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FREE AMALGAMATION AND AUTOMORPHISM GROUPS

ANDREAS BAUDISCH

Abstract. We show that the class of graded c-nilpotent Lie algebras over a fixed field K is closed under
free amalgamation. In [1] this result was applied, but its proof was incorrect. In case of a finite field K we
obtain a Fraı̈ssé limit of all finite graded c-nilpotent Lie algebras over K . This gives an example for the
following more general considerations. The existence of free amalgamation for the age of a Fraı̈ssé limit
implies the universality of its automorphism group for all automorphism groups of substructures of that
Fraı̈ssé limit. We use [6] and [5].

§1. Introduction. We consider graded Lie algebras A over a fixed field K in the
language LLie of vector spaces over K extended by a function symbol [x, y] for the
Lie multiplication and unary predicates Ui with 1 ≤ i < �, such that

A =
⊕

1≤i<�
Ai

as a vector space, where Ai is the interpretation of Ui and [a, b] ∈ Ai+j , if a ∈ Ai
and b ∈ Aj . We say that the elements ofAi \{0} have degree i. A graded Lie algebra
A is c-nilpotent, ifAi = 〈0〉 for c < i . In this case we useUi only for i ≤ c. We show,
that the class of c-nilpotent graded Lie algebras over K considered in this language
is closed under free amalgamation.
For finiteK and c fixed we get the Fraı̈ssé limit of all finite c-nilpotent graded Lie
algebras over K . This is an example for the following more general investigations
in the paper.
Let L be a countable elementary language. Let M0 be a Fraı̈ssé limit in L. Eric
Jaligot [4] asked whether the group Aut(M0) of automorphisms ofM0 is universal
for all groupsAut(M ), whereM is a substructure ofM0. He proved this for random
tournaments. The first example is the Urysohn space [7]. Also for Fraı̈ssé limits in
relational languages it is true [3], if there is free amalgamation for the age.
We introduce the free amalgam A ⊗B C for a class J of L-structures, where L
is arbitrary (Section 2). In this general situation we use other considerations than
in [3].
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FREE AMALGAMATIONAND AUTOMORPHISMGROUPS 937

If we have free amalgamation in the age of a Fraı̈ssé limit M0, we can define
A |�B

C for finite subsets ofM0 by

〈ABC 〉 = 〈AB〉 ⊗〈B〉 〈BC 〉.

〈X 〉 denotes the substructure generated by X . We show that this is a stationary
independence relation in M0 in the sense of K. Tent and M. Ziegler [6]. For rela-
tional languages this was an example in [6]. We note, that Mon is a consequence
of the remaining properties in general. If furthermore the age of M0 is uniformly
locally finite, then we have free amalgamation for the substructures of the mon-
ster model C of Th(M0) and it gives a stationary independence relation for the
subsets of C. That means we have all properties of nonforking in a stable theory
except that local character and boundedness is replaced by the stronger prop-
erty stationarity. But the examples we discuss below have the tree property of the
second kind.
We use a new idea, developed by Isabel Müller in [5]. LetM0 be a Fraı̈ssé limit as
above. She proved, that the existence of a stationary independence relation for finite
subsets of M0 in the sense of K. Tent und M. Ziegler [6] implies the universality
of Aut(M0) for all Aut(M ), where M is a substructure of M0. The stationary
independence relation is used to reconstruct the Fraı̈ssé limit M0 from a given
substructureM using the so-called Katetov extensions. In general the embedding
ofM in M0 will change. We apply I. Müller’s result to Fraı̈ssé limits M0 with free
amalgamationand obtain the universality ofAut(M0) for all groupsAut(M ), where
M ⊆M0 (Section 3).
In Section 4 we prove the existence of the free amalgam for the class of c-nilpotent
graded Lie algebras over a field K in a language LLie with extra predicates for the
graduation. Unfortunately, the proof of this result in [1] is incorrect. The existence
of the free amalgam for all graded Lie algebras over a given field follows. We get
a Fraı̈ssé limit M0 of the finitely generated c-nilpotent graded Lie algebras over a
finite field K . Then the free amalgam gives a stationary independence relation in
M0 and it follows that Aut(M0) is universal for all {Aut(M ) : M ⊆ M0}. For
c-nilpotent graded associative algebras even amalgams do not exists in general, as
a counterexample in Section 5 shows.
In the last section we consider c-nilpotent groups of exponent p > c with extra
predicates for a central Lazard series. As shown in [1] the results for graded Lie alge-
bras imply the existence of the free amalgam for all these groups. The Fraı̈ssé limit
GU0 exists for these groups and the free amalgam gives a stationary independence
relation. Hence Aut(GU0 ) is universal for {Aut(GU ) : GU ⊆ GU0 }. Let G0 be the
reduct ofGU0 to the language of group theory. Using the lower central series we can
transform each c-nilpotent group of exponent p > c to a structure of the extended
language. Hence G0 is universal for all at most countable c-nilpotent groups of
exponent p > c. Since the upper and lower central series in G0 coincide, the extra
predicates are 0-definable inG0. ThereforeAut(G0) is universal for allAut(G) where
G is a subgroup ofG0. Note that the elementary theories ofM0 (Lie algebras),GU0 ,
and G0 have the tree property of the second kind (see [2]).
I would like to thank Martin Ziegler for helpful discussions of the results,
especially for a shorter proof of Lemma 3.2.
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§2. Free Amalgamation. Let K be a class of finitely generated L-structures. K is
the age (or skeleton) of a L-structure M , if K is the class of all L-structures that
are isomorphic to a finitely generated substructure ofM . In this paper L and K are
always countable.

