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This study examines the long-wavelength instabilities of an inviscid parallel
time-dependent current on the beta-plane. The basic flow is represented by the
Kolmogorov pattern, the amplitude of which is modulated in time. Particular attention
is given to the regime in which the corresponding steady flows are stable according to
the Rayleigh—Kuo criterion. It is shown that the presence of a fluctuating component,
regardless of how weak it may be, always renders the basic current linearly unstable.
The destabilization is attributed to the resonant forcing of large-scale Rossby waves. The
analysis is based on the asymptotic multiscale model, which is validated by numerical
simulations. Since most geophysical flows are inherently time-dependent, the associated
shear instabilities could represent a significant and ubiquitous source of barotropic
turbulence.
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1. Introduction

Stability analyses of parallel laminar flows represent one of the oldest and most developed
components of fundamental fluid mechanics. In the geophysical context, instabilities
caused by lateral shears, commonly known as barotropic instabilities, strongly influence
the circulation of tropical oceans, dynamics of the upper atmosphere and flow patterns on
giant gas planets (e.g. Pedlosky 1987; Vallis 2006; Read et al. 2020). No attempt is made
to review the entire field and the following discussion is focused on a subset of results that
pertain directly to the present investigation.

The first physical insights into the instability of two-dimensional inviscid flows date
back to the celebrated inflection-point theorem (Rayleigh 1880). This theorem states that
parallel currents can be unstable only in the presence of an extremum of basic vorticity in
the flow interior. The original formulation did not incorporate planetary rotation, which
is known to affect the large-scale dynamics of most geophysical systems. Fortunately,
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the Rayleigh theorem can be readily generalized for rotating configurations (Kuo 1949).
The corresponding necessary instability condition is the existence of an extremum of
the absolute vorticity Q* — the asterisks hereafter denote dimensional variables — which
includes both relative and planetary components. Thus, a steady zonal flow with basic
velocity u* can be unstable only if the Rayleigh—Kuo condition

0Q* . 0%

i = o =0 (1.1)

is met somewhere in the flow interior (y* being the meridional coordinate). Equation (1.1)
implies that the flow stability could be controlled by the meridional gradient of planetary
vorticity, 8* = 9f™/dy*, commonly referred to as the beta-effect.

The Rayleigh—Kuo theorem represents one of the cornerstones of the classical stability
theory. Yet, one can question whether the steady-state model of the basic flow, as natural
and conventional as it may seem, captures all the essential dynamics. This concern
becomes particularly relevant for oceanographic applications, in which most currents are
inherently time-dependent. One of many examples is the system of alternating eastward
and westward flows in tropical oceans (e.g. Godfrey et al. 2001; Johnson et al. 2002;
Cravatte et al. 2012, 2017). This system exhibits significant variability on a wide range
of temporal scales, which is driven by the changes in the wind stress, seasonal cycle
and intrinsic time dependence associated with large-scale equatorial waves (e.g. Philander
et al. 1986; Behera et al. 2013).

To explore the potential link between the unsteadiness of geophysical flows and
their stability, we consider the canonical harmonic velocity pattern known as the
Kolmogorov model (Meshalkin & Sinai 1961). The Kolmogorov framework affords
attractive opportunities to develop explicit, dynamically transparent solutions representing
the destabilization of laminar flows and transition to turbulence (e.g. Manfroi &
Young 1999, 2002; Balmforth & Young 2002, 2005; Radko 2011a, 2014). A series of
investigations (e.g. Sivashinsky 1985; Frisch et al. 1996) focused on marginally unstable
regimes characterized by low Reynolds numbers, which afforded the development of
analytical weakly nonlinear instability models. However, most large-scale geophysical
applications are better represented by weakly dissipative or inviscid Kolmogorov-based
solutions (e.g. Frenkel 1991; Borue & Orszag 1996; Lucas & Kerswell 2014; Lucas
et al. 2017). This avenue of inquiry is pursued in our study as well. We develop an
inviscid asymptotic model to examine linear properties of the barotropic time-dependent
shear instabilities (BTSI hereafter). The nonlinear dynamics of BTSI is studied using
high-resolution direct numerical simulations.

The present investigation is based on a particular type of the Kolmogorov model in
which the amplitude of the basic velocity varies in time:

i = (A* 4+ B* cos(@**)) sin(I*y*). (1.2)

Coefficients A* and B* in (1.2) represent the magnitudes of steady and fluctuating
components, respectively. Our principal objective is the identification of instabilities in
the regime where the basic current is stable according to the Rayleigh—Kuo criterion (1.1)
throughout the entire period of oscillation,

2(|A*| + |B*)) < B*. (1.3)

The proposed model can be viewed as a generalization of the stability analyses of steady
meridional Kolmogorov flows on the barotropic beta-plane (Manfroi & Young 1999, 2002)
and oscillating basic states by Frenkel (1991) and Zhang & Frenkel (1998). However, it
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also reveals a fundamentally different class of instabilities that emerge when the time
dependence of the basic state and the beta-effect are considered concurrently. The origin
of these instabilities is attributed to the resonant forcing of free Rossby waves by the
oscillating basic state. The analogous dynamics has also been identified in studies of the
inertial destabilization of zonal time-dependent equatorial flows (d’Orgeville & Hua 2005;
Natarov et al. 2008). Another relevant example is the instability of time-dependent vertical
shear flows in density-stratified fluids (Winters 2008; Radko 2019). In such systems, shears
that are stable according to the Richardson number criterion (Richardson 1920; Howard
1961; Miles 1961) become unconditionally unstable due to the resonant forcing of internal
gravity waves.

