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We establish some eigenvalue criteria for the existence of non-trivial T-periodic
solutions of a class of first-order functional differential equations with a nonlinearity
f(x). The nonlinear term f(z) can take negative values and may be unbounded from
below. Conditions are determined by the relationship between the behaviour of the
quotient f(x)/x for x near 0 and £oo, and the smallest positive characteristic value
of an associated linear integral operator. This linear operator plays a key role in the
proofs of the results and its construction is non-trivial. Applications to related
eigenvalue problems are also discussed. The analysis mainly relies on the topological
degree theory.

1. Introduction

Functional differential equations with periodic delays appear in a number of appli-
cations, such as in the modelling of blood cell production in an animal [6,17], the
control of testosterone levels in the bloodstream [15], and so on. Let T > 0 be
fixed. We are concerned with the existence of non-trivial T-periodic solutions of the
first-order functional differential equation

u'(t) = —a()u(t) + b(t) f(u(t — 7(1))), (L.1)

where 7 € C(R,R) and a,b € C(R,R") with R* = [0, 00) are T-periodic functions
and f € C(R,R). As by-products of our results, we also derive conditions for the
existence of non-trivial T-periodic solutions of the eigenvalue problem

u'(t) = —a(t)u(t) + Ab(t) f (u(t - 7(t))), (1.2)

where A is a positive parameter. Here, by a non-trivial T-periodic solution of (1.1)
we mean a non-trivial function v € C1(R,R) such that u(t + T) = u(t) for t € R
and u(t) satisfies (1.1) on R. A similar definition also applies to (1.2). We assume
throughout, and without further mention, that the following assumption holds.

(H) The function g(t) :=t — 7(t) is strictly increasing on R,

T T
/ a(v)dv >0 and / b(v) dv > 0.
0 0
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In recent years, the existence of periodic solutions of equations (1.1) and (1.2) or
their various variations has been investigated by many authors (see, for example,
[1-3,10-13,16,20] and the references therein). However, we note that most of the
literature only studies the case when the nonlinear term in the differential equation
is of one sign, and existence results are rare when the nonlinearity f changes sign.
One of the reasons for the lack of results is that the equivalent integral operators
for equations (1.1) and (1.2) are not, in general, cone preserving when the nonlinear
term f is a sign-changing function and, as a consequence, many fixed-point theorems
for cones cannot be directly applied to obtain the existence of solutions.

By means of topological degree theory we derive new criteria for the existence
of non-trivial T-periodic solutions of equations (1.1) and (1.2) when f is a sign-
changing function and not necessarily bounded from below. Our existence condi-
tions are determined by the relationship between the behaviour of the quotient
f(z)/x for x near 0 and oo and the smallest positive characteristic value (given
by (3.2)) of a related linear operator M defined by (2.18) in § 2. Here, we comment
that the linear operator M plays a very important role in the proofs of our results
and that its construction is non-trivial. The techniques of this work are partially
motivated by the recent papers [5,7,9,14,18]. In particular, many kinds of eigen-
value criteria for various second-order boundary-value problems were obtained in [5]
and [18] when the nonlinear terms in the differential equations are non-negative.
Roughly speaking, [9] and [14] study some second-order boundary-value problems
with sign-changing superlinear nonlinearities, while [7] establishes various eigen-
value criteria for a class of periodic boundary-value problems with sign-changing
sublinear nonlinearities. All of these papers are very interesting and significant since
they reveal some connections between nonlinear problems and some associated lin-
ear ones.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, §3 contains the main results of this paper and two simple examples, and
the proofs of the main results are presented in §4.

2. Preliminary results

We refer the reader to theorem A.3.3(ix) and lemma 2.5.1 of [8], respectively, for
the proofs of the following two well-known lemmas. In the rest of this paper, the
bold zero denotes the zero element in any given Banach space.

LEMMA 2.1. Let £2 be a bounded open set in a real Banach space X and let T :
2 — X be compact. If there exists ug € X, ug # 0, such that

u—Tu#Tug forallue df2 and T >0,
then the Leray—Schauder degree
deg(Z —T,42,0) = 0.

