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Oscillatory switching centrifugation:
dynamics of a particle in a pulsating vortex
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The dynamics of a small rigid spherical particle in an unbounded pulsating vortex
is considered, keeping constant the particle Stokes number St and varying the
particle-to-fluid density ratio % and the pulsation frequency of the vortex ω. We
show that the asymptotic dynamics of a particle of given St and % can be controlled
by varying ω, turning the vortex core either into an attractor or a repellor. The
creation of non-trivial particle limit cycles characterizes the boundaries between
centrifugal and centripetal regions in parameter space. The discovered phenomenon is
termed oscillatory switching centrifugation and its implications for particle demixing
processes, biological protocols, lab-on-a-chip devices and dynamical systems theory
are discussed at the end.
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1. Introduction

The trajectory of a small rigid spherical particle immersed in an incompressible
fluid flow deviates from fluid pathlines owing to its finite-size (Babiano et al.
2000), particle-to-fluid density mismatch (Lasheras & Tio 1994) and interaction
with boundaries such as walls or free surfaces (Brenner 1961). The forces exerted by
the fluid on the particle are responsible for these deviations and may lead to attraction
(repulsion) of the particle towards (away from) one of the stable (unstable) manifolds
of the dynamical system which governs the particle motion. These mechanisms
are at the heart of particle segregation and accumulation phenomena leading to
sedimentation (Kynch 1952) and centrifugation (Lasheras & Tio 1994). More recently
the attention of many researchers has been paid to the occurrence of subtler particulate
coherent structures relying on the Lagrangian topology of the flow. The mixing
of particles is promoted within regions dominated by chaotic advection, whereas
either weakly chaotic areas (characterized by small Lyapunov exponent) or regular
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regions mark the particle settling patterns. These Lagrangian coherent structures tend,
therefore, to promote accumulation structures which resemble the linearly mixing
regions of the flow, occurring in the form of doubly connected non-convex manifolds
(Kolmogorov–Arnol’d–Moser tori) or simply connected convex manifolds (invariant
spheroids). The mechanism underlining the particle coherent structures relies on the
transfer of particles from chaotic to regular or weakly chaotic regions of the flow
solely due to particles’ finite-size (neutrally buoyant particles, see Babiano et al.
2000), inertia (Sapsis & Haller 2009) or interaction with the boundaries (Romanò &
Kuhlmann 2018). For dilute suspensions, the demixing and accumulation of particles
is typically explained as a single-particle phenomenon, on the understanding that
the suspension remains locally dilute and particle–particle interactions are negligible.
This is also the spirit of our investigation, in which we study the dynamics of a
single particle, expecting that this can be representative of the dynamics of a particle
suspension when particle–particle interactions are negligible.

Among the first to investigate the motion of particles in rotating flows, Taylor
(Taylor 1922, 1923) computed the streamlines for a sphere in a rotating flow and
experimentally showed that fluid columns in solid-body motion are created parallel
to the axis of rotation when the flow is perturbed. These structures are called
Taylor columns and are relevant for the flow topology in centrifuges. More generic
conical structures are normally observed in rotating flows and influence the motion of
particles in the far field (Herron, Davis & Bretherton 1975). Other studies on particles
in rotating flows are due to Mason (1975), who computed the force on a particle
of arbitrary shape moving transversally through a rotating fluid, Miyazaki (1995),
who computed the force on a sphere translating relative to a shear and a rotating
flow, and showed that pure rotation increases the drag on the particle, and Hocking,
Moore & Walton (1979), who computed the drag on a sphere for Taylor columns
of length comparable to the axial length of the rotating container. A comparison
with experiments is provided by Karanfilian & Kotas (1981). Further investigations
included determining the mobility of a sphere moving along the axis of rotation of
the surrounding creeping flow (Weisenborn 1985) and Stokes’ drag and Kirchhoff’s
couple corrections for non-zero Reynolds and Taylor numbers. Candelier, Angilella
& Souhar (2005) theoretically analysed the motion of a spherical particle and a
spherical bubble in a solid-body rotation flow, validating their analytic results with
experimental measurements. They showed that the Coriolis force induces a drag and
lift correction which remarkably reduce the particle migration rate away from the
axis. Other important effects on the dynamics of a particle are given by the deflection
of its wake, which might make the particle spin faster in a flow with a significant
cross-stream shear, overcoming the inertial effects, which tend to slow down the
particle rotation (Bluemink et al. 2008). More recent investigations focused on the
effect of inertia on drag and lift forces on a particle in a rotating flow, making use of
theoretical analyses, experimental measurements and numerical simulations (Candelier
2008; Bluemink et al. 2010).

