
Creation of flexible graphical user interfaces
through model composition

B. RAPHAEL,1 G. BHATNAGAR,2 and I.F.C. SMITH1

1IMAC, Applied Computing and Mechanics Laboratory, Swiss Federal Institute of Technology,~EPFL!, Lausanne, Switzerland
2Department of Computer Science, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India

(Received September 27, 2001;Accepted March 28, 2002!

Abstract

Nearly all software products have rigid and predefined interfaces. Users are usually unable to modify or customize
features beyond cosmetic aspects. Interface adaptability is important because aspects such as user preferences and task
sequences vary widely in engineering, even within specialized domains. A methodology for the creation of adaptable
user interfaces using model composition is presented in this paper. User interfaces are generated dynamically through
the composition of model fragments that are stored in a fragment library. When fragments are linked to models of
physical behavior, interface model composition applications are likely to be easier to extend and maintain than
traditional graphical user interfaces. A prototype system within the domain of bridge diagnosis illustrates the potential
for practical applications.

Keywords: Graphical User Interfaces; Model Composition; Model-Based User Interfaces

1. INTRODUCTION

The field of user interface~UI ! design has been identified
as one of the six core subjects of computer science~Hart-
manis & Lin, 1992!. Moreover, it is considered to be the
most critical for the success of applications within compa-
nies~Grover & Goslar, 1993!. Well-designed interfaces im-
prove the performance of users and thus result in significant
cost savings. However, UIs are hard to design. The evalu-
ation of quality inevitably involves subjective matters such
as appearance and ease of use. Several guidelines and meth-
odologies have been published for good UIs~Schneider-
man, 1997!. For example, Smith and Mosier~1986! compiled
944 guidelines in a 478 page report.

There is a general consensus that the design of UIs should
account for specific characteristics of expected users. This
is a challenge, even in specialized domains such as engi-
neering, because users often manifest a wide range of pref-
erences and approaches when confronted with similar tasks.
Interface adaptability is important for software systems to

be effective across a wide variety of users~Boulanger &
Smith, 2001!. Most software packages have rigid and pre-
defined interfaces that make it impossible to customize fea-
tures beyond cosmetic aspects. Navigational structures, as
well as the look and feel, are usually hard coded into pro-
grams. Programs that permit users to change the UI allow
only a choice of predefined sets of alternatives. For exam-
ple, once familiarity is reached, users might be able to shift
from “novice” mode to “expert” mode.

Computer tools that support complex tasks are often dif-
ficult to use. Several techniques, such as the use of intelli-
gent assistants and wizards, have been attempted to support
complex tasks. These attempts have not always provided
the support that was intended~see Section 2!. The objective
of this work is to improve the effectiveness of computer
tools that support engineering tasks through adaptable UIs.
More specifically, we developed an approach to adapt the
UIs of decision support systems. The approach is based on
model composition. The graphical UI~GUI! is constructed
dynamically through explicit representations of parts of the
GUI in the form of model fragments.

Difficulties in developing and evaluating GUIs in gen-
eral, and engineering applications in particular are dis-
cussed in the next section. This is followed in Section 3 by

Reprint requests to: B. Raphael, IMAC–Applied Computing and Me-
chanics Laboratory, Swiss Federal Institute of Technology~EPFL!, Lau-
sanne, Switzerland. E-mail: Benny.Raphael@epfl.ch

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2002!, 16, 173–184. Printed in the USA.
Copyright © 2002 Cambridge University Press 0890-0604002 $12.50
DOI: 10.1017.S0890060402163049

173

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

a description of the use of model composition techniques
for the development of a system that supports bridge diag-
nosis tasks. The paper ends with a discussion of limitations
of the approach.

2. DESIGN AND IMPLEMENTATION OF UIs

2.1. Simplifying interfaces for complex tasks

The main objective of UI research is to improve support for
tasks. Current UIs do not provide appropriate support
~Colvin, 2001!, even after decades of work and huge invest-
ments. For example, modern word processors contain of-
fice assistants, which are meant to provide proactive support.
However, some users have reported that suggestions are
irrelevant and the overall behavior is intrusive. For exam-
ple, as soon as users start typing in “Dear m,” a word pro-
cessor may suggest the phrase, “Dear Mom and Dad”

~Figure 1!. The application often makes incorrect assump-
tions regarding user characteristics. All users typing “Dear
m” are assumed to be children who are writing letters to
their parents. Incorrect assumptions lead the assistant to
interfere with the activities of users. Furthermore, queries
posed to the assistant often retrieve irrelevant topics.

