
Math. Struct. in Comp. Science (1999), vol. 9, pp. 125–158. Printed in the United Kingdom

c© 1999 Cambridge University Press

Relating operational and denotational semantics for

input/output effects

R O Y L. C R O L E† and A N D R E W D. G OR D O N‡

†Department of Mathematics and Computer Science, University of Leicester, Leicester, UK.
‡University of Cambridge Computer Laboratory, Cambridge, UK.

Received 15 September 1995; revised 1 February 1998

We study the longstanding problem of semantics for input/output (I/O) expressed using

side-effects. Our vehicle is a small higher-order imperative language, with operations for

interactive character I/O and based on ML syntax. Unlike previous theories, we present

both operational and denotational semantics for I/O effects. We use a novel labelled

transition system that uniformly expresses both applicative and imperative computation. We

make a standard definition of bisimilarity and prove bisimilarity is a congruence using

Howe’s method.

Next, we define a metalanguage M in which we may give a denotational semantics to O.

M generalises Crole and Pitts’ FIX-logic by adding in a parameterised recursive datatype,

which is used to model I/O. M comes equipped both with an operational semantics and a

domain-theoretic semantics in the category CPPO of cppos (bottom-pointed posets with

joins of ω-chains) and Scott continuous functions. We use the CPPO semantics to prove

that M is computationally adequate for the operational semantics using formal

approximation relations. The existence of such relations is based on recent work of

Pitts (Pitts 1994b) for untyped languages, and uses the idea of minimal invariant objects due

to Freyd.

A monadic-style textual translation into M induces a denotational semantics on O. Our

final result validates the denotational semantics: if the denotations of two O programs are

equal, then the O programs are in fact operationally equivalent.

1. Motivation

Ever since McCarthy (McCarthy et al. 1962) referred to the input/output (I/O) operations

READ and PRINT in LISP 1.5 as ‘pseudo-functions’, I/O effects have been viewed with

suspicion. LISP 1.5 was the original applicative language. Its core could be explained as

applications of functions to arguments, but ‘pseudo-functions’ – which effected ‘an action

such as the operation of input-output’ – could not. Explaining pseudo-functions that

effect I/O is not a matter of semantic archaeology: although lazy functional programmers

avoid unrestricted side-effects, this style of I/O is pervasive in imperative languages and

persists in applicative ones such as LISP, Scheme and ML. But although both the latter

are defined formally (Milner et al. 1990; Rees and Clinger 1986) neither definition includes

the I/O operations.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 126

We address this longstanding but still pertinent problem by supplying both an opera-

tional and a denotational semantics for I/O effects. We work with a call-by-value PCF-like

language, O, equipped with interactive I/O operations analogous to those of LISP 1.5.

We can think of O as a tiny higher-order imperative language, with an applicative syntax

making it a fragment of ML. In this paper we shall:

— define a CCS-style labelled transition semantics for O;

— show that the associated bisimilarity is a congruence;

— define a domain-theoretic denotational semantics for O;

— prove that denotational equality implies bisimilarity.

Our aim is to present such an approach to I/O in detail for a simple language and to

concentrate on small examples, but first we will give some motivation and detail.

Morris-style contextual equivalence is often adopted as operational equivalence for

applicative languages without side-effects, such as PCF. Two programs p and q are

contextually equivalent iff for any context C such that ? ` C[p] :bool and ? ` C[q] :bool,

then C[p] converges just when C[q] does. This is also known as observational congruence.

It is inappropriate for our calculus because (unlike in CCS, say) contexts cannot observe

the side-effects of a program. In fact, any two programs that are ready to engage in I/O

are contextually equivalent because neither immediately converges to a value.

Thus, in order to set up a useful operational semantics and notion of equivalence

of programs, we must seek a framework that can subsume the usual semantics of

applicative languages, but at the same time provide a mechanism for the semantics of

side-effects. A suitable framework is a labelled transition system, with assertions of the

form p
α−→ q meaning that program p performs action α to become program q. Using

an appropriate labelled transition system, CCS-style bisimilarity provides the natural

operational equivalence on O programs. Theorem 1 is that bisimilarity is a congruence. It

follows that if two programs are bisimilar, they are also contextually equivalent. This is

what we would hope: it would be disconcerting if bisimilarity equated two programs that

were contextually distinct.

Another candidate for operational equivalence is trace equivalence. If s = α1 . . . αn is a

finite sequence of actions, we say that s is a trace of p iff p
α1−→ · · · αn−→. Two programs

are trace equivalent iff they have the same set of traces. As noted elsewhere (Gordon

1993; Milner 1989), in a deterministic calculus such as O, trace equivalence coincides with

bisimilarity; we prefer to use bisimilarity because it admits proofs by co-induction.

The denotational semantics is specified in two stages. First, we give a denotational

semantics to a metalanguage M in the category CPPO of cppos and Scott continuous

functions. Second, we give a formal translation of the types and expressions of O into

those of M. M is based on the equational fragment of the FIX-logic of Crole and

Pitts (1992), but contains a single parameterised recursive datatype, which is used to

model computations engaged in I/O, and does not (explicitly) contain a fixpoint type.

Following Plotkin’s use of a metalanguage to study object languages (Plotkin 1985), we

equip the programs (closed expressions) of M with an operational semantics. Theorem 2

shows the ‘good fit’ between the domain-theoretic semantics of M and its operational

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 127

semantics: we prove that the denotational semantics is sound and adequate with respect

to the operational semantics.

To complete our study, we establish a close relationship between the operational

semantics of each O program and that of its denotation. Hence we prove our third

theorem: if the denotations of two O programs are equal, the programs are in fact

operationally equivalent. The proof is by co-induction: we can show that the relation

between O programs of equal denotations is in fact a bisimulation, and hence contained

in bisimilarity.

We overcame two principal difficulties in this study. First, although it is fairly straight-

forward to write down operational semantics rules for side-effects, the essential problem is

to develop a useful operational equivalence. Witness the great current interest in ML plus

concurrency primitives: there are many operational semantics (Berry et al. 1992; Holm-

ström 1983) but few developed notions of operational equivalence. Holmström (1983)

pioneered a stratified approach to mixing applicative and imperative features, in which

a CCS-style labelled transition system for the side-effects was defined in terms of a ‘big-

step’ natural semantics for the applicative part of the language. However, Holmström’s

approach fails for the languages of interest here, in which side-effects may be freely mixed

with applicative computation. Instead, as we have described, we solve the problem of

finding a suitable operational equivalence by expressing both the applicative and the side-

effecting aspects of O in a single labelled transition system, where the actions correspond

to the atomic observations one can make of an O program. The classical definition of

(strong) bisimilarity from CCS (Milner 1989) generates a natural operational equivalence,

which subsumes both Abramsky’s applicative bisimulation (Abramsky and Ong 1993) and

the stratified equivalences suggested by Holmström’s semantics (Gordon 1994; Gordon

1993). The second main difficulty was the construction of formal approximation relations

in the proof of adequacy forM. Proof of their existence is complicated by the presence in

M of a parameterised recursive type needed to model O computations engaged in I/O;

our construction is based on recent work of Pitts (Pitts 1994b) for untyped languages,

and uses the idea of minimal invariant objects due to Freyd.

Finally, we sould make some comments about notation. As usual, we identify phrases

of syntax up to α-conversion, that is, renaming of bound variables. We write φ ≡ ψ to

mean that phrases φ and ψ are α-convertible. We write φ[ψ/x] for the substitution of

phrase ψ for each variable x free in phrase φ. A context, C, is a phrase of syntax with

one or more holes, but not identified up to α-conversion. A hole is written as [], and we

write C[φ] for the outcome of filling each hole in C with the phrase φ. If R is a relation,

R+ is its transitive closure, R∗ its reflexive and transitive closure, and Rop its opposite,

that is, {(y, x) | (x, y) ∈ R}.

2. The object language O
In this section we define the (object) programming language O. First we give the types

and expressions of O. Then we specify the programs and values, and use these to present a

‘single-step’ operational semantics. Next we highlight certain O expressions that are able to

engage in I/O; these are used to develop a labelled transition system semantics, in which

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 128

some of the actions (labels) amount to I/O effects. This labelled transition system induces

a notion of program bisimilarity, which will be good for program reasoning provided

bisimilarity is a congruence. We say a relation between O-expressions is a precongruence

iff it is preserved by all contexts, and a congruence if, in addition, it is an equivalence

relation. We prove bisimilarity is a congruence by introducing a relation on O-expressions

that is clearly a precongruence, and that can be shown equal to similarity; the result

follows by showing that bisimilarity is the symmetric interior of similarity.

O is a call-by-value version of PCF that includes constants for I/O. The types of O,

ranged over by τ, consist of ground types unit, bool and int, together with function and

product types; these types have the same intended meanings as in ML, and are specified

by the grammar

τ ::= unit | bool | int | τ -> τ′ | τ * τ′.
Let Lit , ranged over by `, be the set {true, false} ∪ {. . . , -2, -1, 0, 1, 2, . . .} of Boolean

and integer literals, and let Rator , be the set {+, -, *, =, <} of arithmetic operators. It will

be convenient to use the notations b (b ∈ {tt ,ff }), i (i ∈ Z) and ⊕ (⊕ ∈ {+,−,×,=, <})
to range over the sets Lit and Rator . We let k range over the set of O constants, given by

{(), fst, snd, δ,Ω, read, write} ∪ Lit ∪ Rator .

Here is the grammar for O expressions,

e ::= kτ | x | λx:τ. e | e e | (e, e) | if e then e else e
where x ranges over a countable set of variables, and kτ is an expression if and only if

k:τ is an instance of one of the following type schemes:

() : unit i : int true, false : bool

δ : τδ -> τ
′
δ Ω : τ

+, *, - : int * int -> int =, < : int * int -> bool

fst : τ1 * τ2 -> τ1 snd : τ1 * τ2 -> τ2

read : unit -> int write : int -> unit.

The intended meanings of expressions are those that the reader expects. For the sake of

simplicity, there is just one user-definable constant, δ, which provides a recursive program

declaration as described shortly. The expression Ωτ is one whose evaluation diverges.

This is a spartan programming language, but it suffices to illustrate the semantics of

side-effecting I/O.

The type assignment judgements are of the form Γ ` e : τ, where the environment, Γ, is a

finite set of (variable, type) pairs, { x:τ1, . . . , x:τn }, in which the variables are required to be

distinct. In such judgements, e will be an α-equivalence class of expressions. The provable

judgements are generated by the usual monomorphic typing rules for this fragment of

ML, where Γ ` kτ : τ is provable just when kτ is a valid expression. We shall write e:τ

instead of ? ` e : τ. We assume there is a user-specified expression eδ , determining the

behaviour of the constant δ, for which we assume that x:τδ ` eδ : τ′δ is provable. It would

be routine to extend O to allow finitely many user-definable constants, but for the sake of

simplicity we allow just one.