LEMMA 2.2. Let {2 be a bounded open set in a real Banach space X with 0 € 2
and T : 2 — X be compact. If

Tu#71u  forallu € 082 and 7 > 1,
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then the Leray—Schauder degree
deg(Z —T,,0) = 1.

Let (X, || - ||) be a real Banach space and let £ : X — X be a linear operator.
We recall that A is an eigenvalue of £ with a corresponding eigenvector ¢ if ¢ is
non-trivial and L£¢ = A¢p. The reciprocals of eigenvalues are called the characteristic
values of L. The spectral radius of L, denoted by r., is given by the well-known
spectral radius formula 7, = lim,, o [|£"]'/". Recall also that a cone P in X is
called a total cone if X = P — P.

The following Krein-Rutman theorem can be found in either [4, theorem 19.2]
or [19, proposition 7.26].

LEMMA 2.3. Assume that P is a total cone in a real Banach space X. Let L :
X — X be a compact linear operator with L(P) C P and rz > 0. Then rg is an
eigenvalue of L with an eigenvector in P.

Let X* be the dual space of X, let P be a total cone in X and let P* be the dual
cone of P, i.e.
P ={le X" :l(u) >0 for all u € P}.

Let L,M : X — X be two linear compact operators such that £(P) C P and
M(P) C P. If their spectral radii 7z and r 4 are positive, then by lemma 2.3 there
exist ¢, and ¢ € P\ {0} such that

Lop=rcoe and Moy =rmdm. (2.1)
Assume that there exists h € P* \ {0} such that
L*h =rpmh, (2.2)
where L£* is the dual operator of £. Choose § > 0 and define
P(h,d) ={u € P:h(u) =d|ul} (2.3)

Then P(h,J) is a cone in X.

The following two lemmas are crucial in the proofs of our theorems. From here
on, for any R > 0, let B(0,R) = {u € X : ||u|| < R} be the open ball of X centred
at 0 with radius R.

LEMMA 2.4. Assume that the following conditions hold:

(A1) there exist ¢z, ppq € P\ {0} and h € P*\ {0} such that (2.1) and (2.2) hold
and L(P) C P(h,0);

(A2) H : X — P is a continuous operator and satisfies

[l _

lull—oo [Jul

)

(A3) F: X — X is a bounded continuous operator and there exists ug € X such
that Fu+ Hu + ug € P for allu € X;
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(A4) there exist vg € X and & > 0 such that
LFu>ryi(l+e)lu—LHu—vy forallu€ X.

Let T = LF. Then there exists R > 0 such that the Leray—Schauder degree
deg(Z — T,B(0,R),0) = 0.
LEMMA 2.5. Assume that (A1) and the following conditions hold:

(A2*) H: X — P is a continuous operator and satisfies

ol

ll >0 [Jul]

Y

(A3*) F: X — X is a bounded continuous operator and there exists r1 > 0 such
that
Fu+Hue P foralueX with ||ul] < r;

(A4*) there exist e > 0 and ro > 0 such that
LFu > rx,ll(l +e)lu  for allu € X with ||u| < ra.

Let T = LF. Then there exists 0 < R < min{ry,ro} such that the Leray—-Schauder

degree
deg(Z — T,B(0,R),0) = 0.

Lemma 2.4 is a generalization of [9, theorem 2.1] and it is proved in [14, lemma 2.5]
for the case when £ and M are two specific linear operators, but the proof there
also works for any general linear operators £ and M satisfying (2.1) and (2.2).
Lemma 2.5 generalizes [7, lemma 3.5]. In what follows we only give the proof of
lemma 2.5.