This example illustrates the following:

• several software companies have begun to realize the
importance of proactive support;

• proactive support in the absence of accurate knowl-
edge is likely to be more irritating than helpful; and

• commercial technology has not matured enough to pro-
vide intelligent support.

This leads to the following questions:

• Should engineering software attempt to guess the in-
tentions of users and provide suggestions?

Fig. 1. An example of a word processing assistant. Proactive support often involves wrong assumptions about user characteristics.

174 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

• Is it possible to make reliable assumptions about user
characteristics?

• What do engineers expect from UIs?

Here, a difference is drawn between proactive support and
active support. While proactive support involves presump-
tions regarding the task of the user, active support~Smith,
1996! provides only updated information related to aspects
of tasks such as the characteristics of current solution spaces.
Active support is intended to provide help to engineers prior
to decision making; assumptions related to user character-
istics are not made. Such support is generally preferable to
passive support where, for example, decisions are cri-
tiqued. Our experience is that practicing engineers often
react negatively to passive support and positively to active
support.

2.2. UI design

Myers~1993! describes challenges related to UI design and
implementation, including

• lack of knowledge of characteristics of tasks and users;

• complexity of tasks;

• trade-offs between standards, presentation quality, and
performance; and

• difficulty carrying out iterative design due to time and
cost constraints.

Users are extremely diverse. It is often a challenge to
formulate generalizations related to the way people carry
out tasks. Interfaces should match the skills, expectations,
and needs of users. Another complication is that the modu-
larity and structure of non-UI code are often incompatible
with requirements for good human–computer interaction
~HCI!. For example, highly modular programs may contain
black box functions. Each function produces an output for a
given input using a well-defined algorithm. If users need to
determine the status of computation at regular intervals, the
relevant function needs to contain code to communicate
with the user interface. This clutters the code with opera-
tions that are not related to the main objective of the func-
tion, and it violates the principle of performing one well-
defined operation per function.

The complexity of the task is usually comparable to the
complexity of UI design. For example, a reasonable word
processing application contains more than 300 different op-
erations. Allowing users to access all operations while avoid-
ing an excessively complex interface requires careful design.

The UI design also requires consideration of code main-
tenance and updating. The model–view–controller~MVC !
paradigm~Buschmann et al., 1996! is useful for application
development because it leads to increased reliability during
code maintenance. According to this architecture~Fig-
ure 2!, the application is split into three separate layers that
interact with each other using simple interfaces. Themodel
encapsulates application logic. It contains the structure of

data and the logic for data manipulations. Theview is con-
cerned with displaying the model accurately to the user.
Displays take the form of text and graphics. Thecontrol is
responsible for interacting with the user in order to modify
the model. Instead of modifying the model directly, the
control sends messages to the model in order to carry out
these changes. The model sends messages to the view to
refresh the presentation. The advantage of MVC is that if
the presentation platform is changed~e.g., from Visual Ba-
sic to Java!, code that is within the application layer need
not be modified.

The MVC paradigm provides insights into the complex-
ity of UIs. Objects in the application logic layer and objects
in the presentation layer~user interface! are linked. Hence,
the presentation layer is as complex as the structure of the
data model. In addition, any modification to data is effected
by sending messages from the presentation layer to the ap-
plication logic layer. Therefore, there must be as many mes-
sage passing links between the two layers as is required for
all possible changes to the model.

2.3. UI design for engineering applications

Guidelines that have been generated through UI research
are not necessarily applicable to engineering software be-
cause of unique characteristics of engineering users~Smith,

Fig. 2. The model–view–control~MVC ! paradigm improves mainte-
nance reliability. The model contains the representation of domain knowl-
edge, which is used to generate views for users. Users interact with the
model through the control module.

Flexible GUIs 175

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

1999; Stalker & Smith, 1999!. These characteristics include
the following:

• Users are professionally qualified to perform the task
that is being supported.

• Engineers are legally responsible for their actions, and
they need to know the details of all key operations that
are performed by computers. UIs should be capable of
providing the necessary details.