A recent publication of Xu & Nadim (2016) has shown that ordinary centrifugation
typical of particles in steady vortices can be opposed by Coriolis forces if the vortex
is pulsating. This gives rise to oscillatory counter-centrifugation (OCC), which attracts
heavy particles to the vortex core and repels light ones away from the vortex core if
the pulsation frequency of the vortex is high enough. This phenomenon is relevant
to microfluidic systems integrated in rotating bio-disk platforms, which are used
for the integration and automation of life science analysis and synthesis protocols
(Ducrée et al. 2007). Other possible applications involve lab-on-a-chip devices, where
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Oscillatory switching centrifugation

centrifugal microfluidics is finding a growing interest (Mark et al. 2010). We will
study the motion of a single particle in a simple pulsating vortex, which ideally
corresponds to an oscillatory rigid-body rotation of the disk and of the fluid flow in a
liquid-filled insert fixed on the bio-disk. Our focus will be on the motion of a single
particle, and we aim at demonstrating the surprisingly complex particle dynamics in
pulsating vortex flows, which has been overlooked so far. Our simplified approach
aims at uncovering the new aspects of such a physical mechanism, and we will
therefore avoid including confinement effects on the particle trajectory.

The remainder of this paper is structured as follows: in § 2 we formulate the
mathematical problem which governs the motion of a small rigid particle in a
pulsating vortex flow, § 3 presents the numerical methods employed in our study
and validates the implementation of our codes, then § 4 gathers the results of our
investigation, which are then summarized and discussed in § 5.

2. Problem formulation

The motion of a small rigid spherical particle of radius a and density ρp in an
unbounded incompressible fluid of kinematic viscosity ν and density ρf is modelled
by the Maxey–Riley equation (Maxey & Riley 1983)

ρp
dv
dt
= ρf

Du
Dt
+
(
ρp − ρf

)
g−

9νρf

2a2

(
v− u−

a2

6
∇

2u
)

−
ρf

2

[
dv
dt
−

D
Dt

(
u+

a2

10
∇

2u
)]

−
9ρf

2a

√
ν

π

∫ t

0

1
√

t− τ
d

dτ

(
v− u−

a2

6
∇

2u
)

dτ , (2.1)

where t denotes the time, v and u are the particle and the fluid velocity, respectively,
and g is the gravity acceleration. The left-hand side of (2.1) represents the rate of
change of the particle momentum, whereas the right-hand side gathers, in order, the
force exerted on the particle by the undisturbed flow, buoyancy, Stokes drag, added
mass and Basset-history force; all those terms which include a2

∇
2u represent the

Faxén correction (Faxén 1922). Two different notations are employed for the material
derivatives dt and Dt because they respectively refer to the Lagrangian derivative along
the particle trajectory

dA
dt
=
∂A
∂t
+ (v · ∇)A (2.2)

and along the fluid trajectory

DA
Dt
=
∂A
∂t
+ (u · ∇)A, (2.3)

where A is a generic vector field and ∂t denotes the Eulerian derivative.
Building upon the Kirchhoff vortex, we derive a two-dimensional time-periodic

incompressible flow. Rescaling length, velocity and time by L, U and L/U,
respectively, where L and U are the characteristic length and velocity of the fluid
flow, the stream function ψ and the fluid flow velocity u read

ψ =
Ω

4
(x2
+ y2) sin(ωt), u=

Ω

2
(y,−x) sin(ωt), (2.4a,b)

857 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.802


F. Romanò

where x = (x, y) denotes the spatial coordinate, Ω = 103 represents the amplitude
of the vorticity and ω its pulsation frequency. The model flow (2.4) consists of an
unbounded circular vortex, which changes its sense of rotation from counterclockwise
to clockwise and vice versa. The flow topology is readily characterized by considering
that the time-periodic Kirchhoff vortex admits only one critical point at (x, y)= (0, 0)
and the flow is rotationally invariant with respect to such an elliptic point. Moreover,
(2.4) does not allow for chaotic advection because all the fluid elements are forced to
move along a certain periodic pathline with constant radial coordinate r0 =

√
x2

0 + y2
0

determined by the initial location (x0, y0) of the fluid element.
Hereinafter, the gravitational forces are neglected and the particle immersed in (2.4)

is initially velocity-matched to the fluid flow. Hence, the dimensionless Maxey–Riley
equation (Farazmand & Haller 2015) reads

dv
dt
=

1
%+ 1/2

[
3
2

Du
Dt
−
%

St
(v− u)−

√
9%

2πSt

∫ t

0

1
√

t− τ
d

dτ
(v− u) dτ

]
, (2.5)

where two non-dimensional groups arise: the particle-to-fluid density ratio % and the
Stokes number St

%=
ρp

ρf
, St=

2a2

9L2
%Re, Re=

UL
ν
. (2.6a−c)

In (2.6), the Reynolds number Re is conventionally defined. Furthermore, we stress
that the choice of the model flow (2.4) greatly simplifies our study since ∇2u≡ 0, so
the Faxén correction in (2.1) is identically zero.