Proof of lemma 2.5. For any v > 0 satisfying
V(@ radllBll + €1 < 1, (2.4)
from (A2*), there exists r3 > 0 such that
|[Hu|| < v||u|| for all w € X with |ul| < rs. (2.5)
We claim that there exists 0 < R < min{ry, 73,73} such that
u—Tu#71pe forall u € 0B(0,R) and 7 > 0. (2.6)

If this is not the case, then, for all 0 < R < min{ry, 79,73}, there exist u; € dB(0, R)
and 71 > 0 such that
(751 —C}"ul :Tld)ﬁ' (27)

Then, from (2.2) and (A4*), we have
h(u1) = M(LFur) + 11h(¢r) = MLFu1)
> (L+e)h(Lur) = (L+e) (L) (u1)
=1 (1 +e)raph(ur) = (1+e)h(u).
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Hence, h(u1) < 0. This, together with (2.2) and (2.5), implies that
h(uy + LHu1) = h(uy) + h(LHuy)
= h(uy) + (L h)(Huy) < (L*h) (Huq)
= rph(Hur) < vrpal|bfl[ua], (2.8)
From (2.1) and (2.7), we see that
up + LHuy = LFuy + LHuy + 1i¢r
= ﬁ(}'ul + 'Hul) + T1T21£¢£.

In view of (Al) and (A3*), we see that u; + LHuy € P(h,d). Thus, by (2.3), we
have

and so
Jur || < 67 h(uy + LHu) + [|LHu |-

Hence, from (2.5) and (2.8),
R = |lur|| < 67 wradllhlllfusll + v Llllus ]| = w6~ raallll + LD R

Thus,
v trmllpl + L] = 1,

which contradicts (2.4). Therefore, there exists 0 < R < min{ry, 72,73} such that
(2.6) holds. Note that the operator T is compact. The conclusion now readily follows
lemma 2.1, and this completes the proof of the lemma. O

Now we define

Gt s) = exp(f: a(v) dv) 7
(h9) exp(fOT a(v)dv) —1
1
T exp(foT a(v)dv) —1’ (2.9)
_exp(2 Ji a(v) dv) |
exp(foT a(v)dv) — 1

Then it is easy to see that G(t +T,s +T) = G(t,s), d > ¢ > 0 and

c<Gts)<d ift<s<t+T, (2.10)
c<G(ts)<d if —7(0)<t<s<T—7(0), (2.11)
c<G(t,s)<d if —7(0)<t<T—7(0) <s<2T —7(0). (2.12)

The following lemma can be directly verified.
LEMMA 2.6. The function u(t) is a T-periodic solution of the equation

u = —a(t)u + k(t) (2.13)
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if and only if
t+T

u(t) = ) G(t,s)k(s) ds,

where k € C(R,R) is a T-periodic function.
In the remainder of the paper, let the Banach space X be defined by
X={ueCR,R):u(t+T)=u(t) for t € R} (2.14)
equipped with the norm [ju|| = sup,cp |u(t)|. Define a cone P in X by
P={ueX:u(t)>0onR} (2.15)
and a subcone K of P by
K ={uec P:u(t) > o|ul on R}, (2.16)

where o = ¢/d. Let the linear operators £, M : X — X be defined by

t+T
Lu(t) = /t G(t, $)b(s)u(g(s)) ds (2.17)

and

gt (®) T
Mu(t) = /0 G(g(s),t)b(s)u(s)ds + / G(g(s),t+ T)b(s)u(s)ds, (2.18)

g7t (t)

where g~1(t) is the inverse function of g(¢).
The next two lemmas provide some useful information about the operators £

and M.
LEMMA 2.7. The operators L and M map P into K and are compact.

Proof. We first show that £(P) C K. For v € P and ¢t € R, from (2.10) and (2.17)

we have . .
¢ / b(s)u(g(s)) ds < Lu(t) < d / b(s)u(g(s)) ds.
0 0

As a result, Lu(t) = (¢/d)||Lu]| = o||Lu||. Thus, L(P) C K.
Next, we show that M maps P into K. To this end, first we prove that

Mu(t+T) = Mu(t) forany ue€ X and t € R. (2.19)
In fact, for any u € X and ¢t € R, from (2.18),

Mu(t +T)
T

g~ (+T)
- / Glg(s),t + T)b(s)u(s) ds + / Glg(s), t + 2T)b(s)u(s) ds
0 g~ (t+T)

= I (u(t)) + L2 (u(t)),
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where

g~ (t+T)
L(u(t)) = /0 G(g(s),t+ T)b(s)u(s)ds

and

T
L(u(t)) = / gy GO 2T .