• Engineers employ mathematical constructs for describ-
ing physical artifacts and processes. Engineers in each
discipline use specialized graphical and symbolic lan-
guages to communicate without ambiguity. Although
such information may be daunting to other users, en-
gineering software should use this language in its UIs.

• Engineers are usually comfortable with intensive com-
puter use as a result of their engineering education.

A challenge of UI research is that evaluations are often
subjective. They involve qualitative matters such as appear-
ance and ease of use. Although these aspects may be eval-
uated scientifically through, for example, statistical analysis
of results obtained from questionnaires, results are subject
to different interpretations. Nevertheless, the following con-
sensus seems to have emerged for engineering applications:

• UI design should include a consideration of engineer-
ing characteristics;

• interfaces need to be adaptable;

• there needs to be a clear separation between presenta-
tion and data, even though data structures need to be
compatible with interface characteristics.

Accepting these principles makes it possible to evaluate
engineering UIs using less subjective criteria. For example,
it is possible to analyze and determine whether a particular
UI has accounted for engineering characteristics and to what
degree it is adaptable. In this paper, the principal focus is on
developing adaptable GUIs.

2.4. Need for developing adaptable interfaces

The strong relationship between data and process models
and UIs was discussed in Section 2.2. Most UI elements are
provided to create data, modify data parts, process data,
and view results. These links between the UI and data
models do not create difficulties for applications when
data structures are well defined. This is not the case in
many engineering applications. The structure of engineer-
ing objects are difficult to definea priori. Furthermore,
they may change during the useful life of the software. Data
model complexity creates challenges for UI development.
The methods used to present the data to users, as well as the
sequence of operations performed to modify the data, are
context dependent. In the MVC paradigm, the view layer,

which visually represents the data model, and the control
layer, which modifies the data, are dynamic.

2.5. Model-based GUIs

A methodology for the creation of adaptable UIs is to make
use of explicit models. The idea of model-based UIs is not
new. Proposals have been made for more than a decade
~Wiecha & Boies, 1990!, and most originate from research
into UI management systems~UIMS, Myers, 1995!. UIMS
help users write specifications of UIs in a specialized high-
level specification language. These are automatically trans-
lated into executable programs or interpreted at run time to
generate appropriate interfaces. Their main goal is to allow
interface designers and end users to design and modify the
interface quickly without requiring extensive programming
skills.

The specification languages of UIMS require detailed
descriptions of the format, placement, and functionality of
UI elements~widgets!. The technology for model-based UI
development~Foley et al., 1989!, on the other hand, allows
developers to provide a higher level description of the ob-
jects and functionality of an application. An example of a
system utilizing this approach is HUMANOID~Szekely
et al., 1992!. HUMANOID’s design model captures infor-
mation related to an application’s functionality in five
dimensions:

• application semantics design represents the operations
and objects,

• presentation defines the visual appearance of the
interface,

• manipulation represents gestures that can be applied to
the objects,

• sequencing defines the order in which manipulations
are assembled, and

• action side effects declares actions that are performed
automatically after a manipulation.

The UI is generated automatically using this information.
Another approach to model-based UI development in-

volves the automatic generation of UIs from declarative
definitions of task and user models. Task models describe
possible tasks that users perform during interaction with
the application~Pinheiro da Silva, 2000!. User models pro-
vide a way to model UI preferences for specific users or
groups of users. Most systems do not have explicit user
models; instead, they contain options for user preferences
for a group of users.

Paterno and Mancini~2000! use an automatic tool-
supported notation called ConcurTaskTrees~Puerta et al.,
1999! for specifying task models in a hierarchical way. Task
models were created by interviewing HCI experts and pos-
sible end users. Users were classified into different types
depending on their knowledge in the domain, and naviga-
tion structures were designed accordingly.

176 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

Recently, there has been considerable interest in the ap-
plication of Unified Modeling Language~UML ! to inter-
face design~Van Harmelen et al., 1997!. UML is the current
industry-standard language for specifying, visualizing, con-
structing, and documenting the artifacts of software sys-
tems. Activities, sequences, components, and states can be
represented diagrammatically using this language. Tools al-
ready exist for developing and editing UML models~e.g.,
http:00www.rational.com!. It is expected that commercial
software packages will soon be available that generate UI
code using UML models as input.

