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low-speed turbulent mixing layer

Antonio Almagro1,†, Manuel García-Villalba1 and Oscar Flores1

1Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid,
28911 Leganés, Spain

(Received 8 May 2017; revised 6 July 2017; accepted 11 August 2017;
first published online 2 October 2017)

Direct numerical simulations of a temporally developing, low-speed, variable-density,
turbulent, plane mixing layer are performed. The Navier–Stokes equations in the
low-Mach-number approximation are solved using a novel algorithm based on an
extended version of the velocity–vorticity formulation used by Kim et al. (J. Fluid
Mech., vol 177, 1987, 133–166) for incompressible flows. Four cases with density
ratios s= 1, 2, 4 and 8 are considered. The simulations are run with a Prandtl number
of 0.7, and achieve a Reλ up to 150 during the self-similar evolution of the mixing
layer. It is found that the growth rate of the mixing layer decreases with increasing
density ratio, in agreement with theoretical models of this phenomenon. Comparison
with high-speed data shows that the reduction of the growth rates with increasing
density ratio has a weak dependence with the Mach number. In addition, the shifting
of the mixing layer to the low-density stream has been characterized by analysing
one-point statistics within the self-similar interval. This shifting has been quantified,
and related to the growth rate of the mixing layer under the assumption that the shape
of the mean velocity and density profiles do not change with the density ratio. This
leads to a predictive model for the reduction of the growth rate of the momentum
thickness, which agrees reasonably well with the available data. Finally, the effect of
the density ratio on the turbulent structure has been analysed using flow visualizations
and spectra. It is found that with increasing density ratio the longest scales in the
high-density side are gradually inhibited. A gradual reduction of the energy in small
scales with increasing density ratio is also observed.

Key words: mixing and dispersion, shear layer turbulence, turbulent mixing

1. Introduction
Variable-density effects in turbulent flows are often encountered in the natural

environment and in many engineering applications (Turner 1979; Chassaing et al.
2002). In the oceans, density variations are due to temperature and salinity variations
(Thorpe 2005), while in the atmosphere they are due to both temperature and moisture
changes (Wyngaard 2010). In both situations, the buoyancy effects are mainly due
to gravity. In the absence of gravity, density effects may still be important due to
pressure and/or temperature fluctuations. For example, in aeronautical applications,
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density variations due to high speed in gas flows are very relevant (Lele 1994;
Gatski & Bonnet 2013). In that case, the main effect is due to velocity-induced
pressure variations. In other applications, density variations due to dilatation effects
are important even at low speeds. This is, for example, the case in combustion
applications (Williams 1985; Peters 2000), where the heat release by chemical
reaction leads to the thermal expansion of the fluid. An additional kind of density
effect is associated with the mixing of two non-reactive fluids of different density
or to the mixing of different temperature bodies of the same fluid (Chassaing et al.
2002; Dimotakis 2005). In this work we are concerned with the latter since we study
a variable-density low-speed temporal turbulent mixing layer in the absence of gravity.

As reviewed by Dimotakis (1986), in spatially developing turbulent shear layers
the density ratio influences the spreading rate of the layer, the entrainment rate and
the convective velocity of the large-scale eddies. The influence on the spreading
rate was already observed in early experiments (Brown & Roshko 1974). However,
the effect of increasing the Mach number, M, was found to be more drastic, and
that led to a main focus on compressibility effects in subsequent works (Bogdanoff
1983; Papamoschou & Roshko 1988; Clemens & Mungal 1992; Hall, Dimotakis &
Rosemann 1993; Vreman, Sandham & Luo 1996; Mahle et al. 2007; O’Brien et al.
2014; Jahanbakhshi & Madnia 2016). A notable exception is the work of Pantano &
Sarkar (2002), who studied both compressibility effects and density ratio effects in
direct numerical simulations (DNS) of turbulent compressible temporal mixing layers.
They found that, with increasing density ratio, the shear layer growth rate decreases
substantially and that the dividing streamline is shifted towards the low-density stream.
The variation of the density ratio by Pantano & Sarkar (2002) was performed at high
speed, with a convective Mach number Mc = 0.7, so that density variations due to
both pressure effects and temperature effects were likely to affect the flow. In this
work we try to separate these two effects by considering a variable-density mixing
layer at low speed in the limit Mc→ 0, using the low-Mach-number approximation
(McMurtry et al. 1986; Cook & Riley 1996; Nicoud 2000).

The current understanding of the effect of the density ratio on the structure
of the turbulent mixing layer is still unsatisfactory. Part of the problem is that
it is difficult to perform experiments at low speeds with a large density ratio.
Numerical studies are also scarce, and most of them deal with the initial stages
of transition to turbulence, and not with the turbulent regime itself. Most numerical
studies consider variable-density effects in the limit of incompressible flow, i.e. the
velocity field is solenoidal, the density is given by an advection equation, and the
energy equation is therefore decoupled from the momentum equation. For instance,
Knio & Ghoniem (1992) reported calculations of a variable-density, incompressible,
temporal mixing layer. They performed visualizations of the vorticity and scalar
fields and of the motion of material surfaces, focusing on the manifestation of
three-dimensional instabilities. They found an asymmetric entrainment pattern
favouring the low-density stream. Also in the incompressible regime, Soteriou &
Ghoniem (1995) performed two-dimensional simulations of spatially developing
variable-density mixing layers. They found that the speed of the unstable waves is
biased towards that of the high-density stream and also that the entrainment of the
high-density stream is inhibited relative to the low-density stream. The instability
characteristics of variable-density incompressible mixing layers have been studied by
Reinaud, Joly & Chassaing (2000) and Fontane & Joly (2008). On the modelling
side, Ramshaw (2000) developed a simple model for predicting the thickness of a
variable-density mixing layer. Ashurst & Kerstein (2005) included variable-density
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effects in a one-dimensional turbulence approach. Using this approach they studied
both temporally developing and spatially developing mixing layers, and despite the
limitations of the approach, their results provide information concerning the expected
behaviour of the mixing layers at high density ratios. In addition, there are also not so
many studies in the literature using large eddy simulation (LES) in variable-density
turbulent flows. Some examples are Wang et al. (2008), who analysed spatially
developing axisymmetric jets, and McMullan, Coats & Gao (2011), who considered
a spatially developing mixing layer.

In this work we address the following issues. How is the growth rate of the
turbulent mixing layers affected by the free-stream density ratio? What is the turbulent
structure of variable-density mixing layers? What are the differences of the low-speed
case, M→ 0, with respect to the high-speed case, Mc= 0.7 (Pantano & Sarkar 2002)?
The manuscript is organized as follows. In § 2, the computational set-up is described,
including the details of a novel algorithm developed to solve the low-Mach-number
approximation of the Navier–Stokes equations. This is followed by a description
of the simulation parameters in § 3. Results are presented in § 4. First, we analyse
the self-similar evolution of the mixing layers. Second, we characterize their growth
rate and compare to a model proposed in the literature. Third, we analyse the mean
density and Favre-averaged velocity, and propose a semi-empirical model for the
observed shifting. After this, we complete the characterization of the vertical profiles
with mean temperature. This is followed in § 4.4 by the analysis of the higher-order
statistics. Section 4 finalizes with the analysis of the flow structures, using flow
visualizations and premultiplied spectra of temperature and velocity. Conclusions are
provided in § 5.

2. Computational set-up
The flow under consideration is a three-dimensional, temporally evolving mixing

layer developing between two streams of different density, ρt (upper stream) and ρb
(lower stream). The flow is assumed to be homogeneous in the horizontal directions, x
and z, while it is inhomogeneous in the vertical direction, y. The lower stream flows at
a velocity 1U/2 in the positive x direction, while the upper stream flows at a velocity
1U/2 in the opposite direction, so that the velocity difference between both streams is
1U. For the present work, ρb >ρt, although since we do not consider gravity effects,
the case with ρb <ρt can be obtained by changing the direction of the y-axis.

As explained in the Introduction, for the present study we consider that temperature
and density fluctuations are much more significant than pressure fluctuations.
Therefore, the governing equations are the Navier–Stokes under the low-Mach-number
approximation (McMurtry et al. 1986; Cook & Riley 1996; Nicoud 2000) together
with the equation of state. These equations read (Einstein’s summation convention is
employed)

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=−

∂p(1)

∂xi
+
∂τij

∂xj
, (2.2)

ρCp
∂T
∂t
+ ρCpui

∂T
∂xi
=

∂

∂xi

(
κ
∂T
∂xi

)
, (2.3)

p(0) = ρRT, (2.4)
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where ρ is the fluid density, ui are the velocity components, T is the temperature,
τij is the viscous stress tensor, κ is the thermal conductivity, Cp is the specific heat
at constant pressure and R is the specific gas constant. Within the low-Mach-number
approximation, the variables are expanded in a Taylor series where the Mach number
is the small parameter. The first two terms of the pressure expansion appear in (2.1)–
(2.4), denoted p(0) and p(1). The former, p(0), is usually called the thermodynamic
pressure, since it only appears in the equation of state. In the present case, p(0) can
be considered to be constant, since the temporal mixing layer is an open system
(Nicoud 2000). The latter, p(1), plays the same role as in incompressible flow and
is usually called the mechanical pressure. The viscous stress tensor is given by τij =

µ(∂ui/∂xj+ ∂uj/∂xi− 2/3δij(∂uk/∂xk)), where µ is the dynamic viscosity and δij is the
Kronecker delta. Note that in the low-Mach-number approximation the heating due to
viscous dissipation in the energy equation is negligible, as discussed by Cook & Riley
(1996). In the present study, the fluid properties (µ, κ,Cp) are assumed to be constant,
independent of the temperature.