We shall define the notions of program and value for O. A program is a closed expression

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 129

(λx. e) v → e[v/x] ⊕(i, j)→ i⊕ j
δ v → eδ[v/x] Ω→ Ω

fst(u, v)→ u snd(u, v)→ v

if true then p else q → p if false then p else q → q

p→ q

E[p]→ E[q]

Table 1. Rules for generating the → relation

e for which there is a type τ where e:τ. Each program has a unique type, given the type

annotations on constants and lambda-abstractions, though for notational convenience we

often omit these annotations. The metavariables p and q will range over programs. A

value expression, ve, is an expression that is either a variable, a constant (but not Ω), a

lambda-abstraction or a pair of value expressions. The set of values, ranged over by v, u

or w, consists of the value expressions that are programs; so values are those programs

that appear in the grammar

v ::= kτ | λx. e | (v, v)
where kτ must be a valid expression and k is not Ω.

In order to specify various operational semantics for O, we shall make heavy use of

relationships between programs of the same type; with this in mind we shall introduce

some notation. We shall write Uτ for the largest binary relation on programs of type τ,

that is Uτ def
= { e | e:τ } × { e | e:τ }, and U is then defined to be the union of these

relations over all types: U def
=
⋃
τUτ.

Before defining the labelled transition system that induces a behavioural equivalence

on O, we need to define the applicative reductions of O. We do so in terms of a set of

experiments, ranged over by E. This set consists of the contexts specified by the grammar

E ::= [] p | v [] | if [] then p else q | ([], p) | (v, []).

Experiments are simply atomic evaluation contexts (Felleisen and Friedman 1986); their

purpose is to specify the order of evaluation. We define a call-by-value ‘small-step’

reduction relation between programs,→, by the rules in Table 1. It is a standard and easy

exercise to verify that in fact → ⊆ U, that is, → preserves types in the expected way.

The rules for δ and Ω introduce the possibility of non-termination into O: observe how

δ yields a recursive program provided that δ appears within the expression eδ . One can

easily verify that the relation → is a partial function.

A communicator is, informally, a program ready to engage in I/O. The elements of the

set Com of communicators, ranged over by c, is specified by the grammar

c ::= read () | write i | E[c].

A communicator is essentially specified by a finite nesting of experiments with a read ()

or write i at the innermost level. It is quite easy to see that the set of communicators is

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 130

`
`−−→Ω (u, v)

fst−−→ u (u, v)
snd−−→ v

u
@v−−→ u v if u v a program read ()

?n−−→ n write n
!n−−→()

p→ p′′ p′′ α−−→ p′
(?)

p
α−−→ p′

p
µ−−→ q

E[p]
µ−−→E[q]

Table 2. Rules for generating the labelled transition system

disjoint from the set of values. Let us define Active, the set of active programs ranged over

by a and b, to be the (disjoint) union of the communicators and the values. We can easily

show that the active programs are the normal forms of →, as in the following lemma.

Lemma 1. Active = Normal , where Normal = {p | ¬∃q(p→ q)}
Proof. We can show that Active ⊆ Normal by proving that any communicator, or value,

is normal – this follows by showing that the set of normal forms is closed under the rules

for defining the sets of values and communicators.

That Normal ⊆ Active follows by structural induction on expressions; more precisely,

we use structural induction to prove that

e ∈ Normal implies e ∈ Active

holds for all expressions.

Our behavioural equivalence is based on a set of atomic observations, or actions, that

may be observed of a program. In particular, there are actions associated with both read

and write effects. We let Msg , ranged over by µ, be Msg
def
= {?i, !i | i ∈ Z}, where ?i

represents input of a number i and !i output of i. Thus Msg , a set of messages, represents

I/O effects. The set of actions, ranged over by α, is given by

Act
def
= Lit ∪ {fst, snd,@v | v is a value } ∪Msg .

The labelled transition system is a ternary relation whose relationships will be written

p
α−→ p′, where p and p′ are programs, and α is an action. The labelled transition system

is inductively defined by the rules in Table 2.

The last rule allows messages (but not arbitrary actions) to be observed as side-effects

of subterms. Each transition p
α−→ q can be factored as a (finite) sequence of applicative

reductions, down to an active program, followed by an α transition; this fact is highly

important, and is made precise in the following lemma.

Lemma 2. p
α−→ q iff ∃a ∈ Active (p→∗ a α−→ q).

Proof. Given the existence of a factorisation of an action via an active program,

p→∗ a α−→ q, it is easy to see that p
α−→ q by applying the rule

p→ p′′ p′′ α−−→ p′
(?)

p
α−−→ p′

Conversely, we use rule induction on the set of labelled transitions. Let us give one

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 131

example case: consider the rule

p
µ−−→ q

E[p]
µ−−→E[q]

for any arbitrary experiment E. By induction, there is an active program a such that

p →∗ a µ−→ q, and then we have E[p] →∗ E[a]
µ−→ E[q]. By inspecting the definition of

the labelled transition system, if a is a value, a
µ−→ q could only be deduced from (?),

implying that there is some p′′ for which a → p′′. But this is not possible by Lemma 1.

Hence a is a communicator, implying that E[a] is also a communicator, as required. We

omit the verifications for the remaining rules.

We write p⇓ to mean ∃a ∈ Active(p →∗ a). Unless p⇓, p has no transitions. So Ω, for

instance, has no transitions.

We adopt bisimilarity from Milner’s CCS (Milner 1989) as our operational equivalence

for O. Let q be an α-derivative of p iff p
α−→ q. We want two programs p and q to be

behaviourally equivalent iff, for every action α, every α-derivative of p is behaviourally

equivalent to some α-derivative of q, and vice versa. We shall assume that the reader is

familiar with these ideas, at least in the setting of concurrency theory and process calculi.

However, it will be convenient to give a terse summary of the notions of (bi)simulations,

presented within our own framework.

Given a relation S ⊆ U, we define [S] ⊆ U by specifying that p[S]q iff whenever

p
α−→ p′, there is q′ with q

α−→ q′ and p′Sq′. Note that this is well defined; that [S] really is

a subset of U follows by inspecting the definition of the labelled transition system. We can

define functions Φs,Φb : P(U)→ P(U) where Φs(S)
def
= [S] and Φb(S)

def
= [S] ∩ [Sop]op.

One can check that these functions are well defined and monotone. We say that S is a

simulation if S ⊆ Φs(S), and that S is a bisimulation if S ⊆ Φb(S).

We define similarity, 6 ⊆ U, to be the greatest (post-)fixed point of Φs,

6
def
= ν(Φs),

and bisimilarity to be the greatest (post-)fixed point of Φb,

∼ def
= ν(Φb).

If p 6 q, we say that p is similar to q, and if p ∼ q we say that p is bisimilar to q. We

shall soon see that similarity is a preorder and that bisimilarity is an equivalence. It is

immediate that (bi)similarity is the greatest (bi)simulation; in fact appealing to the (proof

of the) Knaster–Tarski theorem we have

6 =
⋃{S | S ⊆ Φs(S) }

∼ =
⋃{S | S ⊆ Φb(S) }.

The following principles of co-induction are corollaries of the definitions of 6 and ∼.

Lemma 3. p 6 q iff there is a simulationS with pSq; and p ∼ q iff there is a bisimulation

S with pS q.

The main objective of this paper is to give a denotational semantics of O so that our

metalanguage M may be used to establish operational equivalences. Nonetheless, just

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 132

as in CCS, the availability of co-induction means a great deal can be achieved simply

using operational methods, provided that ∼ is a congruence. This is our first main result,

Theorem 1, which we shall prove via an adaptation of Howe’s method; similar proofs can

be found elsewhere (Gordon 1994; Gordon 1995b; Howe 1989).

The proof of this result is rather lengthy, involving a number of intermediate steps and

definitions. We begin by observing that in order to prove Theorem 1 we may deal simply

with similarity, rather than bisimilarity.

Lemma 4. Bisimilarity is the symmetric interior of similarity, that is ∼ = 6 ∩6op.

Proof. The proof depends on the easily verified fact that our labelled transition system

is image singular in the sense that

whenever p
α−→ p′ and p

α−→ p′′ then p′ ≡ p′′.
Since ∼ = Φb(∼) = [∼] ∩ [∼op]op, we have ∼ ⊆ [∼] and ∼op ⊆ [∼op]. By co-induction,

∼ ⊆ 6 and ∼op ⊆ 6, and hence ∼ ⊆ 6∩6op. For the reverse inclusion it suffices to show

that 6 ∩6op is a simulation (as any symmetric simulation is a bisimulation). Consider p

and q such that p 6 q and q 6 p. Suppose that p
α−→ p′. From p 6 q there must be a q′

such that q
α−→ q′ and p′ 6 q′. We need to show q′ 6 p′ also. Since q

α−→ q′, there must

be a p′′ with p
α−→ p′′ and q′ 6 p′′. But by the fact above, it must be that p′ ≡ p′′, so we

are done.

This lemma fails in a nondeterministic calculus such as CCS, where the labelled

transition system is not image singular. Now, in order to prove Theorem 1, all we need

do is show that 6 is a precongruence; let us introduce some technical machinery in order

to prove this.

We have given a definition of 6 ⊆ U. This gives relationships between programs (of

the same type). We will now extend the definition of 6 to provide relationships between

expressions. The restriction of this relation to programs will amount to similarity, so we

denote it also by 6. We will define a relation 6, with relationships denoted by Γ ` e 6 e′ :τ,
and for which it will be implicit (by definition) that both e and e′ are assigned the type τ

in the environment Γ. We define Γ ` e 6 e′ : τ iff

— Γ ` e : τ,

— Γ ` e′ : τ and

— if Γ = { x1:τ1, . . . , xn:τn }, then for all finite sets of values { v1:τ1, . . . , vn:τn } we have

e[~v/~x] 6 e′[~v/~x]

where here 6 is similarity of programs as defined above.

It is difficult to prove directly that similarity, 6, is a precongruence. Instead, we adapt

an indirect proof of precongruence due to Howe (Howe 1989). We define an auxiliary

relation 6•, that by definition is a precongruence, and then show that 6• = 6. We define

the relation 6•, with relationships denoted by Γ ` e 6• e′ : τ, by the rules in Table 3.

We call 6• Howe’s relation. We have a lemma that gives some basic properties of Howe’s

relation and (bi)similarity.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 133

(Γ, x:σ ` x 6 e : τ)
Γ, x:σ ` x 6• e : τ

(Γ ` k 6 e : τ)
Γ ` k 6• e : τ

Γ, x:σ ` e1 6
• e2 : τ

(Γ ` λx:σ. e2 6 e3 : σ -> τ)
Γ ` λx:σ. e1 6

• e3 : σ -> τ

Γ ` e1 6
• e′1 : σ -> τ Γ ` e2 6

• e′2 : σ
(Γ ` e′1e′2 6 e3 : τ)

Γ ` e1e2 6
• e3 : τ

Γ ` e1 6
• e′1 : σ Γ ` e2 6

• e′2 : τ
(Γ ` (e′1, e′2) 6 e3 : σ * τ)

Γ ` (e1, e2) 6
• e3 : σ * τ

Γ ` e1 6
• e′1 : bool Γ ` e2 6

• e′2 : τ Γ ` e3 6
• e′3 : τ

(Γ ` if e′1 then e′2 else e′3 6• e4 : τ)
Γ ` if e1 then e2 else e3 6

• e4 : τ

Table 3. Rules for generating the relation 6•

Lemma 5.

