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FREE AMALGAMATION AND AUTOMORPHISM GROUPS
ANDREAS BAUDISCH

Abstract. We show that the class of graded c-nilpotent Lie algebras over a fixed field K is closed under
free amalgamation. In [1] this result was applied, but its proof was incorrect. In case of a finite field K we
obtain a Fraissé limit of all finite graded c-nilpotent Lie algebras over K. This gives an example for the
following more general considerations. The existence of free amalgamation for the age of a Fraissé limit
implies the universality of its automorphism group for all automorphism groups of substructures of that
Fraissé limit. We use [6] and [5].

§1. Introduction. We consider graded Lie algebras A over a fixed field K in the
language L ;. of vector spaces over K extended by a function symbol [x, y] for the
Lie multiplication and unary predicates U; with 1 < i < w, such that

A:@Ai

1<i<w

as a vector space, where A; is the interpretation of U; and [a.b] € A;.;.ifa € A4;
and b € A;. We say that the elements of 4, \ {0} have degree i. A graded Lie algebra
A is c-nilpotent, if A; = (0) for ¢ < i.In this case we use U; only for i < ¢. We show.
that the class of c-nilpotent graded Lie algebras over K considered in this language
is closed under free amalgamation.

For finite K and ¢ fixed we get the Fraiss¢ limit of all finite c-nilpotent graded Lie
algebras over K. This is an example for the following more general investigations
in the paper.

Let L be a countable elementary language. Let M, be a Fraissé¢ limit in L. Eric
Jaligot [4] asked whether the group Aut(My) of automorphisms of Mj is universal
for all groups Aut(M ). where M is a substructure of M. He proved this for random
tournaments. The first example is the Urysohn space [7]. Also for Fraissé limits in
relational languages it is true [3], if there is free amalgamation for the age.

We introduce the free amalgam A ®p C for a class J of L-structures, where L
is arbitrary (Section 2). In this general situation we use other considerations than
in [3].
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If we have free amalgamation in the age of a Fraissé limit M,, we can define
A |, C for finite subsets of My by

(ABC) = (4B) &3 (BC).

(X') denotes the substructure generated by X. We show that this is a stationary
independence relation in M) in the sense of K. Tent and M. Ziegler [6]. For rela-
tional languages this was an example in [6]. We note, that Mon is a consequence
of the remaining properties in general. If furthermore the age of M is uniformly
locally finite, then we have free amalgamation for the substructures of the mon-
ster model € of Th(M,) and it gives a stationary independence relation for the
subsets of €. That means we have all properties of nonforking in a stable theory
except that local character and boundedness is replaced by the stronger prop-
erty stationarity. But the examples we discuss below have the tree property of the
second kind.

We use a new idea, developed by Isabel Miiller in [5]. Let M be a Fraiss¢ limit as
above. She proved, that the existence of a stationary independence relation for finite
subsets of M) in the sense of K. Tent und M. Ziegler [6] implies the universality
of Aut(My) for all Aut(M). where M is a substructure of M,. The stationary
independence relation is used to reconstruct the Fraissé limit M, from a given
substructure M using the so-called Katetov extensions. In general the embedding
of M in M will change. We apply 1. Miiller’s result to Fraissé limits M, with free
amalgamation and obtain the universality of Auz(M,) for all groups Aut(M ), where
M C My (Section 3).

In Section 4 we prove the existence of the free amalgam for the class of c-nilpotent
graded Lie algebras over a field K in a language L, with extra predicates for the
graduation. Unfortunately, the proof of this result in [1] is incorrect. The existence
of the free amalgam for all graded Lie algebras over a given field follows. We get
a Fraissé limit M of the finitely generated c-nilpotent graded Lie algebras over a
finite field K. Then the free amalgam gives a stationary independence relation in
M, and it follows that Aut(M,) is universal for all {Aut(M) : M C M,}. For
c-nilpotent graded associative algebras even amalgams do not exists in general, as
a counterexample in Section 5 shows.

