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We establish some eigenvalue criteria for the existence of non-trivial T -periodic
solutions of a class of first-order functional differential equations with a nonlinearity
f(x). The nonlinear term f(x) can take negative values and may be unbounded from
below. Conditions are determined by the relationship between the behaviour of the
quotient f(x)/x for x near 0 and ±∞, and the smallest positive characteristic value
of an associated linear integral operator. This linear operator plays a key role in the
proofs of the results and its construction is non-trivial. Applications to related
eigenvalue problems are also discussed. The analysis mainly relies on the topological
degree theory.

1. Introduction

Functional differential equations with periodic delays appear in a number of appli-
cations, such as in the modelling of blood cell production in an animal [6, 17], the
control of testosterone levels in the bloodstream [15], and so on. Let T > 0 be
fixed. We are concerned with the existence of non-trivial T -periodic solutions of the
first-order functional differential equation

u′(t) = −a(t)u(t) + b(t)f(u(t − τ(t))), (1.1)

where τ ∈ C(R, R) and a, b ∈ C(R, R+) with R
+ = [0,∞) are T -periodic functions

and f ∈ C(R, R). As by-products of our results, we also derive conditions for the
existence of non-trivial T -periodic solutions of the eigenvalue problem

u′(t) = −a(t)u(t) + λb(t)f(u(t − τ(t))), (1.2)

where λ is a positive parameter. Here, by a non-trivial T -periodic solution of (1.1)
we mean a non-trivial function u ∈ C1(R, R) such that u(t + T ) = u(t) for t ∈ R

and u(t) satisfies (1.1) on R. A similar definition also applies to (1.2). We assume
throughout, and without further mention, that the following assumption holds.

(H) The function g(t) := t − τ(t) is strictly increasing on R,
∫ T

0
a(v) dv > 0 and

∫ T

0
b(v) dv > 0.
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In recent years, the existence of periodic solutions of equations (1.1) and (1.2) or
their various variations has been investigated by many authors (see, for example,
[1–3, 10–13, 16, 20] and the references therein). However, we note that most of the
literature only studies the case when the nonlinear term in the differential equation
is of one sign, and existence results are rare when the nonlinearity f changes sign.
One of the reasons for the lack of results is that the equivalent integral operators
for equations (1.1) and (1.2) are not, in general, cone preserving when the nonlinear
term f is a sign-changing function and, as a consequence, many fixed-point theorems
for cones cannot be directly applied to obtain the existence of solutions.

By means of topological degree theory we derive new criteria for the existence
of non-trivial T -periodic solutions of equations (1.1) and (1.2) when f is a sign-
changing function and not necessarily bounded from below. Our existence condi-
tions are determined by the relationship between the behaviour of the quotient
f(x)/x for x near 0 and ±∞ and the smallest positive characteristic value (given
by (3.2)) of a related linear operator M defined by (2.18) in § 2. Here, we comment
that the linear operator M plays a very important role in the proofs of our results
and that its construction is non-trivial. The techniques of this work are partially
motivated by the recent papers [5, 7, 9, 14, 18]. In particular, many kinds of eigen-
value criteria for various second-order boundary-value problems were obtained in [5]
and [18] when the nonlinear terms in the differential equations are non-negative.
Roughly speaking, [9] and [14] study some second-order boundary-value problems
with sign-changing superlinear nonlinearities, while [7] establishes various eigen-
value criteria for a class of periodic boundary-value problems with sign-changing
sublinear nonlinearities. All of these papers are very interesting and significant since
they reveal some connections between nonlinear problems and some associated lin-
ear ones.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, § 3 contains the main results of this paper and two simple examples, and
the proofs of the main results are presented in § 4.

2. Preliminary results

We refer the reader to theorem A.3.3(ix) and lemma 2.5.1 of [8], respectively, for
the proofs of the following two well-known lemmas. In the rest of this paper, the
bold zero denotes the zero element in any given Banach space.

Lemma 2.1. Let Ω be a bounded open set in a real Banach space X and let T :
Ω̄ → X be compact. If there exists u0 ∈ X, u0 �= 0, such that

u − T u �= τu0 for all u ∈ ∂Ω and τ � 0,

then the Leray–Schauder degree

deg(I − T , Ω,0) = 0.

Lemma 2.2. Let Ω be a bounded open set in a real Banach space X with 0 ∈ Ω
and T : Ω̄ → X be compact. If

T u �= τu for all u ∈ ∂Ω and τ � 1,
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then the Leray–Schauder degree

deg(I − T , Ω,0) = 1.

Let (X, ‖ · ‖) be a real Banach space and let L : X → X be a linear operator.
We recall that λ is an eigenvalue of L with a corresponding eigenvector φ if φ is
non-trivial and Lφ = λφ. The reciprocals of eigenvalues are called the characteristic
values of L. The spectral radius of L, denoted by rL, is given by the well-known
spectral radius formula rL = limn→∞ ‖Ln‖1/n. Recall also that a cone P in X is
called a total cone if X = P − P .