The equations (2.1)–(2.4) can be made non-dimensional using a reference density
ρ0 = (ρb + ρt)/2, a reference temperature T0 = p(0)/ρ0R, a characteristic velocity
1U (the velocity difference between the two streams) and a characteristic length δ0

m
(the initial momentum thickness of the mixing layer, further discussed below). The
resulting non-dimensional numbers that govern the problem are the Reynolds number,
Re= ρ01Uδ0

m/µ, the Prandtl number Pr=µCp/κ and the density ratio, s= ρb/ρt.
Considering the role played by the mechanical pressure, we solve the governing

equations using an algorithm analogous to the algorithm for incompressible flow of
Kim, Moin & Moser (1987). In that work, the momentum equation is recast in terms
of two evolution equations, the first one for the vertical component of the vorticity, ωy,
and the second one for the Laplacian of the vertical component of the velocity, ∇2v.
In that way, pressure is removed from the equations and continuity is enforced by
construction. In order to employ a similar formulation, we decompose the momentum
vector

ρu=m+∇ψ, (2.5)

where m is a divergence-free component and ∇ψ is a curl-free component. We define
Ωy as the vertical component of the vector ∇×ρu=∇×m and φ as the Laplacian of
the vertical component of m, φ=∇2my. Hence, as described in appendix A, equations
(2.1)–(2.4) can be recast as evolution equations for ρ, Ωy, φ and T , which together
with the equation of state ρT = ρ0T0, results in a system of five equations and five
unknowns.

The details of the algorithm used to integrate in time this coupled system of
equations are described in detail in appendix A. For completeness, we provide here
a brief description. The time integration is performed using a three-stage low-storage
Runge–Kutta scheme. At each stage, the evolution equations for Ωy, φ and T (namely,
momentum and energy equations) are used to update explicitly these variables. Then,
ρ is computed using the equation of state. Once ρ is known, we estimate ∂ρ/∂t and
use the continuity equation to solve for ψ .

The spatial discretization is based on a Fourier decomposition for the homogeneous
directions x and z, with seventh- and fifth-order compact finite differences for first
and second derivatives in the vertical direction, as in Hoyas & Jiménez (2006). The
computation of the nonlinear terms in the evolution equations for ρ, Ωy, φ and T
(equations (A 11)–(A 14)) is pseudo-spectral, using the 2/3 rule to remove the aliasing
error associated with quadratic terms. Note that due to the nonlinearity appearing in
the equation of state, it is not possible to completely remove aliasing errors in the
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present formulation. The solution of the Poisson equation for ψ (see appendix A) is
done in Fourier space, solving a penta-diagonal linear system for each Fourier mode
with an LU decomposition. No explicit filtering or smoothing is used in the present
formulation.

Concerning the boundary conditions, from a physical point of view the velocity and
density fluctuations should tend to zero as y→ ±∞, with an additional constraint
that relates the entrainment and the ambient pressure. From a computational point of
view, we impose free-slip boundary conditions for the fluctuations of m, homogeneous
Dirichlet boundary conditions for the density fluctuations and homogeneous Neumann
boundary conditions for the ψ . In terms of entrainment, the global mass balance in the
system leads to one equation with two unknowns, namely the mass flux through the
upper and lower boundaries of the system. A second equation is obtained by imposing
that the ratio of these two mass fluxes should be equal to the square root of the
density ratio (Dimotakis 1986, 1991). This condition is equivalent to the one imposed
by Higuera & Moser (1994), matching the mass fluxes to an outer wave region where
acoustic effects are important. Further details are provided in appendix A.

Finally, initial conditions are provided specifying the mean streamwise velocity and
density profiles

u(y)=
1U

2
tanh

(
−

y
2δ0

m

)
, (2.6)

ρ(y)= ρ0

(
1+ λ(s) tanh

(
−

y
2δ0

m

))
, (2.7)

where λ(s) = (ρb − ρt)/(ρb + ρt) = (s − 1)/(s + 1). The mean spanwise and vertical
velocity components are set to zero. In order to promote a quick transition to
turbulence, random velocity fluctuations are added. This is done in a manner similar
to Pantano & Sarkar (2002), da Silva & Pereira (2008) and others: a random
solenoidal velocity fluctuation field with a 10 % turbulence intensity and a peak
wavenumber of k0δ

0
m ≈ 0.84. The region in space where the fluctuating velocity field

is defined is limited by a Gaussian filter, e−(y/δ0
m)

2 . Also, no fluctuations are imposed
on wavenumbers smaller than kxδm ≈ 0.05, so that the initial transient of the mixing
layer is as natural as possible, as discussed by da Silva & Pereira (2008).

It should be noted that in the previous paragraphs we have been using δ0
m to denote

the initial value of the momentum thickness δm. For a variable-density boundary layer,
the momentum thickness is defined as

δm(t)=
1

ρ01U2

∫
∞

−∞

ρ

(
1
2
1U − ũ

)(
1
2
1U + ũ

)
dy, (2.8)

where ũ = ρu/ρ denotes the Favre average of u, and u is the standard Reynolds
average (i.e., averaged over the homogeneous directions and over the different runs
performed for each density ratio). The Favre perturbations are defined as u′′ = u− ũ,
so that the turbulent stress tensor, Rij, is defined as

Rij =
ρu′′i u′′j
ρ

. (2.9)

Note that in the following, if not stated otherwise, the mean velocities and perturbations
are Favre-averaged. On the other hand, density and temperature quantities are always
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s τ0–τf Rew Reλ (1x/η)max (1y/η)max Dw

1 380–520 4200–6300 140–150 1.7–1.6 1.1–1.05 4.8
2 400–520 4500–5800 130–140 1.6–1.5 1.05–0.95 5.2
4 440–620 4500–6500 110–120 1.4–1.3 0.9–0.8 6.1
8 550–730 4900–7000 85–95 1.2–0.9 0.7–0.6 7.7

TABLE 1. Relevant parameters of the simulations within self-similar period. All the ranges
correspond to the values of the parameter at the beginning (τ = τ0) and end (τ = τf ) of
the self-similar evolution, discussed in § 4.1. Rew = ρ01Uδw/µ, where δw is the vorticity
thickness. Reλ = qλ/ν, where λ is the Taylor microscale and q2 is twice the turbulent
kinetic energy. 1x and 1y are the streamwise and vertical grid spacings in collocation
points, respectively. η is the Kolmogorov length scale. Dw = δw/δm, where δm is the
momentum thickness and δw is the vorticity thickness.

Reynolds-averaged. For completeness, we also provide here the definition of the
vorticity thickness

δw(t)=
1U

|∂ ũ/∂y|max
, (2.10)

which is similar to the visual thickness of the mixing layer (see Brown & Roshko
1974; Dimotakis 1991; Ramshaw 2000 and experimental works in general), and it will
be used in the discussion of the results in the following sections.

3. Simulation parameters

As mentioned above, the set-up of the simulations consists of a three-dimensional
temporally evolving mixing layer with two streams with different density. A total
of four density ratio cases have been studied in this work, namely s = ρb/ρt = 1,
2, 4 and 8. Four different realizations have been run for each density ratio (with
different random initial conditions, discussed below), in order to perform ensemble
averaging. For the case with s = 1, the temperature is treated as a passive scalar:
density is constant in time and space, and the energy equation is solved for the
temperature disregarding the equation of state. The Reynolds and Prandtl numbers
are fixed for all cases, with Re = 160 and Pr = 0.7. The value of other relevant
parameters are presented in table 1. For instance, the Reynolds number based on the
Taylor microscale, Reλ, is moderately large for the s= 1 case (Reλ = 150), although
it decreases with the density ratio (Reλ = 95 for s= 8).

In terms of temporal resolution, all simulations presented here are run with a CFL=
0.5. The computational domain is Lx×Ly×Lz=461δ0

m×368δ0
m×173δ0

m, roughly twice
larger in every direction than that employed by Pantano & Sarkar (2002). The plane
y=0 is at the centre of the computational domain, so that the upper and lower vertical
boundaries are at y=±Ly/2= 184δ0

m.
The computational domain is discretized using 1536 × 851 × 576 collocation

grid points, resulting in a spatial resolution in the homogeneous directions of
1x = 1z = 0.3δ0

m before dealiasing (collocation points). In the vertical direction,
the grid points are equispaced in the central part of the domain (|y|6 20δ0

m), with a
resolution 1y= 0.2δ0

m. In the region 20δ0
m 6 |y|6 150δ0

m the resolution decreases with
a maximum stretching of 1 %, up to a maximum grid spacing of 1y= 0.85δ0

m. Finally,
in order to avoid numerical issues in the calculation of the vertical derivatives at the
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boundaries, the grid spacing is reduced again in the region 150δ0
m 6 |y|6 184δ0

m with
a maximum stretching of 3 %, resulting in a resolution of 1y= 0.3δ0

m at the top and
bottom boundaries of the computational domain.