(1) 6 is a preorder and ∼ is an equivalence.

(2) If p 6 q and p→∗ p′, then p′ 6 q.

(3) If Γ ` e1 6• e2 : τ and Γ ` e2 6 e3 : τ, then Γ ` e1 6• e3 : τ.

(4) Γ ` e : τ implies Γ ` e 6• e : τ.

(5) Γ ` e1 6 e2 : τ implies Γ ` e1 6• e2 : τ.

(6) If Γ ` e 6• e′ : σ and Γ, x:σ ` e1 6• e2 : τ, then Γ ` e1[e/x] 6• e2[e
′
/x] : τ.

(7) 6• is a precongruence.

Proof.

(1) It is easy to see that if I
def
= { (p, p) | p is a program }, then (I ⊆ U and) I ⊆ Φs(I).

Thus I ⊆ 6, implying that 6 is reflexive. One can also prove routinely that for any

simulation S we have [S] ◦ [S] ⊆ [S◦S], and that 6 = [6] implies that 6 ◦6 ⊆ 6.

So 6 is a preorder and it is thus immediate from Lemma 4 that ∼ is an equivalence.

(2) This is immediate from the definition of 6 plus rule (?) of Table 2.

(3) This is proved using induction on the derivation of Γ ` e1 6• e2 : τ. One needs to

appeal to the transitivity of 6, proved in Part (1).

(4) This is proved using induction on the derivation of Γ ` e : τ.

(5) This follows from Parts (3) and (4).

(6) This is proved using induction on the derivation of Γ, x:σ ` e1 6• e2 : τ, together with

Part (5).

(7) This follows from the definition of 6•, plus Part (4).

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 134

Lemma 6. Whenever v 6• q, there exists a value u for which

v 6• u and q →∗ u.
In particular, if v is l, then q →∗ l.

Proof. We use induction on the structure of value v.

(Case v is λx:σ. e1): Suppose that λx:σ. e1 6• q, where λx:σ. e1:σ -> τ, say. Then there is

an expression e2 for which x:σ ` e1 6• e2 :τ and λx:σ. e2 6 q. Each type σ is inhabited;

in particular, there is v:σ for each σ. Thus we have

λx:σ. e2 6 q

(λx:σ. e2)v

@v

?
6 q′

?

.........

@v

and so appealing to Lemma 2 there is a value u for which q →∗ u @v−→ uv = q′; the

definition of the labelled transition system ensures that u is indeed a value. Note that

the only transitions λx:σ. e2 can make are of the form @v for some v:σ, and then it

follows that λx:σ. e2 6 u and hence, using Lemma 5 Part (3), that λx:σ. e1 6• u.
(Case v is (v, v′)): Suppose that (v, v′) 6• q. Then there are q1 and q′1 for which v 6• q1,

v′ 6• q′1 and (q1, q
′
1) 6 q. By induction, there exist values u1 and u′1 where q1 →∗ u1

and q′1 →∗ u′1 and such that v 6• u1 and v′ 6• u′1. Thus using Lemma 2 we have

(q1, q
′
1) 6 q

u1

fst

?
6 w

?

.

.

.

.

.

.

.

.

.

fst

(q1, q
′
1) 6 q

u2

snd

?
6 w′

?

.........

snd

and so q →∗ (w, w′), where u1 6 w and u′1 6 w′. It follows that (v, v′) 6• (w, w′).

The remaining cases consist of the value constants: each case is quite similar, relying

on Lemma 2. We give just two examples:

(Case v is l): If l 6• p, then l 6 p and thus there is a program p′ for which p
l−→ p′.

Hence we must have p→∗ a l−→ Ω = p′, and hence a = l because a has to be a value

of type int.

(Case v is read): Suppose that read 6• p, so that

read 6 p

read()

@()

?
6• p′

?

.........

@()

Using Lemma 2 there is an active a for which p →∗ a @()−→ a(). Thus a must be a

value, with read 6• a.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 135

Lemma 7. Whenever p→ p′ and p 6• q, then p′ 6• q.

Proof. We use induction on the derivation of p→ p′.
(Case fst(u, v)→ u): Suppose that fst(u, v) 6• q. Then appealing to Lemma 6, there

are programs p1, p2 and values v1, v2 and v′2 for which

— fst 6• p1 →∗ v1 where fst 6• v1;

— (u, v) 6• p2 →∗ (v2, v
′
2) where (u, v) 6• (v2, v

′
2), and

— fst(u, v) 6• p1p2 6 q.

It follows that

fst 6 v1 p1p2 6 q

fst(v2, v
′
2)

@(v2, v
′
2)

?
6 v1(v2, v

′
2)

@(v2, v
′
2)

?
=== v1(v2, v

′
2)

?

∗

u 6• v2

?

and so u 6• q, as required by Lemma 5 Parts (1), (2) and (3).

(Case snd(u, v)→ v): This is symmetric to the previous case.

(Case (λx:σ. e)v → e[v/x]): Suppose that (λx:σ. e)v 6• q. Then, using Lemma 6, there are

p1, p2 and v2 such that

— λx:σ. e 6• p1;

— v 6• p2 →∗ v2 where v 6• v2, and

— p1p2 6 q.

Thus, there is e′ such that x:σ ` e 6• e′ and λx:σ. e′ 6 p1. So, from Lemma 2 and

Lemma 5 Part (6) we have

λx:σ. e′ 6 p1 p1p2 6 q

(λx:σ. e′)v2

@v2

?
6 v1v2

@v2

?
======= v1v2

?

∗

e[v/x] 6• e′[v2/x]
?

and so e[v/x] 6• q by Lemma 5 Parts (1), (2) and (3).

(Case δv → eδ[v/x]): Suppose that δv 6• q. Thus, using Lemma 6, there are p1, p2, v1 and

v2 such that

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 136

— δ 6• p1 →∗ v1 where δ 6• v1;

— v 6• p2 →∗ v2 with v 6• v2, and

— p1p2 6 q.

Hence, by Lemma 5 Part (6)

δ 6 v1 p1p2 6 q

δv2

@v2

?
6 v1v2

@v2

?
======= v1v2

?

∗

eδ[v/x] 6• eδ[v2/x]
?

and so eδ[v/x] 6 q by Lemma 5 Parts (1), (2) and (3).

Proposition 1. 6• is a simulation.

Proof. We have to verify that if p 6• q and p
α−→ p′, then there exists q′ where q

α−→ q′
and p′ 6• q′. We use induction on the derivation of the labelled transitions.

(Case l
l−→ Ω): This is immediate because we have l 6 q whenever l 6• q.

(Case (u, v)
fst−→ u): There exist values u′ and v′ for which

(u, v) 6• (u′, v′) 6 q

u

fst

?
6• u′

fst

?
6 q′

?

.........

fst

and so from Lemma 5 Part (3) we deduce u 6• q′.
(Case (u, v)

snd−→ u): This is similar to fst.

(Case u
@v−→ uv): Let u 6• q. Then q →∗ w with u 6• w for some w, using Lemma 6.

Thus u and w have the same type. Note that from Lemma 5 Part (4) we have v 6• v,
and so appealing to Lemma 2 we have

u 6• q

uv

@v

?
6• wv

?

@v

(Case write i
!i−→ ()): Suppose that write i 6• q. Then, using Lemma 6, there are p1,

p2 and v1 such that

— write 6• p1 →∗ v1 where write 6• v1;

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 137

— i 6• p2 →∗ i; and

— p1p2 6 q.

Thus we have

write 6 v1 p1p2 6 q

write i

@i

?
6 v1i

@i

?
======== v1i

?

∗

()

!i

?
6 p3

!i

?
6 q′

?

!i

and so () 6• q′ by Lemma 5 Part (5).

(Case read ()
?i−→ i): This is similar to the previous case.(

Case
p→ p′′ p′′ α−−→ p′

(?)

)
:

p
α−−→ p′

This is immediate from Lemma 7.(
Case

p
µ−−→ q

)
:E[p]

µ−−→E[q]
We need to consider the various experiments. Let us consider

(v, []). Let (v, p)
µ−→ (v, p′) and (v, p) 6• q. Hence (as usual) we have p1, p2 and v1

such that

— v 6• p1 →∗ v1 where v 6• v1;

— p 6• p2; and

— (p1, p2) 6 q.

By induction,

p 6• p2

p′

µ

?
6• p′2

?

µ

Putting everything together and using Lemma 2, we get

(v, p) 6• (p1, p2) 6 q

(v, p′)

µ

?
6• (v1, p

′
2)

µ

?
6 q′

?

.........

µ

and thus (v, p′) 6• q′ (as usual!).

Proposition 2. 6 is a precongruence.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 138

Proof. First, note that 6 ⊆ 6• follows from Lemma 5 Part (5). Proposition 1 shows

that 6• is a simulation, and thus 6• ⊆ 6. Hence 6 = 6•, and appealing to Lemma 5

Part (7), we see that 6 is a precongruence.

Thus we can now prove the central theorem of this section.

Theorem 1. Bisimilarity is a congruence.

Proof. This follows from Proposition 2 and Lemma 4.

3. The metalanguage M and its computational adequacy

In this section we begin by defining the metalanguageM, describing its types, expressions,

proved expressions, and operational theory. Theorem 2 is stated, asserting a computational

adequacy result for M. Next we outline some categorical methods that will be used to

give a denotational semantics to M. These methods have their origins in Scott’s work on

models of the lambda-calculus, and also adapt the results of Freyd and Pitts on minimal

invariant objects. Next we specify the denotational semantics, which is essentially quite

standard: types are modelled by complete pointed partial orders and proved expressions

by Scott continuous functions. We prove that certain formal approximation relations exist

using the properties of minimal invariant objects. Finally, we prove Theorem 2 using the

formal approximation relations.

We outline a Martin-Löf style type theory, which will be used as a metalanguage,

M, into which O may be translated and reasoned about: it is based on ideas from the

FIX-Logic (Crole and Pitts 1992; Crole 1992), though M does not explicitly contain a

fixpoint type. For a general account of similar type theories and their semantics, see, for

example, Crole (1994).