The following Krein–Rutman theorem can be found in either [4, theorem 19.2]
or [19, proposition 7.26].

Lemma 2.3. Assume that P is a total cone in a real Banach space X. Let L :
X → X be a compact linear operator with L(P ) ⊆ P and rL > 0. Then rL is an
eigenvalue of L with an eigenvector in P .

Let X∗ be the dual space of X, let P be a total cone in X and let P ∗ be the dual
cone of P , i.e.

P ∗ = {l ∈ X∗ : l(u) � 0 for all u ∈ P}.

Let L,M : X → X be two linear compact operators such that L(P ) ⊆ P and
M(P ) ⊆ P . If their spectral radii rL and rM are positive, then by lemma 2.3 there
exist φL and φM ∈ P \ {0} such that

LφL = rLφL and MφM = rMφM. (2.1)

Assume that there exists h ∈ P ∗ \ {0} such that

L∗h = rMh, (2.2)

where L∗ is the dual operator of L. Choose δ > 0 and define

P (h, δ) = {u ∈ P : h(u) � δ‖u‖}. (2.3)

Then P (h, δ) is a cone in X.
The following two lemmas are crucial in the proofs of our theorems. From here

on, for any R > 0, let B(0, R) = {u ∈ X : ‖u‖ < R} be the open ball of X centred
at 0 with radius R.

Lemma 2.4. Assume that the following conditions hold:

(A1) there exist φL, φM ∈ P \ {0} and h ∈ P ∗ \ {0} such that (2.1) and (2.2) hold
and L(P ) ⊆ P (h, δ);

(A2) H : X → P is a continuous operator and satisfies

lim
‖u‖→∞

‖Hu‖
‖u‖ = 0;

(A3) F : X → X is a bounded continuous operator and there exists u0 ∈ X such
that Fu + Hu + u0 ∈ P for all u ∈ X;
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(A4) there exist v0 ∈ X and ε > 0 such that

LFu � r−1
M (1 + ε)Lu − LHu − v0 for all u ∈ X.

Let T = LF . Then there exists R > 0 such that the Leray–Schauder degree

deg(I − T , B(0, R),0) = 0.

Lemma 2.5. Assume that (A1) and the following conditions hold:

(A2∗) H : X → P is a continuous operator and satisfies

lim
‖u‖→0

‖Hu‖
‖u‖ = 0;

(A3∗) F : X → X is a bounded continuous operator and there exists r1 > 0 such
that

Fu + Hu ∈ P for all u ∈ X with ‖u‖ < r1;

(A4∗) there exist ε > 0 and r2 > 0 such that

LFu � r−1
M (1 + ε)Lu for all u ∈ X with ‖u‖ < r2.

Let T = LF . Then there exists 0 < R < min{r1, r2} such that the Leray–Schauder
degree

deg(I − T , B(0, R),0) = 0.

Lemma 2.4 is a generalization of [9, theorem 2.1] and it is proved in [14, lemma 2.5]
for the case when L and M are two specific linear operators, but the proof there
also works for any general linear operators L and M satisfying (2.1) and (2.2).
Lemma 2.5 generalizes [7, lemma 3.5]. In what follows we only give the proof of
lemma 2.5.

Proof of lemma 2.5. For any ν > 0 satisfying

ν(δ−1rM‖h‖ + ‖L‖) < 1, (2.4)

from (A2∗), there exists r3 > 0 such that

‖Hu‖ � ν‖u‖ for all u ∈ X with ‖u‖ < r3. (2.5)

We claim that there exists 0 < R < min{r1, r2, r3} such that

u − T u �= τφL for all u ∈ ∂B(0, R) and τ � 0. (2.6)

If this is not the case, then, for all 0 < R < min{r1, r2, r3}, there exist u1 ∈ ∂B(0, R)
and τ1 � 0 such that

u1 − LFu1 = τ1φL. (2.7)

Then, from (2.2) and (A4∗), we have

h(u1) = h(LFu1) + τ1h(φL) � h(LFu1)

� r−1
M (1 + ε)h(Lu1) = r−1

M (1 + ε)(L∗h)(u1)

= r−1
M (1 + ε)rMh(u1) = (1 + ε)h(u1).
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Hence, h(u1) � 0. This, together with (2.2) and (2.5), implies that

h(u1 + LHu1) = h(u1) + h(LHu1)

= h(u1) + (L∗h)(Hu1) � (L∗h)(Hu1)

= rMh(Hu1) � νrM‖h‖‖u1‖, (2.8)

From (2.1) and (2.7), we see that

u1 + LHu1 = LFu1 + LHu1 + τ1φL

= L(Fu1 + Hu1) + τ1r
−1
L LφL.

In view of (A1) and (A3∗), we see that u1 + LHu1 ∈ P (h, δ). Thus, by (2.3), we
have

h(u1 + LHu1) � δ‖u1 + LHu1‖ � δ‖u1‖ − δ‖LHu1‖,

and so
‖u1‖ � δ−1h(u1 + LHu1) + ‖LHu1‖.