As shown in table 1, the resolution of the simulations is very good in terms
of the local Kolmogorov length scale η (i.e., averaged in horizontal planes only).
The horizontal grid spacing is smaller than 1.8η during the self-similar evolution
of the mixing layer. The vertical resolution is slightly better, to account for the
worse resolution properties of compact finite differences compared to Fourier
expansions (Lele 1992). For reference, the resolution in the compressible simulations
of Pantano & Sarkar (2002) is 1x/η ≈ 3–4. Compared to typical resolution of
DNS of incompressible flows, the values of the resolution reported in table 1 would
indicate that our simulations are slightly over-resolved (e.g., Moin & Mahesh 1998
recommends 1x = 8η in the streamwise direction, and 1y = 4η in the shearwise
direction for homogeneous shear turbulence). However, it should be noted that the
nonlinear terms of equations (A 11)–(A 14) are not quadratic, resulting in stronger
aliasing and stricter limitations in the resolution than typically encountered in
incompressible flows.

The extent of the aliasing errors can be examined in figure 1, which shows the
one-dimensional spectra of the streamwise velocity and temperature (Euu and ETT) as
functions of the streamwise and spanwise wavenumbers (kx and kz). The spectra is
computed at centre of the computational domain (y = 0) and at the beginning of
the self-similar range discussed in § 4.1. For those times, the spatial resolution and
the aliasing errors are more critical, since the Kolmogorov length scale slowly grows
during the self-similar evolution of the mixing layer (not shown). Besides that, the
one-dimensional spectra in figure 1 only shows a slight energy pile-up at the largest
wavenumbers as a consequence of the aliasing errors, similar to those observed in
DNS of homogeneous isotropic turbulence for incompressible flows (see for instance
Kaneda & Ishihara 2006). Note that in the present case the aliasing errors do not
preclude the existence of a viscous range (where the energy decays faster that the
−5/3 law, indicated in figure 1 by dashed lines), and that the energy levels associated
to the energy pile-up are up to five orders of magnitude smaller than those of the
energy-containing scales.

Finally, it should be noted that the use of relatively large computational domains
is motivated by two reasons: fidelity of the turbulent structures in the mixing layer
and statistical convergence. First, a large domain in the y-direction allows the mixing
layer to grow for longer times before confinement effects develop, resulting in a longer
self-similar range. In the present simulations, the visual thickness of the mixing layer
at the end of the self-similar range is smaller than 30 % of the vertical size of the
computational domain.

Second, the horizontal size of the domain also needs to be large enough to capture
the largest structures of the flow. For reference, in our simulations, less than 6 % of
the turbulent kinetic energy is contained in infinitely large modes in the streamwise
(kx = 0) and spanwise (kz = 0) directions at the end of the self-similar range, when
the turbulence structures are largest. As discussed later in § 4.5, this percentage
is a little bit larger for the temperature variance (≈15 %), which tends to have a
stronger signature in kz = 0 modes than the turbulent kinetic energy. Also, in order
to improve the statistical convergence, the horizontal averaging is complemented
with an ensemble average over the four independent runs (i.e., with different initial
conditions) performed for each density ratio.
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FIGURE 1. (Colour online) 1D spectra at midplane of the computational domain (y =
0), at the beginning of the self-similar range. (a) ETT(kxδ

0
m). (b) ETT(kzδ

0
m). (c) Euu(kxδ

0
m).

(d) Euu(kzδ
0
m). Different colours correspond to different density ratios: black, s= 1; blue,

s= 2; green, s= 4; and red, s= 8.

4. Results
4.1. Self-similar evolution

It is well known that temporal mixing layers reach a self-similar evolution after an
initial transient, in which the initial perturbations evolve into the structure of the fully
developed turbulent mixing layer (Rogers & Moser 1994; Pantano & Sarkar 2002).
In the self-similar evolution, the mixing layer thickness grows linearly with time, and
large-scale quantities scaled with the variation across the mixing layer (i.e., 1U, ρb−

ρt, etc.) collapse into a single profile when plotted as a function of y/δm(t) or y/δw(t).
In order to evaluate the self-similar evolution of the present DNS results, figure 2(a)

shows the evolution of δm(t) for the four cases considered here. The variability in δm
is estimated using the standard deviation of the momentum thicknesses over the four
runs, and is indicated with error bars in the figure. Also, figure 2(b) shows the time
evolution of the integrated dissipation rate of turbulent kinetic energy

ζ =

∫
∞

−∞

ε dy. (4.1)

The quantity ζ scales with 1U3 and, therefore, should be constant with time, once
self-similarity has been achieved. The expression for the dissipation rate of turbulent
kinetic energy for variable-density flows can be found in Chassaing et al. (2002), and
is reproduced here for completeness

ρ ε=
4
3
µθ ′2 +µω′iω

′
i + 2µ

(
∂2u′iu′j
∂xi∂xj

− 2
∂θ ′u′j
∂xj

)
, (4.2)
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FIGURE 2. (Colour online) Temporal evolution of (a) the momentum thickness δm divided
by the initial momentum thickness δ0

m, and (b) the non-dimensional integrated turbulent
energy dissipation rate, ζ/1U3. Line types are black for s= 1, blue for s= 2, green for
s= 4 and red for s= 8. The values correspond to the ensemble average of the four runs
for each density ratio, and the error bars are the corresponding standard deviation. The
thick line shows the ranges of self-similar evolution for each density ratio.

where primed variables denote fluctuations with respect to the mean, θ = ∂ui/∂xi is
the divergence of the velocity, and ωi are the components of the vorticity.

The results presented in figure 2 show that self-similarity is achieved after an initial
transient, with δm(t) growing linearly with time and ζ (t) becoming approximately
constant (at least within the errors in ζ ). However, comparing figure 2(a,b) it can be
observed that the linear growth of δm starts at τ = t1U/δ0

m ≈ 200, a time at which ζ
is still growing. This behaviour was also observed by Rogers & Moser (1994), and it
indicates that the determination of the time interval where self-similarity is achieved
needs careful consideration, and should not be determined exclusively from a linear
evolution of δm(t).

In the present study, and for the purpose of collecting statistics, we have defined
the time interval [τ0, τf ] where the mixing layer is self-similar by analysing the
collapse of the instantaneous (i.e., averaged in the horizontal directions only) profiles
of the normal Reynolds stresses, R11(y/δm, τ ), R22(y/δm, τ ), and R33(y/δm, τ ). We
have computed the temporal mean and standard deviation of these Reynolds stresses
for several time intervals, selecting for each run the longest time interval in which
the standard deviation of the normal Reynolds stresses is smaller than 5 % of the
maximum. The resulting time intervals (more explicitly, the maximal time interval
over the four runs for each density ratio) are shown in figure 2 and reported in table 1,
yielding a total self-similar range of at least 10 eddy-turnover times per density ratio.
For illustration, figure 3 shows all the R11 profiles within the self-similar range for
the cases s= 1 and s= 4, using different colour for each run. The agreement of the
profiles is good, especially taking into account that there are 26 and 31 curves on
each plot, respectively. The differences are more apparent near the maximum of the
Reynolds stresses. It is interesting to note that the variability of the profiles within
each run is small, similar to that reported by Pantano & Sarkar (2002). On the other
hand, the variability between different runs is a bit larger, and it is probably linked
to differences between the largest structures developed in each run (i.e., by different
realizations of the initial conditions), emphasizing the importance of running several
realizations of each density ratio to accumulate statistics for the largest structures in
the mixing layer.
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FIGURE 3. (Colour online) Reynolds stress R11 profiles within the self-similar range for
(a) case s = 1, all runs with a total of 26 profiles, and (b) case s = 4, all runs, with a
total of 31 profiles. Colours are used to differentiate between runs.

4.2. Effects of the density ratio on the growth rate
Once the self-similar time interval has been defined, we analyse the effect that the
density ratio has on the growth rate of the temporal mixing layer, comparing the
results of the present zero-Mach cases with those obtained by Pantano & Sarkar
(2002) for convective Mach number Mc = 0.7. First, consider the growth rate of the
momentum thickness, δ̇m, which is evaluated here following the expression derived in
Vreman et al. (1996),

δ̇m ≈−
2

ρ01U2

∫
∞

−∞

ρR12
∂ ũ
∂y

dy. (4.3)

This expression is obtained by differentiating (2.8) with respect to time, and neglecting
viscous terms. An alternative method to compute δ̇m is to fit a linear law to the data
shown in figure 2(a). The differences in the mean and standard deviation of the growth
rate of the momentum thickness obtained from both methods are small: for s = 1,
the first method yields δ̇m/1U = 0.0168 ± 0.0003, while the second method yields
δ̇m/1U = 0.0170± 0.0002.

The value of the growth rate of the momentum thickness for s = 1 is in good
agreement with previous works, especially taking into account the scatter of the
available data. For instance, in the ‘unforced’ experiments quoted by Dimotakis (1991)
the growth rate of the momentum thickness varies from 0.014 to 0.022. Also, Rogers
& Moser (1994) report δ̇m/1U = 0.014 in simulations of incompressible temporal
mixing layers, and the experimental data of Bell & Mehta (1990) yield a value of
0.016. For Mc = 0.3 and s = 1, Pantano & Sarkar (2002) report δ̇m/1U ≈ 0.0184, a
value that decreases to 0.0108 when the Mach number is increased to Mc = 0.7.