Since g1 (t+T) =g tt)+ T, g(s+T)=g(s) + T and G(t + T,s + T) = G(t, s)
for any t,s € R, we have

g ()+T
I (u(t)) = / Glg(s),t + T)b(s)u(s) ds
g ()
= [ Glats)t+ TobGs)uts) s

T
+ / Glg(s).t + Tb(s)uls) ds
g~ L(t)

g (t)+T
+ / Glg(s).t + T)b(s)u(s) ds
T

g ()
= [ Glats)t+ TobGs)uts) s

T
+ / Glg(s).t + T)b(s)uls) ds
gL (t)

gt (®)
+/ G(g(s)+ T, t +T)o(s+ T)u(s +T)ds
0
9t
= [ Glats)t+ TobGs)uts) s

T
+/ G(g(s),t+T)b(s)u(s)ds
g ()

g (t)
+ /0 Glg(s), )b(s)u(s) ds

and

T
L(u(t) / s G L 2T ) s
G(g(s) +T,t+ 2T)b(s + T)u(s + T)ds

G(g(s),t+ T)b(s)u(s) ds.
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Thus,

Mu(t +T) = I (u(t)) + I2(u(t))

T g~
— [ Gt T s+ [ Glals). 0s)uts) ds

() 0

= Mu(t),

i.e. (2.19) holds. Hence, M(X) C X. Consequently, for © € P and t € R, we have

Mu(t) > min Mu(v)
ve[—7(0),T—7(0)]

Yw)
min G(g(s),v)b(s)u(s)ds
o ([0 G

T
+ [ Gl D) 220)

and

Mu(t) < max Mu(v)

vE[—7(0),T—7(0)]

= e ( /0 T G(g(s), v)b(s)u(s) ds

ve[—7(0),T—7(0
T
+ / G(g(s),v+T)b(s)u(s) ds). (2.21)
97" (v)
Note that
0<g ' (v) KT —7(0)=g
0<s<g t(v) <= —7(0)=g

(0) <v<g(T)=T-7(0), (2.22)

(0) < g(s) < v, (2.23)

g7 () s < T <= v<g(s) < g(T) =T —7(0). (2.24)

(
Then, for u € P and t € R, from (2.11), (2.12), (2.20) and (2.21), it follows that

Mu(t) > min Mu(v)
vE[—7(0),T—7(0)]

> c/ogl(v) b(s)u(s)ds + CLT b(s)u(s)ds = C/OT b(s)u(s)ds

and

Mu(t) < max Mu(v)

ve[—7(0),T—7(0)]

<d / s)ds+d /g TI(U) b(s)u(s) ds = d /0  bs)uls) ds

from which we have Mu(t) > (¢/d)||Mu|| = || Mu||. Therefore, M(P) C K.
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Finally, standard arguments can be used to show that £ and M are compact and
we omit the details here. This completes the proof of the lemma. O

LEMMA 2.8. We have the following.

(i) The spectral radius, rc, of L satisfies rz > 0. Moreover, rp is an eigenvalue
of L with an eigenvector ¢p € P.

(ii) The spectral radius, rp, of M satisfies raq > 0. Moreover, raq is an eigen-
value of M with an eigenvector ¢ € P.

Proof. The ideas of the proof for parts (i) and (ii) are essentially the same. In the
following, we only prove part (ii). Let v € K and ¢ € R. Noting (2.22)—(2.24), from
(2.11), (2.12) and (2.20) we see that

Mu(t) > min Mu(v)
ve[—7(0),T—7(0)]

97 () T
> C/o b(s)u(s)ds + c/gl(v) b(s)u(s)ds

T T
= c/0 b(s)u(s)ds = 0||uHc/O b(s)ds

and

M2u(t) = M(Mu(t))
>

M(Mu(v))

min
ve[—7(0),T—7(0)]

c/ogl(v) b(s) (cau” /OTb(s) ds) ds
+c/gT1(v) b(s) (cau” /OTb(s) ds) ds
— ollu <C/OT b(s) ds)2.

By induction, we obtain that

M u(t) > o]|ul| <C/OT b(s) ds)n.

