commutes. The inner diagram on the left is the

defining diagram for g. The lower inner diagram on the right is the assumption that f is

a map of coalgebras (that is, diagram (4)) and the topmost diagram is just Fcoalg applied

to the map of coalgebras χ from χ to δ (which is a map of coalgebras since δ ◦ χ =!χ ◦ χ

holds because χ is assumed to be a coalgebra for the comonad).

As promised, we have shown that χ ◦ g and !g ◦ ξ are both F-algebra maps from in to

the same F-algebra, and thus, by the initiality of in, they must be equal. This concludes

the proof of Proposition 5.4.

Acknowledgements

This paper contains ideas and creative input from Lars Birkedal, Eugenio Moggi, Rasmus

Lerchedahl Petersen, Pino Rosolini and Alex Simpson. Suggestions from the anonymous

referee also led to great improvements in the text.

References

Abadi, M. and Plotkin, G. (1990) A per model of polymorphism and recursive types. In: 5th Annual

IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press 355–365.

Amadio, R.M. (1993) On the adequacy of per models. In: Borzyszkowski, A.M. and Sokolowski, S.

(eds.) Mathematical Foundations of Computer Science 1993, 18th International Symposium.

Springer-Verlag Lecture Notes in Computer Science 711 222–231.

Barber, A. (1997) Linear Type Theories, Semantics and Action Calculi, Ph.D. thesis, Edinburgh

University.

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1992) Term assignment for intuitionistic

linear logic. Technical Report 262, Computer Laboratory, University of Cambridge.

Benton, N. (1995) A mixed linear and non-linear logic: Proofs, terms and models (preliminary

report). Technical report, University of Cambridge.

Birkedal, L. and Møgelberg, R. E. (2005) Categorical models of Abadi and Plotkin’s logic for

parametricity. Mathematical Structures in Computer Science 15 (4) 709–772.

Birkedal, L., Møgelberg, R. E. and Petersen, R. L. (2006a) Linear Abadi & Plotkin logic. Logical

Methods in Computer Science 2.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

From polymorphism to models of polymorphic FPC 685

Birkedal, L., Møgelberg, R. E. and Petersen, R. L. (2006b) Parametric domain-theoretic models of

polymorphic intuitionistic / linear lambda calculus. Electr. Notes Theor. Comput. Sci 155 191–217.

Birkedal, L., Møgelberg, R. E. and Petersen, R. L. (2007) Domain theoretic models of parametric

polymorphism. Theoretical Computer Science 388.

Birkedal, L., Møgelberg, R. E. and Petersen, R. L. (2008) Category theoretic models of linear Abadi

& Plotkin logic. Theory and Application of Categories 20 (7) 116–151.

Fiore, M. (1996) Axiomatic Domain Theory in Categories of Partial Maps, Distinguished Dissertations

in Computer Science, Cambridge University Press.

Freyd, P. (1990a) Algebraically complete categories. In: Carboni, A., Pedicchio, M.C. and Rosolini,

G. (eds.) Category Theory. Proceedings, Como 1990. Springer-Verlag Lecture Notes in Computer

Science 1488 95–104.

Freyd, P. (1990b) Recursive types reduced to inductive types. In: Proceedings of the fifth IEEE

Conference on Logic in Computer Science 498–507.

Freyd, P. (1991) Remarks on algebraically compact categories. In: Fourman, M. P., Johnstone, P.

and Pitts, A.M. (eds.) Applications of Categories in Computer Science. Proceedings of the LMS

Symposium, Durham 1991. London Mathematical Society Lecture Note Series 177 95–106.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Hyland, J. (1988) A small complete category. Annals of Pure and Applied Logic 40 (2) 135–165.

Hyland, J., Johnstone, P. and Pitts, A. (1980) Tripos theory. Mathematical Proceedings of the

Cambridge Philosophical Society 88.

Jacobs, B. (1994) Semantics of weakening and contraction. Annals of Pure and Applied Logic 69

73–106.

Jacobs, B. (1999) Categorical Logic and Type Theory. Studies in Logic and the Foundations of

Mathematics 141, Elsevier.

Johann, P. and Voigtländer, J. (2004) Free theorems in the presence of seq. In: Proc. of 31st ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL 2004, Venice, Italy,

14–16 Jan. 2004, ACM Press 99–110.

Johnstone, P. T. (2002) Sketches of an elephant: a topos theory compendium. Vol. 2, Oxford Logic

Guides 44, Oxford University Press.

Kock, A. (1970) Monads on symmetric monoidal closed categories. Archiv der Mathematik 21 1–10.

Kock, A. (1972) Strong functors and monoidal monads. Archiv der Mathematik 23 113–120.

Lambek, J. and Scott, P. (1986) Introduction to higher order categorical logic, Cambridge University

Press.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag.

Maneggia, P. (2004) Models of Linear Polymorphism, Ph.D. thesis, University of Birmingham.

Maraist, J., Odersky, M., Turner, D.N. and Wadler, P. (1999) Call-by-name, call-by-value, call-by-

need and the linear lambda calculus. Theoretical Computer Science 228 (1-2) 175–210.

Møgelberg, R. E. (2005) Categorical and domain theoretic models of parametric polymorphism, Ph.D.

thesis, IT University of Copenhagen.

Pitts, A. (1996) Relational properties of domains. Information and Computation 127 66–90.

Pitts, A.M. (2005) Typed operational reasoning. In: Pierce, B. C. (ed.) Advanced Topics in Types and

Programming Languages, The MIT Press 245–289.

Plotkin, G. (1985) Lectures on predomains and partial functions. Notes for a course given at the

Center for the Study of Language and Information, Stanford.

Plotkin, G. (1993a) Second order type theory and recursion. Notes for a talk at the Scott Fest.

Plotkin, G.D. (1993b) Type theory and recursion (extended abstract). In: Proceedings, Eighth Annual

IEEE Symposium on Logic in Computer Science, Montreal, Canada, IEEE Computer Society Press

374.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

R. E. Møgelberg 686

Plotkin, G. and Abadi, M. (1993) A logic for parametric polymorphism. In: Typed lambda calculi

and applications (Utrecht 1993). Springer-Verlag Lecture Notes in Computer Science 664 361–375.

Reynolds, J. (1983) Types, abstraction, and parametric polymorphism. Information Processing 83

513–523.

Robinson, E. and Rosolini, G. (1994) Reflexive graphs and parametric polymorphism. In: Abramsky,

S. (ed.) Proc. 9th Symposium in Logic in Computer Science, Paris, IEEE Computer Society Press

364–371.

Scott, D. (1970) Outline of a mathematical theory of computation. In: 4th Annual Princeton

Conference on Information Sciences and Systems 169–176.

Scott, D. (1976) Data types as lattices. SIAM Journal of Computing 5 (3) 522–587.

Tse, S. and Zdancewic, S. (2004) Translating dependency into parametricity. j-SIGPLAN 39 (9)

115–125.

van Oosten, J. (2008) Realizability; An Introduction to its Categorical Side. Studies in Logic and

the Foundations of Mathematics 152, Elsevier.

Voigtländer, J. and Johann, P. (2006) Selective strictness and parametricity in structural operational

semantics. Technical Report TUD-FI06-02, Technische Universität Dresden.

https://doi.org/10.1017/S096012950900766X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950900766X