Hence, from (2.5) and (2.8),

R = ‖u1‖ � δ−1νrM‖h‖‖u1‖ + ν‖L‖‖u1‖ = ν(δ−1rM‖h‖ + ‖L‖)R.

Thus,
ν(δ−1rM‖h‖ + ‖L‖) � 1,

which contradicts (2.4). Therefore, there exists 0 < R < min{r1, r2, r3} such that
(2.6) holds. Note that the operator T is compact. The conclusion now readily follows
lemma 2.1, and this completes the proof of the lemma.

Now we define

G(t, s) =
exp(

∫ s

t
a(v) dv)

exp(
∫ T

0 a(v) dv) − 1
,

c =
1

exp(
∫ T

0 a(v) dv) − 1
,

d =
exp(2

∫ T

0 a(v) dv)

exp(
∫ T

0 a(v) dv) − 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Then it is easy to see that G(t + T, s + T ) = G(t, s), d > c > 0 and

c � G(t, s) � d if t � s � t + T, (2.10)
c � G(t, s) � d if − τ(0) � t � s � T − τ(0), (2.11)
c � G(t, s) � d if − τ(0) � t � T − τ(0) � s � 2T − τ(0). (2.12)

The following lemma can be directly verified.

Lemma 2.6. The function u(t) is a T -periodic solution of the equation

u′ = −a(t)u + k(t) (2.13)
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if and only if

u(t) =
∫ t+T

t

G(t, s)k(s) ds,

where k ∈ C(R, R) is a T -periodic function.

In the remainder of the paper, let the Banach space X be defined by

X = {u ∈ C(R, R) : u(t + T ) = u(t) for t ∈ R} (2.14)

equipped with the norm ‖u‖ = supt∈R
|u(t)|. Define a cone P in X by

P = {u ∈ X : u(t) � 0 on R}, (2.15)

and a subcone K of P by

K = {u ∈ P : u(t) � σ‖u‖ on R}, (2.16)

where σ = c/d. Let the linear operators L,M : X → X be defined by

Lu(t) =
∫ t+T

t

G(t, s)b(s)u(g(s)) ds (2.17)

and

Mu(t) =
∫ g−1(t)

0
G(g(s), t)b(s)u(s) ds +

∫ T

g−1(t)
G(g(s), t + T )b(s)u(s) ds, (2.18)

where g−1(t) is the inverse function of g(t).
The next two lemmas provide some useful information about the operators L

and M.

Lemma 2.7. The operators L and M map P into K and are compact.

Proof. We first show that L(P ) ⊆ K. For u ∈ P and t ∈ R, from (2.10) and (2.17)
we have

c

∫ T

0
b(s)u(g(s)) ds � Lu(t) � d

∫ T

0
b(s)u(g(s)) ds.

As a result, Lu(t) � (c/d)‖Lu‖ = σ‖Lu‖. Thus, L(P ) ⊆ K.
Next, we show that M maps P into K. To this end, first we prove that

Mu(t + T ) = Mu(t) for any u ∈ X and t ∈ R. (2.19)

In fact, for any u ∈ X and t ∈ R, from (2.18),

Mu(t + T )

=
∫ g−1(t+T )

0
G(g(s), t + T )b(s)u(s) ds +

∫ T

g−1(t+T )
G(g(s), t + 2T )b(s)u(s) ds

= I1(u(t)) + I2(u(t)),
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where

I1(u(t)) =
∫ g−1(t+T )

0
G(g(s), t + T )b(s)u(s) ds

and

I2(u(t)) =
∫ T

g−1(t+T )
G(g(s), t + 2T )b(s)u(s) ds.

Since g−1(t + T ) = g−1(t) + T , g(s + T ) = g(s) + T and G(t + T, s + T ) = G(t, s)
for any t, s ∈ R, we have

I1(u(t)) =
∫ g−1(t)+T

0
G(g(s), t + T )b(s)u(s) ds

=
∫ g−1(t)

0
G(g(s), t + T )b(s)u(s) ds

+
∫ T

g−1(t)
G(g(s), t + T )b(s)u(s) ds

+
∫ g−1(t)+T

T

G(g(s), t + T )b(s)u(s) ds

=
∫ g−1(t)

0
G(g(s), t + T )b(s)u(s) ds

+
∫ T

g−1(t)
G(g(s), t + T )b(s)u(s) ds

+
∫ g−1(t)

0
G(g(s) + T, t + T )b(s + T )u(s + T ) ds

=
∫ g−1(t)

0
G(g(s), t + T )b(s)u(s) ds

+
∫ T

g−1(t)
G(g(s), t + T )b(s)u(s) ds

+
∫ g−1(t)

0
G(g(s), t)b(s)u(s) ds

and

I2(u(t)) =
∫ T

g−1(t)+T

G(g(s), t + 2T )b(s)u(s) ds

=
∫ 0

g−1(t)
G(g(s) + T, t + 2T )b(s + T )u(s + T ) ds

=
∫ 0

g−1(t)
G(g(s), t + T )b(s)u(s) ds.
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Thus,

