
Adv. Appl. Prob. 51, 184–208 (2019)
doi:10.1017/apr.2019.8

© Applied Probability Trust 2019

DEVIATION BOUNDS FOR THE FIRST
PASSAGE TIME IN THE FROG MODEL
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Abstract

We consider the so-called frog model with random initial configurations. The dynamics
of this model are described as follows. Some particles are randomly assigned to any site
of the multidimensional cubic lattice. Initially, only particles at the origin are active and
these independently perform simple random walks. The other particles are sleeping and
do not move at first. When sleeping particles are hit by an active particle, they become
active and start moving in a similar fashion. The aim of this paper is to derive large
deviation and concentration bounds for the first passage time at which an active particle
reaches a target site.
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1. Introduction

1.1. The model

For d ≥ 2, we write Z
d for the d-dimensional cubic lattice. Let ω= (ω(x))x∈Zd be

independent random variables with a common law on N0 :=N∪ {0}, not concentrated at
zero. Furthermore, independently of ω, let (Sk(x, �))∞k=0, x ∈Z

d, � ∈N, be independent simple
random walks on Z

d with S0(x, �) = x. For any x, y ∈Z
d, we now introduce the first passage

time T(x, y) from x to y as follows:

T(x, y) := inf

{
m−1∑
i=0

τ (xi, xi+1) : m ≥ 1, x0 = x, xm = y, x1, . . . , xm−1 ∈Z
d

}
, (1.1)

where

τ (xi, xi+1) := inf{k ≥ 0: Sk(xi, �) = xi+1 for some 1 ≤ �≤ω(xi)},
with the convention that τ (xi, xi+1) := ∞ if ω(xi) = 0. The fundamental object of study is
the first passage time T(0, x) conditioned on the event {ω(0) ≥ 1}. Its intuitive meaning is
as follows. We now regard simple random walks as ‘frogs’ and ω stands for an initial
configuration of frogs, i.e. ω(y) frogs sit on each site y (there is no frog at y if ω(y) = 0).
Suppose that the origin 0 is occupied by at least one frog. They are active and independently
perform simple random walks, but the other frogs are sleeping and do not move at first.

Received 18 December 2017; revision received 23 December 2018.
∗ Postal address: College of Science and Technology, Nihon University, 24-1, Narashinodai 7-chome, Funabashi-shi,
Chiba 274-8501, Japan. Email address: kubota.naoki08@nihon-u.ac.jp

184

https://doi.org/10.1017/apr.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.8
http://www.appliedprobability.org
mailto:kubota.naoki08@nihon-u.ac.jp
https://doi.org/10.1017/apr.2019.8


The first passage time in the frog model 185

When sleeping frogs are attacked by an active frog, they become active and start doing
independent simple random walks. Then T(0, x) describes the first passage time at which an
active frog reaches a site x.

The frog model was originally introduced by Ravishankar, and its idea comes from the
following information spreading. Consider that every active frog has some information. When
it hits sleeping frogs, the information is shared between them. Active frogs move freely and
play a role in spreading the information. Recent interests of the frog model are recurrence and
transience of frogs (see Section 1.3 for details), and there are few results for the behavior of the
first passage time except for [3], [4], and [22]. (Recently, the first passage time is also studied
in a Euclidean setting [6].) However, in view of the information spreading, it is important to
investigate the behavior of the first passage time precisely. For this purpose, in this paper, we
propose nontrivial deviation bounds for the first passage time (see Theorems 1.1, 1.2, and 1.3
below).

1.2. Main results

Let us first mention the results obtained by Alves et al. [4] to describe our main results.
First, note that the first passage time is subadditive:

T(x, z) ≤ T(x, y) + T(y, z), x, y, z ∈Z
d.

Alves et al. [4, Section 2, Theorem 1.1, Steps 1–6] obtained the following asymptotic behavior
of the first passage time. There exists a norm μ( · ) (which is called the time constant) on R

d

such that almost surely on the event {ω(0) ≥ 1},

lim‖x‖1→∞
x∈Zd

T(0, x) −μ(x)

‖x‖1
= 0, (1.2)

where ‖ · ‖1 is the �1-norm on R
d. Furthermore, μ( · ) is invariant under permutations of the

coordinates and under reflections in the coordinate hyperplanes, and satisfies

‖x‖1 ≤μ(x) ≤μ(ξ1)‖x‖1, x ∈R
d, (1.3)

where ξ1 is the first coordinate vector of Rd. The first inequality in (1.3) is a consequence of
(1.2). Indeed, since T(0, kx) ≥ ‖kx‖1 for x ∈Z

d, we have almost surely on the event {ω(0) ≥ 1},

μ(x) = lim
k→∞

1

k
T(0, kx) ≥ ‖x‖1, x ∈Z

d.

