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THE DEFINABILITY STRENGTH OF COMBINATORIAL PRINCIPLES

WEIWANG

Abstract. We introduce the definability strength of combinatorial principles. In terms of definability
strength, a combinatorial principle is strong if solving a corresponding combinatorial problem could help
in simplifying the definition of a definable set. We prove that some consequences of Ramsey’s Theorem for
colorings of pairs could help in simplifying the definitions of some Δ02 sets, while some others could not. We
also investigate some consequences of Ramsey’s Theorem for colorings of longer tuples. These results of
definability strength have some interesting consequences in reverse mathematics, including strengthening
of known theorems in a more uniform way and also new theorems.

§1. Introduction. In early ages of reverse mathematics, people found that many
classical theorems in ordinarymathematics, when formulated in second order arith-
metic, are equivalent to certain subsystems of second order arithmetic over the
Recursive Comprehension Axiom (RCA0), in terms of their provability strength.
The most prominent subsystems are the so-called big five: RCA0, WKL0, ACA0,
ATR0, andΠ11 -CA,with their provability strength growing strictly stronger from left
to right. So the big five give us a nice ruler, by which the provability strength ofmany
classical theorems can be precisely measured. But there are exceptions. One of these
exceptions is the instance of Ramsey’s Theorem for 2-colorings of pairs, denoted by
RT22. From Jockusch [10], we can see that every instance of Ramsey’s Theorem is a
consequence of ACA0, the instance for colorings of triples is equivalent to ACA0
over RCA0, and RT

2
2 is not implied by WKL0; later Seetapun [16] proved that RT

2
2

is strictly weaker than ACA0 over RCA0. Since Seetapun’s work, people have found
many propositions in second order arithmetic related more or less to RT22 whose
provability strength cannot be precisely measured by the ruler. People started com-
paring the provability strength of these propositions to each other and have revealed
a very complicated picture. For a general impression of this complicated picture,
we refer the reader to the Reverse Mathematics Zoo (http://rmzoo.uconn.edu/)
maintained by Dzhafarov.
Most propositions in the complicatedpicture are combinatorial principles and can
be formulated as Π12 sentences, i.e., sentences of the form Φ = (∀X )(∃Y )ϕ(X,Y ),
where ϕ is arithmetic. Given such Φ, each X represents an instance of the cor-
responding combinatorial problem, and each Y satisfying ϕ(X,Y ), a solution.
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A popular and fruitful approach to examine the provability strength of Φ is to
analyze its computability strength. If for each set W in a certain class of noncom-
putable sets, there exists a computable Φ-instance X such that every solution Y
to the instance X can code W in some effective way, then we may say that Φ has
strong computability strength in some sense; otherwise, Φ is considered weak. By
relativization, usually we can build an �-model of a base system (e.g., RCA0) and
a Π12 proposition Ψ with weak computability strength, which does not contain any
solution to a computable instance of another Π12 proposition Φ with strong com-
putability strength. So we conclude that Ψ does not imply Φ over the base system.
The analysis of computability strength is not limited to comparing propositions
with different provability strength, but it can also help us comparing propositions
that have equal provability strength, as shown in [4].
In this paper, we introduce a new kind of analysis, based on what we call the
definability strength.Roughly, if Φ is aΠ12 sentence then the definability strength ofΦ
is measured by whether solving aΦ-instance helps in simplifying certain definability
problem. A formal definition is given in Definition 2.1. Here, we mainly apply this
analysis to Π12 propositions in Ramsey theory and also related propositions studied
in reverse mathematics.
As the analysis of computability strength, analyzing the definability strength ofΠ12
propositions also leads to consequences in reverse mathematics. We shall present
several results of this kind here. These new results introduce more chaos to the
Reverse Mathematics Zoo. However, they also give us a rather clear classification
of most animals in the Zoo by definability strength. Interestingly, the analysis of
definability strength also yields new proofs of known reversemathematics theorems,
which were obtained by the analysis of computability strength. Though this new
analysis sounds a little coarser than that of computability strength, it gives some
new proofs in a more uniform way. For example, people have proved several theo-
rems concerning the provability strength of the Ascending or Descending Sequence
principle (ADS), and some of these proofs share little similarity. But through the
analysis of definability strength we obtain new proofs which all depend on the
definability strength of ADS.Moreover, as definability appears naturally in various
areas of logic and the new analysis connects combinatorial principles to definability
problems, we believe that this new analysis is interesting in its own right.
Below, we briefly introduce the remaining parts of this paper:

• In Section 2, we give a formal definition of the center concept of this paper and
prove some general facts which will facilitate our concrete analysis.

• In Section 3, we study some computability notions and Π12 propositions which
are weak in terms of definability strength.

• In Section 4, we show that some other Π12 propositions are strong in terms of
definability strength.

• In Section 5, we conclude this paper with a summarization of the definability
strength results, some consequences in reverse mathematics and a few remarks.

We finish this section with a few words on notation and background knowledge.
If s and t are two finite sequences, then we write st for the concatenation of
s and t. If x is a single symbol, then 〈x〉 is the finite sequence with only one symbol
x. The length of a finite sequence s is denoted by |s |. If l < |s |, then s � l is the
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initial segment of s of length l . ForX ⊆ �,X � l is interpreted as an initial segment
of the characteristic function of X in the obvious way.
Recall that [X ]r for 0 < r < � is the set of r-element subsets of X . We also

write [X ]� for the set of countable subsets of X ; [X ]<r, [X ]≤r , [X ]<�, [X ]≤� are
interpreted naturally. If X ⊆ �, then elements of [X ]≤� are identified with strictly
increasing sequences. We use �, �, . . . for elements of �<� . Under the above con-
vention, we may perform both sequence operations and set operations on elements
of [�]<� . For example, we can write �� for � ∪ �, if � and � are in [�]<� and
max� < min �; � ⊆ � if � is a subset of �; and � − � = {x ∈ � : x 	∈ �}. We extend
this convention to infinite subsets of�, so we write �X for � ∪X , if max � < minX
and X ∈ [�]≤� . We fix a computable bijection �·� : �<� → � and occasionally
identify � with ���. So we may write � < � for ��� < ���, etc.
For two setsX andY , we writeX ⊆∗ Y ifX −Y is finite andX =∗ Y ifX ⊆∗ Y
and Y ⊆∗ X .
When we work on Ramsey theory, we call a function as a coloring. For a positive
integer c, a c-coloring is a coloring with range contained in c = {0, 1, . . . , c − 1}.
A homogeneous set of a coloring f on [�]n is a set H such that f is constant
on [H ]n . Ramsey’s Theorem states that for every positive integers c and n > 1
every c-coloring of [�]n admits an infinite homogeneous set. RTnc stands for the
instance of Ramsey’s Theorem for fixed n and c. Sometimes it is helpful to consider
stable colorings: a coloring f : [�]n+1 → � is stable if limx f(�〈x〉) exists for
all � ∈ [�]n .
It is widely understood that computable and recursive are synonymous and so are
computability and recursion theory. Here we prefer computable and computability
in most cases, since computability strength aligns better with its provability and
definability counterparts. However, we prefer primitively recursive to primitively
computable, as the former better indicates the definition both referring to.
For more notions in computability and reverse mathematics, we refer the reader
to Soare [18] and Simpson [17]. We also need some knowledge in algorithmic
randomness which can be found in Downey and Hirschfeldt [5]. Furthermore,
we recommend Hirschfeldt [7] for a general picture of the reverse mathematics of
Ramsey theory.

§2. Preparations. Our center concept is formulated below.
Definition 2.1. A set Y preserves properly Ξ-definitions (relative to X ) for Ξ
among Δ0n+1,Π

0
n,Σ

0
n where n > 0, if every properly Ξ (relative to X ) set is properly

Ξ relative to Y (X ⊕ Y ). Y preserves the arithmetic hierarchy (relative to X ) if Y
preserves Ξ-definitions (relative to X ) for all Ξ among Δ0n+1,Π

0
n,Σ

0
n where n > 0.

Suppose thatΦ = (∀X )(∃Y )ϕ(X,Y ) andϕ is arithmetic.Φ admits preservation of
properlyΞ-definitions if for eachZ andX ≤T Z there existsY such thatY preserves
properly Ξ-definitions relative toZ and ϕ(X,Y ) holds. Φ admits preservation of the
arithmetic hierarchy if for each Z and X ≤T Z there exists Y such that Y preserves
the arithmetic hierarchy relative to Z and ϕ(X,Y ) holds.

As Ξ-definitions relative to X are trivially Ξ relative to X ⊕ Y , usually we omit
the adverb properly in the above definition and simply say that Y preserves Ξ-
definitions, etc.
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If Φ admits preservation of Ξ-definitions then solving Φ-instances does not sim-
plify any proper Ξ-definition. Thus we may classify Φ as a weak proposition. So the
above definition captures our motivation in Section 1. In the remaining part of this
section, we prove some propositions which will help us in proving preservation and
nonpreservation results later.
The first proposition slightly simplifies Definition 2.1.

Proposition 2.2. Suppose that n > 0.

(1) A set Y preserves Σ0n-definitions relative to X if and only if Y preserves Π
0
n-

definitions relative to X .
(2) If Y preserves Δ0n+1-definitions relative to X then Y preserves Π

0
n-definitions

relative to X .
(3) A set Y preserves Δ0n+1-definitions relative to X if and only if Δ

X
n+1 − ΣXn ⊆

ΔX⊕Yn+1 − ΣX⊕Yn .
(4) Let Φ = (∀X )(∃Y )ϕ(X,Y ) with ϕ being arithmetic. If for each X ≤T Z and
for every sequence (Ai : i < �) with no Ai being ΣZn there exists Y such that
ϕ(X,Y ) holds and no Ai is ΣZ⊕Yn , then Φ admits simultaneous preservation of
Σ0n-,Π

0
n- and Δ

0
n+1-definitions.