Mu(t + T ) = I1(u(t)) + I2(u(t))

=
∫ T

g−1(t)
G(g(s), t + T )b(s)u(s) ds +

∫ g−1(t)

0
G(g(s), t)b(s)u(s) ds

= Mu(t),

i.e. (2.19) holds. Hence, M(X) ⊆ X. Consequently, for u ∈ P and t ∈ R, we have

Mu(t) � min
v∈[−τ(0),T−τ(0)]

Mu(v)

= min
v∈[−τ(0),T−τ(0)]

( ∫ g−1(v)

0
G(g(s), v)b(s)u(s) ds

+
∫ T

g−1(v)
G(g(s), v + T )b(s)u(s) ds

)
(2.20)

and

Mu(t) � max
v∈[−τ(0),T−τ(0)]

Mu(v)

= max
v∈[−τ(0),T−τ(0)]

( ∫ g−1(v)

0
G(g(s), v)b(s)u(s) ds

+
∫ T

g−1(v)
G(g(s), v + T )b(s)u(s) ds

)
. (2.21)

Note that

0 � g−1(v) � T ⇐⇒ −τ(0) = g(0) � v � g(T ) = T − τ(0), (2.22)

0 � s � g−1(v) ⇐⇒ −τ(0) = g(0) � g(s) � v, (2.23)

g−1(v) � s � T ⇐⇒ v � g(s) � g(T ) = T − τ(0). (2.24)

Then, for u ∈ P and t ∈ R, from (2.11), (2.12), (2.20) and (2.21), it follows that

Mu(t) � min
v∈[−τ(0),T−τ(0)]

Mu(v)

� c

∫ g−1(v)

0
b(s)u(s) ds + c

∫ T

g−1(v)
b(s)u(s) ds = c

∫ T

0
b(s)u(s) ds

and

Mu(t) � max
v∈[−τ(0),T−τ(0)]

Mu(v)

� d

∫ g−1(v)

0
b(s)u(s) ds + d

∫ T

g−1(v)
b(s)u(s) ds = d

∫ T

0
b(s)u(s) ds,

from which we have Mu(t) � (c/d)‖Mu‖ = σ‖Mu‖. Therefore, M(P ) ⊆ K.
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Finally, standard arguments can be used to show that L and M are compact and
we omit the details here. This completes the proof of the lemma.

Lemma 2.8. We have the following.

(i) The spectral radius, rL, of L satisfies rL > 0. Moreover, rL is an eigenvalue
of L with an eigenvector φL ∈ P .

(ii) The spectral radius, rM, of M satisfies rM > 0. Moreover, rM is an eigen-
value of M with an eigenvector φM ∈ P .

Proof. The ideas of the proof for parts (i) and (ii) are essentially the same. In the
following, we only prove part (ii). Let u ∈ K and t ∈ R. Noting (2.22)–(2.24), from
(2.11), (2.12) and (2.20) we see that

Mu(t) � min
v∈[−τ(0),T−τ(0)]

Mu(v)

� c

∫ g−1(v)

0
b(s)u(s) ds + c

∫ T

g−1(v)
b(s)u(s) ds

= c

∫ T

0
b(s)u(s) ds � σ‖u‖c

∫ T

0
b(s) ds

and

M2u(t) = M(Mu(t))

� min
v∈[−τ(0),T−τ(0)]

M(Mu(v))

� c

∫ g−1(v)

0
b(s)

(
cσ‖u‖

∫ T

0
b(s) ds

)
ds

+ c

∫ T

g−1(v)
b(s)

(
cσ‖u‖

∫ T

0
b(s) ds

)
ds

= σ‖u‖
(

c

∫ T

0
b(s) ds

)2

.

By induction, we obtain that

Mnu(t) � σ‖u‖
(

c

∫ T

0
b(s) ds

)n

.

Then,

‖Mn‖‖u‖ � ‖Mnu‖ � Mnu(t) � σ‖u‖
(

c

∫ T

0
b(s) ds

)n

,

and so

‖Mn‖ � σ

(
c

∫ T

0
b(s) ds

)n

.
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Hence,

rM = lim
n→∞

‖Mn‖1/n � c

∫ T

0
b(s) ds > 0.

Now, in view of the fact that the cone P defined by (2.15) is a total cone and that
rM > 0, the ‘moreover’ part of part (ii) readily follows from lemmas 2.3 and 2.7.
This completes the proof of the lemma.