WV

Then,

T
Ml > [ MPall > MPu(t) > o] ( s ds)

M7 > U(c /OT b(s) ds>n.

and so
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Hence,
T
o= lim MY > c/ b(s)ds > 0.
n—oo 0

Now, in view of the fact that the cone P defined by (2.15) is a total cone and that
ra > 0, the ‘moreover’ part of part (ii) readily follows from lemmas 2.3 and 2.7.
This completes the proof of the lemma. O

3. Main results

For convenience, we introduce the following notation:

fo = liminf @, foo = liminf M,
z—0t x T—>00 x

Fy = limsup ’f(x) , F = limsup ‘f(sc) ,
z—0 x |z|—o00 xz

¢ = <d/OT b(s) ds)l, 0= <ca/0T b(s) ds)l. (3.1)

In the rest of this paper, we also let

1
M
where 7 is given in lemma 2.8(ii). Clearly, paq is the smallest positive charac-
teristic value of M satisfying ¢ooq = psmMor, and as we will see by lemma 4.1,
E< m <.
We need the following assumptions.

(B1) There exist a constant M > 0 and a function a € C(R,R") such that « is
even and non-decreasing on RT,

fx) > —M—a(x) forallzeR (3.3)
and
lim %w) = 0. (3.4)

(B2) There exist a constant 0 < r < 1 and a function 3 € C(R,R™) such that 3 is
even and non-decreasing on RT,

f(z) = =p(x) for all z € [-r,0] (3.5)
and
lim @ ~0. (3.6)

REMARK 3.1. Here, we wish to emphasize that, in (B1), we assume that f(x) is
bounded from below by —M — a(x) for all z € R. However, in (B2), we only require
that f(x) is bounded from below by —3(x) for z in a small left-neighbourhood of 0.

We first state our existence results for equation (1.1).
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THEOREM 3.2. Assume that (B1) holds. If

Fo <pm < foos
then equation (1.1) has at least one non-trivial T-periodic solution.
THEOREM 3.3. Assume that (B2) holds. If

Foo <prm < fo,
then equation (1.1) has at least one non-trivial T-periodic solution.
COROLLARY 3.4. Assume that (B1) holds. If

F
70 < 1 < f;.o’

3

then equation (1.1) has at least one non-trivial T-periodic solution.

COROLLARY 3.5. Assume that (B2) holds. If

F.
700<1<&’
€ U

then equation (1.1) has at least one non-trivial T-periodic solution.

Next, we state our existence results for equation (1.2); they are immediate con-
sequences of the above results.

COROLLARY 3.6. Assume that (B1) holds. If

M<A<M

foo FO ’
then equation (1.2) has at least one non-trivial T-periodic solution.
COROLLARY 3.7. Assume that (B2) holds. If

HMm HM
7<>\<77
fO Foo

then equation (1.2) has at least one non-trivial T-periodic solution.

COROLLARY 3.8. Assume that (B1) holds. If

foo FO ’
then equation (1.2) has at least one non-trivial T-periodic solution.

COROLLARY 3.9. Assume that (B2) holds. If

n §
— <A< =,
fO Foo

then equation (1.2) has at least one non-trivial T-periodic solution.
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We conclude this section with the following two simple examples.

ExXAMPLE 3.10. Let

Z%mi, x € [-1,00),
fla)=4" (3.7)

> (D) = |2 In(1 + |2]) + n2, € (—o00, 1],
i=1

where n > 1 is an integer, 7; € R with 0 < v; < (™ — 1)/27e?™ and v, > 0, and
0 < 0 < 1. Clearly, f € C(R,R).
We claim that functional differential equation

u'(t) = —u(t) + f(u(t —sint)) (3.8)

has a non-trivial 27-periodic solution.