In the last section we consider c-nilpotent groups of exponent p > ¢ with extra
predicates for a central Lazard series. As shown in [1] the results for graded Lie alge-
bras imply the existence of the free amalgam for all these groups. The Fraissé limit
G exists for these groups and the free amalgam gives a stationary independence
relation. Hence Aut(G) is universal for {Aut(GY) : GY C G{}. Let G be the
reduct of G to the language of group theory. Using the lower central series we can
transform each c-nilpotent group of exponent p > ¢ to a structure of the extended
language. Hence Gy is universal for all at most countable c-nilpotent groups of
exponent p > c. Since the upper and lower central series in Gy coincide, the extra
predicates are 0-definable in Gy. Therefore Aut(Gy) is universal for all Aut(G) where
G is a subgroup of Gy. Note that the elementary theories of M, (Lie algebras). G,
and Gy have the tree property of the second kind (see [2]).

I would like to thank Martin Ziegler for helpful discussions of the results,
especially for a shorter proof of Lemma 3.2.
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§2. Free Amalgamation. Let K be a class of finitely generated L-structures. K is
the age (or skeleton) of a L-structure M, if K is the class of all L-structures that
are isomorphic to a finitely generated substructure of M. In this paper L and K are
always countable.

DEerFINITION 2.1. M is K-saturated, if K is the age of M and if for all B, 4 in K
and all embeddings fy: B — M, f| : B — A thereis an embedding g : 4 — M
suchthatfo :gofl.

Then the following is well-known:

Facr2.2. Countable K-saturated structures are isomorphic. Let My be a countable
KC-saturated structure. It is ultrahomogeneous. That means an isomorphism between
finitely generated substructures of My can be extended to an automorphism. Conversely
countable ultrahomogeneous structures My are K-saturated, where IKC is the age of M.
My is K-universal: Every countable L-structure with an age included in IC can be
embedded.

This fact implies that the quantifier free n-type of an n-tuple implies the full
n-type in M. But this is not quantifier elimination for Th(M,).

Facr 2.3. There is a countable K-saturated L-structure My if and only if K has
the following properties:

HP: Hereditary Property For A in K we have age(A) C K.

JEP: Joint Embedding Property For A and C in K there are some D € K and
embeddings fo: A— D and f: C — D.

AP: Amalgamation Property Assume go : B — A and g; : B — C are embed-
dings for A. B, C € K. Then there are some D in IKC and embeddings fo: A — D
and f1: C — D such that foo gy = f10g) for B.

My in Fact 2.3 is called the Fraissé limit of /C. By Fact 2.2 it is unique up to
isomorphisms.

DEerINITION 2.4, APS: We have the strong amalgamation property for K if in AP
SolA) N f1(C) = foogo(B) = f10gi(B) holds.

Fact 2.5. Assume L is finite, K is uniformly locally finite, and a K-saturated
L-structure My exists. Then Th(M,) is Ro-categorical and allows the elimination of
quantifiers.

For the next considerations we assume again, that L is countable and 7 is a class
of L-structures.

DEFINITION2.6. Let A, B, C, D € J and assume that B is a common substructure
of A and C. If D is generated by 4 and C with A N C = B, then D is the free
amalgam of 4 and C over B (short D = A ® C) in 7. if for all homomorphisms
f:A— Eandg: C — E intosome E € J with f(b) = g(b) for b € B there is
a homomorphism 4 : D — E that extends f and g.

J is closed under free amalgamation, if for 4, B,C € J and embeddings
g :B— Aand gy : B — C, there exists a free amalgam 4’ ®p C’ in J and
isomorphisms f: 4 — A" and f| : C — C’ ., such that foo go(b) = f10g1(b)
for b € B maps B onto B'.
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The free amalgam is a strong amalgam by definition. The homomorphism
h: D — E in the definition is unique, since D is generated by 4 and C. Note
that 4 ®p C is uniquely determined up to isomorphisms, if it exists. If L is rela-
tional and 7 is the class of all L-structures, then the free amalgam exists. Its domain
is the union of 4 and C with intersection B and the only relations are the old rela-
tions from A4 and C. In this paper we will consider free amalgams in the class graded
Lie algebras over fields and in the class of c-nilpotent groups of exponent p (¢ < p)
with extra predicates for a central Lazard series.

We add new constant symbols e, fora € A\ B e, forb € Bande, forc € C\ B
to the language L and assume that we have the same symbols for the elements
of B as a substructure of 4 and of C, respectively. Using these constant symbols
we define the diagrams Dia(A) and Dia(C)-the sets of all atomic sentences and
negated atomic sentences in this enriched language that are true in A respectively in
C, if we interpret the new constant symbols by the elements they represent.