3. Main results

For convenience, we introduce the following notation:

f0 = lim inf
x→0+

f(x)
x

, f∞ = lim inf
x→∞

f(x)
x

,

F0 = lim sup
x→0

∣∣∣∣f(x)
x

∣∣∣∣, F∞ = lim sup
|x|→∞

∣∣∣∣f(x)
x

∣∣∣∣,

ξ =
(

d

∫ T

0
b(s) ds

)−1

, η =
(

cσ

∫ T

0
b(s) ds

)−1

. (3.1)

In the rest of this paper, we also let

µM =
1

rM
, (3.2)

where rM is given in lemma 2.8(ii). Clearly, µM is the smallest positive charac-
teristic value of M satisfying φM = µMMφM, and as we will see by lemma 4.1,
ξ � µM � η.

We need the following assumptions.

(B1) There exist a constant M � 0 and a function α ∈ C(R, R+) such that α is
even and non-decreasing on R

+,

f(x) � −M − α(x) for all x ∈ R (3.3)

and

lim
x→∞

α(x)
x

= 0. (3.4)

(B2) There exist a constant 0 < r < 1 and a function β ∈ C(R, R+) such that β is
even and non-decreasing on R

+,

f(x) � −β(x) for all x ∈ [−r, 0] (3.5)

and

lim
x→0

β(x)
x

= 0. (3.6)

Remark 3.1. Here, we wish to emphasize that, in (B1), we assume that f(x) is
bounded from below by −M −α(x) for all x ∈ R. However, in (B2), we only require
that f(x) is bounded from below by −β(x) for x in a small left-neighbourhood of 0.

We first state our existence results for equation (1.1).
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Theorem 3.2. Assume that (B1) holds. If

F0 < µM < f∞,

then equation (1.1) has at least one non-trivial T -periodic solution.

Theorem 3.3. Assume that (B2) holds. If

F∞ < µM < f0,

then equation (1.1) has at least one non-trivial T -periodic solution.

Corollary 3.4. Assume that (B1) holds. If

F0

ξ
< 1 <

f∞
η

,

then equation (1.1) has at least one non-trivial T -periodic solution.

Corollary 3.5. Assume that (B2) holds. If

F∞
ξ

< 1 <
f0

η
,

then equation (1.1) has at least one non-trivial T -periodic solution.

Next, we state our existence results for equation (1.2); they are immediate con-
sequences of the above results.

Corollary 3.6. Assume that (B1) holds. If

µM
f∞

< λ <
µM
F0

,

then equation (1.2) has at least one non-trivial T -periodic solution.

Corollary 3.7. Assume that (B2) holds. If

µM
f0

< λ <
µM
F∞

,

then equation (1.2) has at least one non-trivial T -periodic solution.

Corollary 3.8. Assume that (B1) holds. If

η

f∞
< λ <

ξ

F0
,

then equation (1.2) has at least one non-trivial T -periodic solution.

Corollary 3.9. Assume that (B2) holds. If

η

f0
< λ <

ξ

F∞
,

then equation (1.2) has at least one non-trivial T -periodic solution.
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We conclude this section with the following two simple examples.

Example 3.10. Let

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

γix
i, x ∈ [−1,∞),

n∑
i=1

(−1)iγi − |x|θ ln(1 + |x|) + ln 2, x ∈ (−∞,−1],

(3.7)

where n � 1 is an integer, γi ∈ R with 0 � γ1 < (e2π − 1)/2πe4π and γn > 0, and
0 < θ < 1. Clearly, f ∈ C(R, R).

We claim that functional differential equation

u′(t) = −u(t) + f(u(t − sin t)) (3.8)

has a non-trivial 2π-periodic solution.
In fact, with a(t) = b(t) = 1, T = 2π, τ(t) = sin t and g(t) = t − sin t it is easy

to see that equation (3.8) is of the form of equation (1.1) and assumption (H) is
satisfied. Moreover, from (3.1), we have

ξ =
e2π − 1
2πe4π

and η =
e4π(e2π − 1)

2π
. (3.9)

Let

M =
n∑

i=1

|γi| + ln 2 and α(x) = |x|θ ln(1 + |x|).

Then, in view of (3.7), we have

f(x) � −M − α(x) for all x ∈ R

and

lim
x→∞

α(x)
x

= lim
x→∞

ln(1 + x)
x1−θ

= 0.

Thus, (B1) holds. From (3.7), we have

F0 = lim sup
x→0

∣∣∣∣f(x)
x

∣∣∣∣ = γ1 < ξ and f∞ = lim inf
x→∞

f(x)
x

= ∞.

Hence, F0/ξ < 1 < f∞/η. The conclusion then follows from corollary 3.4.

Example 3.11. Let f be defined as in example 3.10. Then we claim that, for any
λ satisfying 0 < λ < (e2π − 1)/2πγ1e4π, the eigenvalue problem

u′(t) = −u(t) + λf(u(t − sin t))

has a non-trivial 2π-periodic solution.
In fact, as in example 3.10, (B1) holds. Moreover, ξ and η are given by (3.9),

F0 = γ1 and f∞ = ∞. Note that

0 < λ <
e2π − 1
2πγ1e4π

⇐⇒ η

f∞
< λ <

ξ

F0
.

The conclusion then readily follows from corollary 3.8.
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Note that, in these examples, for x negative, the function f is negative and
unbounded from below.