Proof. (1) follows trivially from that the complement of a ΠXn set is a Σ
X
n set.

For (2), suppose that A ∈ (ΠXn − ΔXn ) ∩ ΔX⊕Yn . Then A ≤T (X ⊕ Y )(n−1)
and A ⊕ X (n−1) is of properly computably enumerable degree relative to X (n−1).
By relativizing a construction of Shore (see [18, Section VI.3.9] or [5, Theorem
8.21.15]), there exists G ≤T A ⊕ X (n−1) which is 1-generic relative to X (n−1) and
thus n-generic relative to X . So G is properly ΔXn+1. But

G ≤T A⊕ X (n−1) ≤T (X ⊕ Y )(n−1).
Hence G is Δ0n in X ⊕ Y and witnesses that Y does not preserve Δ0n+1-definitions
relative to X .
For the only-if part of (3), suppose that Y preserves Δ0n+1-definitions relative to
X . Fix an arbitraryA ∈ ΔXn+1 −ΣXn . Then either A is properly ΔXn+1 or A is properly
ΠXn . In the former caseA is properly Δ

X⊕Y
n+1 , while in the latterA is properly Π

X⊕Y
n by

(2). So in either case,A ∈ ΔX⊕Yn+1 −ΣX⊕Yn . For the if part, suppose that ΔXn+1−ΣXn ⊆
ΔX⊕Yn+1 − ΣX⊕Yn and A ∈ ΔXn+1 −ΠXn . Then � − A ∈ ΔXn+1 − ΣXn ⊆ ΔX⊕Yn+1 − ΣX⊕Yn .
Thus A ∈ ΔX⊕Yn+1 −ΠX⊕Yn . So Y preserves Δ0n+1-definitions relative to X .
(4) follows from (1–3) and that there are only countably arithmetic sets. �
Note that the converse of Proposition 2.2(2) does not hold. For example, a
Δ02 1-generic G does not preserve Δ

0
2-definitions but preserves Π

0
1-definitions since

the only computably enumerable sets computable in G is the computable sets.
Furthermore, every low set preserves Π02-definitions. Thus nonpreservation of Δ

0
2-

definitions does not imply nonpreservation of Π02-definitions.
In the light of Proposition 2.2(4), people may suggest to introduce a notion like
preservation of non-computable-enumerabilitywhich sounds stronger than preserva-
tion of Δ02 sets. However, preservation of non-computable-enumerability literally
implies that every non-computably-enumerable set is noncomputably-enumerable
relative to Y . But a noncomputable Y with such a property cannot be computably
enumerable and thus only computable sets preserve noncomputable-enumerability.
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On the other hand, preservation of the arithmetic hierarchy does not seem admitting
an alternative like preservation of noncomputable-enumerability.
Next we present a proposition that connects definability strength and computabil-
ity strength. If ϕ is arithmetic and Φ = (∀X )(∃Y )ϕ(X,Y ) and if for every Z and
X ≤T Z and every countable sequence (Ai : i < �) of sets not computable in Z
there exists Y such that ϕ(X,Y ) and Ai 	≤T Z ⊕ Y for each i , then we say that Φ
admits simultaneous avoidance of countably many cones.
Proposition 2.3. If Φ is a Π12 sentence that admits simultaneous avoidance of
countably many cones then Φ admits preservation of Σ01- andΠ

0
1-definitions.

Proof. By Proposition 2.2, it suffices to prove the preservation of Π01-definitions.
Suppose that Φ = (∀X )(∃Y )ϕ(X,Y ) and ϕ is arithmetic. Fix Z, X ≤T Z and
(Ai : i < �) such that each Ai is properly ΠZ1 . Let Y be such that ϕ(X,Y ) and
Ai 	≤T Z ⊕ Y . Then every Ai is properly Π01 in Z ⊕ Y . �
The last proposition of this section shows us how the analysis of definability
strength leads to reverse mathematics consequences. If S is a subset of 2� and Ξ is
among Δ0n+1,Π

0
n and Σ

0
n, then we write Ξ(S) for the set {A : (∃X ∈ S)(A ∈ ΞX )}.

We say that S preserves Ξ-definitions (relative to Z) if every properly Ξ (relative to
Z) set is properly Ξ(S) (Ξ(Z ⊕ S) where Z ⊕ S = {Z ⊕ X : X ∈ S}), and S
preserves the arithmetic hierarchy (relative toZ) if S preserves Ξ-definitions (relative
to Z) for every Ξ among Δ0n+1,Π

0
n,Σ

0
n where n > 0. These notions can be naturally

extended to �-models.

Proposition 2.4. Suppose that (Φi : i < �) andΨ are trueΠ12 sentences and Ξ is
among Δ0n+1,Π

0
n,Σ

0
n where n > 0.

(1) All Φi admit preservation of Ξ-definitions, if and only if for each Z there
exists an �-model (�,S) of RCA0 and

∧
i Φi which contains Z and preserves

Ξ-definitions relative to Z.
(2) IfΨ does not admit preservation of Ξ-definitions, then there exists Z such that
every�-model (�,S) ofRCA0 +Ψ containingZ does not preserveΞ-definitions
relative to Z.

(3) If every Φi admits preservation of Ξ-definitions butΨ does not then

RCA0 +
∧
i

Φi 	� Ψ.

So, if RCA0 +
∧
i Φi � Ψ and Ψ does not admit preservation of Ξ-definitions,

then some Φi does not admit preservation of Ξ-definitions either.
Proof. (1) Suppose that Φi = (∀X )(∃Y )ϕi (X,Y ).

For an arbitrary Z, if we have an �-model (�,S) as described then for
every Φi and every X ≤T Z we can pick Y ∈ S such that ϕi(X,Y ) holds
and Y preserves Ξ-definitions relative to Z. So every Φi admits preservation
of Ξ-definitions.
Conversely, suppose that every Φi admits preservation of Ξ-definitions,
then we can build a sequence ((�,Sn) : n < �) such that
• each Sn is of the form {Y : Y ≤T Xn} for some Xn and X0 = Z;
• Xn ≤T Xn+1 and Xn+1 preserves Ξ-definitions relative to Xn;
• for each i andX ∈ Sn there existm > n andY ∈ Sm such thatϕi (X,Y ).
Let S = ⋃

n Sn. Then (�,S) is as desired.
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(2) Suppose that Ψ = (∀X )(∃Y )�(X,Y ) does not admit preservation of Ξ-
definitions. Then there exist Z and X ≤T Z such that if �(X,Y ) then Y
does not preserve Ξ-definitions relative to Z. Hence S does not preserve
Ξ-definitions relative to Z for any (�,S) |= RCA0 +Ψ containing Z.

(3) follows directly from (1) and (2). �

§3. Preservations. Recall that our main purpose is to analyze the definability
strength of propositions in Ramsey theory. Here we show that someΠ12 propositions
are weak in terms of definability strength. We also show that some computability
notions related to the reverse mathematics of Ramsey theory are also weak.

3.1. Cohen genericity and randomness. It is not surprising that both Cohen
generic and random reals are weak in terms of definability strength.

Proposition 3.1. If G is sufficiently Cohen generic relative to X then G preserves
the arithmetic hierarchy relative to X .

Proof. We use � for Cohen forcing. Note that {i : � � ϕ(G, i)} is ΣXn if ϕ is ΣXn
and � ∈ 2<� .
Suppose thatA 	∈ ΣXn and ϕ is ΣXn where n > 0. We claim that the following set is
meager:

S = {Y : (∀i)(i ∈ A↔ ϕ(Y, i))}.
Otherwise, S would be comeager in {Y : � ≺ Y} for some � ∈ 2<�. So, A = {i :
� � ϕ(G, i)}. But then A would be ΣXn . Hence if G is sufficiently Cohen generic
relative to X then A 	∈ ΣX⊕Gn .
By Proposition 2.2, G preserves the arithmetic hierarchy relative to X . �
If we carefully examine the above proof then we can obtain the following finer
result. Recall that G is weakly n-generic relative to X if G meets every ΣXn dense
open set of Cantor space (see [5, Section 2.24]).

Corollary 3.2. IfG is weakly (n+1)-generic relative toX thenG simultaneously
preserves Π0n-, Σ

0
n- and Δ

0
n+1-definitions relative to X .

Proof. Fix G being weakly (n + 1)-generic relative to X . By Proposition 2.2, it
suffices to show that ΔXn+1−ΣXn ⊆ ΔX⊕Gn+1 −ΣX⊕Gn . Let A ∈ ΔXn+1−ΣXn and ϕ be ΣXn .
By the proof of Proposition 3.1, the following set is dense and ΣXn+1:

D = {� : (∃i)((i ∈ A ∧ � � ¬ϕ(Ġ , i)) ∨ (i 	∈ A ∧ � � ϕ(Ġ , i)))}.
So G meets D and A 	= {i : ϕ(G, i)}. �
Weapply Proposition 3.1 to aΠ12 statementwhich connects the existence ofCohen
generic and the reverse mathematics of model theory. Introduced by Hirschfeldt,
Shore and Slaman [9], Π01 G asserts that for every uniformly Π

0
1 sequence (Dn :

n < �) of dense open sets in Cantor space there exists G ∈ ⋂
n Dn . It follows

immediately from Proposition 3.1 that:

Corollary 3.3. Π01 G admits preservation of the arithmetic hierarchy.