In fact, with a(¢t) = b(t) =1, T = 2x, 7(t) = sint and g(¢) = ¢t — sint it is easy
to see that equation (3.8) is of the form of equation (1.1) and assumption (H) is
satisfied. Moreover, from (3.1), we have

(3.9)

Let N
M=> |yl+In2 and o(z)=|z|"n(1 + |z|).

i=1
Then, in view of (3.7), we have

flz) 2 —M—oa(x) forallzeR

and (1
tim Ay 2OED)
r—oo I T—r00 x
Thus, (B1) holds. From (3.7), we have
Fozlimsup‘f(m)’:%<£ and foozliminfM:oo
z—0 x T—00 T

Hence, Fy/¢ < 1 < fs/n. The conclusion then follows from corollary 3.4.

EXAMPLE 3.11. Let f be defined as in example 3.10. Then we claim that, for any
A satisfying 0 < A < (e2™ — 1)/27my1e?™, the eigenvalue problem

u' (t) = —u(t) + Mf(u(t — sint))

has a non-trivial 27-periodic solution.
In fact, as in example 3.10, (B1) holds. Moreover, £ and 7 are given by (3.9),
Fy = and fo = oo. Note that

e’ — 1 U 3
D<A ————— &= — <A< =,
A 27y em foo A Fy

The conclusion then readily follows from corollary 3.8.
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Note that, in these examples, for = negative, the function f is negative and
unbounded from below.

4. Proofs of the main results

Let X, P, K, L and M be defined by (2.14)—(2.18), respectively. By lemma 2.7,
L and M map P into K and are compact. Define operators F and 7 : X — X by

Fu(t) = f(u(t)) (4.1)
and

t+T
Tu(t) = LFu(t) = /t G(t, s)b(s)f((u(g(s))))ds. (4.2)

Then F : X — X is bounded and 7 : X — X is compact. Moreover, by lemma 2.6,
a T-periodic solution of equation (1.1) is equivalent to a fixed point of the operator
T in X.

Proof of theorem 3.2. We first verify that conditions (A1)-(A4) of lemma 2.4 are
satisfied.

By lemma 2.8, there exist ¢z, pr € P\ {0} such that (2.1) holds. To show that
(2.2) holds, we let

T

h(u) = ; b(t)pam(t)u(g(t))dt, we X. (4.3)

Then h € P*\ {0} and

T g(t)+T
-/ b(tm(w( / G<g<t>,s>b<s>u<g<s>>ds) dt
T rg(t)+T
- / / L GO0 ds
Interchanging the order of integration and noting that g(T") = ¢(0) + T, we have
g7 (s)
e mw = [ b(s)u(g(s»( / Gla(t), $)b(H)da () dt) ds

+/gg(T)+Tb(5)U(9(S))(/gT G(g(t), s)b(t) P (1) dt) ds.

0)+T —(s=T)

Letting s = v + T in the second term and noting that

gw+T)=g(v)+T,
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we obtain

g(T) g 1 (s)
-/ b(s)u(g(s»( [ e psmna

T
+ /gl(s) G(g(t), s+ T)b(t)pm(t) dt) ds.

Thus, in view of (2.1), (2.18), (4.3) and the fact that g(T') = g(0) + T, we have

9(T)

(e mw = [

9(T)
b(s)u(g(s)) Mom(s)ds = ru / b(s)pm(s)ul(g(s))ds
9(0) 9(0)
T
= raa [ b0 (ulo(s)) ds = raehw)
0

i.e. h satisfies (2.2). Since ¢pa(s) = o||dm|| > 0 on R, there exists d; > 0 such that

om(s) = 61G(t,s) fort,s e R. (4.4)
Let 6 = rpqgd1. For any w € P and t € R, from (2.17), (4.3) and (4.4), it follows that

h(Lu) = rph(u)

Hence, h(Lu) > d||Lul], i.e. L(P) C P(h,d). Therefore, condition (A1) of lemma 2.4
holds.
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Since « is non-decreasing on R, we have
a(u) < a(llul]) for all u € P.
Then, from the fact that « is even, it follows that
a(u) < allul]) for all u € X.

Thus,
la(uw)| < a(|jul]) for all u € X.

From (3.4), we see that

o]

=0 foranyue X.