3. ADAPTIVE UIs THROUGH MODEL
COMPOSITION

Compositional modeling~Falkenhainer & Forbus, 1991! is
a framework for constructing adequate device models by
composing model fragments selected from a model frag-
ment library. Model fragments describe components and
physical phenomena. Model construction is a search task in
which the goal is to select a model from the space of pos-
sible models defined by the model fragment library while
satisfying all constraints. The research in model composi-
tion concentrates on providing causal explanations for the
behavior of small devices. Its application to construction of
GUIs for full-scale engineering applications has not been
assessed previously. In this work, model composition is
used to dynamically create and instantiate models of UIs.

The following steps are involved in the creation of a GUI
using model composition~Figure 3!:

• Users define model fragments that represent parts of
the GUI. Each fragment represents a particular aspect
of the GUI such as the view for a data item or the
control for allowing users to interact with it.

• Fragments are organized into one or more fragment
libraries.

• The model composition module constructs a model of
the UI by composing compatible fragments.

Model fragments involve a decomposition hierarchy con-
sisting of attributes and sub-attributes. The structure is sim-
ilar to the decomposition of objects in object oriented

programming. The MVC paradigm~Section 2.2! is used to
organize the information related to the GUI. Users specify
the view and the control for each fragment. The view refers
to the visual representation of a fragment. Views are de-
fined in terms of standard UI elements such as text boxes,
tables, buttons, and images. The control refers to the mod-
ules that manage the user interaction for each fragment. For
example, a particular control module checks if the user in-
put is within the allowable range.

Users are able to adapt the UI by adding new fragments
and modifying the visual representations of attributes of
fragments. The controls that are displayed in each window
and the sequencing of windows are adapted through modi-
fying the decomposition hierarchy.

This approach is particularly attractive to engineering
applications that contain models of physical phenomena.
Fragments of models that represent physical phenomena
may be directly linked to fragments of the UI. This avoids
the gradual degradation of the UI as models evolve through
changes. The correspondence between model fragments of
physical phenomena and fragments of the GUI is illustrated
in Figure 4.

4. BRIDGE DIAGNOSIS USING MULTIPLE
MODELS

The framework for creating adaptive UIs through model
composition has been applied to bridge diagnosis decision
support in order to illustrate the approach described in the
previous section. Model-based bridge diagnosis involves
finding causes for observations through reference to declar-
ative models. Thousands of models may be possible, even
for simple bridges. Identifying a good model is a nontrivial
task. Multiple models can be created by making different
combinations of assumptions related to material properties,
geometric properties, support conditions, and loading. The
case study of the Lutrive Highway Bridge in Switzerland
illustrates this point.

4.1. Lutrive Bridge case study

The Lutrive Highway Bridge~Figure 5! was constructed in
1972 using the cantilever method with central hinges. Two

Fig. 3. The construction of a graphical user interface using model composition.

Flexible GUIs 177

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

bridges, the North and South Lutrive Bridges, were built
~one for each direction of traffic! with a length of 395 m
each and a maximum span of approximately 130 m. Both
bridges were constructed with the same material and tech-
nology. However, one bridge continues to deflect consider-
ably, even after 25 years of construction. The deflection is
on the order of several centimeters~Robert-Nicoud et al.,

2000!. In order to understand the cause of abnormal deflec-
tion it is important to identify models that reasonably ex-
plain observations and measurements.

Examples of complete models that have been created for
the Lutrive Bridge~Robert-Nicoud et al., 2000! are shown
in Figure 6. Each model has a different set of attributes and
values. This information is not completely knowna priori.

Fig. 4. The link between fragments of the GUI and fragments of models of physical phenomena.

Fig. 5. The Lutrive Bridge in Switzerland.

178 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

4.2. Model composition for bridge diagnosis

The technique of model composition has already been sug-
gested for systematic evaluations of modeling possibilities
for bridges~Raphael & Smith, 1998!. Complete models are
constructed by composing fragments that model different
aspects of the bridge. Model composition in general is in-
tractable because of the exponentially large number of com-
binations of fragments. Finding good combinations requires
good user interaction. Well-designed UIs are necessary to
provide active support.

As mentioned earlier, a difficulty associated with this
application is that the data structure is dynamic. Users add
model fragments and models at run time; therefore, the struc-
ture of data is not knowna priori. Most programs operate
on fixed data structures, but this is not possible here. Be-
cause the UI elements such as screens, buttons, and text
boxes depend on the number and type of fragments in the
model fragment library, a static predefined UI cannot be
developed.