First we describe the types ofM. The (open and simple) types are given by the grammar

σ ::= X0 | Unit | Bool | Int | σ × σ | σ → σ | σ⊥ | U(σ),

where X0 is a fixed type variable, together with a single top-level recursive datatype

declaration

datatype U(X0) = c1 of σ1 | · · · | ca of σa,

where a > 0 and any type U(σ) occurring in the σi is of the form U(X0), and each function

type in any σi has the form σ → σ′⊥ (thus the function types in the body of the recursive

type are required to be partial). Note that the positive integer a is fixed, as are each of the

types σi. However, a and the types σi are essentially arbitrary, and have, in fact, specified

a family of type systems – in Section 4 we shall choose a specific type-system in which

the recursive datatype U(X0) is used to model I/O.

Informally, the (open) types are either a type variable, a unit type, Booleans, integers,

products, exponentials, liftings, or a single, parameterised recursive datatype whose body

consists of a (finite) disjoint sum of (a) instances of the latter types. These types will be

used in the expected way when modelling the object types of O.

A closed type σ is one in which there are no occurrences of the type variable X0, and we

omit the easy formal definition, noting that there are no type variable binding operations,

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 139

E ::= x (variable)

| () (unit value)

| b`c (literal value)

| E b⊕c E (arithmetic)

| If E thenE elseE (conditional)

| (E, E) (pair)

| SplitE as (x, y) inE (projection)

| c(E) (recursive data)

| CaseE of c1(x)→ E | · · · | ca(x)→ E (case analysis)

| λx:σ. E (abstraction)

| E E (application)

| Lift(E) (lifted value)

| DropE to x inE (sequential composition)

| Rec x:σ inE (recursion)

` ∈ B ∪ Z c ∈ { c1, . . . , ca }

Table 4. Expressions of the metalanguage M, ranged over by E

and indeed just one type variable. We will make use of type substitution, and will write

σ(σ′) for σ[σ
′
/X0], where the latter has the obvious definition.

The collection of expressions of M is given by the grammar in Table 4. Most of the

syntax of M is standard (Crole 1992; Crole and Gordon 1994). The expressions Lift(E)

and DropE1 to x inE2 give rise to an instance of (the type theory corresponding to) the

lifting computational monad (Moggi 1989). The expression SplitE1 as (x, y) inE2 is the

usual one for decomposing binary product expressions. Further details can be found in

Nordström et al. (1990).

We define a type assignment system for M, which consists of rules for generating

judgements of the form Γ ` E:σ, where σ is a closed type, and the environment Γ is

a finite set { x1:σ1, . . . , xn:σn } of (variable, closed type) pairs in which the variables are

required to be distinct. In such judgements, which we call proved expressions, E is formally

an α-equivalence class of expressions (the latter defined in Table 4). The usual scope rules

apply. Most of the rules for generating these judgements are fairly standard, though for

completeness they are given in Table 5. The type of an arithmetic expression is lifted so

that its value can be forced using Drop. When the environment Γ is empty, we shall write

E:σ for the type assignment.

We can equipM with a standard equational theory, which includes β, η and congruence

rules. The judgements take the form Γ ` E = E ′:σ, which we call theorems. Having given

the full set of rules for type assignment, we omit the rules for deriving theorems. When

the environment Γ is empty, we shall write a theorem as E = E ′:σ, or even E = E ′ if no

confusion is likely to occur.

An M program is a closed expression P for which there exists a (closed) type σ where

P :σ. The set of M value expressions is given by the grammar

V ::= () | blc | (E, E) | λx:σ. E | Lift(E) | c(E),

and values are those V that are programs.

Finally, we equip the syntax of M with an operational semantics. We define a set of

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 140

Γ, x:σ,Γ′ ` x : σ Γ ` () : Unit

` ∈ B
Γ ` b`c : Bool

` ∈ Z
Γ ` b`c : Int

Γ ` E1 : Int Γ ` E2 : Int
⊕ ∈ {+,−,×}

Γ ` E1b⊕cE2 : Int⊥

Γ ` E1 : Int Γ ` E2 : Int
⊕ ∈ {=, <}

Γ ` E1b⊕cE2 : Bool⊥

Γ ` E1 : Bool Γ ` E2 : σ Γ ` E3 : σ

Γ ` If E1 thenE2 elseE3 : σ

Γ ` Ei : σi (i = 1, 2)

Γ ` (E1, E2) : σ1 × σ2

Γ ` E1 : σ1 × σ2 Γ, x1:σ1, x2:σ2 ` E2 : σ

Γ ` SplitE1 as (x1, x2) inE2 : σ

Γ ` E : σi[σ/X0]
1 6 i 6 a

Γ ` ci(E) : U(σ)

Γ ` E : U(σ) Γ, x:σi[σ/X0] ` Ei : σ′

Γ ` CaseE of c1(x)→ E1 | · · · | ca(x)→ Ea : σ′

Γ, x:σ′ ` E : σ

Γ ` (λx:σ′. E) : σ′ → σ

Γ ` E : σ′ → σ Γ ` E′ : σ′

Γ ` E E′ : σ
Γ ` E : σ

Γ ` Lift(E) : σ⊥

Γ ` E : σ⊥ Γ, x:σ ` E′ : σ′

Γ ` DropE to x inE′ : σ′
Γ, x:σ⊥ ` E : σ⊥

Γ ` Rec x:σ⊥ inE : σ⊥

Table 5. Generation of proved expresssions in M

experiments, ranged over by E. This set consists of the contexts specified by the grammar

E ::= []b⊕cP
| V b⊕c[]

| If [] thenP1 elseP2

| Split [] as (x, y) inE

| Case [] of c1(x0)→ E1 | . . . | ca(x0)→ Ea

| []P

| V []

| Lift([])

| Drop [] to x inE

We define a small-step reduction relation P1 → P2 by the rules in Table 6. This semantics

is lazy in the sense that constructors do not evaluate their arguments.

Given any program P , we write P⇓ to mean that there is a value V for which P →+ V .

Note thatM is deterministic: every program P that reduces to some value V , must reduce

to a unique value V up to α-equivalence.

In the rest of this section, our aim is to construct a domain-theoretic denotational

semantics for M, assigning a denotation [[P]] to each program P , and to prove the

following theorem.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 141

b`1cb⊕cb`2c → Lift(b`1 ⊕ `2c)
If tt thenP1 elseP2 → P1

If ff thenP1 elseP2 → P2

Split (P1, P2) as (x, y) inE → E[P1, P2/x, y]

Case ci(P) of c1(x1)→ E1 | . . . | ca(xa)→ Ea → Ei[P/xi]

(λx:σ. E)P → E[P/x]

Drop Lift(P) to x inE → E[P/x]

Rec x inE → E[Rec x inE/x]

P1 → P2

E[P1]→ E[P2]

Table 6. The reduction relation for M

Theorem 2.

(1) If P is a program of type σ and P → P ′, then P ′ is also a program of type σ and,

moreover, [[P]] = [[P ′]] ∈ [[σ]].

(2) If P is a program of type σ⊥ and [[P]] 6= ⊥, then there exists a value V of type σ⊥
and P →∗ V .

(3) The denotational semantics is sound for the equational theory ofM, that is, if P = P ′
is a theorem, then [[P]] = [[P ′]].

Part (1) is soundness of the operational semantics of M: it preserves denotation. Part (2)

is adequacy: if a program does not denote ⊥, then its evaluation converges.

This denotational semantics fails to be fully abstract: just as in Plotkin’s study of

PCF (Plotkin 1977), we can write down two functions in O that are contextually equivalent,

but whose denotations are distinct.

In Section 4, we obtain a denotational semantics for O indirectly via a textual translation

into M. We need Theorem 2 to show that if the induced denotations of two O programs

are equal, then the two programs are bisimilar. The rest of this section is devoted to the

proof of Theorem 2.

Ultimately, we shall give a denotational semantics to M in the category CPPO of

complete pointed posets (cppos) and (Scott) continuous functions. For us, a cppo is a

poset that is complete in the sense of having joins of all ω-chains, and pointed in the

sense of having a bottom element. Closed types will be modelled by cppos, and the proved

expressions by Scott continuous functions. However, in order to set up our denotational

semantics, we shall make use of some domain-theoretic constructions in other categories.

The following categories will be employed:

— the category CPO with objects all cpos and morphisms all continuous functions;

— the category CPPO with objects all cppos and morphisms all continuous functions;

— the category Dom with objects all cppos and morphisms all strict continuous functions;

and

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 142

— the category DomT where T is any set and we define

DomT def
= Πσ∈TDom

to be the T-indexed product category. For the time being T can be any set; but later

it will be the set of all closed types inM, and we shall use σ to denote elements of T.

We write (Aσ | σ∈T) for an object of DomT, and recall that by definition, hom-sets

in DomT are given by

DomT(A,B)
def
= Πσ∈TDom(Aσ, Bσ).

We shall make use of the following inclusion diagram

Dom
incl- CPPO incl- CPO

where the first inclusion yields a lluf subcategory, and the second a full subcategory. We

write ⊥ : CPO → CPO for the (functor part of the) lifting monad, which maps any cpo

X to the lifted cppo

X⊥
def
= { [x] | x ∈ X } ∪ {⊥ }.

Note that each of the above categories is a CPO-enriched category. As usual, the

hom-sets of the first two categories, whose elements are continuous functions, are given

the pointwise order. The hom-sets of DomT are products of c(p)pos – hence cpos. We

shall write ⊥A def
= (⊥Aσ | σ∈T) for the bottom element of A in DomT. While we shall only

make use of CPO-enrichment, note that each hom-set DomT(A,B) is a pointed cpo; we

write ⊥A,B def
= (⊥Aσ,Bσ | σ∈T) for the bottom of DomT(A,B), where ⊥Aσ,Bσ ∈ Dom(Aσ, Bσ)

is the function with constant value ⊥Bσ .
The terminal object 1 ∈ DomT is ({⊥ } | σ ∈T). Finally, if f:A → B in DomT and

a ∈ Πσ∈TAσ , we define f(a) ∈ Πσ∈TBσ by f(a)σ
def
= fσ(aσ).

Our wish is to give a semantics toM in CPPO, using functions that are not necessarily

strict to model proved expressions because M is a lazy type theory. However, while the

semantics is specified in CPPO, we wish to exploit the ‘minimal invariant’ properties

associated with the lluf subcategory Dom of CPPO.

Note that (DomT)op ×DomT is a CPO-category. Let

F : (DomT)op ×DomT → DomT

be a CPO-functor. A (parameterised) minimal invariant for F is given by an object D of

DomT, and an isomorphism i : F(D,D) ∼= D : j in DomT for which the (continuous)

function

δ : DomT(D,D)→ DomT(D,D) e 7→ i ◦ F(e, e) ◦ j
satisfies µ(δ) = idD in DomT(D,D). The reader can verify that δ is continuous – this

follows from the facts that F is a CPO-functor and that each iσ and jσ are continuous.

Proposition 3. Any CPO-functor F : (DomT)op×DomT → DomT has a minimal invariant.