Hence, the first inequality in (1.3) is valid for x ∈Z
d and we can easily extend it to the case

x ∈R
d. On the other hand, the second inequality in (1.3) follows from the properties of the

time constant.
To prove (1.2), roughly speaking, Alves et al. applied the subadditive ergodic theorem to

the process T(ix, jx), 0 ≤ i< j, with ω(ix), ω(jx) ≥ 1. This method requires the integrability of
the first passage time. Thus, in [4, Lemmata 2.2 and 2.3], they first derived the following tail
estimate. There exist constants 0<C1,C2 <∞ and 0<α1 < 1 such that, for all x ∈Z

d and
t ≥ ‖x‖4

1,

P(T(0, x) ≥ t | ω(0) ≥ 1) ≤ C1e−C2t α1 . (1.4)
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186 N. KUBOTA

Our main results are the following upper and lower large deviations for the first passage
time. Throughout this paper, we write P := P( ·|ω(0) ≥ 1) to shorten notation.

Theorem 1.1. There exists a constant 0<α2 < 1 such that, for all ε > 0,

lim sup
‖x‖1→∞

x∈Zd

1

‖x‖ α2
1

log P(T(0, x) ≥ (1 + ε)μ(x))< 0.

Theorem 1.2. If E[ω(0)]<∞ then there exists a constant 0<α3 < 1 such that, for all ε > 0,

lim sup
‖x‖1→∞

x∈Zd

1

‖x‖ α3
1

log P(T(0, x) ≤ (1 − ε)μ(x))< 0.

From the above theorems, we can expect the existence of the optimal speeds for the upper
and lower large deviations, i.e. there exist exponents β, β ′ ∈ (0, 1] such that

1

‖x‖β1
log P(T(0, x) ≥ (1 + ε)μ(x)) and

1

‖x‖β ′
1

log P(T(0, x) ≤ (1 − ε)μ(x)) (1.5)

converge to some strictly negative constants as ‖x‖1 → ∞, x ∈Z
d. Let us argue here this

problem and observe that the optimal speed (if it exists) has to be ‖x‖1 to some power in
(0, 1] under some assumptions. For simplicity of notation, denote by I the random set of all
sites of Zd which frogs initially occupy, i.e.

I := {x ∈Z
d : ω(x) ≥ 1

}
.

First observe the upper large deviation of T(0, x). Let x ∈Z
d with ‖x‖1 > 1 and consider the

event A that (S·(0, �))1≤�≤ω(0) and (S·(ξ1, �))1≤�≤ω(ξ1)∨1 stay inside the set {0, ξ1} until time
�(1 + ε)μ(ξ1)‖x‖1. We divide P(A ∩ {0 ∈ I}) into two terms:

P
(
A ∩ {0 ∈ I})= P

(
A ∩ {0 ∈ I, ξ1 �∈ I})+ P

(
A ∩ {0, ξ1 ∈ I}). (1.6)

Since each simple random walk jumps to one of its nearest neighbors at each step, the first
term on the right-hand side of (1.6) is equal to

∞∑
L=1

P(ω(0) = L)P(ξ1 �∈ I)(2d)−(L+1)�(1+ε)μ(ξ1)‖x‖1

=E

[
(2d)−(ω(0)+1)�(1+ε)μ(ξ1)‖x‖11{0∈I, ξ1 �∈I}

]
.

Similarly, the second term on the right-hand side of (1.6) is equal to

E

[
(2d)−(ω(0)+ω(ξ1))�(1+ε)μ(ξ1)‖x‖11{0,ξ1∈I}

]
.

Therefore, we have

P(A) =E

[
(2d)−(ω(0)+ω(ξ1)+1)�(1+ε)μ(ξ1)‖x‖1

]
.
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Note that by (1.3), on the event A ∩ {0 ∈ I},
T(0, x) ≥ �(1 + ε)μ(ξ1)‖x‖1 ≥ (1 + ε)μ(x),

and Jensen’s inequality yields

lim inf‖x‖1→∞
x∈Zd

1

‖x‖1
log P(T(0, x) ≥ (1 + ε)μ(x)) ≥ −(2E[ω(0)] + 1)�(1 + ε)μ(ξ1) log (2d).