4.3. A model-based UI for bridge diagnosis

A model-based UI was developed for the bridge diagnosis
support system that is described in the previous section.
The program helps users create multiple models by repeat-
edly creating sets of feasible fragments from a model frag-
ment library. These models are then analyzed using external
structural analysis programs, and the results are compared
with data collected from on-site measurements. This com-
parison results in the identification of good behavioral
models.

4.3.1. The scenario

Engineers start with simple models in order to explain
observations, and only when simple models fail to provide
satisfactory explanations do they consider greater complex-
ity. For example, in the case of Lutrive Bridge, a simple
cantilever model~shown on the top left of Figure 6! was
initially used. When measurement data did not match theo-
retical predictions, more complex models were explored.

Fig. 6. Multiple ways of modeling the same bridge. Each model has different sets of attributes; hence, a GUI cannot be built using an
assumed predefined data structure~Robert-Nicoud et al., 2000!.

Flexible GUIs 179

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

Whereas simple models could be evaluated using algebraic
expressions and simple procedures, more complex models
require external programs such as those that provide finite
element analyses. It is necessary to evaluate several models
that are derived from different assumptions. This is done by
composing model fragments that involve a unique set of
assumptions. Model fragments are grouped into four cat-
egories~libraries! that represent different aspects of the
bridge. The four libraries are basic structure, cross section,
material, and load.

Three categories of personnel are involved in bridge di-
agnosis using this system.

1. The programmer defines general classes of model frag-
ments and develops code for interfacing them with
analysis modules.

2. The engineer responsible for knowledge formulation
and maintenance defines specific model fragments that
are applicable to specific bridges.

3. The engineer responsible for bridge monitoring in-
puts measurement data, selects model fragments, cre-
ates complete models, and evaluates results.

Four top level tasks have been identified: data manage-
ment, model creation, model use, and model evaluation.
For illustration, consider the task of model creation. Model
creation involves selecting appropriate fragments from the
fragment libraries and instantiating them. The sequence of
windows~screens! that are shown to the user for instantiat-
ing each fragment is different. For a fragment called “uni-
form cross section,” the user needs to input a single set of
cross section properties. For another fragment, “parabolic
variation of cross section,” the user needs to input the cross
section properties at three different points in order to com-
pletely define the longitudinal profile of the bridge. Users
interact differently with these two fragments. The visual
representations of the attributes of the fragments are also
not similar.

The fragment libraries are currently implemented as text
files describing the attributes and structure of individual
fragments~decomposition hierarchy!. Although the librar-
ies storing model fragments of bridges and model frag-
ments of the GUI are different, they are linked. Model
fragment libraries of the GUI contain the decomposition
and visual representation of each fragment. Model frag-
ment libraries of the bridge are more complex than those
associated with the GUI; they contain information related
to the compatibility of fragments.~For more details, see
Raphael & Smith, 1998.!

In general, the sequence of windows for each task and
the controls that are displayed in each window are depen-
dent on the model fragments that are currently present in
the fragment libraries, as well as the fragments that are
currently selected. The engineer responsible for knowledge
maintenance defines model fragments and their visual
representations.

Consider the initial stage of diagnosis in which only a
single fragment, namely, the cantilever, was defined in the
fragment library “Basic structure.” At this stage, the table
on the left side of Figure 7 contains one row displaying this
fragment. Upon selecting this fragment, its attributes are
shown on the right panel. The representation chosen for this
fragment consists of two text boxes and two radio buttons.
Relevant parts of the fragment library of the GUI represent-
ing this fragment follow:

Fragment cantilever$
Attribute starting_position$

Description “starting_position”
View textbox

%
Attribute span_length$

Description “starting_position”
View textbox

%
Attribute support_location$

Description “support_location”
View checkbox
Options$ “left”, “right” %

%
%

When additional fragments are added, they are visible in
the table on the left and are edited by the end user through
the right panel. For example, upon selecting the fragment,
“continuous beams,” a different set of controls specified by
the engineer are displayed on the right panel. This fragment
contains a button “from file” for opening a dialog box to
import table data from a file. Thus, the engineer is able to
define how end users interact with the system. Without an
explicit representation of the model fragments of the GUI,
the type of interaction would be hard coded, which would
require recompilation of the program for each change.