It should be emphasized that BTSI in our model are caused by the variation in the
strength of the basic current. In this regard, they should be clearly distinguished from
the instabilities of propagating monochromatic waves (Lorenz 1972; Gill 1974; Hua et al.
2008). Such structures can be rendered steady by using the coordinate systems moving
with their zonal speeds. In contrast, the basic state (1.2) is fundamentally time-dependent
and its temporal variability cannot be eliminated by a Galilean shift of the frame of
reference. The irreducible time dependence of (1.2) is the singular reason for the instability
of this flow pattern in the Rayleigh-stable parameter regime. The Rayleigh—Kuo theorem
applies to steady flows, and this caveat proved to be critical. Nevertheless, some parallels
could be drawn between the instabilities of plane waves and BTSI. For instance, Gill
(1974) demonstrated that the instabilities of Rossby waves could be attributed to resonantly
interacting triads — the mechanism that is also at work in the present model.

The analytical tractability in our study is achieved by considering the long-wavelength
limit, in which the dominant spatial and temporal scales of perturbations greatly exceed
those of the basic state. This regime is conveniently treated using techniques of the
multiscale homogenization theory, a broad and active research area reviewed, for instance,
by Mei & Vernescu (2010). The multiscale models typically assume simple small-scale
patterns and explore their interaction with larger-scale structures using two sets of spatial
and temporal variables (e.g. Gama et al. 1994; Novikov & Papanicolau 2001; Radko
2011b,c). The objective of such models is the derivation of explicit equations describing
the evolution of large-scale fields. This goal is usually achieved by expanding governing
equations in powers of a small parameter (g) representing the ratio of small and large
spatial scales. In our case, the multiscale model reveals that the basic state (1.2) is unstable
for any finite amplitude (B* # 0) of the time-dependent component.

The paper is organized as follows. The model configuration and the multiscale technique
are described in §2. Section 3 presents the detailed analysis of the solutions obtained
for a purely oscillatory basic state (A* = 0), which are subsequently generalized (§4)
to include the finite steady component (A* #0). Section 5 presents a series of direct
numerical simulations that illustrate the nonlinear evolution of instabilities. The results
are summarized, and conclusions are drawn, in § 6.

2. Formulation
The starting point of this investigation is the forced barotropic vorticity equation
9 v2 v * B *
J(*, V¥ + B*—— = F*, 2.1

o W VY @)
where ¢* is the streamfunction, associated with the velocity field (u*,v*) =
(—oy™/ay*, 9y*/0x™), and J is the Jacobian. The term F* represents external forcing,
which maintains the time-dependent basic state (1.2). To reduce the number of controlling
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parameters, the system is non-dimensionalized using (7*)~! as the unit of length, (@*)~! as
the unit of time and ®*(7*) 2 as the unit of streamfunction. After non-dimensionalization,
the vorticity equation reduces to

v? d
Vo vy + 8 = F, 2.2)
at dx
where B = p*/@*I*, and the basic state becomes
u = (A4 Bcos(t)) sin(y), (2.3)

where (4, B) = (I*/®*)(A*, B¥). The stability analysis of this system commences by
linearizing (2.2) about the basic state (2.3) to obtain

2.7 T 2.7 / 2.7 81///
oV Y ot +J(, VY) +J (W, V l/f)+,3¥=0, 2.4)
where

Y = (A 4+ Bcos(t)) cos(y). (2.5)

To investigate the interaction of pattern (2.5) with much larger scales of motion
(Lyx, Ly > 1), we introduce a small parameter

£=—, (2.6)

which represents the ratio of the dominant meridional wavelengths of the large-scale
perturbation and the basic state. This parameter is used to define the new set of spatial
and temporal scales (X, Y, T), which are related to the original variables as follows:

X=¢&% VY= ey, T= &2t. (2.7a—c)

While the asymptotic ordering of the large-scale meridional variable (Y) follows directly
from the definition of ¢ in (2.6), the identification of relevant large zonal scales is less
trivial. We anticipate that the periodic variation in the basic state, which occurs on the
O(1) time scale, could resonate with free Rossby waves and induce their amplification.
The dispersion relation of large-scale barotropic Rossby waves is

Bk
0= g7 2.8)

where o is the frequency and (k, /) are the wavenumbers. Since by definition [ = ¢, O(1)
frequencies are realized for k ~ &2, which suggests scaling (2.7a) of the large-scale zonal
variable X. The time scale T represents the relatively slow growth of large-scale patterns.

