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Abstract

This paper deals with the analysis of growth rate of modulation instability of a laser pulse propagating in a clustered gas.
Finite pulse effects are considered to be a perturbation. Growth rates of modulation instability for 100 fs and 80 fs at the
centroid as well as at the front and back of the pulses are evaluated and graphically analyzed. It has been shown that with
decrease in pulse duration the growth rate of modulation instability increases at the front, back as well as at the centroid of
the pulse. It is also shown that the change in growth rate of modulation instability at the front as well as at the back of the
pulse in comparison to the centroid of the pulse for 80 fs pulse is less in comparison to that of 100 fs pulse.
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1. INTRODUCTION

Clusters are formed from high pressure gas jets resulting
from the cooling associated with the adiabatic expansion of
gas into vacuum (Hagena et al., 1972; Taguchi et al.,
2010). The atoms in a cluster are held together by Van der
Waals forces and these forces cannot be overcome by thermal
energy. Laser cluster interaction has several applications, for
example, as a source of radiation such as extreme ultraviolet
and X-rays that is applicable to lithography (Kubiac et al.,
1996) or X-ray microscopy (Kirz et al., 1995), and as a
source of energetic electrons or ions (Shao et al., 1996;
Kumarappan et al., 2001; Ditmire et al., 1999; 1996).
Recent theory (Mishra & Jha, 2011b), experiments (Alexeev
et al., 2003; Borisov et al., 1996), and simulations (Gupta
et al., 2004) have shown self-focusing of intense laser radi-
ation interacting with clustered gas. When an intense laser
pulse interacts with a cluster it immediately converts the clus-
ter into a plasma ball. Inside the cluster the total field (laser
plus space charge) leads to inner ionization. Also some elec-
trons leave the cluster (outer shell ionization) leading to a net
positive charge on the cluster. The charge accumulated on the
cluster is localized on the surface of the cluster and a neutral
core remains inside. The dynamics of the expanding clusters
gives rise to several nonlinear effects such as harmonic gen-
eration (Donnelly et al., 1996) and generation of ultra-short

pulses of mono-energetic neutrons from nuclear fusion in
cluster-plasmas (Ditmire et al., 1999).

In many nonlinear systems, an instability leading to modu-
lation of the steady state is exhibited as a result of interaction
between nonlinear and dispersive effects. This phenomenon
is referred to as modulation instability (Agrawal, 2006).
Modulation instability has been studied quite extensively in
many areas of science and engineering. In optics, the interest
in modulation instability stems from its possible applications
and relevance in ultrafast pulse generation (Sudo et al.,
1989), supercontinuum generation (Raja et al., 2010), four-
wave mixing (Boggio et al., 2001), Bragg gratings (Sterke,
1998), quadratic media (Sarma & Kumar, 2012), optical
fiber (Agrawal, 2006; Sarma, 2010), and parametric oscil-
lators (Philips & Fezer, 2010). Modulation instability has
also been studied in the field of meta-materials (Sarma &
Saha, 2011). Development of the chirped pulse amplification
technique (Strickland & Mourou, 1985) has led to the devel-
opment of very high power (terawatt and petawatt) laser sys-
tems. The generation of such high power and high intensity
laser pulses has caused considerable interest in the field of
laser plasma interaction, which can give rise to a number
of instabilities such as Raman and modulation instabilities
(Antonsen et al., 1993; Guerin et al., 1998; Esarey et al.,
1996; Mori et al., 1997; Sprangle et al., 1997; Borghesi
et al., 2002; Clark et al., 2005; Jha et al., 2005;
Kline et al., 2009; Esarey et al., 2009; Gill et al., 2010;
Zhang et al., 2011). When a laser beam propagates through
plasma, the ponderomotive force gives rise to low frequency
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perturbations of the number density, which interact with the
high frequency electromagnetic wave so that the amplitude of
the pump wave gets modulated and the modulation instability
of the electromagnetic wave occurs. Growth of modulation
instability has been reported (Max et al., 1974; McKinstrie
et al., 1992). Recently, the effect of laser pulse profile on
laser plasma interaction process has been reported (Jha
et al., 2009; Mishra & Jha, 2011a). Distortion of the laser
pulse profile and effect on the growth of modulation instabil-
ity is shown. Liu et al. (2011) have investigated the modu-
lation instability of an intense elliptically polarized laser
beam propagating in un-magnetized plasma.
This paper deals with the analytical study of the effect of