This bound does not guarantee the existence of the optimal speed for the upper large deviation
and has no meaning if E[ω(0)] = ∞. However, in the case where E[ω(0)]<∞, the above
bound combined with Theorem 1.1 shows that the exponent β appearing in (1.5) lies in [ α2, 1]
(if the optimal speed exists for the upper large deviation).

Next we treat the lower large deviation of T(0, x). Note that Theorem 1.2 of [4] states that
if there exists δ ∈ (0, d) such that P(ω(0) ≥ t) ≥ ( log t)−δ holds for all large t then we have
μ(x) = ‖x‖1. Our lower large deviation (Theorem 1.2) does not treat this situation because of
the assumption of finite mean of ω(0). However, for now, we do not know whether μ(x)> ‖x‖1
holds even if ω(0) has a finite mean, and have to consider the speed of the lower large deviation
for several directions x ∈Z

d: μ(x)< (1 − ε)−1‖x‖1 and μ(x) ≥ (1 − ε)−1‖x‖1. In the case
where μ(x)< (1 − ε)−1‖x‖1, we have T(0, nx) ≥ ‖nx‖1 > (1 − ε)μ(nx) and

P(T(0, nx) ≤ (1 − ε)μ(nx)) = 0.

Hence, if μ(x)< (1 − ε)−1‖x‖1 then we do not determine the optimal speed of the lower large
deviation for the direction x in the sense of (1.5). On the other hand, in the case where μ(x) ≥
(1 − ε)−1‖x‖1, we have (1 − ε)μ(nx) ≥ ‖nx‖1. Fix a self-avoiding nearest-neighbor path (0 =
v0, v1, . . . , vm = nx) with minimal length m = ‖nx‖1, and let A′ be the event that Sk(0, 1) = vk

for all 0 ≤ k ≤ m. It holds that P(A′) = (2d)−‖nx‖1 and T(0, nx) ≤ (1 − ε)μ(nx) on the event
A′ ∩ {0 ∈ I}. Hence,

lim inf
n→∞

1

n‖x‖1
log P(T(0, nx) ≤ (1 − ε)μ(nx)) ≥ − log (2d).

This combined with Theorem 1.2 proves that in the case where μ(x) ≥ (1 − ε)−1‖x‖1, the
exponent β ′ appearing in (1.5) lies in [ α3, 1] (if the optimal speed of the lower large deviation
exists for the direction x).

Optimizing the speeds for the above large deviations may be difficult in general because
the propagation of active frogs depends on the behavior of the simple random walk and the
initial configuration of the frogs. From [21, pp. 333, 338] the average cardinality of the set
{Sk(0, 1) : 0 ≤ k ≤ n} is of order n/ log n if d = 2, and of order n if d ≥ 3. This means that an
active frog wakes more sleeping frogs up in d ≥ 3 than in d = 2. Moreover, without relation
to the dimension, active frogs are easily generated if each site of Zd first has a lot of sleeping
frogs. Thus, the first passage time and the time constant seem to be strongly related to the
dimension d and the law of the initial configuration ω. At present we do not have enough
information to determine the optimal speed of the large deviations and would like to address
these problems in future research.

Our key tool to prove Theorems 1.1 and 1.2 is the modified first passage time defined as
follows: For any x ∈Z

d, let x∗ be the closest point to x in I for the �1-norm, with a deterministic
rule to break ties. Then, the modified first passage time T∗(x, y) is given by

T∗(x, y) := T(x∗, y∗).
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By definition, the subadditivity is inherited from the original first passage time:

T∗(x, z) ≤ T∗(x, y) + T∗(y, z), x, y, z ∈Z
d.

A particular difference between T(x, y) and T∗(x, y) is that T(x, y) is inevitably equal to
∞ if ω(x) = 0, but T∗(x, y) is almost surely finite. Moreover, we can derive the following
concentration inequality for T∗(0, x).