The particle trajectory is computed by discretizing (2.5) using a fourth-order Runge–
Kutta method for the first three terms (see Romanò & Kuhlmann (2017), and § 3 for
a validation of the code) and employing a predictor–corrector method (Daitche 2013;
Xu & Nadim 2015) for dealing with the Basset-history term. The sphere is initialized
at (x0, y0)= (−10, 10), i.e. r0= 10

√
2 and the Stokes number is chosen to be St= 1. A

two-dimensional parameter space is explored, selecting ω ∈ [10, 200] and % ∈ [0.1, 10].

3. Numerical simulations

The discretization of the Maxey–Riley equation without Basset-history force is
carried out by means of the fourth-order Runge–Kutta, 3/8-rule. The implementation
of our fourth-order Runge–Kutta algorithm has recently been tested in Romanò &
Kuhlmann (2017). A further validation is here proposed for one specific case of our
investigation, testing the choice of the selected 1t = 10−3 in comparison with the
results produced by the routine ode45 of MATLAB setting absolute and relative error
estimates to 10−8. The case selected for our benchmark employs Ω = 103, St = 1,
ω= 10 and %= 8, and figure 1 depicts the particle trajectory for a particle initialized
at (x0, y0)= (−10, 10) velocity-matched to the fluid flow, i.e. v0 = u(t= 0). Figure 1
validates our implementation of the algorithm and confirms that 1t = 10−3 produces
results accurate enough to reliably investigate the character of the particle dynamics.

In order to discretize the full Maxey–Riley equation, including the Basset-history
term, the fourth-order Runge–Kutta algorithm is supplemented by an explicit estimate
of the history force. Considering that our Basset-force has the form

I(t)=
∫ t

0

ẇ(τ )
√

t− τ
dτ , (3.1)
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FIGURE 1. Coordinates of the particle trajectory computed by MATLAB (black solid line)
and by our fourth-order Runge–Kutta, 3/8-rule (red dashed line).

where w=v−u, we employ the predictor–corrector algorithm of Xu & Nadim (2015)
for estimating I at time t= tn

In =
2
1t

n∑
l=2

(
√

tn − tl−1 −
√

tn − tl)(wl −wl−1). (3.2)

Our discrete approach is then tested by discretizing the motion of a particle in an
oscillating box, for which it yields

Ẍ(t)=−βẊ(t)+ (1− α) sin(t)− γ
∫ t

0

Ẍ(τ )
√

t− τ
dτ , (3.3)

where X denotes the particle position, X(t= 0)= 0, Ẋ(t= 0)= 0, and α, β and γ are
three parameters which characterize the particle motion. This one-dimensional problem
is formally of the same class as the Maxey–Riley equation and admits an analytic
solution in closed form given by Xu & Nadim (2015)

X(t)= (1− α)

[
6∑

j=1

AjRj exp(R2
j t)Erfc(−Rj

√
t)+ A7

]
, (3.4)

where the coefficients reported in (3.4) are

R1 = exp
(π

4
i
)
, R2 = exp

(
3π

4
i
)
, R3 = exp

(
5π

4
i
)
,

R4 = exp
(

7π

4
i
)
, R5,6 =

−γ
√

π±
√
γ 2π− 4β

2
,

Aj =
1

R2
j

m=6∏
m=1,m6=j

(Rj − Rm)

( j= 1, 2, . . . , 6),

A7 = β
−1.


(3.5)

Figure 2 depicts the exact solution (black solid line) and the numerical prediction (red
dashed line) for α = 2, β = 1 and γ = 1 in the time interval t ∈ [0, 200] employing
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FIGURE 2. Analytic (black solid line) and numerical solution (red dashed line) for the
one-dimensional trajectory of a particle immersed in an oscillating flow. The blue dashed
line denotes the numerical solution if the Basset term is neglected.

1t= 10−3. The blue dashed line shows the numerical solution obtained neglecting the
Basset-history force to make clear the importance of discretizing it. The very good
agreement between our numerical prediction (red dashed line) and the exact solution
(solid black line) successfully concludes the validation of our code.