Letting Hu = a(u) for u € X, we show that condition (A2) in lemma 2.4 holds.
With F defined by (4.1) and uy = M, from (3.3), we have Fu + Hu +ug € P for
all u € X. Hence, (A3) of lemma 2.4 holds.
Since foo > paq, there exist € > 0 and N > 0 such that

f(z) 2 pm(l+e)x for z > N.
Then, in view of (3.3), there exists p > 0 such that
f@) Z pm(l+e)x —alx) —p forall xz € R.
From (3.2) and (4.1), we have
Fuzppm(l+e)u—alu)—p=ry(l+eu—Hu—p foralueX.

Thus,
LFu>ryi(1+e)fu—LHu—Lp forall ue X.

Then (A4) of lemma 2.4 holds with vg = Lp.
We have verified that all the conditions of lemma 2.4 hold, so there exists Ry > 0
such that

deg(Z — T, B(0,R;),0) = 0. (4.5)
Next, since Fy < g, there exist 0 < v < 1 and 0 < Ry < R; such that
F(@)] < a1 = )la] for Ja] < R, (4.6)

We claim that
Tu#71u forall u € 0B(0,Rs) and 7 > 1. (4.7)

If this is not the case, then there exist & € 0B(0, Ry) and 7 > 1 such that Ta = Ta.
It follows that @ = §T @, where § = 1/7. Clearly, 5 € (0, 1]. Then, from (2.17), (4.2)
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and (4.6), we have

a(t)] = s|Tu(t)]

t+T
<[ G(t, $)b(s)| f(a(g(s)))| ds

Consequently,

Thus, h(Jz|) < 0. On the other hand, in view of the fact that ¢r(t) > 0 and
lla|| = Rz > 0, by (4.3), h(|a|]) > 0. This contradiction implies that (4.7) holds.
Now lemma 2.2 implies

deg(Z — T7,B(0,R»),0) =1, (4.8)

so, by the additivity property of the Leray—Schauder degree, (4.5) and (4.8), we
have

deg(Z — T,B(0,R1) \ B(0,Rs)) = —1.
Then, from the solution property of the Leray—Schauder degree, 7 has at least

one fixed point u in B(0, Ry) \ B(0, R3). Clearly, u(t) is a non-trivial solution of
equation (1.1). This completes the proof of the theorem. O

Proof of theorem 3.5.  We first verify that conditions (A1) and (A2*)-(A4*) of
lemma 2.5 are satisfied.

As in the proof of theorem 3.2, there exist ¢, o € P\ {0} and h € P*\ {0}
defined by (4.3) such that (A1) holds.

From the fact that /3 is even and non-decreasing on R™, it is easy to see that

B(u) < B(llul)) for all u € X.
Thus,
18I < B(J[ull)  for all u € X.
This, together with (3.6), implies that
1wl

Jul =0 ||ul|

=0 forany u € X.

Let Hu = ((u) for u € X. Then (A2*) of lemma 2.5 holds.
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Since fy > pua, there exist € > 0 and 0 < {; < 1 such that
f(x)}uM(l—Fe)x:r/_\/ll(l—i—s)xZO for x € [0, (1] (4.9)

Let r be given as in (B2) and let F' be defined by (4.1). Now, in view of (3.5) and
(4.9), we see that (A3*) of lemma 2.5 holds with ry = min{r, (1 }.
From (3.6), there exists 0 < (o < min{r, (1} such that

—B(z) =1y (L+e)z for x € [—(5,0].
Then, from (3.5),
f@)=ry(l+e)z forz € [—(,0). (4.10)
From (4.9) and (4.10), we have
fl@) > r/_v[l(l +e)x for x € [ (o, (2], (4.11)
which clearly implies that
LFu>ryy(1+e)fu forall ue X with |lul| < .