We say that 7 is V-elementary, if it is elementary and its elementary theory is
universal. It is equivalent to say that 7 is elementary and closed under substructures.

DEFINITION 2.7. Let £7(A. B, C) be the union of Dia(A4) and Dia(C) with all
negated atomic sentences e, # e, for a € (4 \ B) and ¢ € (C \ B) and all
negated atomic sentences —¢(ez.¢;.¢;), where @ C A, b C B, and ¢ C C and
there are homomorphisms /" and g of 4 and C respectively into some E € J with
f(b) =g(b) forb € B, such that E = —~¢(f(a), f(b).g(c)).

LEMma 2.8. (1) Assume J is closed under substructures. For A, B, C € J the
free amalgam A @ C exists in J if and only if £ 7(A. B. C) has a model in J .

(2) Let J be an V-elementary class such that substructures of finitely generated
structures in J are again finitely generated. Then T is closed under free amal-
gamation if and only if the finitely generated structures in J are closed under
free amalgamation.

(3) Let L be finite and K be a countable class of finitely generated L-structures that
are uniformly locally finite. Assume a KC-saturated model M exists. Let J be
the class of the substructures of the models of Th(My). If K is closed under free
amalgamation, then J is closed under free amalgamation.

Proor. (1) A®pC modelsX 7(A4, B, C).If M isamodel of £ 7(4. B,C)in J,
then let D be the substructure of M generated by the interpretations of the
constant symbols ¢,, ¢, e.. D is in J by assumption. D is a strong amalgam
of A and C over B. D is free. since X 7 (A4, B, C) contains the set of conditions
we need to extend every given pair of homomorphisms.

(2) To show the nontrivial direction it is sufficient to prove that X 7(4, B, C)
is consistent with Th(J). since J is closed under substructures, as it is
V-elementary. Because 7 is elementary we can use compactness. Let Xy be
a finite subset of £ (4. B. C). Let A° be the substructure of 4 generated by
all elements of A, that occur in a formula of ¥y and C° the substructure of
C generated by all elements of C, that occur in a formula of X,. Let B! be
(BN A°.(BNCY). B' C B. By assumption B! is finitely generated. Then
A' = (A% B') and C' = (C°, B') are finitely generated. B! is a common
substructure of A' and C'. Since 7 is V- elementary 4!, B!, and C! arein 7.
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By assumption 4! ®5 C! = D! exists in 7. We claim that D! is a model of
%. The formulas from Dia(A) and Dia(C) in % are satisfied in D'. Assume
we have —¢(ez.¢;. ;) in o, wherea C A\ B.b C B.and¢ C C \ B and
furthermore homomorphisms f and g of 4 and C respectively into some
E € J with f(b) = g(b) for b € B. such that E = —¢(f(a). f(b).3(2)).
If we consider the restriction of f to 4! and of g to C!, then f(b) = g(b)
for b € B'. By the definition of the free amalgam

D' | ~¢(e;.8;.2:).

as desired. Formulas e, # e, from X, are satisfied in D'.

(3) J is the class of the models of the V - elementary theory of M. Since K is
uniformly locally finite and L is finite, K is the class of finite structures in 7.
We apply (2). H

§3. Stationary independence and universal automorphism groups. Let L be count-
able. K. Tent and M. Ziegler defined a stationary independence relation for the
investigation of automorphism groups in [6]. We consider finite subsets 4, B, C, D
of a L-structure M.

DerFiNITION 3.1 Arelation 4 |, C for finite subsets of M is called a stationary
independence relation in M if it fulfils the following properties.

Inv: Invariance A | e depends only on the type of 4, B, C.

Mon: Monotonicity A | , CD implies 4 | ,Cand 4 | ,.D.

Trans: Transitivity A |, Cand 4 | , . Dimply 4 | , CD.

Sym: Symmetry A | , C ifand onlyif C | , 4.

Ex: Existence For A. B, C there is some A’ in M such that tp(4/B) = tp(4A'/B)
and 4’ |, C.

Stat: Stationarity If tp(4/B) = tp(4’'/B), A4 L,C. and 4" |  C. then
tp(4/BC) = tp(4’/BC).