For the next preservation result concerning random reals, we identify R with
Cantor space and denote Lebesgue measure by m. Recall that a real is sufficiently
random if it avoids sufficiently many Lebesgue null sets.
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Proposition 3.4. If R is sufficiently random relative to X then R preserves the
arithmetic hierarchy relative to X .
Proof. Suppose that A 	∈ ΣXn and ϕ is ΣXn where n > 0. We claim that the
following set is Lebesgue null:

S = {Y : (∀i)(i ∈ A↔ ϕ(Y, i))}.
Otherwise there would exist � ∈ 2<� such that

m{Y ∈ S : � ≺ Y} > 2−|�|−1.

Then
A = {i : m{Y : � ≺ Y ∧ ϕ(Y ; i)} > 2−|�|−1},

and A would be ΣXn by Kurtz [12, Lemma 2.1a] (see also [5, Lemma 6.8.1]),
contradicting that A 	∈ ΣXn . Hence if R is sufficiently random relative to X then
A 	∈ ΣX⊕Rn .
By Proposition 2.2, R preserves the arithmetic hierarchy relative to X . �
Similarly, if we examine the effectiveness of the above proof then we can obtain
the finer preservation result below. Recall that a real is weakly n-random if it avoids
every Π0n null set (see [5, Section 7.2]).

Corollary 3.5. IfR is weakly (n+1)-random relative toX thenR simultaneously
preserves Σ0n-,Π

0
n- and Δ

0
n-definitions relative to X .

Proof. Fix R being weakly (n + 1)-random relative to X . As in the proof of
Corollary 3.2, it suffices to show thatΔXn+1−ΣXn ⊆ ΔX⊕Rn+1 −ΣX⊕Rn . LetA ∈ ΔXn+1−ΣXn
and ϕ be ΣXn . By the proof of Proposition 3.4, the following set is Π

X
n+1 and null:

S = {Y : (∀i)(i ∈ A↔ ϕ(Y, i))}.
So R 	∈ S and A 	= {i : ϕ(R, i)}. �
From the short proofs above, the reader may have found that the definability of
forcing is a key to preservation.

3.2. Weak König’s Lemma. We devote this section to the proof of the following
preservation theorem for WKL0. Recall that WKL0 is the statement that every
infinite binary tree has an infinite path.
Theorem 3.6. WKL0 admits preservation of the arithmetic hierarchy.
As in the last subsection, we prove the above theorem by proving the definability
of a forcing. We fix an X and an X -computable infinite binary tree T0 and need to
findG ∈ [T0] preserving the arithmetic hierarchy relative to X . As our proof will be
relativizable, we may assume thatX is computable. To build G , we build a sequence
of computable trees (Ti : i < �) such that each Ti+1 is an infinite subtree of Ti , and
then obtain G as a member of

⋂
i [Ti ]. We introduce a forcing notion and require

that each Ti is a condition forcing a fragment of the preservation requirement.

Definition 3.7. If T is a computable subtree of 2<� , then a primitively recursive
subtree S of T is a tree of the form

S = T ∩R,
where R is a primitively recursive subset of 2<� . Let Pr(T ) denote the set of all
primitively recursive subtrees of T . Note that a tree in Pr(T ) could be finite.
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Let P be the set of infinite primitively recursive subtrees of T0. A tree in P is a
forcing condition. For S and T in P, S ≤ T if and only if S is a subtree of T .
The following lemma shows that moving from computable trees to primitively
recursive trees costs nothing as long as we concern only the set of infinite paths of
a tree.

Lemma 3.8. For every computable tree S, there exists a primitively recursive tree
T such that [S] = [T ].
Proof. Fix a computable tree S. Let �(�; �x) be a Σ00 formula such that

S = {� : (∀�x)¬�(�, �x)}.
Let

T = {� : (∀�x)(max �x < |�| → ¬�(�, �x))}.
Then T is a primitively recursive tree and [S] = [T ]. �
So we assume that every computable tree appearing below is primitively recursive.
The main advantage of using primitively recursive trees is that we can better control
the complexity.

Lemma 3.9. Suppose that T ∈ P. Then Pr(T )− P can be identified with a Σ01 set.

Proof. Fix a computable enumeration (Sn : n < �) of Pr(T ).

Sn 	∈ P ⇔ Sn is finite⇔ (∃m)(∀� ∈ 2m)(� 	∈ Sn).
So Pr(T )− P can be identified with the Σ01 set {n : Sn is finite}. �
We define the forcing relation below. Our forcing language is the first order
language of arithmetic augmented by a unary predicate G .

Definition 3.10. Let T ∈ P.

(1) If �(G, �x) is Σ00, then

T � (∃�x)� ⇔ (∃n)(∀� ∈ 2n ∩ T )(∃ �m)(max �m < n ∧ �(�, �x)[ �m])
and

T � ¬(∃�x)� ⇔ (∀� ∈ T )(∀�n)(max �n < |�| → ¬�(�, �x)[�n]).
(2) Suppose that ϕ(G) is a prenex formula not of the above forms.
(a) If ϕ(G) is of the form (∃x)�(G ;x), then

T � ϕ(G)⇔ (∃n)(T � �(G,x)[n]).
(b) If ϕ(G) is of the form ¬�(G), then

T � ϕ(G)⇔ S 	� �(G) for all S ≤ T,
where S 	� �(G) means ¬(S � �(G)).

Definition 3.10 appears slightly different from usual forcing definitions. The dif-
ference is introduced for definability purpose. But the next two lemmata show that
this difference is superficial.

Lemma 3.11. For every arithmetic formula ϕ, the following set is dense

{T ∈ P : T � ϕ or T � ¬ϕ}.
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Proof. Fix a formula ϕ and a tree T ∈ P.
Suppose that ϕ is of the form (∃�x)� and � is Σ00. Let

S = {� ∈ T : (∀�n)(max �n < |�| → ¬�(�; �x)[�n])}.
Clearly S is a computable subtree of T . If S is infinite then S � ¬ϕ. If S is finite
then pick � ∈ T − S such that the following set is infinite:

R = {� ∈ T : � is comparable with �}.
Then R ∈ P and R ≤ T . As � ∈ T − S, �(�; �x)[�n] for some �n with max �n < |�|.
So R � ϕ.
If ϕ is not Σ01 then the density follows from clause (2b) of Definition 3.10. �
If F is a sufficiently P-generic filter then ⋂T∈F [T ] contains exactly one real G .
Conversely, from each real H we can define an induced filter F(H ) over P as the
trees in P having H as an infinite path. Moreover, if G is the real defined from a
generic filter F as above then F = F(G). So we may say that a real G is sufficiently
generic.

Lemma 3.12. Suppose that G is a sufficiently P-generic. Then for each n > 0 and
each Σ0n (Π

0
n) formulaϕ(G), ϕ(G) holds if and only ifT � ϕ(G) for someT ∈ F(G).

Proof. Suppose that � is Σ00 and ϕ = (∃�x)�. If ϕ(G) holds then �(G ; �x)[�n]
holds for some �n. Let

T = {� ∈ T0 : |�| ≤ max �n ∨ �(�; �x)[�n]}.
Then G ∈ [T ] and T � ϕ. Conversely, if T ∈ F(G) and T � ϕ then there exist n
and � ∈ 2n ∩ T such that � ≺ G and �(�; �x)[ �m] for some �m. Hence ϕ(G) holds.
Suppose that ϕ is not as above. If ϕ is of the form (∃x)� then

ϕ(G) holds ⇔ (∃n)(�(G ;x)[n] holds)
⇔ (∃n)(∃T ∈ F(G))(T � �(G ;x)[n])
⇔ (∃T ∈ F(G))(T � ϕ(G)),

where the second equivalence is by the induction hypothesis and the last is by clause
(2a) of Definition 3.10.
If ϕ is of the form ¬� then

ϕ(G) holds ⇔ �(G) does not hold
⇔ (∀T ∈ F(G))(T 	� �).

By Lemma 3.11 and the genericity of G and also by induction hypothesis, the last
statement above is equivalent to the following

T � ¬� for some T ∈ F(G). �
Next we show that our forcing relation is definable.

Lemma 3.13. If n > 0 then T � ϕ(G) is a Σ0n (Π0n) predicate for T ∈ P and Σ0n
(Π0n) prenex formula ϕ(G).

Proof. The case where n = 1 follows from clause (1) of Definition 3.10.
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Assume that n > 1. For ϕ(G) ∈ Σ0n , the lemma follows from the induction
hypothesis and Definition 3.10(2). Suppose that ϕ(G) is Π0n . Then ϕ(G) is of the
form ¬�(G) for some �(G) ∈ Σ0n. So,

T � ϕ(G)⇔ S 	� �(G) for all S ≤ T
⇔ (∀S ∈ Pr(T ))(S ∈ P → S 	� �(G)).

By the induction hypothesis, S 	� �(G) is a Π0n predicate of S. So the last statement
above is a Π0n predicate of T as n > 1 and Pr(T )− P is Σ01 by Lemma 3.9. �
Now we can show that the definability strength of P-generic reals is weak.

Lemma 3.14. If A 	∈ Σ0n (Π0n) and ϕ(G,x) ∈ Σ0n (Π0n) where n > 0, then the set of
T ∈ P satisfying the following property is dense:

(∃n ∈ A)(T � ¬ϕ(G ;x)[n]) ∨ (∃n 	∈ A)(T � ϕ(G ;x)[n]).