As the density ratio increases, the values of δ̇m decrease. This reduction of
the growth rate is quantified in figure 4(a), in terms of the ratio of growth
rates, δ̇m(s)/δ̇m(1). For s = 8, our results show that the growth rate of δm has
been reduced by 60 % with respect to the growth rate of the case with s = 1. A
similar behaviour is observed for the subsonic cases of Pantano & Sarkar (2002) at
Mc = 0.7, also included in the figure. The ratio δ̇m(s)/δ̇m(1) is very similar for the
Mc= 0 and Mc= 0.7 cases for large density ratios, with significant differences for the
smaller density ratio, s = 2. Careful inspection shows that the density ratio s = 2 is
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FIGURE 4. (Colour online) Mixing-layer growth rate as a function of the density
ratio. Growth rate based on (a) momentum thickness δ̇m, and (b) vorticity thickness δ̇w,
normalized by the growth rate for s=1. In both panels the horizontal axis is in logarithmic
scale. Coloured dots with error bars stand for the present results, squares represent results
for Mc = 0.7 (Pantano & Sarkar 2002). The dashed curve in (b) corresponds to equation
(4.4), from Ramshaw (2000).

indeed somewhat anomalous in Pantano & Sarkar (2002), presenting a non-monotonic
behaviour for some quantities (see for instance the growth rates and the profiles of
Reynolds stress, as shown in table 6 and figure 18 respectively in their paper).

The results shown in figure 4(a) for δ̇m are very similar to those obtained for δ̇w,
which are plotted in figure 4(b). Again, our results are compared to the Mc = 0.7
cases of Pantano & Sarkar (2002), and the theoretical prediction by Ramshaw (2000).
The latter is based on a model for the growth of the visual thickness of a variable-
density mixing layer at Mc= 0, directly comparable to the present results. The model
is obtained by extending a linear stability analysis to the nonlinear regime through
scaling hypothesis, leading after proper manipulation to

δ̇w(s)
δ̇w(1)

=
2
√

s
s+ 1

. (4.4)

Figure 4(b) shows a very good agreement between Ramshaw’s model and our data.
The agreement is also fairly good with the subsonic data of Pantano & Sarkar (2002)
at Mc = 0.7, except for the case s= 2 as it happened also for δ̇m. It should be noted
that, to the best of our knowledge, this is the first direct validation of the Ramshaw
model with a variable-density DNS at Mc = 0.

Overall, the results presented in this subsection show that the growth rates of the
Mc= 0 cases are significantly higher than those reported by Pantano & Sarkar (2002)
for Mc = 0.7, in agreement with previous works. However, the effect of s on the
reduction of the growth rate seems to be very similar at both Mach numbers, except
for maybe the low-density-ratio case, s= 2. Also, the effect of s seems to be stronger
on δm than on δw, with δ̇m(s = 8)/δ̇m(s = 1) ≈ 0.4 and δ̇w(s = 8)/δ̇w(s = 1) ≈ 0.6. As
a consequence, the ratio between the two thicknesses, Dw = δw/δm, increases with s,
as can be observed in table 1. Note that since δw and δm grow linearly with time,
Dw≈ δ̇w/δ̇m for sufficiently long times. For reference, Pantano & Sarkar (2002) report
a value of Dw= 5.0 for a compressible mixing layer with Mc= 0.3 and s= 1, in good
agreement with Dw = 4.83 for our s= 1 case.
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FIGURE 5. (Colour online) (a) Reynolds-average density profiles. (b) Favre-averaged
streamwise velocity profiles. Different colours correspond to different density ratios: black,
s=1; blue, s=2; green, s=4; and red, s=8. Solid lines are the present turbulent temporal
mixing layers. Dashed lines are the laminar temporal mixing layers (see appendix B).
Symbols: Rogers & Moser (1994) for s= 1, Pantano & Sarkar (2002) for s= 2, 4 and 8.

4.3. Mean density, velocity and temperature
We now proceed to analyse the one-point statistics of the present DNS (mean values
in this subsection, higher-order moments in § 4.4), averaging the data in the horizontal
directions and in time, binning in y/δm(t). In all the vertical profiles presented in this
section, a shadowing has been applied around plus/minus one standard deviation of the
horizontally averaged data with respect to the mean, in order to show the uncertainty
of the statistics.

Figure 5(a) shows mean density profiles, comparing the present zero-Mach results
with the results of the subsonic mixing layer of Pantano & Sarkar (2002) at Mc =

0.7. The figure also includes for comparison the results from laminar temporal mixing
layers, obtained as discussed in appendix B. As the density ratio increases, the density
mixing layer extends further into the low-density stream, with small variations in the
position where ρ= ρ0. The profiles of the Mc= 0.7 and Mc= 0 cases are qualitatively
similar at any given density ratio, although there are some differences in the profiles in
the central part of the mixing layer (|y|.3δm). The agreement between the Mc=0 and
Mc=0.7 cases is better for the Favre-averaged velocity, shown in figure 5(b). The only
exception is maybe the region closer to the high-density free stream, where the edge
of the mixing layer seems sharper for the present simulations (Mc = 0). The figure
also includes the incompressible data of Rogers & Moser (1994) for s= 1, showing
a very good agreement with our incompressible case.

Besides some small changes in the shape of the profiles (which will be discussed
later), the most apparent effect of the density ratio in ρ and ũ is the shifting of
the ũ profile towards the low-density side. Note that this effect is apparent in both
turbulent cases (Mc = 0 and Mc = 0.7), as well as in the laminar self-similar profiles
(dashed lines in figure 5). This shifting of the mean density and velocity profiles
with the density ratio has already been reported in previous studies, both experimental
and numerical, and it has been explained qualitatively in terms of the asymmetry in
the momentum exchange of the large scales with the free streams (Brown & Roshko
1974) and their linear stability properties (Soteriou & Ghoniem 1995). Note that the
mechanism proposed by Brown & Roshko (1974) acts in both turbulent diffusion (as
originally proposed by the authors) and mean velocity entrainment (i.e, 〈ρv〉). While
in turbulent mixing layers the turbulent diffusion is dominant over the mean velocity
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FIGURE 6. (Colour online) Shifting of the mixing layer, normalized with (a) the
momentum thickness, (b) the vorticity thickness. Circles for present DNS at Mc = 0.
Squares for Pantano & Sarkar (2002) at Mc = 0.7. Triangles for laminar self-similar
solutions. The dashed line in (b) corresponds to ∆/δw = 0.25 log(s).

entrainment, the latter is important in laminar mixing layers. This could explain why
figure 5 also shows a clear shifting between ũ and ρ for the laminar cases, as well as
the results reported by Bretonnet et al. (2007) in laminar mixing layers with density
variations due to various effects: different velocities, temperatures or species.

Besides the numerous qualitative observations of the shift between ũ and ρ in the
literature, few authors have tried to quantify it. In turbulent mixing layers, Pantano &
Sarkar (2002) proposed to quantify this shift using two semi-empirical relationships,
ρ(ũ) and R12(ũ). They later used these relationships to estimate the reduction of the
momentum thickness growth rate. In laminar mixing layers, Bretonnet et al. (2007)
proposed to characterize the drift as the distance between the inflection points of the
velocity and density mean profiles.

Here we propose to quantify the shift using ∆, which is defined as the distance
between the y locations where ũ= 0 and ρ= ρ0, positive when ũ is displaced towards
y-positive (low-density side in our simulations). The main advantage of the present
definition with respect to those used by Pantano & Sarkar (2002) and Bretonnet et al.
(2007) is that it can be easily computed from the mean profiles of velocity and density,
without having to compute higher-order derivatives. This distance is plotted in figure 6
as a function of the density ratio, for turbulent mixing layers with Mc=0 and Mc=0.7,
and for the laminar self-similar solutions. The figure shows two possible scalings for
∆, with δm (figure 6a) and with δw (figure 6b). The different datasets collapse better
with the second scaling, especially for s= 8 cases, suggesting an empirical relation

∆(s)= δw(s)C∆ log(s), (4.5)

with C∆ = 0.25. This empirical approximation yields correlation coefficients of R2
=

0.998 for the present DNS results at Mc = 0. Similar values of C∆ are obtained for
the other datasets in the figure. The results of Pantano & Sarkar (2002) at Mc = 0.7
yield C∆ = 0.23 and R2

= 0.956, and the laminar self-similar solutions yield C∆ =

0.23 and R2
= 0.994. Finally, the good agreement between the laminar and turbulent

data (and compressible and low-Mach-number data) is consistent with the discussion
in the previous paragraphs: the mixing layer is able to erode more easily the lighter
free stream, either by turbulent diffusion (in turbulent mixing layers) or by the mean
entrainment (in laminar mixing layers).
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FIGURE 7. (Colour online) Effects of s and ∆ on the reduction of the momentum
thickness. (a) δm/δw versus λ(s)∆/δw. (b) δ̇m/δ̇w versus s. In both panels, circles are
the present DNS at Mc = 0, squares are Pantano & Sarkar (2002) at Mc = 0.7, and
triangles are the self-similar solution for the laminar temporal mixing layer. The solid
lines in (a) correspond to equation (4.8) with: black, C = 0.188; green, C = 0.190;
yellow, C = 0.32. The dashed lines in (b) correspond to (4.9) with: black, C′ = 0.047
and δ̇w(1)/δ̇m(1)= 4.8, green, C′ = 0.047 and δ̇w(1)/δ̇m(1)= 5.4.