Theorem 1.3. Assume that E[ω(0)]<∞. For all γ > 0, there exist constants 0<
C3,C4,C5 <∞ and 0<α4 < 1 such that, for all x ∈Z

d \ {0} and C3(1 + log ‖x‖1)1/ α4 ≤ t ≤
γ
√‖x‖1,

P

(
|T∗(0, x) −E[T∗(0, x)]| ≥ t

√‖x‖1

)
≤ C4e−C5t α4 .

Theorem 1.3 is not only of independent interest in view of the investigation of the modified
first passage time, but also plays a key role in obtaining Theorem 1.2 as mentioned in
Subsection 1.4 below.

1.3. Earlier literature

There are various models related to the spread of information except for our frog model.
Ramírez–Sidoravicius [33] studied a stochastic growth model representing combustion, which
is the frog model on Z

d for continuous-time simple random walks. Although the frog model
has active and sleeping frogs, the model in which all frogs are active from the beginning has
also been investigated (see, for instance, [24], [25], [27], and [32]). This model is regarded
as an infected model and its dynamics are described as follows. We consider continuous-time
simple random walks as frogs (which are active from the beginning and never sleep). Initially
the frog from the origin is infected, while the other frogs are healthy. Infected frogs transmit the
disease to all the frogs they meet without recovery. Furthermore, we can also find the so-called
activated random walk model. This is similar to the combustion model, but there are initially
some active frogs and any active frog may fall back to sleep randomly; see [5], [8], [34], [35],
[36], and the references given therein.

We shall return to the topic of the frog model. The first published result on the frog model
is due to Telcs–Wormald [37, Section 2.4] (in their paper, the frog model was called the ‘egg
model’). They treated the frog model on Z

d with one-frog-per-site initial configuration, and
proved that it is recurrent for all d ≥ 1, i.e. almost surely, active frogs infinitely often visit the
origin. (Otherwise, we say that the frog model is transient.) This result proposed an interesting
relationship between the strength of transience for a single random walk and the superior
numbers of frogs.

To observe this more precisely, Popov [31] considered the frog model with Bernoulli initial
configurations and exhibited phase transitions of its transience and recurrence. After that, Alves
et al. coped with that kind of problem for the frog model with random initial configuration and
random lifetime; see [2] and [32] for more details. In particular, [32] is a nice survey on the
frog model and presents several open problems. It has also been a great help to recent progress
on recurrence and transience for the frog model: We refer the interested reader to [14], [17],
and [26] for the frog model on lattices, [10], [9], and [11] for the frog model with drift on
lattices, and [18], [19], and [20] for the frog model on trees.

In this way, recent interest of the frog model seems to concentrate in recurrence and
transience problems. On the other hand, as mentioned in Subsection 1.1, there are few results
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for the behavior of the first passage time in the frog model. We hope that our work is useful for
research in the frog model (including the recurrence and transience problems) and the related
models mentioned above.

1.4. Organization of the paper

Let us now describe how the present article is organized. In Section 2, for convenience, we
summarize some notation and results for supercritical site percolation on Z

d, and provide
an upper tail estimate for the first passage time (see Proposition 2.4 below). In addition,
Corollary 2.1 tells us that we have to switch frogs frequently to realize the first passage time.
More precisely, it guarantees that each frog realizing T(0, x) must find the next one within the
�1-ball of radius o(‖x‖1). This fact will play an important role in the proofs of Theorems 1.2 and
1.3. It is generally difficult to observe the behavior of the frogs realizing the first passage time.
This is because, without loss of the minimality, we have to handle the behavior of the frogs
and those initial configurations at the same time. In the proof of Corollary 2.1, we overcome
this difficulty by using a large deviation estimate for the simple random walk combined with
Proposition 2.4.

In Sections 3 and 4 we prove our main results (Theorems 1.1, 1.2, and 1.3). An early
study of large deviation estimates in stochastic growth models was carried out by Grimmett–
Kesten [16]. They only treated the large deviation estimates for the first coordinate axis.
However, we want to obtain the large deviation estimates for all directions as in Theorems 1.1
and 1.2. Thus, our arguments for these theorems to a large extent is based on the previous work
of Garet–Marchand [12], [13] for the chemical distance in the Bernoulli percolation.