Proof. The essence of the proof boils down to Scott’s original construction of a model

for lambda calculus (Scott 1969). We shall sketch out the important constructions in the

proof, and leave detailed verifications to the reader.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 143

For each n ∈ N there is a commutative diagram in DomT of the form

Dn+1

F(pn, en) -�
F(en, pn)

F(D,D)

(∗)

Dn+1

wwwwwwwwww
en+1 -�
pn+1

D
j-�
i

F(D,D)

wwwwwwwwww

Dn

in

6

?

rn

en -�
pn

D
j-�
i

F(D,D)

Let us give the definitions of the objects and morphisms in this diagram:

(Definition of D in DomT) Set

D0
def
= 1 ∈ DomT

Dn+1
def
= F(Dn, Dn) ∈ DomT

for each n ∈ N. Define morphisms

in : Dn → Dn+1 and rn : Dn+1 → Dn

by

i0
def
= ⊥D0 ,D1

r0
def
= ⊥D1 ,D0

in+1
def
= F(rn, in)

rn+1
def
= F(in, rn).

Now define

Dσ
def
= { (dσn | n < ω) ∈ Πn<ωD

σ
n | rσn (dσn+1) = dσn }

for each σ ∈ T. Order each Dσ pointwise, and note that Dσ is a cppo because each rσn

is strict continuous; here, ⊥Dσ = (⊥Dσn | n < ω). Hence we define D
def
= (Dσ | σ ∈T), an

object of DomT.

(Definition of en) We set en
def
= (eσn | σ∈T) where

eσn : Dσn → Dσ dσn 7→ (eσn (dσn)m | m < ω)

and

eσn (dσn)m
def
=


rσn,m(dσn) if m < n

dσn if m = n

iσn,m(dσn) if m > n.

Here, if m < n, then rn,m
def
= rm ◦ . . . ◦ rn and im,n

def
= in ◦ . . . ◦ im. It is easy to verify that each

eσn is indeed a strict continuous function.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 144

(Definition of pn) These are the (strict continuous) projections, with pσn mapping

(dσn | n < ω) to dσn .

(Definition of i) We set i = (iσ | σ∈T), where

iσ : F(D,D)σ → Dσ iσ
def
=
∨
n<ω

eσn+1 ◦ F(en, pn)
σ.

(Definition of j) We set j = (jσ | σ∈T) ,where

jσ : Dσ → F(D,D)σ jσ
def
=
∨
n<ω

F(pn, en)
σ ◦ pσn+1.

One can show that these definitions yield commutative diagrams of the form given at

the beginning of this proof, and that each (eσn , p
σ
n) is an embedding-projection pair in Dom .

Using the square (∗) in that diagram, we can prove that en ◦ pn = δn(⊥D,D) for each n < ω,

and thus

µ(δ) =
∨
n<ω

δn(⊥D,D) =
∨
n<ω

en ◦ pn = idD,

with the final equality following from the basic properties of embedding-projection pairs.

Let us now assign a denotational semantics to the closed types of M, where we write

T for the set of all closed types. We shall first define a T-indexed family of functors

(Fσ:(DomT)op ×DomT → DomT | σ ∈ T)

through the following clauses:

— FUnit(A,B)
def
= { 0 }⊥;

— FBool(A,B)
def
= B⊥;

— FInt(A,B)
def
= Z⊥;

— Fσ×σ′ (A,B)
def
= Fσ(A,B)× Fσ′ (A,B);

— Fσ⇒σ′(A,B)
def
= Fσ(B,A)⇒ Fσ′(A,B);

— Fσ⊥ (A,B)
def
= Fσ(A,B)⊥; and

— FU(σ)(A,B)
def
= Bσ ,

where at base types, Fσ(−,+) maps morphisms to identity morphisms. Note that × and

⇒ are the product and exponential functors in CPO, restricted to the category Dom . We

also define a functor

F : (DomT)op ×DomT −→ DomT

by setting

F(A,B)
def
= (LS (Fσ1(σ)(A,B), . . . , Fσa(σ)(A,B)) | σ∈T),

where LS (−) : Doma → Dom is the functor given by

Doma incl−→ CPOa +−→ CPO ⊥−→ CPO incl−→ Dom

with + being coproduct (of a objects) and ⊥ being the lifting monad on CPO. In general,

we write

inj : Aj −→ A1 + . . .+ Aa

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 145

for coproduct insertion. Note that this is a sensible definition of F , as σ is a closed type,

and thus so is each σi(σ). We leave the verification that the functors Fσ and F are indeed

CPO-functors to the reader.

Definition 1. Appealing to Proposition 3, there is a minimal invariant D for F , equipped

with an isomorphism i : F(D,D)→ D in DomT. We define

[[σ]]
def
= Fσ(D,D)

for each σ ∈ T.

Note the following consequences of this definition:

— [[Unit]] = { 0 }⊥;

— [[Bool]] = B⊥;

— [[Int]] = Z⊥;

— [[σ × σ′]] = [[σ]]× [[σ′]];
— [[σ → σ′]] = [[σ]]⇒ [[σ′]];
— [[σ⊥]] = [[σ]]⊥; and

— [[U(σ)]] = FU(σ)(D,D) = Dσ .

Note that in Dom we have

F(D,D)σ = . . . = LS ([[σ1(σ)]], . . . , [[σa(σ)]])

Dσ

iσ

?
= . . . = [[U(σ)]]

?

iσ

Given an environment Γ, we define [[Γ]] to be the cppo that is the product of the

denotations of the types appearing in Γ, and we then specify a continuous function

[[Γ ` E:σ]]:[[Γ]] → [[σ]] for each proved expression. Note that if Γ is empty, we define

[[Γ]]
def
= {⊥ }, any one-point cppo. The definition of these semantic functions is quite

standard; we simply give the meaning of expressions associated with functions, recursion

and cases:

— If e
def
= [[Γ, x:σ ` E:σ′]] : ([[Γ]]× [[σ]])→ [[σ′]] and ξ ∈ [[Γ]], then we set

[[Γ ` λx. E:σ ⇒ σ′]](ξ)
def
= λx ∈ [[σ]].e(ξ, x) : [[σ]]→ [[σ′]].

— If [[Γ, x:σ⊥ ` E:σ⊥]] : ([[Γ]] × [[σ⊥]]) → [[σ⊥]] and λ(e) denotes exponential transpose

(currying), then

[[Γ ` Rec x inE:σ⊥]](ξ)
def
=
∨
n<ω

λ(e)(ξ)n(⊥[[σ⊥]]).

— If e
def
= [[Γ ` E:σj(σ)]] : [[Γ]]→ [[σj(σ)]] and ξ ∈ [[Γ]], then we shall set

[[Γ ` cj(E):U(σ)]](ξ)
def
= iσ([inj(e(ξ))]) ∈ [[U(σ)]].

— If e
def
= [[Γ ` E:U(σ)]]:[[Γ]]→ [[U(σ)]] and

ej
def
= [[Γ, xj:σj(σ) ` Ej:σ′]] : [[Γ]]× [[σj(σ)]]→ [[σ′]],

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 146

then

[[Γ ` CaseE of c1(x1)→ E1 | . . . | cn(xn)→ En:σ
′]](ξ)

def
=

 ej(ξ,⊥) if jσ(e(ξ)) = ⊥

ej(ξ, d
σ
j) if jσ(e(ξ)) = [inj(d

σ
j)].

We finish this section by noting that we have set up some machinery that caters for the

possibility that the body of the recursive datatype contains a contravariant type variable.

However, in our application to I/O, there is no such contravariance. We could slightly

simplify both this section and the next by restricting attention to such recursive types, but

the simplification is not particularly significant. Furthermore, the present formulation of

M makes it suitable for other applications, such as a denotational semantics of a language

with a store, where such contravariance is essential.

In this section we introduce some simple category theory that will play a key role in

the proof of Theorem 2. We shall show that there is a T indexed family of relations

(/σ ⊆ [[σ]]× {P | ∃σ(P :σ) } | σ ∈ T)

satisfying certain conditions. Such formal approximation relations are fairly standard (see,

for example, Crole and Gordon (1994), Pitts (1994b) and Plotkin (1985)), so we simply

give these conditions at function, lifted and recursive types:

— f /σ⇒σ′ P iff f = ⊥ or ∃E. P →∗ λx. E and ∀d /σ P ′. f(d) /σ′ E[P
′
/x];

— e /σ⊥ P iff ∃d ∈ [[σ]]. e = [d] implies ∃P ′. P →∗ Lift(P ′) and d /σ P
′;

— rσ /U(σ) P iff rσ = ⊥Dσ or

∃Pj. P →∗ cj(Pj) and ∃dσj ∈ [[σj(σ)]]. rσ = iσ([inj(d
σ
j)]) and dσj /σj (σ) Pj .

Proposition 4. There exists a family of formal approximation relations

(/σ | σ ∈ T)

enjoying the above properties.

The existence of the formal approximation relations can be proved by techniques that

appear in Plotkin’s CSLI notes (Plotkin 1985). However, it is more elegant to adapt Pitts’

method of admissible actions on relational structures. We give an outline of the method.

Set TyProgs
def
= {P :σ | P is a program of type σ}, regard the set TyProgs as a discrete

cpo, and for any cppo X put

R(X)
def
= {R ∈ P(X × TyProgs) | R is an ω-chain complete subset}.

We define R(A)
def
= Πσ∈T(Aσ), where A is an object of DomT. We shall use the letters R

and S to range over elements of both R(A) and R(X). In the former case, Rσ will denote

the σ-th component of R.

Lemma 8. Both R(X) and R(A), where X is an object of Dom and A is an object of

DomT, are complete lattices.

Proof. Note that R(X) is a complete lattice with the inclusion order, where arbitrary

meets are given by set-theoretic intersection. It follows that R(A) is a complete lattice

with the product ordering.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 147

Let D be the minimal invariant of F defined in Definition 1, and for each σ ∈ T we

shall define a monotone function

Fσ : R(D)op ×R(D) −→ R([[σ]])

through the following clauses:

— FUnit(R, S)
def
= { (d, P :Unit) | d = ⊥ or (d = [0] and P →∗ ()) };

— FBool(R, S)
def
= { (d, P :Bool) | d = ⊥ or

(d = [0] and P →∗ bttc) or (d = [1] and P →∗ bff c) };
— FInt(R, S)

def
= { (d, P :Int) | d = ⊥ or (∃z ∈ Z. d = [z] and P →∗ bzc) };

— Fσ×σ′ (R, S)
def
= { (p, P1:σ × σ′) | p = ⊥ or

(∃(d, d′) ∈ [[σ]]× [[σ′]]. p = (d, d′) and ∃P , P ′. P →∗ (P , P ′) and

(d, P :σ) ∈ Fσ(R, S) and (d′, P ′:σ′) ∈ Fσ′ (R, S)) };
— Fσ→σ′(R, S)

def
= { (f, P :σ → σ′) | f = ⊥ or (∃E ′. P →∗ λx. E ′

and ∀(d, P :σ) ∈ Fσ(S, R). (f(d), E ′[P/x]:σ′) ∈ Fσ′(R, S)) };
— Fσ⊥

def
= { (e, P :σ⊥) | e = ⊥ or (∃d ∈ [[σ]]. e = [d] and

∃P ′. P →∗ Lift(P ′) and (d, P ′:σ) ∈ Fσ(R, S)) };
— FU(σ)(R, S)

def
= Sσ where of course Sσ ∈ R(Dσ) = R([[U(σ)]]).