cluster expansion on the growth rate of modulation instability
of a laser pulse propagating in tenuous clustered gas. Since
Coulombic (hydrodynamic) pressure predominantly contrib-
utes to the overall expansion dynamics of small (large) clus-
ters when strong laser fields interact with them (Ditmire
et al., 1996), the role of Coulombic pressure in the expansion
of a single nanometer sized cluster in response to a short
(≈100 fs and 80 fs) laser pulses has been considered in the
present paper. In Section 2, the wave equation, including
cluster radius expansion, group velocity dispersion, and
finite pulse length effects has been set up. Considering
finite pulse length effects to be a higher order effect, the
lowest order solution for the wave amplitude is obtained.
Section 3 deals with the evolution of the growth rate of
modulation instability at the front, back, and at the centroid
of the laser pulse. Summary and conclusions are presented
in Section 4.

2. WAVE EQUATION

Consider a linearly polarized laser beam propagating along
the z-direction in a tenuous clustered gas. The electric
vector of the laser field is given by

�E r, z, t( ) = 1
2
E0 r, z, t( ) exp i k0z− ω0t( )[ ]x̂+ c.c., (1)

where E0 (r,z,t) is the amplitude of the radiation field and
k0 (ω0) is its wave number (angular frequency). Considering
the individual cluster to behave like a dielectric sphere, the
wave equation governing the propagation of a laser beam
in clustered gas is given by

∇2 − 1
c2

∂2

∂t2

( )
�aL = 4πe

mec3ω0

∂2�P
∂t2

, (2)

where �aL = e�E r, z, t( )/mecω0
( )

is the normalized electric
vector of the laser field. The polarization field �P

( )
arising

due to the presence of the clusters may be written as

�P = mecω0nc
e

ω2
Mie

ω2
Mie − ω2

0

( )
R3
C�aL, (3)

where nc is the cluster density and ωMie(= ωp/
��
3

√
, ωp being

the plasma frequency) is known as Mie frequency. The clus-
ter radius (RC) is a function of time t. The expansion of the
cluster radius occurs on the time scale of ion motion (τi).
Hence the change in cluster radius averaged over ion time
scale is given (Mishra & Jha, 2011b)

ΔRC( )avg =
m2

ec
2ω6

0τ
2
i a0| |2

πe2Mini0RC0 ω2
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0

( )2 . (4)

RC0,Mi, ni0, and a0 (eE0/me cω0) are initial cluster radius, ion
mass, initial ion density, and normalized laser amplitude,
respectively. Substituting the value of polarization vector �P
from Eq. (3) in Eq. (2) gives
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With the help of the linear dispersion relation
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0
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( )
R3
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and the transformation τ= t− z /vg (vg is the group velocity)
and η= z, the wave Eq. (5) may be written as

∇2
⊥ + ∂2

∂η2
− 2

vg

∂2

∂η∂τ
− β
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∂τ2
+ 2ik0
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, (7)

where B= 12ncme
2RC0ω0

8ωMie
2 τi

2/Mini0e
2(ωMie

2 − ω0
2)3 and

β (=1/c2− 1/vg
2) is the group velocity dispersion parameter.