Definition 2.1. M is K-saturated, if K is the age ofM and if for all B, A in K
and all embeddings f0 : B → M , f1 : B → A there is an embedding g : A → M
such that f0 = g ◦ f1.
Then the following is well-known:

Fact 2.2. CountableK-saturated structures are isomorphic. LetM0 be a countable
K-saturated structure. It is ultrahomogeneous. That means an isomorphism between
finitely generated substructures ofM0 can be extended to an automorphism.Conversely
countable ultrahomogeneous structuresM0 areK-saturated, whereK is the age ofM0.
M0 is K-universal: Every countable L-structure with an age included in K can be
embedded.

This fact implies that the quantifier free n-type of an n-tuple implies the full
n-type inM0. But this is not quantifier elimination for Th(M0).

Fact 2.3. There is a countable K-saturated L-structureM0 if and only if K has
the following properties:

HP:Hereditary Property For A in K we have age(A) ⊆ K.
JEP: Joint Embedding Property For A and C in K there are some D ∈ K and
embeddings f0 : A→ D and f1 : C → D.
AP: Amalgamation Property Assume g0 : B → A and g1 : B → C are embed-
dings forA,B,C ∈ K. Then there are someD inK and embeddingsf0 : A→ D
and f1 : C → D such that f0 ◦ g0 = f1 ◦ g1 for B.

M0 in Fact 2.3 is called the Fraı̈ssé limit of K. By Fact 2.2 it is unique up to
isomorphisms.

Definition 2.4. APS:We have the strong amalgamation property forK if in AP
f0(A) ∩ f1(C ) = f0 ◦ g0(B) = f1 ◦ g1(B) holds.
Fact 2.5. Assume L is finite, K is uniformly locally finite, and a K-saturated
L-structureM0 exists. Then Th(M0) is ℵ0-categorical and allows the elimination of
quantifiers.

For the next considerations we assume again, thatL is countable and J is a class
of L-structures.