Proof. Fix T ∈ P. We need to find S ≤ T with
(∃n ∈ A)(S � ¬ϕ(G,x)[n]) ∨ (∃n 	∈ A)(S � ϕ(G,x)[n]).

Firstly, assume that A 	∈ Σ01 and ϕ(G,x) ∈ Σ01. Let
W = {n : (∃l)(∀� ∈ T ∩ 2l )ϕ(�, x)[n]}.

ThenW ∈ Σ01 and thusW 	= A. Fix n ∈W �A. If n ∈W − A, then let � ∈ T be
such that ϕ(�, n) and the following subtree of T is infinite:

S = {� ∈ T : � is comparable with �}.
Then S ≤ T and S � ϕ(G,x)[n]. Suppose that n ∈ A−W . Then let

S = {� ∈ T : ¬ϕ(�, x)[n]}.
By Lemma 3.8, we may assume that S ∈ P. Then S � ¬ϕ(G,x)[n].
Assume that n > 1, A 	∈ Σ0n and ϕ(G,x) ∈ Σ0n. Let

U = {n : (∃S ≤ T )(S � ϕ(G,x)[n])}.
By Lemmata 3.9 and 3.13,U ∈ Σ0n and thusU 	= A. Fix n ∈ A�U . If n ∈ A−U ,
then S 	� ϕ(G,x)[n] for all S ≤ T . By Definition 3.10, T � ¬ϕ(G,x)[n]. So we
can simply let S = T . If n ∈ U − A, then let S ≤ T be such that S � ϕ(G,x)[n].
Finally, assume that n > 0, A 	∈ Π0n and ϕ(G,x) ∈ Π0n . Then � − A 	∈ Σ0n and
ϕ(G,x) is of the form ¬�(G,x) for some �(G,x) ∈ Σ0n. By the proof above, the
following set is dense

{T ∈ P : (∃n ∈ � − A)(T � ¬�(G,x)[n]) ∨ (∃n 	∈ � − A)(T � �(G,x)[n])}.
Note that if T � �(G,x)[n] then T � ¬¬�(G,x)[n]. So the above set is contained
in the following set

{T ∈ P : (∃n 	∈ A)(T � ϕ(G,x)[n]) ∨ (∃n ∈ A)(T � ¬ϕ(G,x)[n])}.
This proves the lemma for the last case. �
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Theorem 3.6 follows from Lemmata 3.12 and 3.14.

3.3. COH. Cohesiveness is a notion that was introduced by computability the-
orists in the study of Turing degrees. Recall that a cohesive set for a sequence
(An : n < �) is an infinite set C such that either C ⊆∗ An or C ⊆∗ �−An for each
n. COH is the assertion that every sequence of sets has a cohesive set. Cholak et al
[2] introduced COH and proved that it is a consequence of RCA0 +RT

2
2. Here we

prove that COH enjoys a preservation property.

Theorem 3.15. If �A = (Ai : i < �) be Z-computable and (Bi : i < �) are such
that no Bi is ΣZ1 , then there exists an �A-cohesive set C such that no Bi is Σ

0
1 relative to

Z ⊕ C .
Hence COH admits preservation of Δ02-definitions.
The above theorem follows immediately from a property of Mathias forcing.
Recall that aMathias condition is a pair (�,X ) ∈ [�]<� × [�]� such that max � <
minX . We identify a Mathias condition (�,X ) with the set below:

{Y ∈ [�]� : � ⊂ Y ⊆ � ∪ X}.
For two Mathias conditions (�,X ) and (�, Y ), (�, Y ) ≤M (�,X ) if and only if
(�, Y ) ⊆ (�,X ) under the above convention.
Lemma 3.16. Let B be a set and (�,X ) be a Mathias condition such that X ≤T Z
and B 	∈ ΣZ1 . Then for every e there exists (�, Y ) ≤M (�,X ) such that Y =∗ X and
B 	=WZ⊕G

e for all G ∈ (�, Y ).
Proof. Let

W = {n : (∃G ∈ (�,X ))(n ∈WZ⊕G
e )}.

ThenW is ΣZ1 and thusW 	= A.
Fix n ∈ W � A. If n ∈ W − A then let G ∈ (�,X ) and l > |�| be such that
n ∈ WZ�l⊕G�l

e and let (�, Y ) = (G � l, X ∩ (max �,∞)). If n ∈ A −W then let
(�, Y ) = (�,X ). �
3.4. Erdős-MoserPrinciple. A tournament is a binary relationR ⊆ �×� induced
by a coloring c : [�]2 → 2 in the following way:

(c(x, y) = 1→ x R y) ∧ (c(x, y) = 0→ y R x).
A set X is transitive for a tournament R if R ∩ X 2 is a transitive relation. Erdős-
Moser Principle (EM) is the assertion that every tournament admits an infinite
transitive set.

Theorem 3.17. EM admits preservation of Δ02-definitions.
With Theorem 3.15, we can reduce the above theorem to a preservation property
of a consequence of EM. A stable tournament is a tournament induced by a stable
2-coloring. SEM is EM restricted to stable tournaments. By adapting [2, Lemma
7.11], RCA0 +COH+SEM � EM. So Theorem 3.17 follows from Proposition 2.4,
Theorem 3.15 and Lemma 3.18 below.

Lemma 3.18. For each Z and a Z-computable stable tournament R and each
sequence (Ai : i < �) of sets such that Ai 	∈ ΣZ1 for all i , there exists an infinite
R-transitive G such that Ai 	∈ ΣZ⊕G1 for all i . So SEM admits preservation of Δ02-
definitions.
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Below we prove the above lemma. Fix Z, R and (Ai : i < �) as in the statement
of Lemma 3.18. Without loss of generality, assume that Z is computable. We build
an infinite R-transitive G as desired by Mathias forcing.
Let f : � → 2 be as follows:

f(x) =
{
0,(∀∞y)(x R y);
1,(∀∞y)(y R x).

By the stability of R, f is total.
A Mathias condition (�,X ) is acceptable, if and only if
(a1) for all x ∈ � and y ∈ X ,

(f(x) = 0→ x R y) ∧ (f(x) = 1→ y R x);
(a2) �〈y〉 is R-transitive for all y ∈ X .
Note that if (�,X ) is acceptable and � ∈ [X ]<� isR-transitive then �� isR-transitive
too.
To build G , we build a descending sequence of acceptable Mathias conditions.
By (a2), if (�,X ) is R-acceptable then

(∀x ∈ X )(∀a, b ∈ �〈x〉)(a R b → f(a) ≤ f(b)).
In general, if g is an arbitrary 2-coloring of �, then we say that R and g are
compatible on � ∈ [�]<� if

(∀a, b ∈ �)(a R b → g(a) ≤ g(b)).
Lemma 3.19. Let (�,X ) be acceptable. If � ∈ [X ]<� is such that � is R-transitive
and R and f are compatible on �, then (��,X ∩ (n,∞)) is acceptable for sufficiently
large n.
Proof. Let � be as above. By the remark following the definition of acceptability,
�� is R-transitive. So we can list elements of �� in R-ascending order:

a0 R a1 R · · ·R ak−1,
where k = |��|. By the remark preceding Lemma 3.19 and that R and f are
compatible on both � and �, R and f are also compatible on ��. Let

X0 = {x ∈ X : x > max � ∧ x R a0},
Xi = {x ∈ X : x > max � ∧ ai−1 R x R ai}, 0 < i < k,

Xk = {x ∈ X : x > max � ∧ ak−1 R x}.
By the stability of R and thatR and f are compatible on ��, Xi =∗ X for a unique
i ≤ k. So, ��〈x〉 is R-transitive for all x ∈ Xi . By the definition of Xi , for each
a ∈ ��, if f(a) = 0 then a R x for all x ∈ Xi , otherwise f(a) = 1 and x R a for all
x ∈ Xi . Hence, (��,Xi) is acceptable. �
So, if we can find sequences satisfying the condition of the above lemma then we
can extend acceptable conditions.

Lemma 3.20. Each acceptable (�,X ) can be extended to an acceptable (�, Y ) such
that |�| < |�| and Y =∗ X .
Proof. Let x = minX . By the remark preceding Lemma 3.19, R and f are
compatible on �〈x〉. So, the lemma follows from Lemma 3.19. �
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The following density lemma is the key of the proof.
Lemma 3.21. Let (�,X ) be acceptable and (Ai : i < �) be a sequence of sets
such that Ai 	∈ ΣX1 for all i . Then for every e and every k there exists an acceptable
(�, Y ) ≤M (�,X ) such that Ai 	∈ ΣY1 for all i and Ak 	= WG

e for all R-transitive
G ∈ (�, Y ).
Proof. Let F be the set of g : � → 2 such that R and g are compatible on �〈x〉
for all x ∈ X . Then F can be identified with a ΠX1 class in Cantor space andf ∈ F .
LetW be the set of n such that for every g ∈ F there exists � ∈ [X ]<� satisfying

� is R-transitive ∧R and g are compatible on � ∧ n ∈W��
e .