4.3.2. Implementation details

The software was programmed in Java for portability
and ease of development. Objects representing model frag-
ments are created by reading model fragment libraries. Fig-
ure 8 shows various screens generated by the system for a
sample model fragment library.

No explicit task model or user model was incorporated in
the system. Users are allowed to interact freely with the
system without a rigid task structure. Recent research in
HCI ~Boulanger & Smith, 2001! indicates that every engi-
neer has a unique way of performing tasks, so it is not
possible to use a predefined sequence of activities for com-
plex engineering tasks.

In this application, tasks are organized into four catego-
ries, namely, data management, model creation, model use,
and model evaluation. These categories correspond to those
identified by work on HCI~Stalker, 2000!. Each task cat-
egory is organized in a separate internal frame. Each frag-
ment library is displayed in a separate tabbed pane within

180 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

the internal frame representing the model creation task.
Model fragments are displayed in panels within internal
frames. Attributes of fragments are represented by UI ele-
ments, such as, text boxes, check boxes, radio buttons, and
images. This organization is summarized in Table 1.

This predefined free-form structure of the UI avoids dif-
ficulties associated with developing a complex specifica-
tion language for describing details of the interface. The
user needs only to define representations for individual frag-
ments in order for them to be automatically laid out by the
system.

4.3.3. Related work
The present work differs from previous work in the area

of model based UIs, for example, Foley et al.~1989!, in
important ways. The same process of model composition
that is used to construct models of physical behavior is used
to construct models of the UI. The model fragment library
is used at execution to create the UI.

This approach offers several advantages:

• Because the model creation methodology that is ap-
plied to diagnosis is reused, the GUI creation module
is more compatible with the application software than
traditional approaches.

• Adding new fragments to the model library and chang-
ing types of attributes only require changes to the model
files. There is no need to change the program. For
example, an attribute that allows multiple values can
be changed to a single-valued attribute through modi-
fying model data files.

• Users may specify the GUI components for new
attributes. Hence, the program allows for great flexi-
bility. For example, a pinned roller support can be rep-
resented by an image containing the usual symbolic
notation used by engineers.

• Users may change the look and feel of the interface as
needs change without modifying the program. For ex-

Fig. 7. A screen from the bridge diagnosis program. All the windows were generated automatically through reading model fragment
libraries.

Flexible GUIs 181

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

Fig. 8. Users specify visual representations of attributes of fragments. The first screen contains text boxes and radio buttons for
representing simple attributes. The second screen contains a table for inputting an array of values for an attribute.

182 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

ample, an attribute that takes multiple values can be
represented by a list box or a group of check boxes.

There are currently systems that utilize model composi-
tion for creating UIs~Browne et al., 1997; Stirewalt & Ru-
gaber, 1998!. Such work is concerned primarily with
generating correct and efficient UI code from declarative
models. The objective of present work is not to generate
code, and our software is not meant to be a programmer’s
tool. Instead, the software has been developed for engineers
to create the most compatible GUI at execution time. This
is possible through storing the decomposition and the nav-
igational structure of the interface in simple formats that
are easily understood by engineers.

4.3.4. Limitations and possible extensions

This research evolved from work that applied model com-
position to diagnostic tasks. Limitations identified in this
work include the following:

• The free-form structure of interaction with the system
may not be suitable for novice engineers who would
like to be guided when carrying out tasks.

• Few constraints are applied during GUI composition
because fragments are generally compatible with each
other. An extension to the current procedure would
involve a language to explicitly specify compatibility
constraints.

In order to explain the second point, consider a model
fragment representing a propped cantilever beam. Attributes
of this fragment include the type of left and right supports.
If the user decides that the left support should be fixed, a
fixed support at the right is not allowed, because by defini-
tion, a propped cantilever is fixed at one end and supported
on rollers at the other end. These constraints are easily en-
forceable if the UI is static. However, in the current appli-
cation, GUI elements corresponding to fragments are created
at run time. Therefore, enforcing such constraints would
require the activation of a constraint propagation module.

The enforcement of a range of integrity constraints would
involve the development of a comprehensive constraint spec-
ification language in order to check the compatibility of

model fragments and the values of their attributes. For ex-
ample, the syntax of a possible language is as follows:

Fragment proppedCantilever
constraintType attributeValues

NOT ~leftSupport55 fixed AND rightSupport55
fixed!