Although the present definition of shifting is not directly comparable to the one
used by Pantano & Sarkar (2002), it is also possible to relate the present ∆ to the
ratio δm(s)/δw(s). Let us assume that the mean density and velocity profiles are

ρ = ρ0 +
ρt − ρb

2
Fρ

(
y
δw

)
and ũ=−

1U
2

Fu

(
y
δw
−
∆

δw

)
, (4.6a,b)

where Fu(ξ) and Fρ(ξ) tend to ±1 when ξ→±∞, and ∆ is assumed to be a function
of the density ratio, s. Note that this is equivalent to limiting the effect of s to a shift
between the profiles of ρ and ũ, with no explicit change in their shape. Introducing
(4.6a,b) into (2.8), it is possible to show that

δm(s)
δw(s)

=
δm(1)
δw(1)

+
λ(s)

2

∫
∞

−∞

Fρ(ξ)

[
1−

(
Fu

(
ξ −

∆

δw

))2
]

dξ =
δm(1)
δw(1)

+ λ(s)G
(
∆

δw

)
,

(4.7)
where λ(s)= (s− 1)/(s+ 1). Note that by construction G(0)= 0 and G′(0)< 0. Hence,
it is possible to simplify (4.7) to

δm(s)
δw(s)

=
δm(1)
δw(1)

−Cλ(s)
∆

δw
+O

(
∆

δw

)2

. (4.8)

Interestingly, piecewise linear expressions for Fρ and Fu yield C = 1/3 and a cubic
leading-order error in (4.8).

In order to estimate C from the DNS data, figure 7(a) shows the ratio 1/Dw= δm/δw

as a function of λ(s)∆/δw. The figure shows that C = 0.188 for the present Mc = 0
data, yielding a correlation coefficient between the data and the linear approximation
equal to R2

= 0.998. For the Mc = 0.7 case, the ratio of the growth rates at s= 1 is
smaller, but the slope of the curve seems to be approximately the same (C = 0.190,
R2
= 0.920), supporting the assumption that Fρ , Fu (and hence C) do not vary much

with the density ratio. Note that for the laminar case, with notable differences in the
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FIGURE 8. (Colour online) (a,b) Profiles of the vertical gradients of the Reynolds-
averaged density. (c,d) Profiles of the vertical gradients of the Favre-averaged streamwise
velocity. (a,c) Normalized with the momentum thickness. (b,d) Normalized with the
vorticity thickness. Different colours correspond to different density ratios: black, s = 1;
blue, s= 2; green, s= 4; red, s= 8.

shape of ũ and ρ (and hence in Fu and Fρ), the value of the constant is C= 0.32 and
the linear approximation is exact (R2

= 1).
Finally, it is possible to combine (4.4), (4.5) and (4.8) to obtain a semi-empirical

prediction of the reduction of the momentum thickness growth rate with the density
ratio,

δ̇m(s)
δ̇m(1)

≈
2
√

s
s+ 1

(
1−

δ̇w(1)
δ̇m(1)

C′ log(s)
)
. (4.9)

To obtain (4.9) we have also taken advantage of 1/Dw = δm/δw ≈ δ̇m/δ̇w, which
is a reasonable approximation for sufficiently long times. The performance of this
simple model for the reduction of the momentum thickness growth rate is evaluated in
figure 7(b), where the dashed lines correspond to equation (4.9) with C′=CC∆=0.047
and the appropriate value for δ̇w(1)/δ̇m(1) – black for Mc= 0 and green for Mc= 0.7.
The figure also includes the DNS data for both Mach numbers. The agreement
between the DNS data and the model is very good, except for the lower density
ratios of the Mc = 0.7 cases, which already showed differences when compared to
the present Mc = 0 cases in figure 4.

In the previous discussion, the effect of s on the shape of the profiles of ρ and ũ
has been neglected, resulting in a reasonable approximation for the reduction in the
growth rate of the mixing layer with s. However, the density ratio has some effects
in the shapes of ρ and ũ, which are responsible for changes in the structure of the
turbulence in the mixing layer. These effects, which are difficult to evaluate in figure 5,
are better observed in figure 8, which shows the vertical gradients of the mean
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FIGURE 9. (Colour online) (a) Reynolds-averaged temperature profiles. (b) Profiles of the
vertical gradients of the Reynolds-averaged temperature. Different colours correspond to
different density ratios: black, s= 1; blue, s= 2; green, s= 4; red, s= 8.

profiles with different normalizations. In particular, the gradients of the mean density
normalized with 1ρ=ρb−ρt and δw seem to collapse reasonably well (see figure 8b),
especially in the high-density side (lower stream). More differences are visible near
the low-density side, where it is apparent that the gradients tend to become smoother
with increasing s. Indeed, for s = 8, figure 8(a,b) show that the gradient of ρ

is roughly linear, so that ρ becomes roughly parabolic for y & −2δm ≈ −0.25δw.
Although outside of the scope of the present paper, it would be interesting to check
whether the same linear region in ∂ρ/∂y is obtained for higher density ratios. The
shifting of the velocity profiles discussed above is clearly visible when looking at
their corresponding gradients, figure 8(c,d). For ũ, the change of shape of the profile
results in the maximum gradients appearing nearer to the lower-density side, with
smoother gradients in the higher-density side. Indeed, opposite to what is observed
for ρ, case s = 8 seems to develop a nearly parabolic profile for ũ towards the
higher-density side of the mixing layer (y . 4δm ≈ y . 0.5δw).

To finalize this subsection, we turn our attention to the mean temperature
distribution, more especifically to the non-dimensional temperature jump θ =

(T − Tb)/(Tt − Tb). It is interesting to study the temperature since it follows
an advection–diffusion equation, equation (2.3). This allows the comparison of
the variable-density cases (s = 2, 4 and 8) with the passive scalar simulated for
the uniform density case (s = 1). Note that although the temperature is inversely
proportional to the density (equation of state), the same is not true for the mean
temperature and mean density. Figure 9(a) shows the mean temperature profiles for
all cases and figure 9(b) the corresponding profiles of the vertical gradients of the
mean temperature. The passive scalar shows a roughly symmetric distribution, with
∂θ/∂y peaking near the edges of the mixing layer (|y/δw| ≈ 0.5). The small deviation
with respect to a symmetric profile provides an impression about the convergence of
the statistics.

With increasing s, the mean temperature profiles shifts towards the upper stream
(low-density stream) in a similar way as the Favre-averaged streamwise velocity.
The profiles also become more asymmetric, which is more clearly visible in the
mean temperature gradients shown in figure 9(b). As the density ratio increases, the
gradients at the high-density edge of the mixing layer are strongly damped, while the
gradients at the low-density edge are enhanced.
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FIGURE 10. (Colour online) Vertical profiles of (a) R11/1U2, (b) R22/1U2, (c) R12/1U2,
and (d) R33/1U2. Different colours correspond to different density ratios: black, s = 1;
blue, s = 2; green, s = 4; and red, s = 8. Solid lines are the present turbulent temporal
mixing layers. Symbols are data from incompressible mixing layers: dots from simulations
of Rogers & Moser (1994), triangles from experiments of Bell & Mehta (1990) and
diamonds from experiments of Spencer & Jones (1971). Dashed lines in (c) represent
results from Mc = 0.7 Pantano & Sarkar (2002).
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FIGURE 11. (Colour online) (a) Profiles of T2
rms/1T2. (b) Profiles of ρ2

rms/1ρ
2. Different

colours correspond to different density ratios: black, s= 1; blue, s= 2; green, s= 4; red,
s= 8. Both magnitudes calculated using Reynolds average.

4.4. Higher-order statistics
The shifts in the mean velocity and temperature, as well as the changes in their
gradients, are also accompanied by changes in the root mean square of velocity
and temperature fluctuations, which are analysed in figures 10 and 11. In particular,
figure 10 displays the vertical profiles of the turbulent stress tensor, Rij. The plots
include the data for the incompressible mixing layer of Rogers & Moser (1994),
and the experimental results of Bell & Mehta (1990) and Spencer & Jones (1971).
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Both datasets show profiles that are consistent with the shape of the present s = 1
case, although there is considerable scatter between the three datasets. The scatter
in R12 (figure 10c) is consistent with the scatter in the growth rates of the mixing
layers, since these two quantities are related through equation (4.3). This could also
explain the scatter in R11, R22 and R33 for the cases with s= 1. As the density ratio
increases, Rij tend to shift towards the low-density region, following the maximum
gradient of ũ. Interestingly, while the peak values of R22, R12 and R33 decrease with
increasing s, the peak values of R11 seem to remain roughly constant (at least within
the uncertainty in the statistics, shown in the figure by the shaded areas around
each curve). The high-speed data of Pantano & Sarkar (2002) are also included in
figure 10(c), and they also show a decrease of the peak values of R12 with increasing
s, although for the Mc = 0.7 data the decrease is not monotonic as it is for the
present Mc = 0 results. Note also that, as expected, the Mc = 0.7 profiles have lower
maximum values, consistent with the lower growth rate of the subsonic mixing layers
(as discussed in § 4.2 and in Pantano & Sarkar 2002).