Lemma 3.2, Let A | e be a relation on finite subsets of M. that satisfies all
properties of a stationary independence relation except Mon. Then Mon follows.
Proor. We assume A4 | , CD. Applying Ex we get A’. such that A | , C and
tp(4’/B) = tp(A/B). Again by Ex there is some 4" such that 1p(4”/BC) =
tp(A'/BC) and A" | ,.D. By Inv 4” | C. By Trans 4" | , CD. Since
tp(4"/B) = tp(A/B) Stat implies tp(A”/BCD) = tp(4/BCD). The assertion
follows from Inv. -
Note that Sym is not used in the proof above, as mentioned by the referee.

I. Miiller combined the existence of a stationary independence relation with
Katétov’s construction [5]. She proved:

THEOREM 3.3. If My is a Fraissé limit and there exists a stationary independence
relation in My, then Aut(M,) is universal for all Aut(N), where N is a substructure
OfM().

We will see that free amalgams provide a stationary independence relation.
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THEOREM 3.4. Let My be a Fraissé limit. We assume that the free amalgam of
finitely generated substructures of My exists in My and define for finite subsets A, B, C

of My:
e
B
if and only if
(4BC) = (AB) @, (BC).
Then | is a stationary independence relation in Mj.

Proor. By definition 4 | , C ifand onlyif (4B) | <B><
w.l.o.g. that 4, B, C are finitely generated substructures.

BC). Hence we assume

Inv: Itis clear since the free amalgam is uniquely determined by its isomorphism
type.

Sym: It follows directly from the definition.

Ex: Since the class of finitely generated substuctures of M) is closed under free
amalgamation and M, is age(M,) - saturated we get Ex.

Stat: It is a consequence of the uniqueness of the free amalgam and
ultrahomogeneity.

Trans: By assumption (4BCD) = ((4B) ®p (BC)) ®pcy (BCD). We show
that this structure is the free amalgam of (4B) and (BCD) over B. Let G be
a structure in age(My). Let f be a homomorphism of (4B) into G and f
be a homomorphism of (BCD) into G such that fo(b) = f1(b) for b € B.
By 4 | , C there is a homomorphism g of (4BC) into G. that extends fo
and f restricted to (BC). Since g(e) = fi(e) for e € (BC), there is a
homomorphism % of (A4BCD) into G, that extends g. /|, and therefore f.
We get A |, CD. as desired.

Mon: It follows by Lemma 3.2. .

Using the Theorem of 1. Miiller we obtain:

COROLLARY 3.5. Let My be a Fraissé limit. Assume that the free amalgam of finitely
generated substructures of My exists. Then Aut(My) is universal for all substructures
N C M.

DEFINITION 3.6. A relation A4 |, C for small subsets of a monster model € is
a stationary independence relation in €, if it fulfils Inv, Mon, Trans, Sym, Ex, Stat
and
Fin: Finite Character 4 | , C if and only if @ | , ¢ for all finite tuple @ in 4
and ¢ in C.

A stationary independence relation in € has all properties of nonforking in a
stable theory except Local Character. Furthermore Boundedness is replaced by the
stronger property Stat. In the next chapter there are examples with the tree property
of the second kind.

COROLLARY 3.7. Let L be finite and IC be a countable class of finitely generated
L-structures that are uniformly locally finite. Assume a KC-saturated model M exists
and € is a monster model of Th(My). If K is closed under free amalgamation. then
the free amalgam for small subsets of € exists and defines a stationary independence
relation in €.
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PrOOF. Let J be the class of all substructures of models of Th(My). Then K
is the class of the finitely generated structures in 7. These structures are finite.
By Lemma 2.8(3) the free amalgam of substructures of € exists. The independence
relation for subsets of € is defined as above. All properties except Fin are shown
in the same way as in Theorem 3.4. Mon implies the assertion from the left to
the right of Fin. By Lemma 2.8(1) the other direction follows from the consis-
tency of Th(My) UZ7(A, B. C). We use compactness and the consistency of all
Th(My) UX7((aB),B.(¢B)) for all finite @ and ¢, similarly as in the proof of
Lemma 2.8 (2). =

We will apply the results of this section to the Fraissé limits of graded Lie
algebras over finite fields and of c-nilpotent groups of exponent p (¢ < p) with
extra predicates for a central Laszard series.

84. Graded Lie algebras over fields. We consider graded Lie algebras 4 over a
fixed field K in the language L;; as described in the introduction.

THEOREM 4.1. The class of c-nilpotent graded Lie algebras over a field K is closed
under free amalgamation.