4. Proofs of the main results

Let X, P , K, L and M be defined by (2.14)–(2.18), respectively. By lemma 2.7,
L and M map P into K and are compact. Define operators F and T : X → X by

Fu(t) = f(u(t)) (4.1)

and

T u(t) = LFu(t) =
∫ t+T

t

G(t, s)b(s)f((u(g(s)))) ds. (4.2)

Then F : X → X is bounded and T : X → X is compact. Moreover, by lemma 2.6,
a T -periodic solution of equation (1.1) is equivalent to a fixed point of the operator
T in X.

Proof of theorem 3.2. We first verify that conditions (A1)–(A4) of lemma 2.4 are
satisfied.

By lemma 2.8, there exist φL, φM ∈ P \ {0} such that (2.1) holds. To show that
(2.2) holds, we let

h(u) =
∫ T

0
b(t)φM(t)u(g(t)) dt, u ∈ X. (4.3)

Then h ∈ P ∗ \ {0} and

(L∗h)(u) = h(Lu) =
∫ T

0
b(t)φM(t)Lu(g(t)) dt

=
∫ T

0
b(t)φM(t)

( ∫ g(t)+T

g(t)
G(g(t), s)b(s)u(g(s)) ds

)
dt

=
∫ T

0

∫ g(t)+T

g(t)
G(g(t), s)b(s)u(g(s))b(t)φM(t) ds dt.

Interchanging the order of integration and noting that g(T ) = g(0) + T , we have

(L∗h)(u) =
∫ g(T )

g(0)
b(s)u(g(s))

( ∫ g−1(s)

0
G(g(t), s)b(t)φM(t) dt

)
ds

+
∫ g(T )+T

g(0)+T

b(s)u(g(s))
( ∫ T

g−1(s−T )
G(g(t), s)b(t)φM(t) dt

)
ds.

Letting s = v + T in the second term and noting that

g(v + T ) = g(v) + T,
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we obtain

(L∗h)(u) =
∫ g(T )

g(0)
b(s)u(g(s))

( ∫ g−1(s)

0
G(g(t), s)b(t)φM(t) dt

)
ds

+
∫ g(T )

g(0)
b(v + T )u(g(v) + T )

×
( ∫ T

g−1(v)
G(g(t), v + T )b(t)φM(t) dt

)
dv

=
∫ g(T )

g(0)
b(s)u(g(s))

( ∫ g−1(s)

0
G(g(t), s)b(t)φM(t) dt

)
ds

+
∫ g(T )

g(0)
b(v)u(g(v))

( ∫ T

g−1(v)
G(g(t), v + T )b(t)φM(t) dt

)
dv

=
∫ g(T )

g(0)
b(s)u(g(s))

( ∫ g−1(s)

0
G(g(t), s)b(t)φM(t) dt

+
∫ T

g−1(s)
G(g(t), s + T )b(t)φM(t) dt

)
ds.

Thus, in view of (2.1), (2.18), (4.3) and the fact that g(T ) = g(0) + T , we have

(L∗h)(u) =
∫ g(T )

g(0)
b(s)u(g(s))MφM(s) ds = rM

∫ g(T )

g(0)
b(s)φM(s)u(g(s)) ds

= rM

∫ T

0
b(s)φM(s)u(g(s)) ds = rMh(u),

i.e. h satisfies (2.2). Since φM(s) � σ‖φM‖ > 0 on R, there exists δ1 > 0 such that

φM(s) � δ1G(t, s) for t, s ∈ R. (4.4)

Let δ = rMδ1. For any u ∈ P and t ∈ R, from (2.17), (4.3) and (4.4), it follows that

h(Lu) = rMh(u)

= rM

∫ T

0
b(s)φM(s)u(g(s)) ds

= rM

∫ t+T

t

b(s)φM(s)u(g(s)) ds

� rMδ1

∫ t+T

t

G(t, s)b(s)u(g(s)) ds

= δLu(t).

Hence, h(Lu) � δ‖Lu‖, i.e. L(P ) ⊆ P (h, δ). Therefore, condition (A1) of lemma 2.4
holds.
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Since α is non-decreasing on R
+, we have

α(u) � α(‖u‖) for all u ∈ P.

Then, from the fact that α is even, it follows that

α(u) � α(‖u‖) for all u ∈ X.

Thus,

‖α(u)‖ � α(‖u‖) for all u ∈ X.

From (3.4), we see that

lim
‖u‖→∞

‖α(u)‖
‖u‖ = 0 for any u ∈ X.

Letting Hu = α(u) for u ∈ X, we show that condition (A2) in lemma 2.4 holds.
With F defined by (4.1) and u0 = M , from (3.3), we have Fu+Hu+u0 ∈ P for

all u ∈ X. Hence, (A3) of lemma 2.4 holds.
Since f∞ > µM, there exist ε > 0 and N > 0 such that

f(x) � µM(1 + ε)x for x � N.