Figure 11 displays the profiles of the variance of the temperature, T2
rms, and density,

ρ2
rms, normalized with the corresponding jumps across the mixing layer, 1T = Tt − Tb

and 1ρ = ρb − ρt, respectively.
For s = 1 the temperature corresponds to the passive scalar, which exhibits in

figure 11(a) the double-peak r.m.s. observed in high-Reynolds-number mixing layers
by others (e.g., see Pickett & Ghandhi 2001). When the density ratio is increased,
the peak on the high-density side gradually decreases, while the peak of T2

rms on
the low-density side shifts with the mean temperature gradients (see figure 9b). This
suggests that T2

rms is governed by the mean temperature gradient, in a similar way as
Rij are governed by ∂ ũ/∂y. Indeed, consistent with the mean temperature gradients,
the peaks of T2

rms/1T2 increase with s, except for maybe case s= 8. At the present
moment, the reason for the non-monotonous behaviour of s= 8 is unclear. It could be
related to a decrease in the value of Reλ for this case. Another possible explanation
could be the onset of interferences of the finite size of the computational domain
with the evolution of the mixing layer.

Not surprisingly, the behaviour of ρ2
rms shown in figure 11(b) suggests that ρ2

rms is
governed by the mean density gradients (figure 8b), analogous to the behaviour of
temperature and velocity fluctuations. As s increases, the rms around y/δw ≈ −0.5
(high-density side) increases, while the fluctuations around y/δw ≈ 0.5 (low-density
side) decrease. The behaviour is opposite to Rij (which are more intense near the
low-density side), which is consistent with the arguments of Brown & Roshko (1974)
for the shift and the asymmetry of the growth of the variable-density mixing layers.

Finally, figure 12 shows the profiles of the skewness, S, and kurtosis, K, of the
temperature and the velocity field. Since these profiles are more noisy than the second-
order moments beyond the edge of the mixing layer, figure 12 only shows them in
the region limited by 98 % of the free-stream velocity, indicated with vertical dotted
lines. For reference, the horizontal dashed lines represent the expected value for a
Gaussian distribution, i.e. S= 0 and K = 3. Due to the symmetry of the configuration
for the passive scalar case, s = 1, we expect an antisymmetric distribution for the
skewness and a symmetric distribution for the kurtosis. Deviations from this symmetry
in figure 12 are small and provide an impression of the convergence of the statistics.
Note also that the almost linear profile of θ in the centre of the mixing layer results
in Sθ ≈ 0 for the case with s= 1 (recall the broad maximum of the vertical gradient
of θ in figure 9).

Carlier & Sodjavi (2016) measured the skewness and kurtosis in a spatially
developing mixing layer. Their neutral case is comparable to the present passive
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FIGURE 12. (Colour online) (a) Skewness distribution and (b) kurtosis distribution of
temperature θ . (c) Skewness distribution and (d) kurtosis distribution of streamwise
velocity u. (e) Skewness distribution and ( f ) kurtosis distribution of vertical velocity v.
Different colours correspond to different density ratios: black, s = 1; blue, s = 2; green,
s= 4; and red, s= 8.

scalar case. They distinguish between two zones. First, a mixed region in the central
part, characterized by a moderate slope of the temperature skewness profile and
an almost constant value of all kurtosis profiles. The value of K in this region is
somewhat smaller than the Gaussian value. Second, the entrained region in the outer
part that presents higher slopes of the temperature skewness profile than the mixed
region, and also steep gradients of all kurtosis profiles. All these features are clearly
observed in the present profiles for the passive scalar case.

Overall, increasing s results in a shift of the profiles of S and K to the low-density
side, for both temperature and velocity. This is especially clear in Su, Sv and Kv,
which show small variations on the shape of the profiles (see figure 12c,e, f ). For the
skewness of the temperature (see figure 12a) we can observe the same shift, and a
gradual increase of Sθ on the high-density half of the central region of the mixing
layer. This is probably a consequence of the narrowing of the maximum of ∂θ/∂y with
s, and its displacement towards the high-temperature (low-density) side: a sharper edge
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on the high-temperature side makes it more likely for a pocket of high-temperature
fluid to be entrained into the mixing layer, biasing Sθ towards positive values. It is
also interesting to observe that, on top of the shifting, Kθ and Ku show some changes
in their shape with s. In particular, both kurtosis values become larger in the high-
density half of the mixing layer (y . 0). This can be interpreted as an increase in
the intermittency of u and T , and it suggests that mixing becomes more difficult near
the high-density region as s increases, in agreement with the qualitative arguments of
Brown & Roshko (1974) regarding the reduced velocity fluctuations near the denser
stream. As a result, the size of the well-mixed region (i.e., with values of K below
the Gaussian threshold) is reduced.

4.5. Turbulence structure
We provide now visualizations to obtain an impression of the changes in the turbulent
structures of the mixing layer induced by the density ratio. Instantaneous fields of the
temperature and velocity field are shown using vertical planes (figures 13 and 15 for θ
and u, respectively) and horizontal planes (figures 14 and 16 for θ and u at the plane
y= 0, respectively). Note that all visualizations correspond to the same time snapshot
and same plane locations. For case s= 1, in which the temperature is a passive scalar,
the visualization in figure 13(a) shows the typical features of a turbulent mixing layer,
with patches of mixed fluid in the central region alternating with patches of unmixed
fluid that are entrained from both streams. The presence of quasi-2D rollers is visible
in both temperature (figure 13a) and velocity (figure 15a) visualizations, but maybe
more clearly so in the midplane visualization of the temperature shown in figure 14(a).

On the other hand, the presence of the quasi-2D rollers in the u velocity (figure 15a)
is masked by the formation of more elongated structures, similar to the streaky
structures observed in other free and wall-bounded turbulent shear flows (Lee, Kim
& Moin 1990; Flores & Jiménez 2010; Sekimoto, Dong & Jiménez 2016).

Increasing the density ratio produces small changes in the flow visualizations. The
quasi-2D rollers are also observed for s= 2, 4 and 8 in both temperature (figure 13b–
d) and velocity (figure 15b–d). Also, in agreement with the results discussed in § 4.3,
the mixing layer shifts upwards (towards the low-density side) with increasing s, as
can be observed in figures 13 and 15. In addition, the temperature field becomes
somewhat smoother at small scales. This fact is reflected in the lower value of Reλ
obtained in the cases with large s, as shown in table 1.

The shift of the mixing layer is also apparent in the visualization of the y= 0 plane
shown in figures 14 and 16. With increasing s, the temperature field at this height
is increasingly dominated by patches of fluid entrained from the lower stream, while
the mean value of the u field drifts to positive values. The footprint of the quasi-2D
rollers is also clear in the temperature field (figure 14) for all density ratios, while
this footprint becomes less apparent in the u velocity as s increases (figure 16).

Finally, it is interesting to observe in figure 15 that the turbulence within the mixing
layer produces irrotational perturbations into the free stream, with characteristic sizes
of the order of δw. This potential perturbations are relatively weak, and are highlighted
in figure 15 by contours of u=±1U (in black).

In order to quantify the changes in the structure of the turbulent motions in the
mixing layer due to the density ratio, we proceed to analyse the one-dimensional
spectra of velocity and temperature fluctuations: Eii(kx, y) and Eii(kz, y) for i = u, v
and T (no summation). These spectra are computed during runtime, as functions of
kxδ

0
m, kzδ

0
m, y/δ0

m and t. Then, during post-processing, these spectra are interpolated
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FIGURE 13. (Colour online) Visualization of θ on an xy-plane, at the beginning of the
self-similar evolution. The corresponding density ratios and times are (a) s= 1, t1U/δ0

m=

400; (b) s= 2, t1U/δ0
m = 418; (c) s= 4, t1U/δ0

m = 455; and (d) s= 8, t1U/δ0
m = 570.

into wavenumbers and vertical distances normalized with δw(t), and averaged
(ensemble and in time) for the self-similar evolution of the mixing layer. The smallest
wavenumbers considered in the interpolation are k0

xδw ≈ 0.4–0.5 and k0
z δw ≈ 1.1–1.3,

depending on the density ratio.
Figure 17 shows the premultiplied spectra (kxEii and kzEii), as a function of the

vertical position in the mixing layer and the streamwise or spanwise wavelength, λx=

2π/kx and λz= 2π/kz. The spectra is premultiplied by the wavenumber so that, when
plotted in log-scale for the wavelength, the area under the surface corresponds to the
actual energy content of a given range of wavelengths. The contours plotted in the
figure correspond to 20 % and 40 % of the maxima among all cases, so that they
represent equal levels of energy density for all cases. The small inset to the right of
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FIGURE 14. (Colour online) Visualization of θ on an xz-plane at y= 0, at the beginning
of the self-similar evolution. The corresponding density ratios are (a) s = 1, (b) s = 2,
(c) s= 4, (d) s= 8. Times as in figure 13.
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FIGURE 15. (Colour online) Visualization of streamwise velocity on an xy-plane, at the
beginning of the self-similar evolution. The corresponding density ratios are (a) s = 1,
(b) s= 2, (c) s= 4, (d) s= 8. Times as in figure 13. The black lines show contours of
u=±1U/2.

each panel shows the energy in wavenumbers smaller than k0
x and k0

z ,

EL
ii(y)=

k0
x∑

kx=0

Eii(kx, y) and EW
ii (y)=

k0
z∑

kz=0

Eii(kz, y). (4.10a,b)

From a physical point of view, these two quantities roughly correspond to the energy
in structures that are infinitely long (EL

ii) or wide (EW
ii ).