ProoF. Let J be the class of c-nilpotent graded Lie algebras over K. It is
V-elementary and subalgebras of finitely generated algebras in J are again finitely
generated. By Lemma 2.8(2) it is sufficient to give a construction of a free amalgam
of A and C over B, where A, B, C are finitely generated c-nilpotent graded Lie
algebras over K and B is a common subalgebra.

We choose a vector space basis

XB:{biijllgl'gC,j<ﬁi}
of B with U;(b; ;). Then we extend Xz by
XA:{CI,"_/ZISZ.SC,].<OL[}

and
Xe={ci;:1<i<cj<y}

with U;(a; ;). Ui(¢; ;) and X4 N X¢ = 0, such that X4 X3 is a vector space basis for
A and Xp X is a vector space basis of C. Let X be X4 XpX¢c. We use the graded
set X as a set of free generators of the free c-nilpotent graded Lie algebra F(X).
The elements of X are in U; according to the definition above. Let J4 be the ideal
in F(XpX,4) generated by all equations [x.y] = z in 4 where x,y € XpX, and
z is a linear combination of elements in X4 X5 N Uy ; . if U;(x) and U;(y). Then
F(X4Xp)/J4 is isomorphic to 4. Analogously we define J¢ in F(XpXc), such
that F(XpXc)/Jc is isomorphic to C. Let J be the ideal in F(X) generated by
JA and Jc.

Cram 1. A strong amalgam of A and C over B exists.
Cramm 2. F(X)/J is the free amalgam of A and C over B.

First we show that Claim 1 implies Claim 2. Let G° be a strong amalgam of 4° and
CY over BY, such that there are isomorphisms /4 : A — A% and h¢ : C — C° with
hy(b) = he(b) forb € B. hy and he give us a map 4° of X into G°. We can extent
h® to a homomorphism / of F (X ) onto G°. The kernel of 4 contains J. Hence G° is

https://doi.org/10.1017/jsl.2015.57 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2015.57

FREE AMALGAMATION AND AUTOMORPHISM GROUPS 943

a homomorphic image of F(X)/J. Therefore F(X)/J contains isomorphic images
A',B’,C" of A, B, C respectively, such that A’ N C’ = B’ and (4’.C’) = F(X)/J.
Let f4 and f¢ be any pair of homomorphisms of 4" and C’ respectively into a
c-nilpotent graded Lie algebra G over K, such that f 4(b) = f¢(b) forb € B'. If we
map the elements of X onto their f 4- respectively f¢-images in G, then we get an
homomorphism f of F(X) into G. The kernel of f contains J by the definition of
J4 and Jc. Hence f induces the desired homomorphism of F(X)/J into G.

To prove Claim 1 we construct a strong amalgam directly step by step. We use
again X4, Xp, and X¢, where the «; , f5;, and y; are finite. Now the underlying
vector space of the amalgam D is a vector space where X = X Xp X is part of a
basis of this space. Note that the role of X has changed. Above it was a graded set
of free generators. Now Xp is a vector space basis for the image of B in D, Xp X4
is a vector space basis for the image of 4 in D, and X X¢ is a vector space basis of
the image of C in D. For x € X we have U;(x) if and only if x = a;; or x = b;;
or x = ¢;; for some j. iis the degree of x. The only problem is the definition of the
Lie multiplication for the elements of a vector space basis of D. Since multiplication
with elements from U, gives 0, we can put all elements of U.(X) into X. Therefore
we assume w.l.o.g. that

a, =y, =0.
First we solve the following essential case:
MaJoRr CasE: X4 = {a} and X¢ = {e} with U;(a) . U;(e).and i, j < c.

Let H be the free c-nilpotent graded Lie algebra over K freely generated by ¢ and
e. The graduation is given by degree(a) = i. degree(e) = j. and degree([y1. y2]) =
degree(y)) + degree(y,) for monomials y; and y; in a. e . as usual. The elements
of Uy (H) are linear combinations of monomials of degree k.

Fact 4.2. Since H is freely generated by a and e there is a subset Y of the set of
monomials over a and e such that:

(1) aande arein Y.
(2) Fory € Ywithy # aandy # e thereare y\ and y, in Y such thaty = [y1. y2].
(3) Y is a vector space basis of H .