Then, in view of (3.3), there exists ρ > 0 such that

f(x) � µM(1 + ε)x − α(x) − ρ for all x ∈ R.

From (3.2) and (4.1), we have

Fu � µM(1 + ε)u − α(u) − ρ = r−1
M (1 + ε)u − Hu − ρ for all u ∈ X.

Thus,

LFu � r−1
M (1 + ε)Lu − LHu − Lρ for all u ∈ X.

Then (A4) of lemma 2.4 holds with v0 = Lρ.
We have verified that all the conditions of lemma 2.4 hold, so there exists R1 > 0

such that

deg(I − T , B(0, R1),0) = 0. (4.5)

Next, since F0 < µM, there exist 0 < ν < 1 and 0 < R2 < R1 such that

|f(x)| � µM(1 − ν)|x| for |x| < R2. (4.6)

We claim that

T u �= τu for all u ∈ ∂B(0, R2) and τ � 1. (4.7)

If this is not the case, then there exist ū ∈ ∂B(0, R2) and τ̄ � 1 such that T ū = τ̄ ū.
It follows that ū = s̄T ū, where s̄ = 1/τ̄ . Clearly, s̄ ∈ (0, 1]. Then, from (2.17), (4.2)

https://doi.org/10.1017/S0308210509000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509000523


612 J. R. Graef and L. Kong

and (4.6), we have

|ū(t)| = s̄|T ū(t)|

�
∫ t+T

t

G(t, s)b(s)|f(ū(g(s)))| ds

� µM(1 − ν)
∫ t+T

t

G(t, s)b(s)|ū(g(s))| ds

= µM(1 − ν)L|ū(t)|.

Consequently,

h(|ū|) � µM(1 − ν)h(L|ū|)

= µM(1 − ν)(L∗h)(|ū|)

= r−1
M (1 − ν)rMh(|ū|)

= (1 − ν)h(|ū|).

Thus, h(|ū|) � 0. On the other hand, in view of the fact that φM(t) > 0 and
‖ū‖ = R2 > 0, by (4.3), h(|ū|) > 0. This contradiction implies that (4.7) holds.
Now lemma 2.2 implies

deg(I − T , B(0, R2),0) = 1, (4.8)

so, by the additivity property of the Leray–Schauder degree, (4.5) and (4.8), we
have

deg(I − T , B(0, R1) \ B(0, R2)) = −1.

Then, from the solution property of the Leray–Schauder degree, T has at least
one fixed point u in B(0, R1) \ B(0, R2). Clearly, u(t) is a non-trivial solution of
equation (1.1). This completes the proof of the theorem.

Proof of theorem 3.3. We first verify that conditions (A1) and (A2∗)–(A4∗) of
lemma 2.5 are satisfied.

As in the proof of theorem 3.2, there exist φL, φM ∈ P \ {0} and h ∈ P ∗ \ {0}
defined by (4.3) such that (A1) holds.

From the fact that β is even and non-decreasing on R
+, it is easy to see that

β(u) � β(‖u‖) for all u ∈ X.

Thus,

‖β(u)‖ � β(‖u‖) for all u ∈ X.

This, together with (3.6), implies that

lim
‖u‖→0

‖β(u)‖
‖u‖ = 0 for any u ∈ X.

Let Hu = β(u) for u ∈ X. Then (A2∗) of lemma 2.5 holds.
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Since f0 > µM, there exist ε > 0 and 0 < ζ1 < 1 such that

f(x) � µM(1 + ε)x = r−1
M (1 + ε)x � 0 for x ∈ [0, ζ1]. (4.9)

Let r be given as in (B2) and let F be defined by (4.1). Now, in view of (3.5) and
(4.9), we see that (A3∗) of lemma 2.5 holds with r1 = min{r, ζ1}.

From (3.6), there exists 0 < ζ2 < min{r, ζ1} such that

−β(x) � r−1
M (1 + ε)x for x ∈ [−ζ2, 0].

Then, from (3.5),

f(x) � r−1
M (1 + ε)x for x ∈ [−ζ2, 0]. (4.10)

From (4.9) and (4.10), we have

f(x) � r−1
M (1 + ε)x for x ∈ [−ζ2, ζ2], (4.11)

which clearly implies that

LFu � r−1
M (1 + ε)Lu for all u ∈ X with ‖u‖ < ζ2.