We leave the reader to verify that (Fσ | σ ∈ T) is a family of monotone functions.

Next we define a monotone function

F : R(D)op ×R(D) −→ R(F(D,D))

by setting its components to be

F(R, S)σ
def
= { (xσ, P :U(σ)) | xσ = ⊥F(D,D)σ or

∃Pj. P →∗ cj(Pj) and ∃dσj ∈ [[σj(σ)]]. xσ = [inj(d
σ
j)] and

(dσj , Pj:σj(σ)) ∈ Fσj (σ)(R, S) }.
We also define a monotone function

L : R(D)op ×R(D) −→ R(D)

by setting

L(R, S)
def
= { (uσ, P :τ) | uσ = ⊥Dσ or

∃xσ ∈ F(D,D)σ. uσ = iσ(xσ) and (xσ, P :τ) ∈ F(R, S)σ }.
Define

Lsym : R(D)op ×R(D) −→ R(D)op ×R(D)

by setting Lsym (R, S)
def
= (L(S, R), L(R, S)). Note that using Lemma 8 we can deduce that

R(D)op × R(D) is a complete lattice, and hence by Knaster–Tarski there is an element

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 148

(R−, R+) ∈ R(D)op×R(D) that is the least fixed point of Lsym . It follows from the equality

(R−, R+) = (L(R+, R−), L(R−, R+))

and leastness of (R−, R+), that Lsym (R+, R−) 6 (R+, R−), and hence that

R+ 6 R− (?)

in the lattice R(D).

We shall now set out to prove that R− 6 R+. This will involve some further machinery.

We shall write e : R � S to mean

— e ∈ DomT(D,D);

— R ∈ R(D) and S ∈ R(D); and

— for every (uσ, P :τ) ∈ Rσ we have (eσ(uσ), P :τ) ∈ Sσ .

Lemma 9. If e : R � S , then

(d, P :τ) ∈ Fτ(S, R) implies (Fτ(e, e)(d), P :τ) ∈ Fτ(R, S).

Proof. The result follows from a simple induction on the closed type τ. We consider

one simple case:

(Case τ is U(σ)) Let (rσ, P :U(σ)) ∈ FU(σ)(S, R) = Rσ . Recall that FU(σ)(e, e)
σ = eσ . We

have (eσ(rσ), P :U(σ)) ∈ Sσ = FU(σ)(R, S), and so we are done.

Lemma 10. Whenever e : R � S , we have δ(e) : L(S, R) � L(R, S).

Proof. Suppose that (uσ, P :τ) ∈ L(S, R)σ . We wish to show that

(δ(e)σ(uσ), P :τ) ∈ L(R, S)σ.

If δ(e)σ(uσ) = ⊥Dσ , we are done. If not, we know that uσ is non-bottom, and thus there is

a non-bottom xσ ∈ F(D,D)σ for which

δ(e)σ(uσ) = iσ ◦ F(e, e)σ(xσ).

Thus it remains to show that

(F(e, e)σ(xσ), P :τ) ∈ F(R, S)σ. (†)

By induction, it follows that (xσ, P :τ) ∈ F(R, S)σ , and hence τ must be of the form

U(σ), P →∗ cj(Pj) (1)

and xσ = [inj(d
σ
j)] where (dσj , Pj:σj(σ)) ∈ Fσj (σ)(S, R). Using Lemma 9, we have

(Fσj (σ)(e, e)(d
σ
j), Pj:σj(σ)) ∈ Fσj (σ)(R, S). (2)

Thus (†) will follow from (1) and (2) using the following computation:

F(e, e)σ(xσ) = LS ((Fσ1(σ)(e, e), . . . , Fσa(σ)(e, e)))([inj(d
σ
j)])

= [(Fσ1(σ)(e, e) + . . .+ Fσa(σ)(e, e))(inj(d
σ
j))]

= [inj(Fσj (σ)(e, e)(d
σ
j))],

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 149

where we have used the definition of F(e, e), naturality of the unit of the lifting monad,

and the universal property of coproducts.

Let

Z
def
= { e ∈ DomT(D,D) | e : R− � R+ }.

Using Lemma 10, we see that for any e ∈ Z we have δ(e) ∈ Z . Also, ⊥D,D ∈ Z , for

if (dσ, P :τ) ∈ Rσ−, then (⊥Dσ , P :τ) ∈ L(R−, R+)σ = Rσ+. One can check that Z is ω-chain

complete, and hence it follows that

idD = µ(δ) =
∨
n<ω

δn(⊥D,D) ∈ Z.

Hence idD : R− � R+, that is Rσ− ⊆ Rσ+ for each σ ∈ T, which amounts to R− 6 R+ in

R(D). Recalling assertion (?), we can set Rfix
def
= R− = R+, and finally

/σ
def
= { (d, P) | (d, P :σ) ∈ Fσ(Rfix , Rfix) }.

Thus we have proved the existence of the required family of formal approximation

relations – it is very easy to see that the required properties hold.

We shall need the following lemmas.

Lemma 11. Suppose that P :σ, P →∗ P ′ and d /σ P
′. Whenever we have these data, d /σ P .

Proof. The proof is a simple induction on the structure of σ.

Lemma 12. Whenever y1:σ1, . . . , ym:σm ` E:σ and (dk /σk Pk | 1 6 k 6 m), we have

[[Γ ` E:σ]](~d) /σ E[~P/~y].

Proof. The proof proceeds by induction on the structure of the expression E.

(Case E is Rec x inE) We have to prove that

[[Γ ` Rec x inE:σ⊥]](~d) /σ⊥ P ,

where P
def
= Rec x inE[~P/~y]. Suppose that [[Γ ` Rec x inE:σ⊥]](~d) 6= ⊥[[σ⊥]], and say

[[Γ ` Rec x inE:σ⊥]](~d) = [a] ∈ [[σ⊥]].

It remains to prove that P →∗ Lift(P ′) for some P ′:σ, and that a /σ P
′.

We have ⊥ /σ⊥ P . From this, we can use induction on N to show that λ(e)(~d)n(⊥) /σ⊥
P [Rec x inE/x] holds for all n ∈ N. Note also that the domain elements indexed by n form

an ω-chain in [[σ⊥]]. Appealing to the definition of the denotational semantics we see that

[a] =
∨
n<ω

λ(e)(~d)n(⊥),

and so there is n0 ∈ N, and am ∈ [[σ]] for every m > n0, with λ(e)(~d)m(⊥) = am. Therefore

[am] /σ⊥ P [Rec x inE/x], implying that P [Rec x inE/x] →∗ Lift(P ′) for some P ′:σ and that

am /σ P
′ for all m > n0. Note that we make crucial use of the determinacy of→∗ here (each

am yields the same P ′) and P →∗ Lift(P ′) follows from the definition of →∗. Certainly,

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 150

(am | m > n0) is an ω-chain in [[σ]], and thus

a =
∨
n<ω

an =
∨
m>n0

am /σ P
′,

as /σ is chain complete.

We can now complete the proof of Theorem 2. It is easy to prove the first part by rule

induction on P → P ′. A corollary is that whenever P →∗ V , [[P]] = [[V]] ∈ [[σ]]. For the

second part, note that it follows from Lemma 12 that [[P :σ]] /σ P for any P of type σ. To

see this, just note that 0 /Unit (), and observe that one can prove [[x:Unit ` P :σ]] = [[P :σ]]

for any program P ∈ {P | ∃σ(P :σ) }. Now suppose that we have [[P :σ⊥]] 6= ⊥, and

from Lemma 12 we have [[P :σ⊥]] /σ⊥ P . Hence, from the property of /σ⊥ we deduce

P →∗ Lift(P ′) for some P ′ as required. Finally, the third part of Theorem 2, that the

denotational semantics is sound for the equational theory, follows as usual by a routine

induction on the derivation of proved expressions.

4. The translation of O into M
Following Plotkin (1985), we induce a denotational semantics on O via a textual translation

〈〈−〉〉 of its types and expressions into M. Each O type τ is sent to an M type 〈〈τ〉〉 that

models O values of type τ. We have 〈〈unit〉〉 def
= Unit, 〈〈bool〉〉 def

= Bool, 〈〈int〉〉 def
= Int and

〈〈τ1 * τ2〉〉 def
= 〈〈τ1〉〉 × 〈〈τ2〉〉. Our translation of an O function, 〈〈τ1 -> τ2〉〉, must model the

‘pseudo-functions’ read and write, and so cannot simply be 〈〈τ1〉〉 → 〈〈τ2〉〉, but must be

〈〈τ1〉〉 → T〈〈τ2〉〉, where the range is a type of computations (Moggi 1989). If τ is an O type,

M type T〈〈τ〉〉 is to represent the behaviour of O programs of type τ, including divergent

programs and communicators as well as values. Using an idea that dates at least to the

Pisa notes (Plotkin 1978, Chapter 5, Exercise 4), we set Tσ
def
= (U(σ))⊥ given the following

top-level M declaration:

datatype U(X0) = crd of Int→ U(X0)⊥
| cwr of Int× U(X0)⊥
| cret of X0.

We may form programs of type Tσ using the following abbreviations:

Read(E)
def
= Lift(crd(E))

Write(E1, E2)
def
= Lift(cwr((E1, E2)))

Return(E)
def
= Lift(cret(E)).

Roughly speaking, a computation of type T〈〈τ〉〉 consists of potentially unbounded

strings of Read’s or Write’s terminated with either ⊥ or a Return bearing an element of

type 〈〈τ〉〉. Hence T〈〈τ〉〉 is a suitable semantic domain to model the behaviour of arbitrary

O programs of type τ. It better models the interleaving of input and output than early

denotational semantics models, which passed around a state containing input and output

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 151

sequences (see Mosses (1990)). The following example is a very simpleM program of type

TUnit that first reads a value x, sets y to x+ 1, writes y, and then terminates:

Read(λx.Drop xb+cb1c to y in Write(y,Return(()))).

We also need a sequential composition, anM program, Let, that runs one computation

after another, and has the following type:

Let: Tσ × (σ → Tσ′)→ Tσ′.

(Strictly speaking, this is a type scheme, and Let is a type-indexed family of programs.)

We shall define Let recursively using a fixpoint program. It is routine to derive such a

program, with the following properties, from the Rec operator.

Proposition 5. For each program P of type (σ → τ⊥)→ (σ → τ⊥) there is a program FixP

of type σ → τ⊥ such that (FixP)Q→+ P (FixP)Q for any program Q of type σ.

Proof. See Gordon (1994, p 61) for a proof.