By the compactness of F ,W ∈ ΣX1 and thusW 	= Ak . Fix n ∈W �Ak .
Case 1. n ∈ W − Ak . By the definition of W and that f ∈ F , we can pick
� ∈ [X ]<� such that � is R-transitive, R and f are compatible on � and n ∈ W��

e .
Apply Lemma 3.19 to (�,X ) and �, we can obtain a desired extension (�, Y ) with
� = �� and Y =∗ X .
Case 2. n ∈ Ak −W . Let G be the set of g ∈ F such that

(� is R-transitive ∧R and g are compatible on �)→ n 	∈W��
e

for all � ∈ [X ]<� . By the preservation property ofWKL0 (Theorem3.6), we can pick
g ∈ G such thatAi 	∈ ΣX⊕g1 for all i . If g−1(0)∩X is infinite then letY = g−1(0)∩X ,
otherwise let Y = g−1(1) ∩ X . Thus, Y ≤T X ⊕ g and Ai 	∈ ΣY1 for all i . Since g
is constant on Y , R, and g are compatible on any � in [Y ]<� . Hence, if � ∈ [Y ]<�
and �� is R-transitive then n 	∈ W��

e , by the choice of g. So (�,Y ) is a desired
extension. �
Lemma 3.18 follows from Lemmata 3.20 and 3.21.

3.5. Rainbow Ramsey theorem. A coloring f : [�]n → � is k-bounded if
|f−1(c)| ≤ k for all c. A set R is a rainbow for a coloring f of [�]n if f is
injective on [R]n. Rainbow Ramsey theorem (RRT for short) asserts that for every
pairs (n, k) and every k-bounded f : [�]n → � there exists an infinite f-rainbow.
RRTnk is the instance of RRT for fixed n and k and an easy consequence of RT

n
k .

From Proposition 3.4 and [3, Theorem 3.1], we obtain a preservation property of
RRT22.
Corollary 3.22. RRT22 admits preservation of the arithmetic hierarchy.
We shall see in Corollary 4.10 thatRRTn2 in general does not have the preservation
property in the above corollary. But some weaker preservation holds for RRT32.
Theorem 3.23. RRT32 admits preservation of Δ

0
3-definitions.

To prove the above theorem, we need the following lemmata, which are proved
based on the forcing construction in [20, Sections 3.2 and 4.5]. For the new notions
appeared below, we refer the reader to [20, Sections 3.2 and 4.5]. The first lemma
is an analogous of [20, Theorem 3.4].
Lemma 3.24. Every Z′-computable �A = (An : n < �) admits a cohesive set
preserving Δ03-definitions relative to Z.

Proof. It suffices to show that for every fixed �B = (Bn : n < �) with noBn being
ΣZ2 there exists an �A-cohesive G such that no Bn is Σ

Z⊕G
2 either. For simplification,

we assume that Z = ∅ and the reader can find that the proof below is relativizable.
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We build an infinite binary tree T and a map f : T → [�]<� such that
• f is strictly increasing, i.e., if 	 is a proper initial segment of 
 ∈ T then f(	)
is a proper initial segment of f(
), and

• if P ∈ [T ] and G = ⋃
m f(P � m) then G is �A-cohesive and Bn 	∈ ΣG2 for

every n.
Then we can take G = f(P) =

⋃
m f(P � m) for any P ∈ [T ]. We use multiple

Mathias conditions of the form ((�	 : 	 ∈ I ), X ) whereX is low (so non-Σ02 sets are
exactly non-ΣX2 sets), and build a sequence (pn : n < �) of decreasing conditions
such that
• each pn = ((�n,	 : 	 ∈ In), Xn) and I0 = {∅}, �0,∅ = ∅ and X0 = �,
• In 	= In+1 and if 	 ∈ In then either 	 ∈ In+1 or both 	〈0〉 and 	〈1〉 are in In+1,
and

• if 	 ∈ In+1− In then �n,	− is a proper initial segment of �n+1,	 where 	− = 	 �
(|	| − 1).

So T =
⋃
n In is an infinite binary tree and f : 	 �→ �n,	 where n = |	| is a strictly

increasing map from T to [�]<� .
Below we build the desired (pn : n < �). By s-m-n theorem, we fix a computable
function s such that for any C a number n is in the e-th ΣC2 set if and only if
Φs(e,n)(C ) is partial where Φi is the i-th oracle Turing machine. For each 	 ∈ 2<� ,
let A	 =

⋂
	(i)=1 Ai ∩

⋂
	(i)=0(� − Ai ).

Claim 3.25. Suppose that p = ((�	 : 	 ∈ I ), X ) is (�e	 : 	 ∈ I )-large and X is
low. Then for every n and e there exist q = ((�
 : 
 ∈ J ), Y ) and ( �d
 : 
 ∈ J ) such
that
(1) q is a ( �d
 : 
 ∈ J )-large extension of p and Y is low;
(2) J 	= I and if 	 ∈ I then either 	 ∈ J or both 	〈0〉 and 	〈1〉 are in J ;
(3) if 
 ∈ J extends 	 ∈ I then �
 − �	 ⊆ X ∩ A	;
(4) if 
 ∈ I ∩ J then �d
 = �e
 and for every G ∈ (�
, X ∩ A	) there exists i ∈ �e

with Φi(G) partial;

(5) if 
 ∈ J − I then domΦi(�
) > domΦi(�
−) for all i ∈ �e
− , and for some m
and j = s(e,m) either m ∈ Bn and �d
 = �e
−〈j〉 or m 	∈ Bn and �d
 = �e
− and
Φj(G) is partial for each G ∈ (�
 , Y ).

Here we assume that domΦi(�) = {0, 1, . . . , m − 1} = m for � ∈ [�]<� . From
the first clause of (5), if p is (�e	 : 	 ∈ I )-large and P ∈ [T ] extends 	 ∈ I then
we intend to have Φi(f(P)) total for every e ∈ �e	, while by the last part of (5) if p
is extended to q and j = s(e,m) 	∈ �d
 then p forces Φj(f(P)) being partial for P
extending 
. So (5) ensures that each Bn is not Σ02 relative tof(P) for P ∈ [T ]. That
T is infinite is guaranteed by (2) and thatf(P) is �A-cohesive for eachP ∈ [T ] by (3).
Proof of Claim 3.25. For 	 ∈ I , let �	 ∈ [X ∩ A	]<� be such that

(∀i ∈ �e	) domΦi(�	�	) > domΦi(�	).
Let S be the set of 	 ∈ I with �	 defined, and let J be the set of 
 ∈ 2<� such that
either 
 ∈ I − S or 
− ∈ S. Recall that as p is (�e	 : 	 ∈ I )-large we intend to force
the totality of Φi(G) for every i ∈ �e	 and sufficiently generic G ∈ (�	,X ∩ A	).
But if 	 ∈ I − S then our intention fails for (�	,X ∩ A	). Nevertheless, by [20,
Lemma 3.8(1)], S 	= ∅ and (2) of the claim holds.
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We build a finite descending sequence of extensions qk of p and define q as the
least of this sequence. Firstly we define q0. For each 
 ∈ J , if 
 ∈ I then let �0,
 = �
 ,
otherwise let �0,
 = �
−�
− . PickY0 ⊆ X such thatY0 =∗ X andminY0 > max �0,

for all 
 ∈ J . Then q0 = ((�0,
 : 
 ∈ J ), Y0) ≤∗

M p. Let ( �d0,
 : 
 ∈ J ) be such that
�d0,
 = �e
 if 
 ∈ I and �d0,
 = �e
− if 
 ∈ J − I . Then q0 is ( �d0,
 : 
 ∈ J )-large, by [20,
Lemma 3.8(3)].
Let (
k : k < |J − I |) enumerate J − I . For k < |J − I |, suppose that

qk = ((�k,
 : 
 ∈ J ), Yk) is a ( �dk,
 : 
 ∈ J )-large extension of p with Yk low.
For each m, append s(e,m) to �dk,
k in ( �dk,
 : 
 ∈ J ) and denote the resulted
sequence by (�ck,m,
 : 
 ∈ J ). Let

W = {m : qk is small for (�ck,m,
 : 
 ∈ J )}.
By [20, Definition 3.7],W is Σ02 in Yk and thus Σ

0
2 as Yk is low. As Bn 	∈ Σ02, we can

fix m ∈ Bn �W . We define qk+1 and ( �dk+1,
 : 
 ∈ J ) by case.
Case 1. m ∈ W . By Low Basis Theorem, let (Xi , ��i,
 : i < l, 
 ∈ J ) be an
�A-branching of qk with each Xi low. By the ( �dk,
 : 
 ∈ J )-largeness of qk and
[20, Lemma 3.8(2)], pick i < l and � ∈ ��i,
k such that ((�k,
 : 
 ∈ J ), Xi) is
( �dk,
 : 
 ∈ J )-large and

(∃y)(∀� ∈ [Xi ]<�)Φs(e,m)(�k,
k ��;y) ↑ .
Let ( �dk+1,
 : 
 ∈ J ) = ( �dk,
 : 
 ∈ J ). Replace �k,
k and Yk in qk by �k,
k �
and Xi respectively and denote the resulted condition by qk+1. Then qk+1 is
( �dk+1,
 : 
 ∈ J )-large by [20, Lemma 3.8(3)].
Case 2. m ∈ Bn. Let qk+1 = qk and ( �dk+1,
 : 
 ∈ J ) = (�ck,m,
 : 
 ∈ J ). As
m 	∈W , qk+1 is ( �dk+1,
 : 
 ∈ J )-large.
Finally, let q = qk and ( �d
 : 
 ∈ J ) = ( �dk,
 : 
 ∈ J ) for k = |J − I |. By the
construction above, q and ( �d
 : 
 ∈ J ) are as desired. �
Recall that I0 = {∅}. Let �e0,∅ = ∅. For convenient, all conditions are consid-
ered (�e0,	 : 	 ∈ I0)-large. With the above claim, we can define (pn : n < �) and
(�en,	 : 	 ∈ In) such that
• p0 is already defined before Claim 3.25;
• pn+1 ≤∗