Definition 2.6. LetA,B,C,D ∈ J and assume thatB is a common substructure
of A and C . If D is generated by A and C with A ∩ C = B, then D is the free
amalgam of A and C over B (short D = A⊗B C ) in J , if for all homomorphisms
f : A → E and g : C → E into some E ∈ J with f(b) = g(b) for b ∈ B there is
a homomorphism h : D → E that extends f and g.
J is closed under free amalgamation, if for A,B,C ∈ J and embeddings
g0 : B → A and g1 : B → C , there exists a free amalgam A′ ⊗B′ C ′ in J and
isomorphisms f0 : A → A′ and f1 : C → C ′ , such that f0 ◦ g0(b) = f1 ◦ g1(b)
for b ∈ B maps B onto B ′.
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The free amalgam is a strong amalgam by definition. The homomorphism
h : D → E in the definition is unique, since D is generated by A and C . Note
that A ⊗B C is uniquely determined up to isomorphisms, if it exists. If L is rela-
tional andJ is the class of allL-structures, then the free amalgam exists. Its domain
is the union of A and C with intersection B and the only relations are the old rela-
tions fromA andC . In this paper we will consider free amalgams in the class graded
Lie algebras over fields and in the class of c-nilpotent groups of exponent p (c < p)
with extra predicates for a central Lazard series.
We add new constant symbols ea for a ∈ A \B eb for b ∈ B and ec for c ∈ C \B
to the language L and assume that we have the same symbols for the elements
of B as a substructure of A and of C , respectively. Using these constant symbols
we define the diagrams Dia(A) and Dia(C )–the sets of all atomic sentences and
negated atomic sentences in this enriched language that are true in A respectively in
C , if we interpret the new constant symbols by the elements they represent.
We say that J is ∀-elementary, if it is elementary and its elementary theory is
universal. It is equivalent to say thatJ is elementary and closed under substructures.

Definition 2.7. Let ΣJ (A,B,C ) be the union of Dia(A) and Dia(C ) with all
negated atomic sentences ea 
= ec for a ∈ (A \ B) and c ∈ (C \ B) and all
negated atomic sentences ¬φ(ēā , ēb̄ , ēc̄), where ā ⊆ A, b̄ ⊆ B, and c̄ ⊆ C and
there are homomorphisms f and g of A and C respectively into some E ∈ J with
f(b) = g(b) for b ∈ B, such that E |= ¬φ(f̄(ā), f̄(b̄), ḡ(c̄)).

Lemma 2.8. (1) Assume J is closed under substructures. For A,B,C ∈ J the
free amalgamA⊗B C exists in J if and only if ΣJ (A,B,C ) has a model in J .

(2) Let J be an ∀-elementary class such that substructures of finitely generated
structures in J are again finitely generated. Then J is closed under free amal-
gamation if and only if the finitely generated structures in J are closed under
free amalgamation.

(3) LetL be finite andK be a countable class of finitely generated L-structures that
are uniformly locally finite. Assume a K-saturated modelM0 exists. Let J be
the class of the substructures of the models of Th(M0). IfK is closed under free
amalgamation, then J is closed under free amalgamation.

Proof. (1) A⊗B C models ΣJ (A,B,C ). IfM is a model of ΣJ (A,B,C ) inJ ,
then let D be the substructure ofM generated by the interpretations of the
constant symbols ea , eb, ec .D is in J by assumption.D is a strong amalgam
ofA andC overB.D is free, since ΣJ (A,B,C ) contains the set of conditions
we need to extend every given pair of homomorphisms.

(2) To show the nontrivial direction it is sufficient to prove that ΣJ (A,B,C )
is consistent with Th(J ), since J is closed under substructures, as it is
∀-elementary. Because J is elementary we can use compactness. Let Σ0 be
a finite subset of ΣJ (A,B,C ). Let A0 be the substructure of A generated by
all elements of A, that occur in a formula of Σ0 and C 0 the substructure of
C generated by all elements of C , that occur in a formula of Σ0. Let B1 be
〈(B ∩A0), (B ∩C 0)〉. B1 ⊆ B. By assumption B1 is finitely generated. Then
A1 = 〈A0, B1〉 and C 1 = 〈C 0, B1〉 are finitely generated. B1 is a common
substructure ofA1 andC 1. Since J is ∀- elementaryA1,B1, andC 1 are in J .
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By assumption A1 ⊗B1 C 1 = D1 exists in J . We claim thatD1 is a model of
Σ0. The formulas fromDia(A) andDia(C ) in Σ0 are satisfied inD1. Assume
we have ¬φ(ēā , ēb̄ , ēc̄) in Σ0, where ā ⊆ A \ B, b̄ ⊆ B, and c̄ ⊆ C \ B and
furthermore homomorphisms f and g of A and C respectively into some
E ∈ J with f(b) = g(b) for b ∈ B, such that E |= ¬φ(f̄(ā), f̄(b̄), ḡ(c̄)).
If we consider the restriction of f to A1 and of g to C 1, then f(b) = g(b)
for b ∈ B1. By the definition of the free amalgam

D1 |= ¬φ(ēā , ēb̄ , ēc̄),
as desired. Formulas ea 
= ec from Σ0 are satisfied in D1.