This fact is well known, even in the case with graduation. You can choose Y as a set
of basic monomials. For us it is important that forevery y € Y thereis a unique way
of construction starting with ¢ and e. Hence we can use induction on the number
n(y) of Lie multiplications in the monomial y. Now XpY will be a vectorspace
basis of the amalgam D. Finally we have to extend the Lie multiplication for X
and for Y to XY, such that D becomes a Lie algebra with the given graduation.
We have only to consider [y, 5] = —[b, y] for y € Y and b € Xp. By induction on
the number n(y) of Lie multiplications in the monomial y we define [y, b] for all
b € Xg. We will have [y, b] € B.

If y = a, then [y. b] is defined in A. Since Ay, = By for i < k we have [y.b] € B.
Analogously we get [y,b] € B for y = e using the multiplication in C. For the
induction step we consider y = [y, y2], where the definition for y; and y; is given
and the products are in B. With respect to the Jacobi identity we define

[([y1.y2]. 61 = [[y1.b]. y21 + [y1. [[y2. £]].
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By induction [y;,b] = b1 € B and [y2,b] = by € B are defined. By the same
argument we get [b1, y2] € B and [y, by] € B.

We have to check the Jacobi identity. By the definition above we have only to
consider the case y € Y and b.d € Xp. Again we use induction on n(y) to show
the Jacobi identity for y € Y and all b,d € Xp. If y = a or y = e, then we are in
A or C respectively. Hence the Jacobi identity is true.

Now we assume that y; with any two elements of Xz and y, with any two elements
of X satisfy the Jacobi identity. We have to show:

(I =r):
[([[y1.y2].b].d] = [[[y1. y2]. d]. b] + [[y1. y2]. [b. d]] .

Using the inductive definition of [y, x] for y € Y and x € Xp the right side can
be written as:

(r):
[([[y1.d]. y21. b1 + [[y1. [y2. d11. b] + [[y1. [b. d]1. y2] + [y1. [v2. [b. d]11] .

Now we apply the definitions and the induction to the left side and obtain the
following identities. We use that [y;. b], [y2.b], [y1.d],[y2.d] € B.

(h):
([[y1.0]. y21.d] + (1. [y2. b]]. d] =
(l):
[([[y1.5].d]. y2] + (1. 0). 2. d1] + (1. d]. [y2. 1) + [1. [[12. b). d]] =
(13):

([[y1.d]1.0). y2] + (1. [b. 411, y21 + [[y1. [v2. d11. b] + [y1. [D. [v2. 4111 +
([[y1.d]. y21. 61 + 2. [[y1. d]. b1 + 1 [[y2. d1. b] + [v1. [»2. [b. 4111

After cancellation in (/3) we see that it is equal to (r) as desired. The proof for
the Major Case is finished. In fact we have constructed a free amalgam.

REDUCTION TO X¢ = {e}: If the strong amalgam exists for all 4, B and C =
(Xpe), then it exists for all 4, B, and C.

We assume that the assertion is true for X¢ = {e}. We show by induction on ¢ — i
that the strong amalgam exists for all X¢ with y; = 0 for j < i. The case ¢ = i is
clear, since we have assumed that a. = y. = 0, as discussed above.

We fix i and assume that the assertion is true for i 4+ 1. By a second induction on
the size of y; we reduce the problem to the case y; = 1. For induction step of this
induction let e = ¢,,_; and C~ be the subalgebra of C generated by XpXc \ {e}.
By the second induction there is a strong amalgam D~ of 4 and C~ over B. Now
we have to amalgamate D~ and C over C —. This is the case X¢ = {e} and we can
apply the assumption in the claim.

REDUCTION TO THE MAJOR CASE: The Major Case implies the Reduction to
XC = {e}
We can apply the same arguments to all situations 4, B and X¢ = {e} and come
to the Major Case. The assertion of Claim 2 and the theorem follow.
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Note that the proof of Claim 2 is a direct construction of a free amalgam. We
only have to check that all amalgams constructed are free. For this we use Trans. -

By compactness and Lemma 2.8(1) we obtain:

COROLLARY 4.3. The class of all graded Lie algebras over a given field K is closed
under free amalgamation.

Note that the class of finitely generated c-nilpotent graded Lie algebras over a
finite field is uniformly locally finite. Therefore it is countable. The size of the free
object with n free generators is an upper bound for the size of all c-nilpotent graded
Lie algebras over K with n generators.