4. Results

A recent study has shown that the ordinary centrifugation of a heavy particle in
a stationary vortex can be reverted in a pulsating vortex, leading to OCC (Xu &
Nadim 2016). The phenomenon is explained by considering the Coriolis force, which
may oppose and even dominate inertial centrifugation. Making use of the method of
averaging and simplifying the equation of motion for the particle, Xu & Nadim (2016)
predict that OCC always occurs if 3

√
3ν < ωa2√2%+ 1. In the following we will

demonstrate that the dynamics of a spherical particle in an harmonically oscillating
vortex is far more complex than that, and represents a dynamical system with several
interesting features. Moreover, we stress that the threshold predicted by Xu & Nadim
(2016) is valid only under the assumption that ṙ/r is negligible, which is not the case
for large Ω and ω. The theoretical interest towards these regimes motivates the choice
of our parameters.

In this first part of our study, the Basset-history force is neglected. By integration
of the particle trajectory for t∈ [0, 5], we make sure that the sphere has overcome the
initial transient phase and finally converged towards the attractor or diverged away
from the repellor. Figure 3 depicts the radial coordinate for four particle trajectories
of a sphere with % = 4 when the vortex pulsation frequencies are ω = 10, 20, 50
and 100. Since the particle is heavier than the fluid, it would be centrifuged away
from the vortex core if the vortex were steady. As predicted by Xu & Nadim (2016),
the OCC occurs already for ω= 10. Surprisingly, the radial coordinate of the particle
trajectory r(t) for ω = 20 shows that OCC is a reversible mechanism, in contrast to
what was suggested by Xu & Nadim (2016). The change in character of the critical
point at the vortex centre is further observed passing from ω= 20 (the vortex core is a
repellor) to ω= 50 (the vortex core turns into an attractor) to ω= 100 (the vortex core
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FIGURE 3. Radial coordinate of a particle trajectory for Ω = 103, %= 4, St= 1 and
ω ∈ {10, 20, 50, 100}. The trajectories are integrated for t= 5.

turns back into a repellor). The radial coordinate of the particle trajectory for ω= 20
and ω = 100 is r� 1, and clearly shows the divergence trend due to centrifugation.
However, we remark that in the presence of actual confinement effects (for example,
a particle suspended in a insert of a bio-disk), the particle would be settling on the
outer wall of the cavity/disk, balancing centrifugal forces with the boundary repulsion
due to the presence of the cavity walls.

The investigation of the parameter space is conducted by screening the frequency
range with 1ω = 0.1 and the density-ratio range with 1% = 0.1, for a total of
approximately 2× 105 simulations. The outcome of that numerical study is depicted in
figure 4. The grey regions denote parameters for which the particle is asymptotically
attracted towards the vortex core, whereas the white areas indicate an asymptotic
centrifugal motion for the particle. The dashed-dotted line refers to %= 1, for which
a particle is neither attracted nor repelled by the vortex core, and represents a critical
line for the parameter space, since light particles (%< 1) behave the opposite of heavy
particles (% > 1). The solid lines, progressively labelled on the right side of panel
(a), denote couples (ω, %) for which centrifugal and centripetal forces are balanced
on average and non-trivial limit cycles are formed. The shape of the attractors along
each of these curves is qualitatively identical; while switching from a curve to
another, the particle limit cycle experience a qualitative change. Six examples are
reported in figure 4(b) for % = 8 (cases A–F), for which very intricate cat’s eye,
period-2 and period-4 patterns are observed. The creation of such new attractors
for the particle trajectory goes far beyond the notion of OCC introduced by Xu
& Nadim (2016) and helps to explain the complex dynamics observed in figure 3.
Let us consider, for instance, the case ω = 10, for which four different time scales
are observed. The longest (asymptotic, t→∞) and the shortest (t = O(0.01)) time
scale are common to all the cases depicted in figure 3. However, for ω = 10, a
third time scale is identified between two local spikes (t = O(0.3)) and a forth time
scale characterizes the pattern formed by a batch of spikes (t = O(1)). This peculiar
centripetal trend can be understood by considering that the particle phase space for
Ω = 103, St = 1, % = 4 and ω = 10 is influenced by the limit cycles which are
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FIGURE 4. (a) Parameter space for St = 1, Ω = 103 spanned by ω ∈ [10, 200] and
% ∈ [0.1, 10], in which the converging (grey region) and diverging (white region) particle
trajectories are identified, together with six of the non-trivial particle attractors (solid lines)
which define the boundaries between centrifugal and centripetal motion of the particles. (b)
Particle attractors for six cases labelled A–F in panel (a) at %= 8.