(3) J is the class of the models of the ∀ - elementary theory ofM0. Since K is
uniformly locally finite and L is finite, K is the class of finite structures in J .
We apply (2). �

§3. Stationary independence and universal automorphism groups. LetL be count-
able. K. Tent and M. Ziegler defined a stationary independence relation for the
investigation of automorphism groups in [6]. We consider finite subsets A,B,C,D
of a L-structureM .

Definition 3.1. A relationA |�B
C for finite subsets ofM is called a stationary

independence relation inM if it fulfils the following properties.

Inv: Invariance A |�B
C depends only on the type of A,B,C .

Mon:Monotonicity A |�B
CD implies A |�B

C and A |�BC
D.

Trans: Transitivity A |�B
C and A |�BC

D imply A |�B
CD.

Sym: Symmetry A |�B
C if and only if C |�B

A.
Ex: Existence ForA,B,C there is someA′ inM such that tp(A/B) = tp(A′/B)
and A′ |�B

C .
Stat: Stationarity If tp(A/B) = tp(A′/B), A |�B

C , and A′ |�B
C , then

tp(A/BC ) = tp(A′/BC ).

Lemma 3.2. Let A |�B
C be a relation on finite subsets of M , that satisfies all

properties of a stationary independence relation exceptMon. ThenMon follows.

Proof. We assume A |�B
CD. Applying Ex we get A′, such that A′ |�B

C and
tp(A′/B) = tp(A/B). Again by Ex there is some A′′ such that tp(A′′/BC ) =
tp(A′/BC ) and A′′ |�BC

D. By Inv A′′ |�B
C . By Trans A′′ |�B

CD. Since
tp(A′′/B) = tp(A/B) Stat implies tp(A′′/BCD) = tp(A/BCD). The assertion
follows from Inv. �
Note that Sym is not used in the proof above, as mentioned by the referee.
I. Müller combined the existence of a stationary independence relation with
Katĕtov’s construction [5]. She proved:

Theorem 3.3. IfM0 is a Fraı̈ssé limit and there exists a stationary independence
relation inM0, then Aut(M0) is universal for all Aut(N), where N is a substructure
ofM0.

We will see that free amalgams provide a stationary independence relation.
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Theorem 3.4. Let M0 be a Fraı̈ssé limit. We assume that the free amalgam of
finitely generated substructures ofM0 exists inM0 and define for finite subsetsA,B,C
ofM0:

A |�
B

C

if and only if
〈ABC 〉 = 〈AB〉 ⊗〈B〉 〈BC 〉.

Then |� is a stationary independence relation inM0.
Proof. By definitionA |�B

C if and only if 〈AB〉 |� 〈B〉〈BC 〉. Hence we assume
w.l.o.g. that A,B,C are finitely generated substructures.

Inv: It is clear since the free amalgam is uniquely determined by its isomorphism
type.
Sym: It follows directly from the definition.
Ex: Since the class of finitely generated substuctures ofM0 is closed under free
amalgamation andM0 is age(M0) - saturated we get Ex.
Stat: It is a consequence of the uniqueness of the free amalgam and
ultrahomogeneity.
Trans: By assumption 〈ABCD〉 = (〈AB〉 ⊗B 〈BC 〉) ⊗〈BC 〉 〈BCD〉. We show
that this structure is the free amalgam of 〈AB〉 and 〈BCD〉 over B. Let G be
a structure in age(M0). Let f0 be a homomorphism of 〈AB〉 into G and f1
be a homomorphism of 〈BCD〉 into G such that f0(b) = f1(b) for b ∈ B.
By A |�B