In the present configuration, we expect to find x-invariant solutions. This assumption can
be rationalized by recalling that the basic state (2.5) does not vary in the zonal direction.
Hence, its interaction with large-scale patterns is expected to generate secondary patterns
that are also devoid of small-scale variability in x, and solutions of the governing equation
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(2.4) are sought in five-dimensional space as
v =y’ X,y Y. 1,T). (2.9)
Thus, the derivatives in the governing equation (2.4) are replaced using
0 2 0 0 0 0 0 0 0 5 0
— =& — > —+&—, — > —+E¢
ox X’ ay ay Y ot ot aT’

and both sets of variables are treated as independent variables. As a result, (2.10a—c)
transforms (2.4) into

(2.10a—c)

/

dg a¢’
e+ (W, ¢ + e (U &) + e (U, )
20y

0X
where Jx, and Jxy are the Jacobians in (X,y) and (X,Y), ¢ = V2 and ¢’ = V2’ are
the basic and perturbation vorticities and

+ &3 Jxy (Y, &) + Be =0, (2.11)

V2_482+82+28 82+282
T axz T T T ayar T ar

2.12)

To explore the weak interaction between large-scale patterns and the basic flow, we
consider the evolution of the plane wave

Yy = Uwexp{i(KX + Y — wot — wpT)}, (2.13)

where K = ke™? = O(1) is the rescaled large-scale zonal wavenumber, wg is the
zero-order frequency and w; is the correction induced by the weak interaction with
the basic state (2.5). The imaginary component of the perturbation frequency measures
the wave growth rate,

1= X Im(ws). (2.14)

In the absence of the interaction with the basic state, the plane wave (2.13) would oscillate
at the frequency
BK
-, 2.15
K?e% + 1 219

and the full-period resonance (w = 1) for ¢ — 0 is expected to occur at K ~ —p~ .
However, to properly account for the wave interaction with the basic state, it becomes
critical to explore a continuous range of values in the vicinity of the leading-order resonant
wavenumber

K =—p7'1+8&%, (2.16)

where § is an O(1) quantity. The leading-order frequency of the plane wave is assumed to
match that of the basic state,

wy = 1. (2.17)

Another step that proved to be instrumental in reducing the number of controlling
parameters is the renormalization of the basic state amplitude using

A=A,B, B=B,p. (2.18a,b)
922 Al1-5
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The solution of the governing equations is now sought in terms of a power series in ¢ < 1,

U =YXy, Y., T) + ey (X, 0, Yo, T) + 290 (X, y, Y 6, T) + - - (2.19)

We substitute (2.19) into (2.11), collect terms of the same order in ¢ and sequentially solve
the set of balances realized at each level in the expansion until an explicit expression for
the growth rate (2.14) is obtained. The necessary solvability condition for this system is
that the small-scale average of (2.11) is zero. This requirement applies to all orders in
the expansion. However, as will be seen shortly, it is trivially satisfied at orders from the
zeroth through the third. At the fourth order, however, the averaging over (y, t) yields the
evolutionary equation for the large-scale component, which makes it possible to evaluate
the growth rates of unstable modes. This procedure is illustrated first using the relatively
simple case of a purely oscillatory basic state (A = 0) and then generalized (§ 4) to include
a finite steady component (A # 0).

3. Oscillatory basic state (4 = 0)
3.1. Multiscale expansion

The expansion opens with the large-scale plane wave (2.13), which is included in the
leading-order component . It automatically satisfies the O(1) and O(e) balances of
the governing equation (2.11). However, we note that these balances are also satisfied by
adding to ¥, any slowly varying function gp of the form

0 = ¥wCo cos(y)expli(KX + Y — wrT)). (3.1)
Thus, we seek the solution for the O(1) component of v/ by assuming

Yo = Yw + o, (3.2)

with the expectation that the coefficient Cp will be determined at a higher-order level in
the expansion. Similarly, for the O(¢) component of ¥" we consider the function

Y1 = U Cy sin(y)expli(KX + Y — o 7)), (3.3)

and its inclusion also satisfies the O(¢g) balance.
At the second order, we consider the solution of the form

Y2 = Y (CY cos(r) + C sin(2)) cos( ). (3.4)

The O(&?) balance is satisfied as long as

B,

1
Co= = 3.5
0= 3T o (3.5)
and
B
) = 5 - ic. (3.6)

The O(e?) balance is characterized by the appearance of terms that are proportional to
cos(21), sin(2t), cos(2y) and sin(2y). This feature demands that we seek the third-order
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component by assuming a more general structure
Y3 = Y, sin(y)(CY” cos(t) + CY sin(1)) + ¥, sin(2y) (CS cos(21)
+ % sin2r) 4+ ). (3.7)

The O(e?) balance is satisfied as long as

1B,w»

| = 1on®2 (3.8)
(w2 — 1)?
and
'BZ B2 IB2
O —i@B, — Yy, 2 — 15, L C® = Pn ) ___ Pn
3y =BG G =T S TR ey & T 160 —wy
(3.9a-d)

The sought-after expression for the growth rate is obtained as a solvability condition, by
averaging the O(e%) balance in small-scale variables ( v, 1):

B>(3B2wy 4 88w5 — 8w3 + B2 — 168wy + 16w5 + 88 — 8wn) = 8(wy — 1), (3.10)