For the proof of Theorem 1.1, we basically follow the strategy taken in [12, Subsection 3.3].
Let us give the sketch of the proof here. For simplicity, we consider Theorem 1.1 only for
x = nξ1. Fix ε > 0 and take N large enough. A site y of Z

d is said to be ‘good’ if ‖Ny −
(Ny)∗‖1 ≤ √

N, ‖N(y + ξ ) − (N(y + ξ ))∗‖1 ≤ √
N and T∗(Ny,N(y + ξ )) ≤ (1 + ε)μ(Nξ1) for

any coordinate vector ξ . Note that (1.2) and the independent and identically distributed (i.i.d.)
set-up of the configuration imply that each site y of Zd is good with high probability. Hence,
good sites induce a finitely dependent site percolation on Z

d with parameter sufficiently close
to one (see Lemma 3.3 below). Suppose that an arbitrary integer n is much larger than N.
Results in Subsection 2.1 below guarantee that the failure probability of the following event
decays exponentially in n: there exist good sites y1, . . . , yQ such that

• Q ≈ n/N and ‖yq − yq+1‖1 = 1 for all 1 ≤ q ≤ Q − 1;

• ‖(Ny1)∗‖1 and ‖nξ1 − (NyQ)∗‖1 are smaller than n1/4.

On this event and {0 ∈ I},

T(0, nξ1) ≤ T(0, (Ny1)∗) +
Q−1∑
q=1

T∗(Nyq,Nyq+1) + T((NyQ)∗, nξ1)

� T(0, (Ny1)∗) + (1 + ε)μ(nξ1) + T((NyQ)∗, nξ1).

Using the upper tail estimate (stated in Proposition 2.4), we can control the first and third terms
on the right-hand side, and the desired bound follows in the x = nξ1 case. We need some more
work to carry out the above argument uniformly in any direction x.

In Section 4 we begin with the proof of Theorem 1.2. The lower large deviations have been
studied for the first passage time in the first passage percolation and the chemical distance
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in the Bernoulli percolation, which are the counterparts of the first passage time in the frog
model (we refer the interested reader to [1], [12], and [23]). These counterparts are induced
by sequences of nearest-neighbor points on Z

d and depend on only one randomness. On the
other hand, the first passage time in the frog model may use sequences of nonnearest-neighbor
points on Z

d (see (1.1)) and depends on two sources of randomness: the simple random walks
and the initial configuration. In [1], [12], and [23], the key tool for the lower large deviations
is a renormalization procedure combined with a BK-like inequality. Although we also use
a renormalization argument to show Theorem 1.1 and Proposition 2.4, due to the difference
stated above, a BK-like inequality does not work well for the lower large deviation in the frog
model. To overcome this problem, we use the concentration inequality for T∗(0, x) as follows.
Divide T(0, x) −μ(x) into three terms:

T(0, x) −μ(x)

= {T(0, x) − T∗(0, x)
}+ {T∗(0, x) −E

[
T∗(0, x)

]}+ {E[T∗(0, x)
]−μ(x)

}
.

From Lemma 3.1 below, E[T∗(0, x)] ≥μ(x) holds and the third term is harmless for the lower
tail. The second term can be controlled once we get the concentration inequality for T∗(0, x),
which is Theorem 1.3. Hence, in the proof of Theorem 1.2 we try to compare T(0, x) and
T∗(0, x) on the event {ω(0) ≥ 1} by using Corollary 2.1.

The remainder of Section 4 will be devoted to the proof of Theorem 1.3. For the proof,
we follow the approach taken by Garet–Marchand [13, Section 3]. In [13, Section 3], they
constructed an approximation of the chemical distance with a deterministic upper bound
and applied Chebyshev’s inequality combined with exponential versions of the Efron–Stein
inequality (see (4.3) and (4.4) below) to it. As mentioned above, the chemical distance is
induced by sequences of nearest-neighbor points on Z

d, but the first passage time in the frog
model may use sequences of nonnearest-neighbor points on Z

d. This difference disturbs the
direct use of Garet–Marchand’s approximation for our first passage time. To overcome this
problem, we define passage times between every sufficiently remote two points x and y to
be C‖x − y‖1, where C ∈ (0,∞) is a constant much larger than μ(ξ1). The first passage time
modified in this way is dominated by C‖ · ‖1. Furthermore, (1.2) says that if ‖x − y‖1 is large
enough then the first passage time from x to y is approximately equal to μ(x − y)<C‖x − y‖1.
This means that the modified first passage time tends not to use sufficiently remote points, and,
hence, it is comparable to the original first passage time. This observation implies our desired
approximation of the first passage time.