Such constraint languages tend to be complex; as a result,
engineers may encounter difficulties during use. A graphi-
cal language for constraint specification might provide as-
sistance. These issues are being considered in current
research.

To a certain extent, the visual representation of a frag-
ment can be automatically determined from the data types
of its attributes. This has not been done in the current im-
plementation because of the following reasons:

• The engineer usually knows the best visual represen-
tation for each attribute.

• Not all attributes of a fragment need to be displayed to
users. Certain attributes are computed using other
attributes, and the engineer can decide what should be
visible and what should be hidden.

5. CONCLUDING REMARKS

UI technologies have made much progress in the recent
decades. This is partly due to research into direct manipu-
lation interfaces, whereby users directly point at objects on
the screen and manipulate them~Schneiderman, 1983!. How-
ever, several difficulties remain for the development of good
interfaces, especially for engineering applications. Most cur-
rent designs result in interfaces that are difficult to adapt.
This paper proposes the use of explicitly defined model
fragments that, when composed, provide UIs for engineers
that are compatible with needs. The prototype system de-
scribed in this paper demonstrates the application of model
composition to the development of GUI that can be custom-
ized by end users. Such model-based approaches show much
potential for creating adaptable graphical engineering inter-
faces. Adaptability is expected to increase the quality of
computer support and thereby encourage greater degrees of
creativity and efficiency. Work is in progress to extend soft-
ware for tests on tasks associated with the monitoring and
diagnosis of full-scale structures.

ACKNOWLEDGMENTS

This research is funded by the Swiss National Science Founda-
tion, the commission for technology and innovation, and the Alli-
ance for Global Sustainability. G. Bhatnagar, from the Indian
Institute of Technology was funded by the Centre for International
Relations, EPFL. We would like to thank Mr. Arun Kumar and the
late Prof. C.S. Krishnamoorthy of IIT Madras for their contribu-
tions in the implementation of the initial version of the model
composition module and its application to Arur Kaayal Bridge in

Table 1. Predefined representations for elements of application

Application
Element

GUI
Representation Java Class

Task category Internal frame JinternalFrame
Fragment library Tabbed pane JTabbedPane
Model fragment Panel Jpanel
Fragment attribute Text box, text area,

check box, radio
button, image

JTextArea, JRadioButton,
etc.

Flexible GUIs 183

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

India. We are also grateful to Mr. Yvan Robert-Nicoud for the use
of information related to the Lutrive Bridge.

REFERENCES

Boulanger, S., & Smith, I.F.C.~2001!. Multi-strategy workspace naviga-
tion for design education,Design Studies 22, 111–140.

Browne, T.P., Davila, D., Rugaber, S., & Stirewalt, K.~1997!. Using de-
clarative descriptions to model user interfaces with MASTERMIND.
In Formal Methods in Human–Computer Interaction~Paterno, F., &
Palanque, P., Eds.!. New York: Springer–Verlag.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M.~1996!.
Pattern-Oriented Software Architecture: A System of Patterns. New
York: John Wiley.

Colvin G. ~2001, March 5!. The kid in my computer.Fortune26.
Falkenhainer, B., & Forbus, K.D.~1991!. Compositional modelling: Find-

ing the right model for the job,Artificial Intelligence 51, 95–143.
Foley, J., Kim, W., Kovacevic, S., & Murray, K.~1989!. Defining inter-

faces at a higher level of abstraction.IEEE Software 6, 25–32.
Grover, V., & Goslar, M.~1993!. Information technologies for the 1990s:

The executives’ view.Communications of the ACM 36, 17–19.
Hartmanis, J., & Lin, H.~1992!. Computing the future: A broader agenda

for computer science and engineering.Communications of the ACM
35, 30–40.

Myers, B.A. ~1993!. Why are human–computer interfaces difficult to de-
sign and implement?Technical Report CMU-CS-93-183. Pittsburgh,
PA: Carnegie Mellon University.

Myers, B.A. ~1995!. User interface software tools.ACM Transactions on
Human–Computer Interaction 2, 64–103.

Paterno, F., & Mancini, C.~2000!. Model-based design of interactive ap-
plications.Intelligence 28, 27–37.

Pinheiro da Silva, P.~2000!. User interface declarative models and devel-
opment environments: A survey.Seventh Int. Workshop on Design,
Specification and Verification of Interactive Systems, Limerick, Ireland.