Hence, (A4*) of lemma 2.5 holds with 7o = (.
We have verified that all the conditions of lemma 2.5 hold, so there exists Rz > 0
such that
deg(Z — T, B(0, R3),0) = 0. (4.12)

Next, since Fso < fiaq, there exist 0 < # < 1 and R > R3 such that

[f(@)] < (L = D)|z| = rig (L= p)la| for |z] € (R, 00). (4.13)
Let
t+T
C = max |f(z)| sup/ G(t,s)b(s)ds. (4.14)
lz|<R teR Jt
Then 0 < C < co. Choose Ry large enough so that
Ry > max{R, v~ 'C}. (4.15)
We claim that
Tu+#7Tu for all u € B(0,Ry) and 7 > 1. (4.16)

If this is not the case, then there exist & € 0B(0, Ry) and 7 > 1 such that T4 = Ta.
It follows that @ = §T @, where § = 1/7. Clearly, § € (0, 1]. Since @ is T-periodic,
we may assume that Ry = ||a|| = |a(t)| for some ¢ € [0, T]. Let

Ji(a) = {t € [f,t +T]: a(g(t))| > R},
Jo(a) = [t, £+ T\ Ji(a)
and

p(a(t)) = min{|a(g(t))|, R} for t € [f,i + T).
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Then, from (2.17), (4.2), (4.13) and (4.14), we have
R = [a(D)| = 3T (D)
+T

< | G(Es)b(s)|f(a(g(s)))l ds

t

- / G, 9)b(s) | (ilg(s)))] ds + / G(E, 5)b(s)| f(i(g(s)))] s
Ji (i)

J2 (1)

<ry(1—7) G(t, 9)b(s)|i(g(s))| ds + G(T, 5)b(s)|f(p(a(s)))| ds
Ju(@) Ja (@)

t+T ~
<rib(1—9) / G(E, 5)b(s)]i(g(s))] ds + / G(E, 5)b(s)| f(p(a(s)))] ds

<ry(l=D)Llu@)| +C
=1 (1= 9)LRs+C.
Hence, for h defined by (4.3),
h(R4) < rf (1 — D)h(LR4) + h(C)
=1y (1= D)(L*h)(Ra) + h(C)
= ’I"X/ll(l — I;)’I’Mh(Rzl) + h(C)
= (1 —v)h(Ry) + h(C),

which implies that
(?Ry — C)R(1) < 0.

In view of the fact that k(1) > 0, it follows that Ry < #~'C. This contradicts (4.15)
and so (4.16) holds. By lemma 2.2, we have

deg(Z — T, B(0, Ry),0) = 1. (4.17)

By the additivity property of the Leray—Schauder degree, (4.12) and (4.17), we
obtain

deg(Z — T,B(0,R4) \ B(0,R3)) = 1.
Thus, from the solution property of the Leray—Schauder degree, T has at least

one fixed point u in B(0, R4) \ B(0, R3). Clearly, u(t) is a non-trivial solution of
equation (1.1), and this completes the proof of the theorem. O

LEMMA 4.1. Let uprg be defined by (3.2). Then & < pupm < 0, where & and n are
given by (3.1).

Proof. Let ¢pq be given as in lemma 2.8(ii). Then ¢paq(t) = ppMom(t), ie.

g ()
omlt) = ia ( / Glg(s), Db()da(5) ds
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Thus, in view of (2.22)—(2.24) and from (2.11) and (2.12), it follows that
t) < max M v
dm(t) < pm el Prm(v)
9 () T
<o (dlonad [ b s dlondl [ bioas)
0 g (v
T
—pid|ol [ bs)ds on B
0
Hence,

B 2 <d/OT b(s) ds)_l =¢.

On the other hand, since s € K we have ¢pa(t) > o||dam]| on R, and then again

from

Thus,

(2.11) and (2.12), we have

dMm (t) Z M Mo pm (7})

min
v€[—7(0),T—7(0)]

T

g (v)
>uM(co||¢M|| [ weas s coloul | b(s)ds)
g

)

T
:uMcaHngH/ b(s)ds on R.
0

1

fipm < <ca /OT b(s) dS)_ =1.

This completes the proof of the lemma. O

Proof of corollary 3.4. The conclusion follows from theorem 3.2 and lemma 4.1. [

Proof of corollary 3.5. The conclusion follows from theorem 3.3 and lemma 4.1. [

Finally, by virtue of lemma 4.1, corollaries 3.6-3.9 are direct applications of the-
orems 3.2 and 3.3 and corollaries 3.4 and 3.5 with f in equation (1.1) replaced by
Af. We omit the proofs here.
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