C there is a homomorphism g of 〈ABC 〉 into G , that extends f0
and f1 restricted to 〈BC 〉. Since g(e) = f1(e) for e ∈ 〈BC 〉, there is a
homomorphism h of 〈ABCD〉 into G , that extends g, f1, and therefore f0.
We get A |�B

CD, as desired.
Mon: It follows by Lemma 3.2. �
Using the Theorem of I. Müller we obtain:

Corollary3.5. LetM0 be aFraı̈ssé limit. Assume that the free amalgamof finitely
generated substructures ofM0 exists. Then Aut(M0) is universal for all substructures
N ⊆M0.
Definition 3.6. A relation A |�B

C for small subsets of a monster model C is
a stationary independence relation in C, if it fulfils Inv, Mon, Trans, Sym, Ex, Stat
and

Fin: Finite Character A |�B
C if and only if ā |�B

c̄ for all finite tuple ā in A
and c̄ in C .

A stationary independence relation in C has all properties of nonforking in a
stable theory except Local Character. Furthermore Boundedness is replaced by the
stronger property Stat. In the next chapter there are examples with the tree property
of the second kind.

Corollary 3.7. Let L be finite and K be a countable class of finitely generated
L-structures that are uniformly locally finite. Assume a K-saturated modelM0 exists
and C is a monster model of Th(M0). If K is closed under free amalgamation, then
the free amalgam for small subsets of C exists and defines a stationary independence
relation in C.
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Proof. Let J be the class of all substructures of models of Th(M0). Then K
is the class of the finitely generated structures in J . These structures are finite.
By Lemma 2.8(3) the free amalgam of substructures of C exists. The independence
relation for subsets of C is defined as above. All properties except Fin are shown
in the same way as in Theorem 3.4. Mon implies the assertion from the left to
the right of Fin. By Lemma 2.8(1) the other direction follows from the consis-
tency of Th(M0) ∪ ΣJ (A,B,C ). We use compactness and the consistency of all
Th(M0) ∪ ΣJ (〈āB〉, B, 〈c̄B〉) for all finite ā and c̄, similarly as in the proof of
Lemma 2.8 (2). �
We will apply the results of this section to the Fraı̈ssé limits of graded Lie
algebras over finite fields and of c-nilpotent groups of exponent p (c < p) with
extra predicates for a central Laszard series.

§4. Graded Lie algebras over fields. We consider graded Lie algebras A over a
fixed field K in the language LLie as described in the introduction.

Theorem 4.1. The class of c-nilpotent graded Lie algebras over a field K is closed
under free amalgamation.

Proof. Let J be the class of c-nilpotent graded Lie algebras over K . It is
∀-elementary and subalgebras of finitely generated algebras in J are again finitely
generated. By Lemma 2.8(2) it is sufficient to give a construction of a free amalgam
of A and C over B, where A, B, C are finitely generated c-nilpotent graded Lie
algebras over K and B is a common subalgebra.
We choose a vector space basis

XB = {bi,j : 1 ≤ i ≤ c, j < �i}
of B with Ui(bi,j). Then we extend XB by

XA = {ai,j : 1 ≤ i ≤ c, j < αi}
and

XC = {ci,j : 1 ≤ i ≤ c, j < �i}
with Ui(ai,j), Ui(ci,j) and XA ∩XC = ∅, such that XAXB is a vector space basis for
A and XBXC is a vector space basis of C . Let X be XAXBXC . We use the graded
set X as a set of free generators of the free c-nilpotent graded Lie algebra F (X ).
The elements of X are in Ui according to the definition above. Let JA be the ideal
in F (XBXA) generated by all equations [x, y] = z in A where x, y ∈ XBXA and
z is a linear combination of elements in XAXB ∩ Ui+j , if Ui(x) and Uj(y). Then
F (XAXB )/JA is isomorphic to A. Analogously we define JC in F (XBXC ), such
that F (XBXC )/JC is isomorphic to C . Let J be the ideal in F (X ) generated by
JA and JC .