For the incompressible case, figure 17 shows that the spectra of u tend to be longer
than wide, while the spectra of v and T tend to be wider than long, consistently with
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FIGURE 16. (Colour online) Visualization of streamwise velocity on an xz-plane at y= 0,
at the beginning of the self-similar evolution. The corresponding density ratios are (a) s=
1, (b) s= 2, (c) s= 4, (d) s= 8. Times as in figure 13.

the visualizations shown in figures 14 and 16. Indeed, both T and v show considerably
more energy on structures that are wide (λz > 2π/k0

z ≈ 5δw) than in structures that
are long (λx > 2π/k0

x ≈ 12δw), which is shown by EW
vv > EL

vv and EW
TT > EL

TT . It is
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FIGURE 17. (Colour online) Vertical distribution of the premultiplied spectral energy
distribution of velocity and temperature. (a) kxETT(λx, y). (b) kzETT(λz, y). (c) kxEuu(λx, y).
(d) kzEuu(λz, y). (e) kxEvv(λx, y). ( f ) kzEvv(λz, y). The inset to the right of each panel
shows the energy in wavenumbers not included in the corresponding panel (see text for
discussion). The contours plotted correspond to 20 % (solid) and 40 % (dashed) of the
maxima of all the spectra shown in each panel. Different colours correspond to different
density ratios: black with shading, s= 1; blue, s= 2; green, s= 4; and red, s= 8.

also apparent in figure 17 that the spectra of v is shifted towards smaller scales with
respect to the spectra of u and T , both in λx and λz. In terms of the vertical extension
of the spectra, figure 17(a,b) show that the temperature spreads over |y|. 0.8δw, while
u and v are limited to a narrower region (|y|. 0.5δw), in agreement with the results
shown in figure 10. Interestingly, figure 17(e) shows that Evv has a larger spread in
the vertical direction, at about λx ≈ 4δw. Careful inspection of figure 17(e, f ) shows
that those peaks correspond to infinitely wide structures (kz = 0): note that Evv(λz, y)
at y = 0.7δw has little energy (i.e., below the 20 % contour), while EW

vv at the same
height is still important (i.e., around 50 % of the maximum of EW

vv).
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Although not shown here, instantaneous visualizations of v show that these
wavelengths (λx ≈ 4δw, λz → ∞) roughly correspond to potential perturbations of
v into the free stream, analogous to the potential perturbations of u highlighted in
figure 15.

As the density ratio increases, figure 17(a,b) show that the spectra of the
temperature gradually shifts towards the low-density side (see the contours of 20 % in
the figures). The shift occurs first on the high-density edge of the spectrum (y < 0),
and a bit later on the low-density side (y > 0). Note that for y/δw & 0.25, there are
little differences between the spectra of the s= 1 and s= 2 cases, consistent with the
agreement of T2

rms in figure 10(d) in these same vertical locations. In terms of the
effect of s in the streamwise and spanwise wavelengths, figure 17(a) shows that the
longest scales in the high-density side are gradually inhibited (λx/δw ≈ 5–10, y ≈ 0).
The same effect, although weaker, is also present in the spanwise wavelengths
(figure 17b). In terms of the small scales, figure 17(a,b) suggest that the effect of s
is stronger on λz than on λx. This could be related to the fact that the small scales
in x are not only due to turbulent fluctuations (i.e., vortices), but to the formation
of sharp gradients ∂T/∂x, due to the roll-up of the shear layer (see blue lines in
figures 13 and 14).

The behaviour of the spectra of u and v in figure 17(c–f ) is qualitatively similar
to that discussed for T , with all spectra shifting towards the low-density side, with
a gradual reduction of the energy in small scales (both λx and λz). There is also
a clear reduction of the energy of large scales near the high-density edge of the
mixing layer, more apparent for wide (λz/δw & 3–5) structures than for long structures
(λx/δw &5–10). The u and v spectra of cases s=1 and s=2 also agree reasonably well
near the low-density edge of the mixing layer (y& 0.25δw), except for the v spectrum
at about λx ≈ 4δw, suggesting that even a small change on the density ratio has an
important effect on the potential perturbations of the mixing layer into the free stream.

5. Conclusions

In this paper we have presented results from DNS of temporal, turbulent mixing
layers with variable density. The simulations are performed in the low-Mach-number
limit, so that temperature and density fluctuations develop while the thermodynamic
pressure remains constant. Four different density ratios are considered, s = 1, 2, 4
and 8, which are run in large computational boxes until they reach an approximate
self-similar evolution. To give an impression of the turbulence in these mixing layers,
during the self-similar evolution the Reynolds numbers based on the Taylor microscale
vary between Reλ = 140–150 for the case s = 1, and Reλ = 85–95 for the case with
the highest density ratio, s= 8.

The results of the simulations show that, in agreement with turbulent mixing layers
with higher velocities (and convective Mach number, Mc = 0.7), the growth rate of
the momentum thickness decreases with the density ratio. Note that at a given density
ratio, the momentum thickness of the low-Mach-number mixing layer will grow faster
than the subsonic one. However, the ratio between the growth rate for large density
ratios and the growth rate of the s= 1 case seems to be independent of the flow speed
in the range considered. For example, for s= 8, a 60 % growth reduction with respect
to s= 1 is obtained for both the present low-Mach-number case and the Mc= 0.7 case.

In terms of the visual thickness of the mixing layer, the effect of the density ratio
in the growth reduction with respect to the s = 1 case is smaller, and our results
agree with previous theoretical models for Mc = 0 and with the data of high-speed
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mixing layers. However, the growth rate reduction for low-density ratio (s= 2) is not
the same in the Mc = 0 and in the Mc = 0.7 cases from Pantano & Sarkar (2002).
This discrepancy could mean that compressibility effects are more dominant for low-
density ratios, but additional analysis of the subsonic cases is required to confirm this
conjecture.

The Favre-averaged profiles of velocity show that with increasing density ratio,
the gradients shift towards the low-density side. The behaviour is analogous to that
observed in high-speed mixing layers. Indeed, the velocity and density profiles of our
low-Mach-number cases agree qualitatively well with the high-speed cases when the
vertical distance is normalized with δm. There are some small differences in the mean
velocities near the low-density stream, and the density profiles of the high-speed
cases seem to be displaced with respect to the low-Mach-number profiles.

We have quantified the shifting of the Favre-averaged velocity profiles with respect
to the density profiles as the distance (∆) between the locations where velocity and
density are equal to the mid value between the free streams. Using our data, we
have also obtained an empirical relationship between ∆ and s, which we have used
to obtain a semi-empirical model for the reduction of momentum thickness growth
rate with the density ratio, see (4.9). This model uses the theoretical prediction of
the reduction of the vorticity thickness growth rate due to Ramshaw (2000). From a
physical point of view, the model assumes that the only effect of the density ratio is
a shift in the velocity profile, with no change on the shape of the density and velocity
profiles. Our data for Mc = 0 and the data of Pantano & Sarkar (2002) for Mc = 0.7
are in good agreement with the model prediction, except for maybe the Mc= 0.7 case
at low density ratios (s≈ 2). It would be interesting to check the validity of the model
prediction for higher density ratios.

The fluctuation profiles of the low-Mach-number cases show that, as expected, the
fluctuations follow the gradients.

While velocity and temperature shift towards the low-density region, density
fluctuations and gradients seem to concentrate near the high-density edge of the
mixing layer, consistently with the quantitative arguments of Brown & Roshko (1974)
for the asymmetric growth of variable-density mixing layers.

The analysis of the skewness and the kurtosis of the fluctuations shows that,
increasing the density ratio, the well-mixed region that appears in the central region
of the case s = 1 becomes narrower, since mixing becomes more difficult near the
high-density side as the density ratio is increased.

Finally, the flow structures have been analysed using flow visualizations and
premultiplied spectra. The spectra shows that with increasing density ratio there is a
shift of the turbulent structures towards the low-density side, while the longest scales
in the high-density side are gradually inhibited. A gradual reduction of the energy in
small scales with increasing density ratio is also observed. This effect is consistent
with the reduction of Reλ with increasing density ratio mentioned above.
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Appendix A. Numerical method
In this section, we describe the equations and algorithms implemented in the

in-house code employed in this work for solving temporal mixing layers under the
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low-Mach-number approximation. The governing equations for a variable-density flow
with constant fluid properties under the low-Mach-number approximation can be
written in the following dimensionless form,

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (A 1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=−

∂p(1)

∂xi
+

1
Re
∂τij

∂xj
, (A 2)

∂T
∂t
+ ui

∂T
∂xi
=

T
Pe
∇

2T, (A 3)

ρT = 1, (A 4)

where all variables are non-dimensionalized by the initial momentum thickness δ0
m, the

characteristic velocity 1U and the physical magnitudes at the reference temperature,
T0, and pressure, p(0) = ρ0RT0, namely ρ0, µ, Cp and κ . Therefore, the dimensionless
numbers appearing here are defined as

Re=
ρ01Uδ0

m

µ
, (A 5)

Pe=
ρ0Cp1Uδ0

m

κ
= PrRe. (A 6)