For given g and B,, (3.10) implicitly determines w,(8). Thus, the identification of
the most rapidly amplifying mode requires maximizing Im(w;) as a function of §.
This is accomplished by separating the complex frequency w; into real and imaginary
components:

w2 (8) = a(d) +1b(8), (3.11)

where a and b are real quantities. We also isolate real and imaginary components of (3.10),
resulting in

(—8 + (85 + 16)H)a(8)? + (248%b(5)* + 16 + (3B — 165 — 8)p%)a(s) a1
— 88%a(8)> + (8 + (—85 — 16)82)b(8)* — 8 + (B2 +88)B2 =0 '
and

(=16 + (168 + 32)B)a(8) — 24p%a(8)*> + 88°b(8)> + 16 + (3B> — 165 — 8)° = 0.
(3.13)

To determine the maximum of b(§), we differentiate (3.12) and (3.13) with respect to § and
simplify the result by insisting that (3/96)b(5) = 0, which yields

882%a> — 24B%a*c + 2(—8 + (85 + 16)%)ac — 168%a

(3.14)
+ (2482b* + 16 + (3B% — 165 — 8)B%)c — 88%h* + 88> =0
and
168%a — 48B%ac + (—16 + (168 + 32)%)c — 168% = 0, (3.15)
where ¢ = (3/38)a(s).
922 A11-7
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Figure 1. The rescaled growth rate, b, is plotted as a function of the parameter B,,, which controls the strength
of the time-dependent component of the basic state, for the oscillatory model (A = 0).

The system of algebraic equations (3.12)—(3.15) can now be solved for any given (8, B,).
First, we solve (3.15) for 6 to get

_ B*Bac—a—2c+ 1) +c
= e

and then we use (3.16) to eliminate § in (3.12)—(3.14) in favour of (a, b, c¢), obtaining

S , (3.16)

(3B% 4 24a* 4 8b* — 48a + 24)c — 16(a — 1)* = 0,
(16c — 8)a® — (48¢ — 24)a* + (3B2c + 8b? + 48¢ — 24)a + B2c — 8b* — 16¢ + 8 = 0,

(3B2 + 24a® + 24b* — 48a + 24)c — 8a*> — 8b* + 16a — 8 = 0.
(3.17)

The elimination of § produces an unexpected simplification. Remarkably, system (3.17)
is independent of 8, which implies that the solution is fully determined by the normalized
amplitude of the basic flow B,. The resulting relation b(B;) is shown in figure 1. Since
the growth rate equations (3.17) are invariant with respect to the change in the sign of B,
the results are presented only for B, > 0. Figure 1 reveals the monotonic increase in the
rescaled growth rate (b) with the normalized amplitude |B,|. An even more significant
finding is the unconditional instability (b > 0) of time-dependent oscillating zonal flows.
This instability is realized even when the system is stable according to the Rayleigh—Kuo
criterion (1.3), which in the present configuration (A = 0) reduces to |B,| < 1.

The foregoing multiscale analysis indicates that the instability of time-dependent flows
can be attributed to resonant triad interaction. The primary plane wave operating on
frequencies that are close to that of the basic state (i.e. oxcos(kx + Iy —t — &2ant))
interacts with the basic state cos(y) cos(?) and produces, among other harmonics, the
secondary mode proportional to sin(kx + Iy +y — e2wyf). This secondary mode itself
interacts with the basic state and produces a component proportional to the primary mode.
As a result, the primary mode amplifies. The multiscale model formalizes this interaction
by identifying balances that arise at each order in ¢ and thereby explaining the chain of
events leading to the instability.

922 Al1-8
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3.2. Validation

At this stage, the multiscale analysis is complete and we can revert to the original variables
using (2.6), (2.7a—c), (2.14) and (2.16), which yields the maximal growth rate

472
/11in ms — Fb(Bn) (3'18)
y
and a corresponding zonal wavenumber of
472 472
kinax = _,3_L§ 1+ L—§8(,3, B, ]. (3.19)

To assess the accuracy of the foregoing asymptotic (¢ — 0) model (3.18), we now attempt
to evaluate the growth rate numerically. This objective is accomplished by employing the
zonally truncated model, in which

¥’ = Pe(y) cos(kx) + Prs(y) sin(kx). (3.20)

We substitute (3.20) into the linearized vorticity equation (2.4) and isolate terms
proportional to cos(kx) and sin(kx), resulting in

3%, .

—& kY N
9 32y2 |2 (‘”) , (3.21)
ot d WS _ kz]& ws

0y? §

where L is a linear differential operator with time-dependent coefficients. The truncated
system (3.21) was integrated in time using the Fourier spectral method (e.g. Radko 2014),
which assumes periodic boundary conditions for (tﬁc, 1%) aty = 0, I'y and is based on the
fourth-order Runge—Kutta time-stepping algorithm. In each of the following simulations,
the extent of the computational interval (/) is assigned the value of the y-wavelength
of the unstable mode, L, = 27 /¢. We discretize the system using Ny = 128(1y/27) grid

points in y and initiate simulations by the random distribution of (Ve ¥y). The growth rate
is evaluated using the temporal record of the mean perturbation kinetic energy

e(t) = VY[ 1y, (3.22)

where [- - - ], denotes the spatial average. A representative calculation of this type is shown
in figure 2(a), which was performed for B, =0.5, 8 =1, =02, I, =107 and k =
—0.0434 — the latter was determined using (3.19). After the initial adjustment period, the
perturbation starts to grow in a nearly exponential manner. The best linear fit to %ln(e)

over the second half of the simulation (10° < r < 2 x 10%) yields the numerical estimate
of the growth rate, A, x = 1.29 x 1072