Claim 1. A strong amalgam of A and C over B exists.

Claim 2. F (X )/J is the free amalgam of A and C over B.

First we show thatClaim 1 implies Claim 2. LetG0 be a strong amalgamofA0 and
C 0 over B0, such that there are isomorphisms hA : A→ A0 and hC : C → C 0 with
hA(b) = hC (b) for b ∈ B. hA and hC give us a map h0 of X into G0. We can extent
h0 to a homomorphism h of F (X ) ontoG0. The kernel of h contains J . HenceG0 is
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a homomorphic image of F (X )/J . Therefore F (X )/J contains isomorphic images
A′, B ′, C ′ of A,B,C respectively, such that A′ ∩ C ′ = B ′ and 〈A′, C ′〉 = F (X )/J .
Let fA and fC be any pair of homomorphisms of A′ and C ′ respectively into a
c-nilpotent graded Lie algebraG overK , such thatfA(b) = fC (b) for b ∈ B ′. If we
map the elements of X onto their fA- respectively fC -images in G , then we get an
homomorphism f of F (X ) into G . The kernel of f contains J by the definition of
JA and JC . Hence f induces the desired homomorphism of F (X )/J into G .
To prove Claim 1 we construct a strong amalgam directly step by step. We use
again XA, XB , and XC , where the αi , �i , and �i are finite. Now the underlying
vector space of the amalgam D is a vector space where X = XAXBXC is part of a
basis of this space. Note that the role of X has changed. Above it was a graded set
of free generators. Now XB is a vector space basis for the image of B in D, XBXA
is a vector space basis for the image of A in D, and XBXC is a vector space basis of
the image of C in D. For x ∈ X we have Ui(x) if and only if x = ai,j or x = bi,j
or x = ci,j for some j. i is the degree of x. The only problem is the definition of the
Lie multiplication for the elements of a vector space basis of D. Since multiplication
with elements fromUc gives 0, we can put all elements ofUc(X ) intoXB . Therefore
we assume w.l.o.g. that

αc = �c = 0.

First we solve the following essential case:

Major Case: XA = {a} and XC = {e} with Ui(a) , Uj(e), and i, j < c.
LetH be the free c-nilpotent graded Lie algebra overK freely generated by a and
e. The graduation is given by degree(a) = i , degree(e) = j, and degree([y1, y2]) =
degree(y1) + degree(y2) for monomials y1 and y2 in a, e , as usual. The elements
of Uk(H ) are linear combinations of monomials of degree k.

Fact 4.2. Since H is freely generated by a and e there is a subset Y of the set of
monomials over a and e such that:

(1) a and e are in Y .
(2) For y ∈ Y with y 
= a andy 
= e there arey1 andy2 inY such thaty = [y1, y2].
(3) Y is a vector space basis ofH .

This fact iswell known, even in the casewith graduation.You can chooseY as a set
of basic monomials. For us it is important that for every y ∈ Y there is a unique way
of construction starting with a and e. Hence we can use induction on the number
n(y) of Lie multiplications in the monomial y. Now XBY will be a vectorspace
basis of the amalgam D. Finally we have to extend the Lie multiplication for XB
and for Y to XBY , such that D becomes a Lie algebra with the given graduation.
We have only to consider [y, b] = −[b, y] for y ∈ Y and b ∈ XB . By induction on
the number n(y) of Lie multiplications in the monomial y we define [y, b] for all
b ∈ XB . We will have [y, b] ∈ B.
If y = a, then [y, b] is defined in A. Since Ak = Bk for i < k we have [y, b] ∈ B.
Analogously we get [y, b] ∈ B for y = e using the multiplication in C . For the
induction step we consider y = [y1, y2], where the definition for y1 and y2 is given
and the products are in B. With respect to the Jacobi identity we define

[[y1, y2], b] = [[y1, b], y2] + [y1, [[y2, b]].
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By induction [y1, b] = b1 ∈ B and [y2, b] = b2 ∈ B are defined. By the same
argument we get [b1, y2] ∈ B and [y1, b2] ∈ B.
We have to check the Jacobi identity. By the definition above we have only to
consider the case y ∈ Y and b, d ∈ XB . Again we use induction on n(y) to show
the Jacobi identity for y ∈ Y and all b, d ∈ XB . If y = a or y = e, then we are in
A or C respectively. Hence the Jacobi identity is true.
Nowwe assume thaty1 with any two elements ofXB and y2 with any two elements
of XB satisfy the Jacobi identity. We have to show:

(l = r):

[[[y1, y2], b], d ] = [[[y1, y2], d ], b] + [[y1, y2], [b, d ]] .