The program Let has the following recursive definition, which, roughly speaking, stitches

together the strings of I/O operations denoted by its two arguments:

Let
def
= Fix(λlet . λx.Split x as (ı̂o, f) in

Drop ı̂o to ıo in

Case ıo of

crd(g)→ Read(λy. let (g y, f))

cwr(x)→ Split x as (y, ı̂o′) in Write(y, let (ı̂o′, f))

cret(x)→ f x).

Note that let , ıo and ı̂o and their primed variants are simplyM variables. Program Let

has the following reduction behaviour.

Let(P , λx. E)→+ DropP to ıo in Case ıo of

crd(g)→ Read(λy. Let(g y, λx. E))

cwr(x)→ Split x as (y, ı̂o′) in Write(y, Let(ı̂o′, λx. E))

cret(x)→ (λx. E) x.

Lemma 13.

(1) Let(Return(P), λx. E)→+ E[P/x]

(2) Let(Write(P ,Q), λx. E)→+ Write(P , Let(Q, λx. E))

(3) Let(Read(P), λx. E)→+ Read(λy. Let(P (y), λx. E)).

Proof. (1) and (3) follow immediately from the reduction above. For (2) we have

Let(Write(P ,Q), λx. E)

→+ Split (P ,Q) as (y, ı̂o′) in Write(y, Let(ı̂o′, λx. E))

→+ Write(P , Let(Q, λx. E)).

O expressions are inductively translated intoM expressions, following the monadic style

pioneered by Moggi (1989) and Pitts (1991). We simultaneously define the translation 〈〈−〉〉

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 152

of arbitrary O expressions toM expressions, and an auxiliary translation 〈| − |〉 of O value

expressions. Here are the rules for value expressions:

〈|x|〉 ≡ x

〈|()|〉 ≡ ()

〈|`|〉 ≡ b`c
〈|⊕|〉 ≡ λx.Split x as (y, y′) in Drop yb⊕cy′ to z in Return(z)

〈|fst|〉 ≡ λx.Split x as (y, z) in Return(y)

〈|snd|〉 ≡ λx.Split x as (y, z) in Return(z)

〈|δ|〉 ≡ Fix(λfδ. λx. 〈〈eδ[fδ/δ]〉〉) given x:τσ ` eδ : τ′σ
〈|(v, u)|〉 ≡ (〈|v|〉, 〈|u|〉)
〈|(λx:τ. e)|〉 ≡ λx:〈〈τ〉〉. 〈〈e〉〉
〈|read|〉 ≡ λx:Unit.Read(λy.Return(y))

〈|write|〉 ≡ λx:Int.Write(x,Return(())).

The rules for expressions are given below. Since value expressions, ranged over by ve,

are also expressions, ranged over by e, there is overlap between the rules marked (∗) and

some later rules. In case of overlap, a rule marked (∗) takes precedence over any later

rule.

〈〈ve〉〉 ≡ Return(〈|ve|〉) (∗)
〈〈Ω〉〉 ≡ Rec x in x

〈〈if e1 then e2 else e3〉〉 ≡ Let(〈〈e1〉〉, λx. If x then 〈〈e2〉〉 else 〈〈e3〉〉)
〈〈ve1 e2〉〉 ≡ Let(〈〈e2〉〉, λx. 〈|ve1|〉 x) (∗)
〈〈e1 e2〉〉 ≡ Let(〈〈e1〉〉, λf. Let(〈〈e2〉〉, λx. f x))

〈〈(ve1, e2)〉〉 ≡ Let(〈〈e2〉〉, λy.Return((〈|ve1|〉, y))) (∗)
〈〈(e1, e2)〉〉 ≡ Let(〈〈e1〉〉, λx. Let(〈〈e2〉〉, λy.Return((x, y)))).

As an example, we can use the equational theory of M to show that the translation of

the O program write(read()+1) into M equals the M program we mentioned earlier:

〈〈write(read()+1)〉〉 = Read(λx.Drop xb+cb1c to y in Write(y,Return(()))).

Our translation preserves typing, as shown by the following lemma.

Lemma 14.

(1) If x1:τ1, . . . , xn:τn ` ve : τ, then x1:〈〈τ1〉〉, . . . , xn:〈〈τn〉〉 ` 〈|ve|〉 : 〈〈τ〉〉 too.

(2) If x1:τ1, . . . , xn:τn ` e : τ, then x1:〈〈τ1〉〉, . . . , xn:〈〈τn〉〉 ` 〈〈e〉〉 : T 〈〈τ〉〉 too.

Proof. The proof is by a simultaneous induction on the derivations of x1:τ1, . . . , xn:τn `
ve : τ and x1:τ1, . . . , xn:τn ` e : τ.

We now present a series of lemmas leading to Theorem 3, which states that if the

denotations of two O programs are provably equal, then the programs are bisimilar. The

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 153

main part of the following lemma, Part (3), asserts that any reduction of an O program

may be matched by one or more reductions of its translation into M.

Lemma 15.

(1) Whenever Γ, x:τ ` e : τ′ and Γ ` ve : τ, e is a value expression iff e[ve/x].

(2) If Γ, x:τ ` e : τ′ and Γ ` ve : τ, then 〈〈e〉〉[〈|ve|〉/x] ≡ 〈〈e[ve/x]〉〉.
(3) If p→ q, then 〈〈p〉〉 →+ 〈〈q〉〉.

Proof. (1) follows by induction on the derivation of Γ, x:τ ` e : τ′, as does (2), which

depends on (1) for the cases of the translation 〈〈−〉〉 that are conditional on whether an

expression is a value expression. (3) follows by induction on the derivation of p→ q.

Part (3) makes the proof of Lemma 17 particularly simple. Without the conditional

translation rules for applications and pairs Part (3) would fail. If p → q, we would have

(v, p)→ (v, q) but not 〈〈(v, p)〉〉 →+ 〈〈(v, q)〉〉.
Lemma 16. If C[write n] and C[read ()] are communicators and v is a value,

〈〈v〉〉 = Return(〈|v|〉)
〈〈C[read ()]〉〉 = Read(λx:Int. 〈〈C[x]〉〉)
〈〈C[write n]〉〉 = Write(bnc, 〈〈C[()]〉〉)

are all M theorems.

Proof. The first equation follows by definition of 〈〈v〉〉. We can prove the second by

induction on the number of experiments making up evaluation context C. For the base

case, when C is simply a hole, [], we have the following:

〈〈read ()〉〉 ≡ Let(〈〈()〉〉, λx. 〈|read|〉 x)

= (λx.Read(λy.Return(y))) ()

= Read(λx.Return(x))

= Read(λx. 〈〈x〉〉).
In the inductive case, the context C takes the form E[C′], where E is a single experiment

and C′ a smaller context. We shall only consider the case where E is an application of the

form (v []):

〈〈C[(read ())]〉〉 ≡ 〈〈v (read ())〉〉
= Let(〈〈C′[read ()]〉〉, λx. 〈|v|〉 x)

= Let(Read(λy. 〈〈C′[y]〉〉), λx. 〈|v|〉 x) (induction hypothesis)

= Read(λy. Let(〈〈C′[y]〉〉, λx. 〈|v|〉 x)) (Lemma 13)

= Read(λy. 〈〈vC′[y]〉〉)
= Read(λx. 〈〈C[x]〉〉)

The other cases are similar. The third equation can be proved similarly.

Lemma 17. p⇓ iff 〈〈p〉〉⇓.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 154

Proof.

(Only If) Suppose p →∗ a. So 〈〈p〉〉 = 〈〈a〉〉 by Lemma 15 and Theorem 2. But then 〈〈p〉〉⇓
by Lemma 16 and Theorem 2.

(If) We prove the contrapositive. If not p⇓, there must be an infinite chain p→ p1 → p2 →
· · · in O. By Lemma 15, there is another infinite chain 〈〈p〉〉 →+ 〈〈p1〉〉 →+ 〈〈p2〉〉 →+ · · ·
in M and hence not 〈〈p〉〉⇓.

Lemma 18. If 〈〈a〉〉 = 〈〈b〉〉 and a
α−→ p, there is q with b

α−→ q and 〈〈p〉〉 = 〈〈q〉〉.

Proof. The proof is by a case analysis of how a
α−−→ p was derived. We first consider

the two cases where a is a communicator.

— a
?n−−→C[n] if a ≡ C[read ()]. So by Lemma 16 and the fact that Read(−), Write(−)

and Return(−) have disjoint images, bmust be a communicator of the formD[read ()].

So b
?n−−→D[n]. We have 〈〈a〉〉 = Read(λx. 〈〈C[x]〉〉) and 〈〈b〉〉 = Read(λx. 〈〈D[x]〉〉).

Since Read(−) is injective, we have λx. 〈〈C[x]〉〉 = λx. 〈〈D[x]〉〉, and, in particular,

〈〈C[n]〉〉 = 〈〈D[n]〉〉, as required.

— a
!n−−→C[()] if a ≡ C[write n]. Again by Lemma 16, b must be a communicator of the

form D[write n]. We have 〈〈a〉〉 = Write(bnc, 〈〈C[()]〉〉) and 〈〈b〉〉 = Write(bnc, 〈〈D[()]〉〉),
and since Write(−) is injective, 〈〈C[()]〉〉 = 〈〈D[()]〉〉, as required.

Now we consider the possibilities where a is a value.

— a
`−−→Ω if a ≡ `. Since 〈〈a〉〉 = 〈〈b〉〉 and b is a value, b ≡ ` too, and so b

`−−→Ω too.

— a
fst−−→ u1 if a ≡ (u1, u2). In this case b must be a pair too, say (v1, v2). Hence a

fst−−→ v1,

and 〈〈(u1, u2)〉〉 = 〈〈(v1, v2)〉〉 implies that 〈〈u1〉〉 = 〈〈v1〉〉.
— a

snd−−→ u2 if a ≡ (u1, u2). This is symmetric to the previous case.

— a
@v−−→ a v if a v a program. Since a is a function, so is b. Hence we have b

@v−−→ b v and

〈〈a v〉〉 = 〈〈b v〉〉 by compositionality.

Lemma 19. Relation S def
= {(p, q) | 〈〈p〉〉 = 〈〈q〉〉} is a bisimulation.

Proof. Suppose that pS q and that p
α−−→ p′. By Lemma 2 there is a with p→∗ a and

a
α−−→ p′. By Lemma 15, we have 〈〈p〉〉 →∗ 〈〈a〉〉, and therefore 〈〈p〉〉 = 〈〈a〉〉 by Theorem 2.

By transitivity, 〈〈q〉〉 = 〈〈a〉〉 holds, so by Theorem 2 and Lemma 16, we have 〈〈q〉〉⇓. Hence

q⇓ by Lemma 17, that is, there is active b with q →∗ b. By Lemma 15 and Theorem 2,

we have 〈〈q〉〉 = 〈〈b〉〉, and so 〈〈a〉〉 = 〈〈b〉〉 by transitivity. Hence by Lemma 18, there is q′

with b
α−−→ q′ and 〈〈p′〉〉 = 〈〈q′〉〉. Altogether we have q

α−−→ q′ and p′ S q′. A symmetric

argument shows that q can match any action of p, hence S is a bisimulation.