A series of calculations analogous to those in figure 2(a) was performed for Iy = L, =
2nn, where n = 3,4, ..., 10. The resulting values of A;;, ; are plotted as a function of
& =2m/Ly = 1/n in logarithmic coordinates in figure 2(b), along with the theoretical
prediction (3.18). These calculations indicate that as e decreases, the numerical and
asymptotic results systematically converge. For ¢ = 0.1, these predictions differ by a mere
4 %. Such agreement between the numerics and theory lends credence to the multiscale
instability model.
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Figure 2. (a) The temporal record of % In(e) obtained by the numerical integration of the truncated system
(3.21) for B, = 0.5, B =1, Ly, = 107 and |k| = 0.0434. The numerical estimate of the growth rate (d,;;n =

1.29 x 1072) is determined from the best linear fit to this record over the second half of the integration interval.
(b) The numerical estimates of the growth rate are plotted on the logarithmic scale as a function of ¢ = 2m/L,
for B = 1 (plus signs) and for B = 10 (circles). The asymptotic prediction is indicated by the solid line.

An interesting property of BTSI revealed by the multiscale model is that the growth rate
is uniquely determined by B,,. This surprising finding prompts the question of whether such
invariance with respect to g is an exclusive feature of the long-wavelength approximation
used in the multiscale theory. To address this possibility, a set of numerical calculations
was performed with § = 10, which are also shown in figure 2(b). As expected, the growth
rates for the different 8 are close for small ¢, as both series approach the same asymptotic
long-wavelength pattern. However, they visibly diverge for O(1) wavenumbers.

4. Effects of a finite steady component (4 #0)

The foregoing multiscale model is now generalized by considering a basic state which
contains a finite steady component. While this extension represents a significant step
towards realism, particularly in the context of geophysical applications (§ 1), it also leads
to substantial technical difficulties. The development of the multiscale theory generally
follows that in § 3. However, in the special case of A =0, a consistent asymptotic
solution was obtained which involves only the two lowest harmonics in y. The principal
complication in the finite-A case is caused by the excitation of an infinite series of Fourier
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components in y. Therefore, the earlier theory was modified using the Galerkin projection
method, in which the solution for v/’ is constructed using the N lowest harmonics in y. To
find an appropriate solution, we insist that the substitution of the truncated series into the
governing equation not project onto these low harmonics in y. The increase in N makes it
possible to determine solutions with any desired accuracy.

While the leading-order streamfunction component is still given by (3.1) and (3.2), the
first-order solution takes the form of

N
Y1 =1h Y C" sin(my)exp{i(KX + Y — wnT)}. (4.1)

m=1

The O(s2) and O(&3) balances of the governing equation demand that the second- and
third-order components of the streamfunction be represented by the following patterns:

Y2 = Y (C cos(t) + C sin(r) + C) cos(y) (4.2)
and

Y3 = U (CY cos(r) + C sin(1))
N
+ e Y sin(my) (CY™ cos2r) + €YV sin@r) + €M) (4.3)

m=1

The coefficients C in (4.1)-(4.3) are determined by the Galerkin projection, and the
solvability condition at O(g*) yields the growth rate. The growth rate calculations have
been performed for N =2,...,5. Offhand, one would expect these solutions to be
accurate only for a large number of harmonics. Fortunately, our model is characterized
by the remarkably rapid convergence of the solutions with increasing N. For instance,
the relative difference between the growth rates evaluated for (A,, By, 8) = (0.5,0.25, 1)
using N =3 and N =4 is 3.54 x 107>. The difference between the N =4 and N =5
models is only 1.47 x 107>, Thus, for most intents and purposes, it is safe to assume that
the three-mode approximation fully represents the system dynamics. The coefficients of
the streamfunction components in (4.1)—(4.3) and the resulting growth rate equation for
N = 3 are listed in Appendix A.

As previously (§3), we find that the rescaled maximal growth rate (b) is uniquely
determined by the normalized magnitude of the basic flow, measured by A,, and B,,. The
resulting relation b = b(A,, B,,) is shown in figure 3. Since the growth rate is invariant
with respect to the change in sign of A, and By, the results are presented only for A, > 0
and B,, > 0 without loss of generality. While growth rate pattern in figure 3 was obtained
for N =3, it is visually indistinguishable from its counterparts for N =4 and N = 5.
A notable feature of this calculation is the unconditional linear instability of the system.
Particularly intriguing is the instability in the regime where the flow is stable according
to the Rayleigh—Kuo criterion (1.3). When expressed in terms of A,, and By, this criterion
reduces to

|Apl + |By] < 1. 4.4)

The corresponding region in the (A,, B,) parameter space is located below the dashed
line in figure 3. Given the relatively high growth rates in this region, we anticipate
that time-dependent Rayleigh-stable flows exhibit vigorous instability and transition to
turbulence at fully nonlinear stages. This expectation will be confirmed shortly (§5) by
direct numerical simulations.
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n

Figure 3. The rescaled growth rate, b, is plotted as a function of the parameters A,, and B,,, which control the
strength of the basic current. The region below the dashed line represents the part of parameter space where
the flow is stable according to the Rayleigh—Kuo criterion.