Hence, (A4∗) of lemma 2.5 holds with r2 = ζ2.
We have verified that all the conditions of lemma 2.5 hold, so there exists R3 > 0

such that
deg(I − T , B(0, R3),0) = 0. (4.12)

Next, since F∞ < µM, there exist 0 < ν̃ < 1 and R̄ > R3 such that

|f(x)| � µM(1 − ν̃)|x| = r−1
M (1 − ν̃)|x| for |x| ∈ (R̄, ∞). (4.13)

Let

C = max
|x|�R̄

|f(x)| sup
t∈R

∫ t+T

t

G(t, s)b(s) ds. (4.14)

Then 0 < C < ∞. Choose R4 large enough so that

R4 > max{R̄, ν̃−1C}. (4.15)

We claim that
T u �= τu for all u ∈ ∂B(0, R4) and τ � 1. (4.16)

If this is not the case, then there exist ũ ∈ ∂B(0, R4) and τ̃ � 1 such that T ũ = τ̃ ũ.
It follows that ũ = s̃T ũ, where s̃ = 1/τ̃ . Clearly, s̃ ∈ (0, 1]. Since ũ is T -periodic,
we may assume that R4 = ‖ũ‖ = |ũ(t̃)| for some t̃ ∈ [0, T ]. Let

J1(ũ) = {t ∈ [t̃, t̃ + T ] : |ũ(g(t))| > R̄},

J2(ũ) = [t̃, t̃ + T ] \ J1(ũ)

and

p(ũ(t)) = min{|ũ(g(t))|, R̄} for t ∈ [t̃, t̃ + T ].
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Then, from (2.17), (4.2), (4.13) and (4.14), we have

R4 = |ũ(t̃)| = s̃|T ũ(t̃)|

�
∫ t̃+T

t̃

G(t̃, s)b(s)|f(ũ(g(s)))| ds

=
∫

J1(ũ)
G(t̃, s)b(s)|f(ũ(g(s)))| ds +

∫
J2(ũ)

G(t̃, s)b(s)|f(ũ(g(s)))| ds

� r−1
M (1 − ν̃)

∫
J1(ũ)

G(t̃, s)b(s)|ũ(g(s))| ds +
∫

J2(ũ)
G(t̃, s)b(s)|f(p(ũ(s)))| ds

� r−1
M (1 − ν̃)

∫ t̃+T

t̃

G(t̃, s)b(s)|ũ(g(s))| ds +
∫ t̃+T

t̃

G(t̃, s)b(s)|f(p(ũ(s)))| ds

� r−1
M (1 − ν̃)L|u(t̃)| + C

= r−1
M (1 − ν̃)LR4 + C.

Hence, for h defined by (4.3),

h(R4) � r−1
M (1 − ν̃)h(LR4) + h(C)

= r−1
M (1 − ν̃)(L∗h)(R4) + h(C)

= r−1
M (1 − ν̃)rMh(R4) + h(C)

= (1 − ν̃)h(R4) + h(C),

which implies that
(ν̃R4 − C)h(1) � 0.

In view of the fact that h(1) > 0, it follows that R4 � ν̃−1C. This contradicts (4.15)
and so (4.16) holds. By lemma 2.2, we have

deg(I − T , B(0, R4),0) = 1. (4.17)

By the additivity property of the Leray–Schauder degree, (4.12) and (4.17), we
obtain

deg(I − T , B(0, R4) \ B(0, R3)) = 1.

Thus, from the solution property of the Leray–Schauder degree, T has at least
one fixed point u in B(0, R4) \ B(0, R3). Clearly, u(t) is a non-trivial solution of
equation (1.1), and this completes the proof of the theorem.

Lemma 4.1. Let µM be defined by (3.2). Then ξ � µM � η, where ξ and η are
given by (3.1).

Proof. Let φM be given as in lemma 2.8(ii). Then φM(t) = µMMφM(t), i.e.

φM(t) = µM

( ∫ g−1(t)

0
G(g(s), t)b(s)φM(s) ds

+
∫ T

g−1(t)
G(g(s), t + T )b(s)φM(s) ds

)
.
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Thus, in view of (2.22)–(2.24) and from (2.11) and (2.12), it follows that

φM(t) � µM max
v∈[−τ(0),T−τ(0)]

MφM(v)

� µM

(
d‖φM‖

∫ g−1(v)

0
b(s) ds + d‖φM‖

∫ T

g−1(v)
b(s) ds

)

= µMd‖φM‖
∫ T

0
b(s) ds on R.

Hence,

µM �
(

d

∫ T

0
b(s) ds

)−1

= ξ.

On the other hand, since φM ∈ K we have φM(t) � σ‖φM‖ on R, and then again
from (2.11) and (2.12), we have

φM(t) � µM min
v∈[−τ(0),T−τ(0)]

MφM(v)

� µM

(
cσ‖φM‖

∫ g−1(v)

0
b(s) ds + cσ‖φM‖

∫ T

g−1(v)
b(s) ds

)

= µMcσ‖φM‖
∫ T

0
b(s) ds on R.

Thus,

µM �
(

cσ

∫ T

0
b(s) ds

)−1

= η.

This completes the proof of the lemma.

Proof of corollary 3.4. The conclusion follows from theorem 3.2 and lemma 4.1.

Proof of corollary 3.5. The conclusion follows from theorem 3.3 and lemma 4.1.

Finally, by virtue of lemma 4.1, corollaries 3.6–3.9 are direct applications of the-
orems 3.2 and 3.3 and corollaries 3.4 and 3.5 with f in equation (1.1) replaced by
λf . We omit the proofs here.
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