Assuming slowly varying amplitude, the higher order dif-
fraction term (∂2/∂η2∼ 1/ZR

2) can be neglected in compari-
son to 2k0∂/∂η. The third and the fourth terms on the left
side of Eq. (7) representing finite pulse length effects are
about two orders of magnitude less than 2k0 (∂/∂η) and
will therefore perturb the pulse amplitude. Also the propa-
gation of a broad laser beam can be described with the
help of a one-dimensional model. Therefore, the lowest
order of Eq. (7) may be written as

i
∂
∂η

− β

2k0

∂2

∂τ2
− 1

k0vg

∂2

∂η∂τ
+ B a0| |2

2k0

[ ]
a0 η, τ
( ) = 0. (8)

Considering a Gaussian laser pulse profile, the field ampli-
tude is represented by

a0 η, τ
( ) = b η, τ

( )
exp − τ2

τ20

( )
, (9)
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where b(η, τ) is the pulse amplitude and τ0 is the initial
pulse duration. Substituting Eq. (9) into Eq. (8) and con-
sidering the variation in the pulse amplitude with respect
to τ to be a higher order effect the lowest order evolution
equation for the unperturbed pulse amplitude b0 is
given by

2
k0vgτ0

τ

τ0
+ i

[ ]
∂b0
∂η

= −b0
β

k0τ20
1− 2

τ2

τ20

{ }[

+B b0| |2
2k0

exp −2
τ2

τ20

( )]
. (10)

Solving Eq. (10) the lowest order, unperturbed amplitude
is given by

b0 η, τ
( ) = a00 exp A τ( ) + iΦ τ( )[ ], (11)

where a00 (laser strength parameter) is the initial (η= 0)
amplitude of the laser pulse, A(τ) and Φ(τ) are given by

A τ( ) = −
2

k0vgτ0

τ

τ0
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τ
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and
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1+ 2
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τ
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( )2 ,

respectively. A(τ) leads to an exponential amplitude vari-
ation in the pulse frame while Φ(τ) is the self-induced
phase shift (self-phase modulation) experienced by a
laser pulse propagating in clustered gas. A(τ) is positive
(negative) at the front (back) of the pulse, hence the am-
plitude of the laser pulse increases at the front while it de-
creases at the back of the pulse, while the self-induced
phase shift Φ(τ) remains same at the front as well as
back of the pulse. It may also be noted that variation in
amplitude due to change in pulse length is such that for
shorter pulse durations A(τ) is larger and vice-versa
while the self-induced phase shift decreases with decrease
in the pulse duration.

3. MODULATION INSTABILITY

Modulation instabilities are caused by the interplay between
group velocity dispersion (GVD) and self-phase modulation
(Sprangle et al., 2000). Hence, the modulated amplitude of
the laser pulse, due to GVD and finite pulse effects, may
be written as the superposition of perturbed and unperturbed

amplitudes, as

a η, τ
( ) = a00 exp A τ( ){ } + a01 η, τ

( )[ ]
exp − 2τ2

τ20

( )
exp iΦ τ( )η{ }

,

(12)

where a01(η, τ) is the complex perturbed beam amplitude.
Substituting Eq. (12) into Eq. (8), considering |a01|<<|a00|,
neglecting further variations in the pulse shape and consider-
ing the perturbed wave amplitude to be a sinusoidally vary-
ing function of η and τ, that is, a01= exp{i(Kη−Ωτ)}+
exp{−i(Kη−Ωτ)} (K and Ω are the wave number and fre-
quency of the perturbed wave amplitude, respectively), the
dispersion relation for the one-dimensional modulation in-
stability is given by

1− Ω̂2
( )

K̂2 + α̂+ Φ̂+ 8β̂Ω̂2
( )

K̂ + Φ̂− α̂− Φ̂
( ){

−16β̂2Ω̂2
}
Ω̂2 = 0, (13)

where K̂=KZR (ZR being theRayleigh length), β̂=k0v2gZRβ/8,
Φ̂ = ΦZR, Ω̂ = Ω/k0vg, and α̂ = αZR(α = Ba200/2k0

( )
exp

2A τ( )η{ }
exp −2τ2/τ20

( )
are dimensionless quantities. The

imaginary part of K̂, in Eq. (13), gives the growth rate of
modulation instability as

Γ = Ω̂

2 1− Ω̂2
( )

���������������������������������������
α̂− Φ̂
( )2+2 2Φ̂+ 8β̂

( )
α̂− Φ̂
( ){ }

+ 2Φ̂+ 8β̂
( )2

Ω̂2

√√√√√√ .