At this point, we revert to the original (small-scale) variables. The growth rate takes the

form of
2

5 47
Alin ms = €°b(Ay, By) = Fb(An, B,), (4.5)
y

and the corresponding zonal wavenumber is

19 5 4 42 4?
ko = =712 (1 +£%5(An. By ) = =7 (14 5640 B ) ). (46)
y y
The asymptotic result (4.5) has been validated by the truncated numerical model (3.21).
Figure 4 presents a series of numerical integrations for (A,, B, 8) = (0.5, 0.25, 1) and
various values of Ly, revealing the convergence of the numerical and asymptotic estimates
of A with decreasing & = 27/Ly.

Another interesting property of BTSI is the contrast between the strong dependence of
the rescaled growth rates (b) on B, and their very weak dependence on A,,. This feature
makes it possible to formulate simple empirical relations for the growth rate as a function
of B, only. For instance, the pattern in figure 3 can be approximated by the power-law
relation

bs = DB, D=05768, a=0.6137, (4.7a—c)

with a relative root-mean-square error of only 5.76 %. For utilitarian purposes, it might
prove useful to express this result in terms of dimensional quantities as

4 2 =% B>l<_*2 *
2= “_:”21)( ﬁl* ) . (4.8)
w7

This empirical relation illustrates that the growth rate increases with the increasing
frequency of oscillations (®*) and with decreasing *. The latter observation may seem
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0.02:

0.017

0.10 0.15 0.20 0.25 0.30
£
Figure 4. The growth rates are determined by the numerical integration of the truncated system (3.21)

for (A, By, B) = (0.5,0.25, 1). These numerical estimates, indicated by the plus signs, are plotted on the
logarithmic scale as a function of ¢ = 27/L, along with the corresponding asymptotic prediction (solid line).

counterintuitive, considering that the instability mechanism is the resonant forcing of the
Rossby waves that requires the beta-effect. Such a conundrum indicates that the multiscale
model in its present form, which from the outset assumes g = O(1), cannot properly
represent the singular limit of 8§ — 0. This view is supported by the analysis of the
non-rotating (8 = 0) case, where the inviscid Kolmogorov flow with A = 0 is always
stable (Frenkel 1991).

5. Direct numerical simulations

The foregoing linear analysis reveals the ubiquity of non-traditional barotropic instabilities
of time-dependent shear flows, motivating efforts to explore their nonlinear development.
This objective is addressed by performing a series of numerical simulations of the
governing equation (2.2) using the Fourier-based spectral model (e.g. Sutyrin & Radko
2019). The model is de-aliased using the zero-padding algorithm and employs the
fourth-order Runge—Kutta time-stepping scheme. To control the numerical stability of the
code, (2.2) is augmented by the frictional term with a minimal viscosity of v = 2 x 1074,
The result is then expressed in terms of the perturbation streamfunction as follows:
V3 Y’
ax

_ 4 7
o Al (5.1)

+IW V) + T, V) I, VYY) + B

The integrations of (5.1) were performed on a doubly periodic domain of size
(I'x, Iy) = (247, 127), which was resolved by (Ny, Ny) = (4096, 2048) Fourier modes.
The simulations were initialized by a small-amplitude random ’(x, y) distribution. A
typical experiment designed in this manner is shown in figures 5 and 6, where we present
the perturbation streamfunction (v') and vorticity (¢’ = V2y') fields, respectively. The
governing parameters for this system (A4, = 0.5, B, = 0.25) place it in the category
of Rayleigh-stable flows, and therefore the amplification of perturbations is attributed
exclusively to the BTSI dynamics.

The evolution of the flow field in this simulation is representative of most
laminar-turbulent transition problems. After the adjustment period (r < 200), unstable
modes emerge from the random initial perturbation field and start to amplify (figures Sa
and 6a). These modes nonlinearly equilibrate by ¢ ~ 500 (figures 5b and 6b), and their
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Figure 5. Direct numerical integrations of (5.1). The instantaneous perturbation streamfunction (v/') fields
are shown at various times in (a—c). The experimental parameters are A, = 0.5, B, = 0.25, 8 =1, Iy = 24m,
Iy = 127, Ny = 4096 and Ny = 2048.

subsequent evolution is characterized by the development of chaotic and disorganized
patterns. Finally, after ¢ ~ 700, the flow field starts to exhibit a wide range of spatial scales
(figures 5c¢ and 6¢), which is an expected manifestation of fully developed turbulence. The
streamfunction field (figure 5¢) is dominated by large-scale structures, the lateral extent of
which is comparable to the size of the computational domain. However, the corresponding
vorticity field (figure 6¢) reveals the presence of small-scale patterns directly controlled
by explicit friction.