Puerta, A.R., Cheng, E., Ou, T., & Min, J.~1999!. MOBILE: User-centered
interface building.Proc. CHI ’99, pp. 426–433.

Raphael, B., & Smith, I.~1998!. Finding the right model for bridge diag-
nosis. InArtificial Intelligence in Structural Engineering, Computer
Science, Lecture Notes in Artificial Intelligence, Vol. 1454 ~Smith,
I.F.C., Ed.!, pp. 308–319. Heidelberg, Germany: Springer.

Robert-Nicoud, Y., Raphael, B., & Smith, I.F.C~2000!. Decision support
through multiple models and probabilistic search.Proc. Construction
Information Technology 2000, Iceland Building Research Institute.

Schneiderman, B.~1983!. Direct manipulation: A step beyond program-
ming languages.IEEE Computer 16, 57–69.

Schneiderman, B.~1997!, Designing the User Interface: Strategies for
Effective Human–Computer Interaction, Reading, MA: Addison–
Wesley.

Smith, I.F.C ~1996!. Interactive design. InInformation Processing in
Civil and Structural Engineering Design~Kumar, B., Ed.!, pp. 23–30.
Edinburgh: CIVIL-COMP Ltd.

Smith, I.F.C ~1999!. Designers like designing. InBridging the Gen-
erations: The Future of Computer Aided Engineering~Garrett, J.H., &
Rehak, D.R., Eds.!, pp. 105–109. Pittsburgh, PA: Carnegie Mellon
University, Department of Civil Engineering.

Smith, S.L., & Mosier, J.N.~1986!. Guidelines for designing user inter-
face software. Technical Report ESD-TR-86-278. Bedford, MA:
MITRE.

Stalker, R.~2000!. Engineer–computer interaction for structural monitor-
ing. PhD Thesis. Lausanne, Switzerland: IMAC-DGC, Swiss Federal
Institute of Technology, EPFL.

Stalker, R., & Smith, I.~1999!. An interactive toolkit for structural moni-
toring. InArtificial Intelligence in Structural Engineering~Borkowski,
A., Ed.!. Warsaw, Poland: Wydawnictwa Naukowo-Techniczne.

Stirewalt, R.E.K., & Rugaber, S.~1998!. Automating UI generation by
model composition. In13th Conf. Automated Software Engineering,
ASE’98, Honolulu, HI. New York: IEEE.

Szekely, P., Luo, P., & Neches, R.~1992!. Facilitating the exploration of
interface design alternatives: The HUMANOID model of interface
design.Proc. CHI’92, CM Conf. Human Factors in Computing Sys-
tems, pp. 107–114.

Van Harmelen, M.,Artim, J., Butler, K., Henderson,A., Roberts, D., Rosson,
M.B., Tarby, J.-C., & Wilson, S.~1997, October!. Object-oriented mod-
els in user interface design. CHI 97 Workshop.SIGCHI Bulletin.

Wiecha, C., & Boies, S.~1990!. Generating user interfaces, principles and
use of ITS style rules.Proc. UIST’90, pp. 21–30.

Benny Raphaelis a Research Associate at the Applied Com-
puting and Mechanics Laboratory at the Swiss Federal In-
stitute of Technology in Lausanne. He obtained his BS and
MS degrees from the Indian Institute of Technology, Ma-
dras, in 1990 and 1992, respectively. He obtained his PhD
from Strathclyde University, Glasgow, UK, in 1995. Dr.
Raphael’s interests include global search UIs, case-based
reasoning, and other applications of artificial intelligence
to engineering.

Gaurav Bhatnagar obtained his BS in computer science
and engineering from the Indian Institute of Technology,
New Delhi, in 2001. He is currently working as a software
Design Engineer at Microsoft in Redmond, WA, USA.
Gaurav’s interests include algorithms, computer networks,
and HCI.

Ian F.C. Smith is currently Professor and Head of the Ap-
plied Computing and Mechanics Laboratory at the Swiss
Federal Institute of Technology in Lausanne. He earned his
engineering degree at the University of Waterloo, Canada,
in 1978 and his PhD at Cambridge University in 1982. Dr.
Smith’s interests include artificial intelligence applications,
computer supported cooperative work, HCI, infrastructure
monitoring and repair, intelligent structures, global sustain-
ability, and intelligent CAD.

184 B. Raphael et al.

https://doi.org/10.1017/S0890060402163049 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402163049