Using the inductive definition of [y, x] for y ∈ Y and x ∈ XB the right side can
be written as:

(r):

[[[y1, d ], y2], b] + [[y1, [y2, d ]], b] + [[y1, [b, d ]], y2] + [y1, [y2, [b, d ]]] .

Now we apply the definitions and the induction to the left side and obtain the
following identities. We use that [y1, b], [y2, b], [y1, d ], [y2, d ] ∈ B.
(l1):

[[[y1, b], y2], d ] + [[y1, [y2, b]], d ] =

(l2):

[[[y1, b], d ], y2] + [[y1, b], [y2, d ]] + [[y1, d ], [y2, b]] + [y1, [[y2, b], d ]] =

(l3):

[[[y1, d ], b], y2] + [[y1, [b, d ]], y2] + [[y1, [y2, d ]], b] + [y1, [b, [y2, d ]]] +

[[[y1, d ], y2], b] + [y2, [[y1, d ], b]]] + [y1, [[y2, d ], b] + [y1, [y2, [b, d ]]] .

After cancellation in (l3) we see that it is equal to (r) as desired. The proof for
the Major Case is finished. In fact we have constructed a free amalgam.

Reduction to XC = {e}: If the strong amalgam exists for all A, B and C =
〈XBe〉, then it exists for all A, B, and C .

We assume that the assertion is true forXC = {e}. We show by induction on c− i
that the strong amalgam exists for all XC with �j = 0 for j < i . The case c = i is
clear, since we have assumed that αc = �c = 0, as discussed above.
We fix i and assume that the assertion is true for i + 1. By a second induction on
the size of �i we reduce the problem to the case �i = 1. For induction step of this
induction let e = c�i−1 and C− be the subalgebra of C generated by XBXC \ {e}.
By the second induction there is a strong amalgam D− of A and C− over B. Now
we have to amalgamateD− and C over C−. This is the case XC = {e} and we can
apply the assumption in the claim.

Reduction to the Major Case: The Major Case implies the Reduction to
XC = {e}.

We can apply the same arguments to all situationsA, B andXC = {e} and come
to the Major Case. The assertion of Claim 2 and the theorem follow.
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Note that the proof of Claim 2 is a direct construction of a free amalgam. We
only have to check that all amalgams constructed are free. For this we use Trans. �
By compactness and Lemma 2.8(1) we obtain:
Corollary 4.3. The class of all graded Lie algebras over a given field K is closed
under free amalgamation.
Note that the class of finitely generated c-nilpotent graded Lie algebras over a
finite field is uniformly locally finite. Therefore it is countable. The size of the free
object with n free generators is an upper bound for the size of all c-nilpotent graded
Lie algebras over K with n generators.
Corollary 4.4. Let K be a finite field and K be the class of finitely generated
c-nilpotent graded Lie algebras over K . Then the following is true.
(1) A countableK-saturated structureM0 exists.
(2) In M0 the free amalgam of finitely generated substructures exists and is a
stationary independence relation.

(3) Aut(M0) is universal for all Aut(M ), where M is an at most countable
c-nilpotent graded Lie algebra over K .

Proof. We use Fact 2.3, Theorem 4.1, Theorem 3.4, and Corollary 3.5. All at
most countable c-nilpotent graded Lie algebras over K can be embedded inM0. �
Corollary 3.7 implies:
Corollary 4.5. IfK is a finite field,M0 is the Fraı̈ssé limit of all finitely generated
c-nilpotent graded Lie algebras and C is a monster model of Th(M0), then the free
amalgam defines a stationary independence relation in C. The theory has the tree
property of the second kind.
For the tree property of the second kind see [2].