Figure 7 illustrates the temporal variability of the spatially averaged perturbation energy
(3.22) and enstrophy

r =145y, (5.2)
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Figure 6. The same as figure 5 but for the vorticity perturbation ¢’ = V21'.

diagnosed from four simulations with various (A,, By,). The experiments presented were
performed with A, = 0.5, B, = 0.25 (EXP1); A, = 0.25, B, = 0.25 (EXP2); A, =0,
B, = 0.5 (EXP3);and A,, = 0.25, B,, = 0.5 (EXP4). The time series of energy (figure 7a)
and enstrophy (figure 7b) are characterized by nearly exponential initial growth and
subsequent equilibration at finite statistically steady levels. The system behaviour is
sensitive to the values of B,. The growth rates and the equilibrium levels of e and r
substantially increase when the magnitude of the time-dependent component is raised from
B, = 0.25 (EXP1 and EXP2) to B, = 0.5 (EXP3 and EXP4).

On the other hand, the influence of the steady component (A,) on the system dynamics
is rather limited. The time series of the energy and enstrophy generated for the same
B, but different values of A, are generally similar. Such a strong (weak) dependence of
fully nonlinear solutions in figure 7 on B, (A,) is consistent with the properties of linear
long-wavelength solutions in § 4 (e.g. figure 3).
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Figure 7. The temporal records of the spatially averaged perturbation energy (e) and enstrophy (r) are plotted
on the logarithmic scale. The experiments performed with (4,, B,) = (0.5, 0.25), (0.25, 0.25), (0, 0.5) and
(0.25, 0.5) are shown in black, blue, red and green, respectively. In all simulations g = 1.

To ensure the mutual consistency of simulations in figure 7 and the foregoing (§§ 3 and
4) linear analyses, we find it instructive to compare the growth rates obtained using various
methods (table 1). The growth rates in simulations (dpys) were evaluated over the intervals
of nearly exponential growth, defined by requiring 1073 < ¢ < 10~!. In each experiment,
Apns was determined from the best linear fit to %ln(e) over this interval. The linear
growth rates were computed using two other methods: (i) integration of the linearized
single-mode equations (A;;, x) using the technique described in § 3.2; and (ii) extrapolation
of the multiscale model (A;;, ns). The advantage of the single-mode truncation model is
that it makes no assumptions regarding the wavelength of unstable perturbations, whereas
the multiscale theory only represents the long-wavelength limit.

The growth rate in the single-mode model was computed using the vertical scale of
I'y =127 and k = —2mj/ I, where j =1,2,... and Iy = 24m, thus exactly matching
the dimensions of the computational domain used in simulations. The growth rates
obtained for various wavenumbers were then maximized, yielding A, x. This procedure
concurrently provided the estimate of the corresponding wavenumber (k;,,y) of the most
rapidly amplifying mode. In all configurations considered (table 1), the linear model agrees
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An By ADNS Alin k |kmax| 3 Alin ms

EXP1 0.5 0.25 0.0675 0.0700 0.6667 0.6134  0.0914
EXP2 025 0.25 0.0688 0.0701 0.6667 0.6137 0.0941
EXP3 0 0.5 0.1422  0.1419 0.6667 0.6138  0.1420
EXP4 025 0.5 0.1428  0.1395 0.6667 0.6105 0.1407

Table 1. The growth rates realized in the numerical simulations (Apys) are listed along with the
corresponding estimates based on the linear single-mode model (4;;, ) and the multiscale theory (A, ms)-

well with simulations, with the relative difference between Apys and Ay,  never exceeding
4 %.

It should be noted that in all cases, the wavenumbers yielding the maximal growth
(Jkmax]) are not particularly small (table 1). Hence, the ability of the multiscale
long-wavelength theory to accurately represent the simulations can be readily questioned.
It is therefore interesting to examine how well the multiscale model performs under such
unfavourable conditions. To accomplish this task, the effective ¢ in each experiment
was evaluated from k., by inverting (4.6) and then Ay, s was computed using (4.5).
The precision of the multiscale model proved to be parameter-dependent. It performed
remarkably well in EXP3 and EXP4, with a relative error of less than 2 %. In other
experiments, the relative difference between Apys and Aj, ms Was much larger: 35 %
(EXP1) and 37 % (EXP2). However, these results are neither surprising nor disappointing,
given that the effective value of the expansion parameter there is ¢ = 0.61 — hardly a small
number by any standards.

6. Discussion

This study explores the barotropic instability of time-dependent shear flows. The
investigation is based on the multiscale linear stability analysis of the Kolmogorov
pattern and the associated fully nonlinear simulations. All evidence consistently points
to a profound influence of temporal variability of zonal currents on their stability. It is
shown that the BTSI identified in this study can occur for any finite magnitude of the
time-dependent component of the basic state.