going to be created between ω = 10 and ω = 20. The qualitatively different patterns
observed for ω ∈ {10, 20, 50, 100} can then be understood by considering that the
limit cycles leaving their footprint on the particle dynamics are qualitatively very
different (see cases A to F in figure 4b) since they belong to different boundary lines
between centripetal and centrifugal asymptotic motions (see solid lines in figure 4a).
Proposing a nomenclature different from OCC seems therefore appropriate, in order
to highlight the complexity and reversibility of our phenomenon. Hence, we will
rather term it oscillatory switching centrifugation (OSC), with the boundaries between
centrifugal and centripetal motion being the centrifugal switching boundaries (CSB,
black lines in figure 4a).

An interesting feature of OSC highlighted by figure 4(a) is the self-similarity of the
centrifugal switching boundaries. The first 25 CSB are identified and shown in figure 4
as solid lines, and they all seem to belong to the same family of curves. Another
factor in support of their self-similarity is reported in figure 5, where the switching
frequencies ωS along these 25 CSB (enumerated by the index k) are reported for six
density ratios: %= 10, 8, 6, 4, 2 and 0.5.

All the computations reported so far are obtained neglecting the Basset-history force.
Figure 6 shows how the parameter space changes for St= 1, Ω = 103, ω ∈ [10, 200]
and % ∈ (1, 10] when the history force is included in the particle trajectory. Once
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FIGURE 5. Switching frequencies ωS along the first 25 CSB (enumerated by k) for
Ω = 103, St= 1 and %= 10 (×), 8 (E), 6 (@), 4 (6), 2 (A) and 0.5 (d).

again, asymptotically speaking, the grey regions denote centripetal motion, while
the white areas refer to centrifugal motion. A direct comparison between figures 4
and 6 is offered by the dotted lines, which depict the first ten CSB (k ∈ [1, 10]) of
figure 4. The Basset-history force has a relevant impact on the asymptotic trend of
the particle trajectory only for particles slightly density-mismatched and for relatively
low oscillation frequencies. For % > 4 and ω > 30 the differences between figures 4
and 6 can hardly be observed.

5. Discussion and conclusion

The motion of a small rigid spherical particle in a pulsating vortex has been
studied by means of numerical simulations based on the Maxey–Riley equation. Due
to Coriolis forces, the ordinary centrifugation observed in steady vortices can be
reverted if the vortex is pulsating at high frequency, leading to a centripetal motion
for heavy particles and a centrifugal motion for light particles. This phenomenon has
been called OCC by Xu & Nadim (2016).

In our study we discover that changing the pulsation frequency of the vortex,
even the OCC can be reverted, giving rise to regions, in parameter space, where
ordinary centrifugation occurs, and other regions where counter-centrifugation occurs.
We termed this phenomenon OSC and demonstrated it for the first time in all its
complexity, making use of the simplest model flow.

Despite the simple background flow employed, we speculate OSC has a remarkable
relevance in far more complex systems. Let us consider, for instance, the segregation
of particles heavier than the fluid. Making use of ordinary finite centrifuges, it is
not possible to asymptotically separate heavy particles with different densities. On
the other hand, based on figure 6, one can find a frequency, for instance ω = 100,
which attracts (%= 4)-particles to the vortex core and centrifuges out (%= 6)-particles.
Another application of our study considers the protocols employed by biologists in
microcentrifuges for breaking down the membrane of a cell (lysis). Other relevant
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FIGURE 6. Parameter space for St= 1, Ω = 103 spanned by ω ∈ [10, 200] and % ∈ (1, 10]
in which the converging (grey region) and diverging (white region) particle trajectories are
identified, including the effect of the Basset-history force. The dotted lines denote the first
ten CSB computed, neglecting the history force.

applications involve lab-on-a-chip devices, where microfluidic centrifugation is
frequently involved.

Finally, because of the following interesting features, we expect OSC to have
an impact on theoretical and experimental studies on particle dynamics: (i) the
Hamiltonian system represented by the two-dimensional fluid element dynamics (2.4)
is described by a relatively simple model which can be experimentally realized
in a controlled environment; (ii) the absence of chaotic fluid pathlines simplifies
the theoretical analysis; (iii) the dynamics of particles immersed in this flow show
self-similar characters whose full understanding would benefit from a renormalization
theory analysis; and (iv) several families of non-trivial particle limit cycles occur,
whose footprint characterizes the particle dynamics. Hence, we speculate that OSC
offers an interesting study case for the dynamical systems community and a novel
framework for challenging (Xu & Nadim 2016) experimental investigations.
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