§5. c-nilpotent graded associative algebras. Every Lie algebra has an universal
enveloping associative algebra. It was a first idea to prove that the amalgamation
property for associative algebras. The next example shows, that this is not true.
Lemma 5.1. c-nilpotent graded associative algebras do not have the amalgamation
property for 2 < c.
Proof. We use the language from graded Lie algebras over K , but for the mul-
tiplication of x and y we write xy. Let c = 3. We consider the free 3-nilpotent
graded associative algebras F freely generated by a0, a1, b0, b1, b2, b3, b4, b5, c, the
subalgebra FA freely generated by a0, a1, b0, b1, b2, b3, b4, b5, the subalgebra FB
freely generated by b0, b1, b2, b3, b4, b5, and the subalgebra FC freely generated by
b0, b1, b2, b3, b4, b5, c. The set of all xy where x and y are elements of the generating
set above is a vector space basis ofF2 and the set of all xyz where x, y, z are elements
of the generating set are a vector space basis for F3. To obtainA we factorize FA by
the idealJA generated by a0b0+a1b1.C is obtained fromFC using the ideal generated
by b0c+b2b4 and b1c+b3b5. The images of the bi ’s generate inA andC a subalgebra
isomorphic to FB . We call it B. An amalgam would be isomorphic to F/J , where
J is the ideal generated by JA and JC . But this contains a new relation in A:

(a0b0 + a1b1)c − a1(b1c + b3b5)− a0(b0c + b2b4) = −a1b3b5 − a0b2b4
a contradiction. �
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§6. c-nilpotent groups of exponent p > c. As in [1] we consider the class
c-nilpotent groups GUc,p of exponent p > c with extra unary predicates U1, . . . , Uc
for a central Lazard series. That means we have

G = U1(G) ⊇ · · · ⊇ Uc(G)
and

〈
⋃

l+k=n

[Ul (G), Uk(G)]〉 ⊆ Un ⊆ Zc+1−n.

Examples for central Lazard series are the lower central series Γi(G) and the
upper central series Zi(G). Then we have Γi (G) ⊆ Ui(G) ⊆ Zc+1−i(G). Without
the extra predicates this class of groups is denoted by Gc,p. It is well known that
the amalgamation property fails for Gc,p. In [1] strong amalgamation for GUc,p is
shown. A careful analysis of the proof shows that it is a free amalgam. The free
amalgamation of c-nilpotent graded Lie algebras over Fp is used (see Theorem 4.1
for a correct proof). Therefore we get:

Theorem 6.1. It holds:

(1) GUc,p has (HEP), (JEP), and the free amalgamation property.
(2) The Fraı̈ssé limit GU0 of the finite groups in G

U
c,p exists.

(3) Th(GU0 ) is ℵ0 - categorical and allows the elimination of quantifiers.
Let G0 be the reduct of GU0 to the language of group theory. Since Γn(G

U
0 ) =

Zc+1−n(GU0 ) = Un(G
U
0 ),Un(G

U
0 ) is inG0 0-definable. Furthermore everyG ∈ Gc,p

becomes a structure in GUc,p, if we define Un(G) = Γn(G). Hence we obtain:

Corollary 6.2. Th(G0) is ℵ0 - categorical and universal for all at most countable
G ∈ Gc,p.

By Theorem 3.4 and Corollary 3.5 we obtain

Theorem 6.3.

(a) In the monster model of Th(GU0 ) the free amalgam exists and is a stationary
independence relation.

(b) Aut(GU0 ) is universal for all Aut(N), where (N) is a substructure of G
U
0 .

The same arguments as for Corollary 6.2 imply

Corollary 6.4. Aut(G0) is universal for all Aut(G) for all at most countable
groups G ∈ Gc,p.
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[2] , Neostability properties of Fraı̈ssé limits of 2-nilpotent groups of exponent p > 2, arxiv

1406.2964.
[3] D. Bilge, Groupes D’automorphismes Des Structures Homogènes , PhD thesis, Universite Claude
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