M pn and pn is (�en,	 : 	 ∈ In)-large;
• In 	⊆ In+1 and if 	 ∈ In − In+1 then both 	〈0〉 and 	〈1〉 are in In+1;
• If 
 ∈ In+1 extends 	 ∈ In then �n+1,
 − �n,	 ∈ A	 and domΦi(�n+1,
) >
domΦi(�n,	) for all i ∈ �en,	;

• For each i and e, there exist m and n such that for every 	 ∈ In+1 − In exactly
one of the followings holds:
(a) m 	∈ Bi , s(e,m) 	∈ �en+1,	 and Φs(e,m)(G) is partial for all G ∈
(�n+1,	, Xn+1),

(b) m ∈ Bi and s(e,m) ∈ �en+1,	.
So T =

⋃
n In is an infinite binary tree and f : 	 �→ �n,	 where n = |	| maps T

to [�]<� in a strictly increasing manner. For each P ∈ [T ], f(P) is �A-cohesive.
For e and i , let m and n witness the last bullet point above and let U be the e-th
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ΣG2 set where G = f(P). If (a) holds then m ∈ U − Bi ; otherwise (b) holds and
m ∈ Bi −U by (5) of Claim 3.25. So no Bi is ΣG2 . �
The next lemma is an analogous of [20, Lemma 4.11].
Lemma 3.26. If f : [�]2 → � is 2-bounded, stable and Z′-computable then there
exists an infinite f-rainbow preserving Δ03-definitions relative to Z.
Proof. We present a relativizable proof for Z = ∅. By Proposition 3.4, suffi-
ciently random sets preserve the arithmetic hierarchy, and by [20, Lemma 4.3] each
sufficiently random set computes an infinite Y such that f(u, v) 	= f(x, y) for
(u, v), (x, y) ∈ [Y ]2 with distinct v and y. So by replacing � with some Y as above
if necessary, we may assume thatf(u, v) 	= f(x, y) for all (u, v) and (x, y) with dis-
tinct v and y. Moreover, as in [20, Section 4.1], we can assume thatf(x, y) = 〈w, y〉
where w = min{v : f(v, y) = f(x, y)}.
We construct an infinite f-rainbow G preserving Δ03-definitions by the following
complexity analysis of the forcing argument in [20, Section 4.5]:
(1) We work with large conditions (�,X, �h) which are low (i.e., X ⊕ �h is low);
(2) Observe that it is a Σ02 question whether a large condition p = (�,X, �h) passes
an e-test at y (defined after the proof of [20, Lemma 4.16]), if p is low;

(3) By s-m-n theorem, we fix a computable function s such that for any C a
number n is in the e-th ΣC2 set if and only if Φs(e,n)(C ) is partial where Φi is
the i-th oracle Turing machine;

(4) So for a given condition p and an index e, the following set is Σ02 in X ⊕ �h
and thus Σ02 as X ⊕ �h is low:

W = {y : (∃x)(p passes the s(e, y)-test at x)};
(5) If A 	∈ Σ02 then we can fix y ∈ A�W ;
(6) If y ∈ A −W then p fails the s(y)-test at every x and by [20, Lemma 4.18]
we have Φs(e,y)(G) total for G being sufficiently generic with respect to large
conditions, thus y is not in the e-th ΣG2 set;

(7) If y ∈ W − A then p passes the s(e, y)-test at some x and by [20, Lemma
4.17] we can extend p to q which forces Φs(e,y)(G ;x) ↑ for G sufficiently
generic with respect to large conditions and thus y is in the e-th ΣG2 set;

(8) Hence for a list of properly Δ03 sets (Ai : i < �) by forcing with large
conditions we can obtain an infinite f-rainbow G so that Ai 	∈ ΣG2 for every
i . So G preserves Δ03-definitions. �

Proof of Theorem 3.23. Recall that we may identify � ∈ [�]<� with ��� where
�·� is a fixed computable bijection mapping [�]<� onto �.
Fix Z and a Z-computable 2-bounded coloring f : [�]3 → �. By passing to an
infinite f-computable subset if necessary, we assume that f(�〈x〉) 	= f(�〈y〉) for
all �〈x〉, �〈y〉 ∈ [�]3 with distinct x and y. As in the proof of Lemma 3.24, we may
assume that

f(�〈x〉) = min{�〈x〉 : f(�〈x〉) = f(�〈x〉)}
for all �〈x〉 ∈ [�]3. Let �A = (A�,� : �, � ∈ [�]2) be such that

A�,� = {x : f(�〈x〉) = �〈x〉}
for each �, � ∈ [�]2. Then �A ≤T f. ByCorollary 3.28 below and thatRCA0 +RT22 �
COH, let C be an �A-cohesive set preserving Δ03-definitions relative to Z.

https://doi.org/10.1017/jsl.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.10


THE DEFINABILITY STRENGTHOF COMBINATORIAL PRINCIPLES 1547

Let g : [C ]2 → � be such that
g(�) = lim

x∈C
f(�〈x〉)

for all � ∈ [C ]2. By the cohesiveness ofC , g is a well-defined total function.Wemay
assume that g(x, y) = min{〈i, j〉 : g(i, j) = g(x, y)}. Moreover g ≤T (f⊕C )′. As
f is 2-bounded, g is 2-bounded as well. Let �B = (Bn,x : n < �, x ∈ C ) be such that

Bn,x = {y ∈ C : g(x, y) = n}.
Then �B ≤T (f ⊕C )′. By Lemma 3.24, let D ∈ [C ]� be �B-cohesive and preserving
Δ03-definitions relative toZ⊕C . AsC preserves Δ03-definitions relative toZ, so does
C ⊕D.
Let h be g restricted to [D]2. Then h ≤T (f ⊕ C ⊕D)′ and h is 2-bounded and
stable. Apply Lemma 3.26, we get an infinite h-rainbow H which is a subset of D
and preserves Δ03-definitions relative toZ⊕C ⊕D. By the definition of h,H is also
a g-rainbow. By the definition of g,Z⊕C ⊕D⊕H computes an infinitef-rainbow
G ⊆ H (see the proof of [19, Lemma 3.2]). Thus

ΔZ3 − ΣZ2 ⊆ ΔZ3 − ΣZ⊕C⊕D2 ⊆ ΔZ3 − ΣZ⊕C⊕D⊕H2 ⊆ ΔZ3 − ΣZ⊕G2 .

So G preserves Δ03-definitions relative to Z. �
3.6. More preservations. We have seen some preservation results that need sub-
stantial proofs. Here we list a few that follow easily from the above preservation
results. Firstly, let us recall some additional notation and consequences of Ramsey’s
Theorem:

• We denote (∀c <∞)RTnc by RTn and (∀n <∞)RTn by RT.
• An apparently weaker consequence of RTn is the so-called Achromatic Ramsey
Theorem (ARTn<∞,d ): for every finite coloring f of [�]

n there exists an infinite
subset H such that f([H ]n) contains at most d many colors.

• For a coloring f : [�]n → �, a free set is a set H such that f(�) 	∈ H − � for
all � ∈ [H ]n , and a set G is thin if f([G ]n) 	= �. The Free Set Theorem (FS)
asserts that every f : [�]n → � for finite n admits an infinite free set, and the
Thin Set Theorem (TS) asserts that every f : [�]n → � for finite n admits an
infinite thin set. Over RCA0, RT implies FS and FS implies TS ([1]).

Corollary 3.27. The following statements admit preservation of Σ01- and Π
0
1-

definitions: RT2 and its consequences over RCA0, FS and its consequences (e.g., TS,
RRT) over RCA0, and for each n almost all instances of ARTn<∞,d .

Proof. By Seetapun [16] and Propositions 2.3 and 2.4, RT2 and its consequences
over RCA0 admit preservation of Σ01- and Π

0
1-definitions. The other preservations

follow from Propositions 2.3 and 2.4 and the author’s work [21]. �
By Jockusch [10], there exists a computable f : [�]3 → 2 such that every infinite
f-homogeneous set H computes the halting problem. Hence RTn2 does not admit
preservation of Σ01-definitions for any n > 2. Also note that H does not preserve
Ξ-definitions for any Ξ in {Σ0m,Π0m,Δ0m+1 : m > 0}.
By an application of Theorem 3.6, we obtain a stronger result for RT2.

Corollary 3.28. If Φ is a Π12 consequence of RCA0 +RT
2 then Φ admits

preservation of Ξ-definitions simultaneously for all Ξ in {Σ0n+1,Π0n+1,Δ0n+2 : n > 0}.
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Proof. By Proposition 2.4, it suffices to prove the corollary for Φ being RT2. Let
Z be fixed and f be a finite coloring of pairs computable in Z. By Theorem 3.6,
let P be such that P is PA over Z′ and P preserves the arithmetic hierarchy relative
to Z′. By relativizing the argument in [2, Section 4], we can obtain an infinite
f-homogeneous set H with (Z ⊕H )′ ≤T P.
Fix Ξ in {Σ0n+1,Π0n+1,Δ0n+2 : n > 0} and a properly ΞZ set A. If n > 0 and Ξ
is ΣZn+1 then A is properly Σ

Z′
n . By the choice of P, A is properly Σ

P
n . As Z

′ ≤T
(Z ⊕ H )′ ≤T P, A is properly Σ(Z⊕H )

′
n and thus properly ΣZ⊕Hn+1 . The remaining

cases of Ξ can be proven similarly. �
However, we shall see in the next section that RT22 does not admit preservation
of Δ02-definitions.