The proposed model of BTSI attributes the destabilization to resonant triad interactions,
resulting in the transfer of energy from the basic state to barotropic Rossby waves. Perhaps
our most intriguing finding — with potentially far-reaching implications — is that vigorous
instabilities, capable of producing fully developed turbulence, are realized even in the
regime where flows are stable according to the Rayleigh—Kuo criterion. This result should
be contrasted with the analysis of Frenkel (1991), who demonstrated that the oscillatory
(A = 0) Kolmogorov flows in the inviscid f-plane model are always stable. Such a
difference between the f-plane and beta-plane models is consistent with the central role
played by the resonant Rossby waves in the BTSI dynamics. The configuration explored
here therefore presents an interesting example of a system that is destabilized by the
beta-effect, a stabilizing agent in most geophysical models (e.g. Gill 1974; Manfroi &
Young 2002).

Since geophysical flows are inherently time-dependent, BTSI could be one of the
significant sources of turbulence. For instance, it is instructive to apply our findings to the
system of alternating zonal currents in the tropical oceans, which are separated by 27t /[* ~
400 km (e.g. Cravatte et al. 2012, 2017). A major component of their temporal variability is
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represented by the annual oscillations (&* = 2 x 1077 s~!) with a typical variation in the
velocity of B* ~ 5 cm s~ !, which corresponds to B, ~ 0.5. The simulations in figure 7(a)
performed for B,, = 0.5 suggest that the perturbation kinetic energy eventually equilibrates
at e ~ 40. This value is equivalent to a dimensional kinetic energy of e* = (&*/I*)%e ~
60 cm? s—2, which is representative of near-surface variability in much of the world ocean
(e.g. Stammer & Wunsch 1998). The possibility of generation and maintenance of such
levels of turbulence by BTSI motivates the efforts to further advance our understanding of
their dynamics, properties and large-scale consequences.

The present study could be extended in several ways. Exploring various basic states
beyond the canonical Kolmogorov pattern may provide insight into the generality and
broad applicability of our findings. Another step towards realism could involve the
transition from the present monochromatic forcing model to distributed frequency spectra,
more representative of temporal variability of geophysical flows. Finally, the diagnostics
of field observations and comprehensive operational models might help to quantify the
global contribution of BTSI-induced turbulence to lateral mixing and heat transport in the
oceans and the atmosphere.

Acknowledgements. The author thanks Drs N. Balmforth and J. Brown and the anonymous reviewers for
helpful comments.

Funding. Support of the National Science Foundation (grant OCE 1828843) is gratefully acknowledged.
Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Timour Radko http://orcid.org/0000-0002-5682-280X.

Appendix A. Truncated (N = 3) multiscale model

The leading-order streamfunction component in the multiscale model for arbitrary A takes
on a form identical to that obtained in § 3 for the special case of A = 0. It is still represented
by (3.1) and (3.2), where the coefficient Cp is given in (3.5). The coefficients of the
first-order streamfunction component (4.1) are as follows:

c_ iB,(51A2w) — 1443 — 3A2 + 5203 — 4an)
L 40— 1)H6A2 = 3605 + 130y — 1)
1A;,B, 9wy — 1
CEZ) - _ n2n( 2 . ) ’ { (AD)
2(wy — 1)(6A; — 36w; + 13wy — 1)

! 4wz — 1)(6A2 — 3605 + 13wy — 1)

The second-order component takes form (4.2) and its coefficients are
A =—a, 9= B_ico A2a,b
2=~ G =G, (A2a.b)
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and the third-order coefficients in (4.3) are

) 201 3 2 25)(1 3. 2
CO =i, — €, 2N _ _ZBncg ), e _ZIB”Ci ),

O _ 3, 2, 20)(2) @dwr —1) o
G = ZBnCl +2iA,, G @) _ _—8An B,C|”,
' (A3)
@@ @oo—=1) oy o  Go-1_ o
C3 § = _ITBHCI 3 C3 = TBHC] )

2 n ~2) )
ceod _ _BiCT  eve _ _1BCT o) _ BaC
3 - > 3 - ’ 3
12 12 12

The procedure for determining the maximal growth rate closely follows the example

presented in § 3. The key solvability condition is obtained by averaging the O(¢*) balance
in small-scale variables:

B2(45A2B2w) + 48A28w3 — 48A2w3 — 108B2w3 — 288501 + 288w3 + 3A2B2 — 96428,

+ 96A2w3 + 3B2w5 + 680803 — 6803 + 48425 — 4842wy + 10B2w) — 504803 + 504w3
(Ad)
— B2 + 1208wy — 120w3 — 88 + 8wn) + 2885 — 48A2w3 + 96A2wy — 680w3 — 48A>

+ 5043 — 120w; + 8 = 0.

Equation (A4) implicitly determines the relation w;(8). This relation is then maximized
to determine the most rapidly amplifying mode using the technique outlined in § 3.
The result is a set of three lengthy algebraic equations (not shown) in (a, b, c) =
(Re(wy), Im(wy), dRe(w;)/06), which take the form

Ej(a7 ba CaAl’lv Bn) = 07 ,]: 1727 3 (AS)

This system represents the generalization of the corresponding result (3.17) for finite
A. Importantly, the equations in (AS) are independent of 8, which makes it possible to
determine a unique relation for the rescaled growth rate as a function of A,, and B,

b=Db(A,, By). (A6)

This relation is shown in figure 3.
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