Note that p(1) in (A 2) is the mechanical pressure, different from the thermodynamic
pressure, p(0), as discussed in the Introduction. In order to eliminate the mechanical
pressure p(1) from the equations, first a Helmholtz decomposition is applied to the
momentum vector

ρu=m+∇ψ, (A 7)

with m being a divergence-free component, so that

∂mx

∂x
+
∂my

∂y
+
∂mz

∂z
= 0, (A 8)

and ∇ψ is a curl-free component. Similar to the formulation developed by Kim et al.
(1987) for incompressible flow, we define

φ =∇2my, (A 9)

Ωy = ∇×m|y =
∂mx

∂z
−
∂mz

∂x
. (A 10)

The evolution equations for these two variables are obtained by proper manipulation
of (A 1)–(A 2). This leads to a system of four evolution equations for the variables φ,
Ωy, T and ρ together with the equation of state (A 4),

∂φ

∂t
= F(ρ, uj)=

∂2Ny

∂x2
+
∂2Ny

∂z2
−
∂

∂y

(
∂Nx

∂x
+
∂Nz

∂z

)
−

1
Re
∇

2(∇×ω)
∣∣

y , (A 11)

∂Ωy

∂t
=M(ρ, uj)=

∂Nx

∂z
−
∂Nz

∂x
+

1
Re

(
∇

2ωy
)
, (A 12)
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∂T
∂t
= E(ρ, uj)=−u · ∇T +

T
Pe
∇

2T, (A 13)

∂ρ

∂t
=C(ρ, uj)=−∇ · (ρu)=−∇2ψ, (A 14)

where Ni =−∂(ρuiuj)/∂xj and ω is the vorticity.
The manipulations to obtain (A 11)–(A 12) involve taking spatial derivatives of

the momentum equations. In this process, information concerning the horizontally
averaged momentum vector is lost, requiring additional equations to keep this effect.
Averaging (A 2) over the homogeneous directions x and z, we obtain equations for
〈ρu〉 and 〈ρw〉,

∂〈ρu〉
∂t
=−

∂〈ρuv〉
∂y
+

1
Re
∂〈τxy〉

∂y
, (A 15)

∂〈ρw〉
∂t
=−

∂〈ρvw〉
∂y

+
1

Re
∂〈τzy〉

∂y
. (A 16)

Averaging (A 1) over the homogeneous directions x and z and integrating in y we
obtain an equation for 〈ρv〉,∫ y

−∞

∂〈ρ〉

∂t
dy=−

∫ y

−∞

∂〈ρv〉

∂y
dy= 〈ρv〉b − 〈ρv〉(y). (A 17)

Note that 〈ρu〉, 〈ρv〉 and 〈ρw〉 correspond to the kx=0 and kz=0 modes of the Fourier
expansions in x and z. These variables are, in principle, functions of y and t.

The algorithm to solve (A 11)–(A 14) is split into two parts. First, we employ an
explicit, low-storage, three-stage Runge–Kutta scheme for (A 11)–(A 13), that for the
ith stage reads

φi
= φi−1

+ γi1tF(ρ, uj)
i−1
+ εi1tF(ρ, uj)

i−2,

Ω i
y =Ω

i−1
y + γi1tM(ρ, uj)

i−1
+ εi1tM(ρ, uj)

i−2,

T i
= T i−1

+ γi1tE(ρ, uj)
i−1
+ εi1tE(ρ, uj)

i−2,

 (A 18)

where γi = (8/15, 5/12, 3/4) and εi = (0,−17/60,−5/12) are the coefficients of the
explicit scheme (Spalart, Moser & Rogers 1991). For (A 14) we employ an implicit,
low-storage, three-stage Runge–Kutta scheme, that for the ith stage reads

ρ i
= ρ i−1

−1t
(
αi∇

2ψ i−1
+ βi∇

2ψ i
)
, (A 19)

where αi = (5/66, 17/15, 1/22) and βi = (151/330,−1, 19/66) are the coefficients of
the implicit scheme, optimized to enhance the stability of the code in a similar way as
Jang & de Bruyn Kops (2007). Note that this equation is a Poisson problem for ψ i if
ρ i is known. However, from the point of view of mass conservation, it is beneficial to
express ρ i

− ρ i−1 in terms of the temperature, and use the fact that ∇2ψ =−∂ρ/∂t=
T−2∂T/∂t= T−2E(ρ, uj), yielding

∇
2ψ i
=

1
βi1t

T i
− T i−1

T iT i−1
−
αi

βi

(
E(ρ, uj)

T2

)i−1

. (A 20)
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With this formulation, we are assuring that the energy equation acts as a constraint
for the continuity equation (as suggested by Nicoud 2000), keeping both equations
synchronized at every time step.

From (A 18) we obtain φi, Ω i
y and T i. Using (A 4) we obtain ρ i, and solving the

Poisson problem (A 19) we obtain ψ i. In order to compute the right-hand side of
(A 11)–(A 13), the velocity and the vorticity are needed. The velocity is constructed as
follows. First, knowing φ we solve the Poisson problem (A 9) to obtain my. Knowing
Ωy, we can solve (A 8) and (A 10) to obtain mx and mz. Finally, knowing ψ and ρ,
from the definition, equation (A 7), we obtain the velocity field and, by differentiation,
the vorticity field.

A.1. Boundary conditions: entrainment
As discussed in the main text, the velocity and density fluctuations should tend to zero
as y→±∞. We impose

ρ = ρb, u=1U/2, w= 0 at y→−∞,
ρ = ρt, u=−1U/2, w= 0 at y→∞.

}
(A 21)

Due to the entrainment there is a non-zero value of 〈ρv〉 at y→ ±∞. Integrating
(A 17) from −∞ to ∞ we obtain the total mass outflow, Φ, as

Φ =

∫
∞

−∞

∂〈ρ〉

∂t
dy= 〈ρv〉b − 〈ρv〉t. (A 22)

It is possible to express the total mass outflow as a function of the vertical entrainment
ratio, Ev =−〈v〉b/〈v〉t, as

Φ = 〈ρv〉b

(
1+

1
Evs

)
. (A 23)

Dimotakis (1986) suggests that, for a variable-density temporal mixing layer, the
entrainment ratio should be equal to the square root of the density ratio, an argument
attributed to Brown (1974). Using this result and computing during runtime the value
of Φ we obtain 〈ρv〉b from (A 23) and 〈ρv〉t = 〈ρv〉b − Φ. Note that during the
self-similar evolution, since ρ should scale with ρb− ρt and the thickness of the layer
grows linearly with time, the value of Φ should remain constant. Therefore, during
the self-similar evolution the values of 〈ρv〉t and 〈ρv〉b should be constant as well.

Appendix B. Variable-density laminar mixing layer: self-similar solution
In this appendix we present the procedure followed to obtain a self-similar solution

for a laminar temporal mixing layer. The configuration is the same discussed in the
body of the paper for the turbulent mixing layer: two opposing streams with a velocity
difference 1U and a density ratio s. The differences with respect to equations (2.1)–
(2.4) are that the spanwise velocity is w= 0, and that the rest of the fluid variables are
only functions of the vertical coordinate, y, and time, t. Then, the equations governing
the problem are

∂ρ

∂t
+
∂ρv

∂y
= 0, (B 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.583


Variable-density DNS 599

∂u
∂t
+ v

∂u
∂y
= T

µ

ρ0T0

∂2u
∂y2
, (B 2)

∂T
∂t
+ v

∂T
∂y
= T

k
ρ0CpT0

∂2T
∂y2

, (B 3)

plus the equation of state ρT = ρ0T0. In these equations µ is the dynamic viscosity, κ
is the thermal conductivity and Cp is the specific heat at constant pressure. Note that
the vertical component of the momentum equation is not included, since it introduces
an additional unknown, the mechanical pressure p(1)(y, t). The boundary conditions are
the same as for the turbulent mixing layer, with velocity and density (temperature)
going to the free-stream values when y→±∞.

In order to solve the system of coupled partial differential equations given by (B 1)–
(B 3) we define the density-weighted vertical coordinate,

ξ =
1
ρ0

∫ y

−∞

ρ dy. (B 4)

We also define a characteristic length for the problem, based on the kinematic
viscosity (ν = µ/ρ0) and time, δ =

√
νt. Then, using ξ and δ it is possible to recast

equations (B 1)–(B 3) into a self-similar set of equations in which the time dependence
is absorbed into the self-similar coordinate η= ξ/δ,

∂V
∂η
+
η

2
∂Θ

∂η
= 0, (B 5)

∂U
∂η

η

2
+
∂

∂η

(
1
Θ

∂U
∂η

)
= 0, (B 6)

∂Θ

∂η

η

2
+

1
Pr

∂

∂η

(
1
Θ

∂Θ

∂η

)
= 0, (B 7)

where U=u/1U, V= v/
√
ν/t, Θ=T/T0 and Pr is the Prandtl number. The boundary

conditions for U(η) and Θ(η) are U(±∞)=∓0.5, Θ(+∞)= (1+ s)/2 and Θ(−∞)=
(1+ 1/s)/2. Interestingly, in the self-similar set of equations, V appears only in the
continuity equation, allowing one to solve for U(η) and Θ(η) using the momentum
and energy equations only. Unfortunately, the equations only admit analytical solution
when s= 1. For other values of s, equations (B 6) and (B 7) are solved together using
Chebyshev polynomials (Driscoll, Bornemann & Trefethen 2008).
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