§4. Non-preservations. In the last section, we have learned some examples in
Ramsey theory and computability that are weak in terms of definability strength.
Here we present two Π12 propositions in Ramsey theory that are relatively strong:
one is the so-called Ascending or Descending Sequence principle and one the Thin
Set Theorem.

4.1. Ascending or Descending Sequence. TheAscending or Descending Sequence
principle (ADS) asserts that every infinite linear order has a infinite ascending or
descending suborder. A linear order of type a suborder of � + �∗ is called a stable
linear order, where�∗ is the reverse order of�. The StableAscending orDescending
Sequence principle (SADS) is ADS restricted to stable linear orders. Hirschfeldt
and Shore [8] proved that SADS is strictly weaker than ADS and ADS is strictly
weaker than RT22 (over RCA0).
The following theorem is essentially an observation of Jockusch [8, Corollary
2.14].
Theorem 4.1. SADS does not admit preservation of Δ02-definitions.
Proof. By Harizanov [6], we can take a computable stable linear order <L such
that both the �-part U = {i : (∀∞j)(i <L j)} and the �∗-part � − U of <L
are properly Δ02. If S is an infinite <L-ascending sequence then U is Σ

0
1 in S, since

U = {i : (∃j ∈ S)(i <L j)}. Similarly, if S is an infinite <L-descending sequence
then � −U is Σ01 in S. So SADS does not admit preservation of Δ02-definitions. �
So we obtain a non-preservation property of ADS and RT22 by Proposition 2.4
and the above theorem.
Corollary 4.2. Neither ADS nor RT22 admits preservation of Δ

0
2-definitions.

4.2. Thin Set Theorem. In this subsection we present a nonpreservation theorem
of TS. Let TSn denote the instance of TS for colorings of [�]n and let STSn denote
TSn for stable colorings. Clearly, RCA0 +TS

n � STSn .
Theorem 4.3. For each n > 1, there exists a computable stable function f :
[�]n → � such that every positive i < n and every infinite f-thin set X correspond to
some B ∈ (Δ0i+1 − Σ0i ) ∩ ΣXi . Hence neither STSn nor TSn admits Δ0i+1-preservation
for any positive i < n.
The second part of the above theorem follows from the first part and Proposition
2.2. We prove the first part of Theorem 4.3 by induction on n and the following
technical lemma.
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Lemma 4.4. Let n > 0 and f̄ : [�]n → � be such that
• f̄ is computable in ∅′, and
• if n > 1 then limx f̄(�, x) exists for all � ∈ [�]n−1.
Then there exist f : [�]n+1 → � and a sequence of sets (Bi : i < �) such that
• f is computable and limy f(�, y) exists for all � ∈ [�]n,
• if n > 1 and � ∈ [�]n−1 then limx limy f(�, x, y) exists and equals limx f̄(�, x),
• Bi is Δ02 but not Σ01, and
• if X is infinite and f-thin then Bi ∈ ΣX1 for some i .
Proof of Theorem 4.3. By induction on n > 1, we construct a function f which
satisfies Theorem 4.3 and has an additional property that limx f(�, x) exists for all
� ∈ [�]n−1.
For n = 2, let f̄ be any ∅′-computable function on �. Fix f be as in Lemma 4.4
for f̄. Then f is as desired.
For n > 2, by relativizing the induction hypothesis we fix a ∅′-computable f̄ :
[�]n−1 → � such that
• limx f̄(�, x) exists for all � ∈ [�]n−2,
• if i < n − 1 is positive and X is an infinite f̄-thin set then there exists B ∈
(Δ∅

′
i+1 − Σ∅

′
i ) ∩ Σ∅

′⊕X
i .

Apply Lemma 4.4 to get f and (Bi : i < �) corresponding to f̄ and n− 1. Suppose
that i < n is positive andX is an infinite f-thin set. If i = 1 then Bk ∈ ΣX1 for some
k and thus Bk ∈ (Δ0i+1 − Σ0i ) ∩ ΣXi . Assume that i > 1 and k 	∈ f([X ]n). Then

lim
y
f(�, y) = lim

y∈X
f(�, y) 	= k

for all � ∈ [X ]n−1 and thus
lim
x
f̄(�, x) = lim

x
lim
y
f(�, x, y) = lim

x∈X
lim
y∈X
f(�, x, y) 	= k

for all � ∈ [X ]n−2. As f̄ is ∅′-computable, we can find Y ∈ [X ]� such that Y
is computable in ∅′ ⊕ X and k 	∈ f̄([Y ]n−1). By the choice of f̄, there exists
B ∈ (Δ∅′

i − Σ∅′
i−1) ∩ Σ∅

′⊕Y
i−1 . So

B ∈ (Δ0i+1 − Σ0i ) ∩ Σ∅
′⊕X
i−1 ⊆ (Δ0i+1 − Σ0i ) ∩ ΣX

′
i−1 ⊆ (Δ0i+1 − Σ0i ) ∩ ΣXi .

Hence f is as desired. �
To prove Lemma 4.4, we build several objects:

(1) A computable function f : [�]n+1 → � as required by the lemma. Let
Ai = {� : lims f(�, s) = i}.

(2) A computable trinary function g which approximates the sequence (Bi :
i < �) in the following way: lims g(i, x, s) exists for each (i, x) and no
Bi = {x : lims g(i, x, s) = 1} is Σ01.

(3) A uniformly Σ01 sequence (Ui : i < �) such that
• if x ∈ Bi then 〈x〉� ∈ Ui for all � 	∈ Ai with min � sufficiently large, and
• if x 	∈ Bi and 〈x〉� ∈ Ui then � ∈ Ai .

We guarantee that lims f(�, s) exists by ensuring that f(�, s) changes at most
finitely often. We apply the same strategy to achieve the existence of lims g(i, x, s).
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To achieve limx limy f(�, x, y) = limx f̄(�, x) for n > 1 and � ∈ [�]n−1, we fix a
computable approximation (f̄s : s < �) of f̄ and ensure that f(�, x, s) = f̄s(�, x)
for x and s sufficiently large.
To make Bi 	∈ Σ01, we employ a finite injury argument to satisfy the following
requirements:

Ri,j : Bi 	=Wj.

We follow the Friedberg–Muchnik construction to meet a single Ri,j : we pick a
witness forRi,j , say b, and put it in Bi by defining g(i, b, s) = 1. If b ∈Wj,t at stage
t > s then we remove b from Bi by defining g(i, b, t) = 0.
To meet the first part of condition (3) above, at each stage s we enumerate 〈b〉�
in Ui,s if b < min � ≤ max � < s , g(i, b, s) = 1 and f(�, s) 	= i . However, this
action may cause some problem for the second part of condition (3), since later b
could be removed from Bi for the sake of some Ri,j . To work around this problem,
if we remove b from Bi at stage t > s then we put � in Ai by defining f(�, t′) = i
for all t′ ≥ t. Note that at each stage we only enumerate a finite part of Ui . So
the above action defining f(�, t) affects at most finitely many �. Thus, if n > 1
and � ∈ [�]n−1 then this action causes limy f(�, x, y) 	= f̄(�, x) for only finitely
many x. We initialize allRi′ ,j′ with lower priorities, so that eventually they will have
witnesses greater than min �. Thus at later stages Ri′ ,j′ with lower priority will not
require limy f(�, x′, y) 	= f̄(�, x′) for any x′.
The construction.
Recall that we fix a computable approximation (f̄s : s < �) of f̄.
At stage s , if s > 0 then we assume that:

• f is defined on [s]n+1;
• g(i, x, r) is defined for all (i, x) and r < s and if g(i, x, s − 1) = 1 then both i
and x are less than s ;

• each Ui,s−1 is finite.
The construction at stage s consists of three parts.

(i) We take care of Ri,j ’s here. A requirement Ri,j requires attention if either of
the following conditions holds:
• Ri,j does not have a witness defined;
• Ri,j has a witness (say b) defined and g(i, b, s − 1) =Wj,s (b) = 1.
Pick the least 〈i, j〉 with Ri,j requiring attention and say that Ri,j receives
attention.
Suppose thatRi,j does not have a witness. Perform the following actions:
• let s be its witness and let g(i, s, s) = 1;
• for 〈i ′, j′〉 < 〈i, j〉, let g(i ′, b, s) = g(i ′, b, s − 1) where b is the witness
of Ri′ ,j′ ;

• proceed to (ii).
Suppose thatRi,j has a witness b defined. Perform the following actions:
• let g(i, b, s) = 0;
• for each 〈i ′, j′〉 < 〈i, j〉 and the witness b′ of Ri′ ,j′ , let g(i ′, b′, s) =
g(i ′, b′, s − 1);
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• for each 〈i ′, j′〉 > 〈i, j〉 and thewitness b′ ofRi′ ,j′ , let g(i ′, b′, s) = 1 and
let the witness of Ri′ ,j′ be undefined. In other words, Ri′ ,j′ is initialized
and it will not have a witness defined until it receives attention again.

(ii) We define f and g.
• If s = 0 then let g(i, x, s) = 0 for all i and x; otherwise, let g(i, x, s) =
g(i, x, s − 1) for each (i, x) such that g(i, x, s) is not defined in (i).

• If � ∈ [s]n and 〈b〉� ∈ Ui,s−1 for an active witness b of some Ri,j and if
g(i, b, s) = 0, then let f(�, s) = i ; otherwise let f(�, s) = f̄s(�).