COROLLARY 4.4. Let K be a finite field and IC be the class of finitely generated
c-nilpotent graded Lie algebras over K. Then the following is true.

(1) A countable K-saturated structure My exists.

(2) In My the free amalgam of finitely generated substructures exists and is a
stationary independence relation.

(3) Aut(My) is universal for all Aut(M). where M is an at most countable
c-nilpotent graded Lie algebra over K .

Proor. We use Fact 2.3, Theorem 4.1, Theorem 3.4, and Corollary 3.5. All at
most countable c-nilpotent graded Lie algebras over K can be embedded in M.

Corollary 3.7 implies:

CorOLLARY 4.5. If K is a finite field, My is the Fraissé limit of all finitely generated
c-nilpotent graded Lie algebras and € is a monster model of Th(My). then the free
amalgam defines a stationary independence relation in €. The theory has the tree
property of the second kind.

For the tree property of the second kind see [2].

§5. c-nilpotent graded associative algebras. Every Lie algebra has an universal
enveloping associative algebra. It was a first idea to prove that the amalgamation
property for associative algebras. The next example shows, that this is not true.

LemmA 5.1, c-nilpotent graded associative algebras do not have the amalgamation
property for2 < c.

Proor. We use the language from graded Lie algebras over K, but for the mul-
tiplication of x and y we write xy. Let ¢ = 3. We consider the free 3-nilpotent
graded associative algebras F' freely generated by aq, ai, by, by, b2, b3, ba, bs, ¢, the
subalgebra F, freely generated by ay.ay, bo. by, by, b3, bs, bs, the subalgebra Fp
freely generated by by, b1, by, b3, by, bs, and the subalgebra F¢ freely generated by
by, b1, b2, b3, by, bs, ¢. The set of all xy where x and y are elements of the generating
set above is a vector space basis of F, and the set of all xyz where x, y. z are elements
of the generating set are a vector space basis for F3. To obtain 4 we factorize F4 by
theideal J 4 generated by apbo+ab;. C is obtained from F¢ using theideal generated
by boc +babg and byc +b3bs. The images of the b;’s generate in A and C a subalgebra
isomorphic to Fg. We call it B. An amalgam would be isomorphic to F/J. where
J is the ideal generated by J4 and J¢. But this contains a new relation in A:

(aobo + Cllbl)c — al(blc + b3b5) — Clo(boc + b2b4) = —a1b3bs — agbyb4

a contradiction. -
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§6. c-nilpotent groups of exponent p > c. As in [I] we consider the class
c-nilpotent groups &7 » of exponent p > ¢ with extra unary predicates Uy, ..., U,
for a central Lazard series. That means we have

G=U(G)D---DU(G)

and

(U 1U(G). Uk(G))) € Uy € Zeyr—n.

I+k=n

Examples for central Lazard series are the lower central series I';(G) and the

upper central series Z;(G). Then we have I';(G) C U;(G) C Z.,1_;(G). Without
the extra predicates this class of groups is denoted by &, ,. It is well known that
the amalgamation property fails for &, ,. In [1] strong amalgamation for &Y p 18
shown. A careful analysis of the proof shows that it is a free amalgam. The free
amalgamation of c-nilpotent graded Lie algebras over F, is used (see Theorem 4.1
for a correct proof). Therefore we get:

THEOREM 6.1. [t holds:

(1) &7, has (HEP). (JEP). and the free amalgamation property.

(2) The Fraissé limit GY of the finite groups in Qﬁgp exists.

(3) Th(GY) is Ry - categorical and allows the elimination of quantifiers.

Let Gy be the reduct of G to the language of group theory. Since I',(G) =
Ze1-n(GY) = Uu(GY). Uy(GY) is in Gy O-definable. Furthermore every G € &,
becomes a structure in &Y - if we define U, (G) =T,(G). Hence we obtain:

COROLLARY 6.2. Th(Gy) is N - categorical and universal for all at most countable
Gc® ).

By Theorem 3.4 and Corollary 3.5 we obtain

THEOREM 6.3.

(a) In the monster model of Th(GU) the free amalgam exists and is a stationar
0 Y
independence relation.
(b) Aut(G{) is universal for all Aut(N ). where (N) is a substructure of G{'.

The same arguments as for Corollary 6.2 imply

COROLLARY 6.4. Aut(Gy) is universal for all Aut(G) for all at most countable
groups G € & .
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