(14)

Variation in the growth rate of modulation instability (Γ)
with respect to the normalized perturbed frequency Ω̂

( )
is shown in the Figure 1. Figure 1 shows the growth rates of
modulation instabilities at η= 0 as well as at the front
(τ/τ0=−0.14) and back (τ/τ0=+0.14) of the pulse
for 100 fs and 80 fs pulses with τ0= 100 fs, ω0= 2.36 ×
1015s−1, λ0= 800 nm, r0= 40 μm, a00

2 = 6.84 × 10−2 (peak
intensity= 1.46 × 1017 W/cm2), nc= 8.0 × 1013 cm−3, n0=
1.8 × 1022 cm−3, RC0= 30 nm and Mi= 1.39 × 10−12 gm.
Curves a (d), b (e), and c ( f ) show the growth rate of modu-
lation instability at the centroid (η= 0), at the front and back of
the pulse, respectively, for 100 fs (80 fs) pulse. For both the
pulses, it is seen that exponential amplitude variation (A(τ))
is positive (negative) at the front (back) of the pulse that
leads to increase in growth rate of modulation instability at
the front and decrease at the back of the pulse.

It is seen that as the pulse duration decreases the growth
rate of modulation instability increases due to increase in
the exponential amplitude variation (A(τ)) and decrease in
the self-induced phase shift (Φ(τ)). Average enhancement
in the growth rate of modulation instability of the shorter
pulse is 73.17%. For 80 fs (100 fs) pulse growth rate of
modulation instability increases by 3.30% (4.67%) at the
front and decreases by 2.93% (4.63%) at the back of the
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pulse in comparison to η= 0 case. It is also seen that with
decrease in the pulse duration the percentage variation in
the growth rate of modulation instability at the front as well
as at the back of the pulse decreases in comparison to the cen-
troid of the pulse.

4. SUMMARY AND CONCLUSION

This paper deals with the analytical study of the growth rate
of modulation instability as the laser pulse propagates in a
clustered gas. It is shown that exponential amplitude vari-
ation (A(τ)) is positive (negative) at the front (back) of the
pulse due to which the growth rate of modulation instability
increases (decreases) at the front (back) of the laser pulse in
comparison to the centroid of the pulse. It is seen that for
100 fs (80 fs) pulse the growth rate of modulation instability
at the front of the pulse increases by 4.67% ( 3.30%) and
decreases by 4.63% (2.93%) at the back of the pulse in com-
parison to that of the centroid of the pulse (η= 0). Also,
with decrease in the pulse duration the peak value of the
growth rate of modulation instability increases and for
lower (higher) values of the pulse duration change in the
growth rate at the front as well as at the back of the pulse
in comparison to the centroid of the pulse is reduced (en-
hanced). Reason for this behavior may be attributed to the
fact that with decrease in pulse duration the exponential am-
plitude variation (A(τ)) increases and the self-induced phase
shift (Φ(τ)) decreases. The average enhancement in the
growth rate of modulation instability at the front as well
as at the back of the pulse is 73.17% by reducing the
pulse duration from 100 fs to 80 fs. This analytical study
shows the limitations of using short laser pulse propagating

in clustered gas since decrease in the pulse duration causes
sharp rise in growth rate of modulation instability. Hence
an optimum value of pulse duration may be chosen for
application based on interaction of short laser pulses with
clustered gas.
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