(iii) We define Ui,s by

Ui,s = Ui,s−1 ∪ {〈x〉� : x < min � ≤ max � < s, g(i, x, s) = 1, f(�, s) 	= i}.
This ends the construction at stage s .

The verification.

Lemma 4.5. Each Ri,j receives attention finitely often and is satisfied.

Note that in this lemma Bi is to be understood as a Σ02 set.

Proof. We prove by induction on 〈i, j〉. Fix 〈i, j〉 and assume that all Ri′ ,j′ ’s
with 〈i ′, j′〉 < 〈i, j〉 stop receiving attention after stage s0. We may assume thatRi,j
receives attention and has its witness x = s0 defined at stage s0. As no Ri′ ,j′ with
〈i ′, j′〉 < 〈i, j〉 receives attention after stage s0,Ri,j has its witness b = s0 at all later
stages.
By the construction, g(i, b, s0) = 1. If b 	∈Wj thenRi,j receives no attention after
stage s0 and is satisfied since Bi(b) = lims g(i, b, s) = 1 	= 0 =Wj(b). Suppose that
Ri,j receives attention again at stage s1 > s0. Then g(i, b, s1 − 1) = Wj,s1 (b) = 1
and g(i, b, s1) = 0. By the construction,Ri,j receives no attention after stage s1 and
lims g(i, b, s) = 0 	= 1 =Wj(b), thus Ri,j is satisfied. �
Lemma 4.6. f is well-defined and computable, lims f(�, s) exists for all � ∈ [�]n
and if n > 1 then limx lims f(�, x, s) = limx f̄(�, x) for all � ∈ [�]n−1.
Proof. Suppose that f(�, s) 	= f̄s (�). Then at stage s there exists Ri,j such that
Ri,j has an active witness b, 〈b〉� ∈ Ui,s−1 and g(i, b, s) = 0. By (i) and (iii) of
the construction, there exists s0 ≤ s with g(i, b, s0 − 1) = 1 	= 0 = g(i, b, s0) and
〈b〉� ∈ Us0−1. At stage s0, Ri,j receives attention and all Ri′ ,j′ ’s with 〈i ′, j′〉 > 〈i, j〉
are initialized. So at any stage t ≥ s0, Ri′ ,j′ with 〈i ′, j′〉 cannot have an active
witness b′ < min �. It follows that at stage s the above Ri,j is unique. Hence f is
well-defined. The construction guarantees that f is computable.
To prove the existence of lims f(�, s), pick a stage s such that no Ri,j with a
witness less than min � receives attention after stage s . At every stage t > s , either
there exists exactly one fixed Ri,j with an active witness b such that 〈b〉� ∈ Ui,t ,
or there is no such Ri,j . In the former case lims f(�, s) = i and in the latter
lims f(�, s) = lims f̄s(�) = f̄(�).
Suppose that n > 1, � ∈ [�]n−1 and f(�, x, s1) 	= f̄s1 (�, x). Then there is exactly
one Ri,j with an active witness b such that 〈b〉�〈x〉 ∈ Ui,s1−1 and g(i, b, s1) = 0.
Let s0 ≤ s1 be the stage such that g(i, b, s0 − 1) = 1 and g(i, b, s0) = 0 and
〈b〉�〈x〉 ∈ Ui,s0−1. Then Ri,j receives attention and all Ri′ ,j′ with 〈i ′, j′〉 > 〈i, j〉
are initialized at stage s0. So at any stage t > s0, if 〈i ′, j′〉 > 〈i, j〉 and Ri′ ,j′ has
an active witness b′ then b′ > max� and thus there exists no 〈b′〉�〈x′〉 ∈ Ui′ ,t .
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It follows that lims f(�, x, s) 	= f̄(�, x) for at most finitely many x. As limx f̄(�, x)
exists, limx lims f(�, x, s) = limx f̄(�, x). �
Lemma 4.7. g is computable and stable.

Proof. By the construction, g(i, x, s − 1) 	= g(i, x, s) happens only if at stage
s some Ri,j with an active witness b ≤ x receives attention. But there are at most
finitely many Ri,j ’s having witnesses not greater than x. So we can pick a stage t
such that no Ri,j with an active witness b ≤ x receives attention after stage t. Then
g(i, x, t) = lims g(i, x, s). �
Recall that Ai = {� : lims f(�, s) = i}.
Lemma 4.8. For each i , if b ∈ Bi then 〈b〉� ∈ Ui for all � 	∈ Ai with min �
sufficiently large, and if b 	∈ Bi and 〈b〉� ∈ Ui then � ∈ Ai .
Proof. It follows from (iii) of the construction at each stage and the stability of
f and g that if b ∈ Bi then 〈b〉� ∈ Ui for all � 	∈ Ai with min � > b.
Suppose that b 	∈ Bi and 〈b〉� ∈ Ui . By the construction of Ui , there is a stage s0
such that g(i, b, s0) = 1 and f(�, s0) 	= i . As b 	∈ Bi , there is a stage s1 > s0 such
that g(i, b, s1 − 1) = 1 and g(i, b, s1) = 0. By (i) of the construction at stage s1, b is
the active witness of some Ri,j , Ri,j receives attention at stage s1 and f(�, s1) = i .
If some Ri′ ,j′ with 〈i ′, j′〉 < 〈i, j〉 receives attention at a stage s > s1 then
g(i, b, s) = 1 and b cannot become an active witness for any requirement at any
stage t > s . By (ii) of the construction, b ∈ Bi , contradicting our choice of b. So
Ri,j is not initialized after stage s1 and g(i, b, s) = 0 for any s ≥ s1. By (ii) of the
construction,f(�, s) = i at every stage s > s1. Hence lims f(�, s) = i and � ∈ Ai . �
It follows from Lemma 4.6 that f is as desired. By Lemmata 4.7 and 4.5, Bi =

{x : lims g(i, x, s) = 1}’s yield a uniformly Δ02 sequence (Bi : i < �) with each
member not in Σ01. If X is an infinite f-thin set then i 	∈ f([X ]n+1) for some i and
thus Bi ∈ ΣX1 by Lemma 4.8. So we have proven Lemma 4.4.
Corollary 4.9. If n > 1 then FSn does not admit preservation of Δ0i+1-definitions
for any positive i < n.

Proof. By Cholak et al. [1, Theorem 3.2], RCA0 +FS
n � TSn. So the corollary

follows from Proposition 2.4 and Theorem 4.3. �
Recently Patey [15] shows that RCA0 +RRT

n+1
2 � TSn for n > 0. So the

definability strength of RRTn+12 for n > 1 is strictly stronger than that of RRT22.

Corollary 4.10. For n > 1,RRTn+12 does not admit preservation ofΔ0i -definitions
for any i such that 1 < i ≤ n.

§5. Conclusion. We summarize the known preservations and nonpreservations
in Table 1 with references in parentheses. For simplification, we omit some easy
consequences of the results in Table 1. For example, it is omitted that RT22 does not
admit preservation of Δ02-definitions (Corollary 4.2).
From Table 1 and Proposition 2.4, we can derive some consequences about
provability strength. We present two examples here. The first is by examining the
preservations and nonpreservations of Δ02-definitions.

Theorem 5.1. Let Φ be the conjunction of COH,WKL0, RRT22, Π
0
1 G and EM.

Over RCA0, Φ does not imply any of SADS, STS2, TS2, and FS2.
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Preservations Non-preservations

Arithmetic Hierarchy Cohen generics (3.1)

random reals (3.4)

Π01 G (3.3)

WKL0 (3.6)

RRT22 (3.22)

Σ0i+1,Π
0
i+1,Δ

0
i+2 (i > 0) RT

2 (3.28)

Δ0i (1 < i ≤ n) STSn (4.3)

RRTn+12 (4.10)

Δ03 RRT32 (3.23)

Δ02 COH (3.15) SADS (4.1)

EM (3.17)

Σ01,Π
0
1 RT22,FS,ART

n
<∞,d (3.27) RT

n
2 (n > 2, [10])

Table 1. Preservations and non-preservations.

Theorem 5.1 strengthens the following known results: RCA0 +COH+WKL0 	�
SADS (Hirschfeldt and Shore [8]), RCA0 +Π01 G 	� SADS (Hirschfeldt, Shore, and
Slaman [9]), RCA0 +RRT

2
2 	� SADS (Csima and Mileti [3]), RCA0 +RRT22 	� TS2

(Kang [11]), RCA0 +EM 	� SADS (Lerman, Solomon and Towsner [13]), and
RCA0 +EM 	� STS2 (Patey, unpublished). But the approach here is more uniform.
Moreover, Proposition 2.4 allows us to stackΠ12 propositions with weak definability
strength together. This is another advantage of our approach.
The next example follows from the Δ03 row of Table 1.

Theorem 5.2. Over RCA0, RRT32 does not imply any of STS
3,TS3,FS3.

Yet there are questions aroundTable 1.FromProposition 2.4 and theΔ02 rowof the
table, we can derive an almost complete classification of well-knownΠ12 propositions
below ACA0. However, we know just a little at rows above Δ02.Moreover, there is an
interesting phenomenon: for either COH or EM, we prove that each admits preser-
vation of Δ02-definitions and preservation of definitions beyond the Δ

0
2 level (implied

by that ofRT22). In a draft of this article the author conjectured that these two preser-
vations can be combined for both COH andEM. Patey [14] confirms this conjecture
by proving that both COH and EM admit preservation of the arithmetic hierarchy.
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