Theorem 3. 〈〈p〉〉 = 〈〈q〉〉 implies p ∼ q.

Proof. Suppose 〈〈p〉〉 = 〈〈q〉〉. Then (p, q) is a member of a bisimulation, the S of

Lemma 19. So p ∼ q, since every bisimulation is included in ∼, by its definition.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 155

5. Discussion

By consolidating prior work on operational semantics, bisimulation equivalence and

metalanguages for denotational semantics, we have presented the most comprehensive

study yet of I/O via side-effects. Previous work has treated denotational or opera-

tional semantics in isolation. Our study combines the two to admit proofs of programs

based either on direct operational calculations (Theorem 1) or equality of denotations

(Theorem 3).

Williams and Wimmers (1988) is perhaps the only other work to consider an equational

theory for a strict functional language with what amounts to side-effecting I/O, but

they do not consider operational semantics. Similarly, the semantic domains for I/O

studied in early work in the Scott–Strachey tradition of denotational semantics (Mosses

1990; Plotkin 1978) were not related to operational semantics. Plotkin showed in his

CSLI lecture notes (Plotkin 1985) how Scott–Strachey denotational semantics could be

reconciled with operational semantics by equipping his metalanguage (analogous to our

M) with an operational semantics. He showed for a given object language (analogous to

O) that the adequacy proof for the object language (analogous to Lemma 17) could be

factored into an adequacy result for the metalanguage (analogous to Theorem 2) together

with comparatively routine calculations about the operational semantics. Moggi (1989)

pioneered a monadic approach to modularising semantics. In an earlier study (Crole

and Gordon 1994), we reworked Plotkin’s framework in a monadic setting for a simple

applicative language.

We have made two main contributions to Plotkin’s framework. First, by adapting recent

advances in techniques for showing the existence of formal approximation relations, we

have a relatively straightforward proof of computational adequacy for a type theory with a

parameterised recursive type. This avoids the direct construction of formal approximation

relations using the limit/colimit coincidence (see, for example, Fiore and Plotkin (1994)).

Instead, we use the minimal invariant property, which characterises the (smallest) co-

incidence. Second, we use the adequacy result for O (Lemma 17) and co-induction to

prove the soundness of denotational reasoning with respect to operational equivalence

(Theorem 3).

The idea of using a labelled transition system for a functional language, together

with co-inductively defined bisimilarity, is perhaps the most important but the least

familiar in this paper. It appears earlier in the concurrent γ-calculus of Boudol (1989), but

Boudol does not establish whether bisimilarity on his calculus is a congruence. Applicative

bisimulation (Abramsky and Ong 1993) is another co-inductively defined equivalence on

functional languages, but it is based on a ‘big-step’ natural semantics. Labelled transitions

better express I/O, and hence are preferable to natural semantics for defining languages

with I/O.

Since the work reported here was completed, Gordon (Gordon 1995a; Gordon 1995b)

has investigated a labelled transition system semantics for a variety of stateless functional

languages without I/O. A useful future project would be to extend the results of this

paper to a language with nondeterminism and concurrency. Indeed, since this work was

completed, Jeffrey has investigated monadic languages (analogous to ourM) with nonde-

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 156

terminism (Jeffrey 1995b) and concurrency (Jeffrey 1995a). Based on the presentation in

Gordon (1995a) of a labelled transition system form of Howe’s congruence proof, Jeffrey

showed that bisimilarity for his concurrent monadic language is a congruence. A useful

next step would be to extend this result to a language, like our O, in which side-effects

are freely mixed with applicative computation.

Having worked through the details of both a classical denotational semantics for O and

an entirely operational treatment of bisimilarity, we are in a position to compare the two

approaches. Though we have not spelt out the details, both operational and denotational

semantics can validate an equational theory for O. Bisimilarity immediately offers a co-

induction principle, and a domain-theoretic semantics a fixpoint induction principle. With

more work, co-induction can be derived from a denotational semantics (Pitts 1994a) and

fixpoint induction from an operational semantics (Mason et al. 1996; Smith 1991). Finally,

we found that the intermediate metalanguage M usefully modularised the denotational

semantics of O; the details of Sections 3 and 4 can be understood independently of one

another.

Finally, we thank Simon Gay, Andrew Pitts and Eike Ritter for useful discussions. Roy

Crole was supported by a Research Fellowship from the EPSRC. Andrew Gordon was

funded by the Types BRA. This work was partially supported by the CLICS BRA. The

commutative diagrams were typeset using Paul Taylor’s macros.

References

Abramsky, S. and Ong, L. (1993) Full abstraction in the lazy lambda calculus. Information and

Computation 105 159–267.

Berry, D., Milner, R. and Turner, D. N. (1992) A semantics for ML concurrency primitives. In:

Proceedings of the Nineteenth ACM Symposium on Principles of Programming Languages 119–129.

Boudol, G. (1989) Towards a lambda-calculus for concurrent and communicating systems. In:

TAPSOFT’89, Barcelona, Volume 1. Springer-Verlag Lecture Notes in Computer Science 351 149–

161.

Crole, R. L. (1992) Programming Metalogics with a Fixpoint Type. Ph. D. thesis, University of Cam-

bridge Computer Laboratory. (Available as Technical Report 247.)

Crole, R. L. (1994) Computational adequacy for the FIX-Logic. Theoretical Computer Science 136

217–242.

Crole, R. L. and Gordon, A. D. (1994) Factoring an adequacy proof (preliminary report). In:

Functional Programming, Glasgow 1993, Workshops in Computing, Springer-Verlag 9–27.

Crole, R. L. and Pitts, A. M. (1992) New foundations for fixpoint computations: FIX hyperdoctrines

and the FIX-logic. Information and Computation 98 171–210. (Earlier version in LICS’90.)

Felleisen, M. and Friedman, D. (1986) Control operators, the SECD-machine, and the λ-calculus.

In: Formal Description of Programming Concepts III, North-Holland 193–217.

Fiore, M. P. and Plotkin, G. D. (1994) An axiomatisation of computationally adequate domain

theoretic models of FPC. In Proceedings of the Ninth IEEE Symposium on Logic in Computer

Science.

Gordon, A. D. (1993) An operational semantics for I/O in a lazy functional language. In: FPCA’93:

Conference on Functional Programming Languages and Computer Architecture, Copenhagen, ACM

Press 136–145.

Gordon, A. D. (1994) Functional Programming and Input/Output, Cambridge University Press.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

Semantics for input/output effects 157

Gordon, A. D. (1995a) Bisimilarity as a theory of functional programming. In: Eleventh Annual

Conference on Mathematical Foundations of Programming Semantics, Volume 1 of Electronic Notes

in Theoretical Computer Science, Elsevier Science Publishers B. V. (Full version appeared in the

BRICS Notes Series, Aarhus University, number NS–95–3, 1995. Accepted for publication in

Theoretical Computer Science.)

Gordon, A. D. (1995b) Bisimilarity as a theory of functional programming. Mini-course. BRICS

Notes Series NS–95–3, BRICS, Aarhus University. (Extended version of MFPS’95 and Glasgow

FP’94 papers.)

Holmström, S. (1983) PFL: A functional language for parallel programming. In: Declarative Pro-

gramming Workshop, University College, London 114–139. (Extended version published as Report

7, Programming Methodology Group, Chalmers University. September 1983.)

Howe, D. J. (1989) Equality in lazy computation systems. In: Proceedings of the 4th IEEE Symposium

on Logic in Computer Science 198–203.

Jeffrey, A. (1995a) A fully abstract semantics for a concurrent functional language with monadic

types. In: Proceedings of the Tenth IEEE Symposium on Logic in Computer Science, San Diego.

Jeffrey, A. (1995b) A fully abstract semantics for a nondeterministic functional language with

monadic types. In: Eleventh Annual Conference on Mathematical Foundations of Programming Se-

mantics, Volume 1 of Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers

B. V.

Mason, I. A., Smith, S. F. and Talcott, C. L. (1996) From operational semantics to domain theory.

Information and Computation 128 (1) 26–47.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M. I. (1962) LISP 1.5 Pro-

grammer’s Manual, MIT Press, Cambridge, Mass.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML, MIT Press, Cambridge,

Mass.

Moggi, E. (1989) Notions of computations and monads. Theoretical Computer Science 93 55–92.

(Earlier version in LICS’89.)

Mosses, P. D. (1990) Denotational semantics. In: Leeuven, J. V. (ed.) Handbook of Theoretical Com-

puter Science, Volume B, Chapter 11, Elsevier Science Publishers B. V. 575–631.

Nordström, B., Petersson, K. and Smith, J. M. (1990) Programming in Martin-Löf’s Type Theory, The

International Series of Monographs in Computer Science, Volume 7, Clarendon Press, Oxford.

Pitts, A. M. (1991) Evaluation logic. In: Birtwistle, G.(ed.) IVth Higher Order Workshop, Banff

1990, Workshops in Computing, Springer-Verlag 162–189. (Available as University of Cambridge

Computer Laboratory Technical Report 198, August 1990.)

Pitts, A. M. (1994a) A co-induction principle for recursively defined domains. Theoretical Computer

Science 124 195–219.

Pitts, A. M. (1994b) Computational adequacy via ‘mixed’ inductive definitions. In: Proceedings

Mathematical Foundations of Programming Semantics IX, New Orleans 1993. Springer-Verlag

Lecture Notes in Computer Science 802 72–82.

Plotkin, G. D. (1977) LCF considered as a programming language. Theoretical Computer Science 5

223–255.

Plotkin, G. D. (1978) The category of complete partial orders: a tool for making

meanings. Unpublished lecture notes for the Summer School on Foundations of

Artificial Intelligence and Computer Science, Pisa. (Extended version available at

http://theory.doc.ic.ac.uk/tfm/papers/PlotkinGD/dom.ps.Z.)

Plotkin, G. D. (1985) Denotational semantics with partial functions. Unpublished lecture notes,

CSLI, Stanford University.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

R. L. Crole and A. D. Gordon 158

Rees, J. and Clinger, W. (1986) Revised3 report on the algorithmic language scheme. ACM SIGPLAN

Notices 21 (12) 37–79.

Scott, D. S. (1969) Models of the lambda calculus (unpublished manuscript).

Smith, S. F. (1991) From operational to denotational semantics. In: MFPS VII, Pittsburgh. Springer-

Verlag Lecture Notes in Computer Science 598 54–76.

Williams, J. H. and Wimmers, E. L. (1988) Sacrificing simplicity for convenience: Where do you draw

the line? In: Conference Record of the Fifteenth ACM Symposium on Principles of Programming

Languages 169–179.

https://doi.org/10.1017/S0960129598002709 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002709