We close this section with some general notation. Write ‖ · ‖1 and ‖ · ‖∞ for the �1- and
�∞-norms on R

d. Denote by {ξ1, . . . , ξd} the canonical basis of R
d, and let Ed := {ξ ∈

Z
d : ‖ξ‖1 = 1}. For i ∈ {1,∞}, x ∈R

d, and r> 0, Bi(x, r) is the �i-ball in R
d of center x and

radius r, i.e.

Bi(x, r) := {y ∈R
d : ‖y − x‖i ≤ r

}
.

Throughout this paper, we use c, c′, C, C′, Ci, and αi, i = 1, 2, . . . , to denote constants with
0< c, c′,C,C′,Ci <∞, and 0<αi < 1, respectively.

2. Preliminaries

2.1. Supercritical site percolation

Let X = (Xv)v∈Zd be a family of random variables taking values in {0, 1}. This induces
the random set {v ∈Z

d:Xv = 1}. The chemical distance dX(v1, v2) for X between v1 and v2 is
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defined by

dX(v1, v2) := inf
{
#π : π is a nearest-neigibor path from v1 to v2 using only sites in{

v ∈Z
d : Xv = 1

}}
,

where #π is the length of a path π . A connected component of {v ∈Z
d : Xv = 1} which contains

infinitely many points is called an infinite cluster for X. If there exists almost surely a unique
infinite cluster for X then we denote it by C∞(X).

For 0< p< 1, let ηp = (ηp(v))v∈Zd denote a family of independent random variables
satisfying

P(ηp(v) = 1) = 1 − P(ηp(v) = 0) = p, v ∈Z
d.

This is called the independent Bernoulli site percolation on Z
d of the parameter p. It is well

known that there is pc = pc(d) ∈ (0, 1) such that if p> pc then the infinite cluster C∞(ηp) exists;
see, for instance, Theorems 1.10 and 8.1 of [15]. The following proposition presents estimates
for the size of the holes in the infinite cluster C∞(ηp) and the chemical distance dηp (·, ·) (see
[13, below Equation (2.2) and Corollary 2.2] for the proof).

Proposition 2.1. For p> pc, the following results hold:

(a) there exist constants C6 and C7 such that, for all t> 0,

P(C∞(ηp) ∩ B1(0, t) =∅) ≤ C6e−C7t;

(b) there exist constants C8, C9, and C10 such that, for all v ∈Z
d and t ≥ C8‖v‖1,

P(t ≤ dηp (0, v)<∞) ≤ C9e−C10t.

A part of the proof of Theorem 1.1 relies on the following proposition obtained by Garet–
Marchand [12, Theorem 1.4]. (Their argument works not only for bond percolation but also
for site percolation.) This tells us that, when p is sufficiently close to 1, the chemical distance
looks like the �1-norm.

Proposition 2.2. For each γ > 0, there exists p′(γ ) ∈ (pc, 1) such that, for all p> p′(γ ),

lim sup
‖v‖1→∞

1

‖v‖1
log P((1 + γ )‖v‖1 ≤ dηp (0, v)<∞)< 0.

Proposition 2.2 gives an estimate of the deviation of dηp (0, v) only around ‖v‖1. In the proof
of Proposition 2.4, we need an estimate of the upper tail for dηp (0, v) sufficiently away from
‖v‖1, and Proposition 2.2 does not work well there. On the other hand, to prove Theorem 1.1,
it is necessary that dηp (0, v) is sufficiently close to ‖v‖1. The constant C8 is generally a
large constant, and Proposition 2.1(b) is not enough to prove Theorem 1.1. Accordingly,
Proposition 2.1(b) and Proposition 2.2 are similar, but we need both results in this paper.

We finally recall the concept of stochastic domination. Let X = (Xv)v∈Zd and Y = (Yv)v∈Zd

be families of random variables taking values in {0, 1}. We say that X stochastically
dominates Y if

E[f (X)] ≥E[f (Y)]
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for all bounded, increasing, measurable functions f : {0, 1}Zd →R. Furthermore, a family X =
(Xv)v∈Zd of random variables is said to be finitely dependent if there exists L> 0 such that
any two subfamilies (Xv1 )v1∈1 and (Xv2 )v2∈2 are independent whenever 1, 2 ⊂Z

d satisfy
‖v1 − v2‖1 > L for all v1 ∈1 and v2 ∈2.

The following stochastic comparison is useful to compare locally dependent fields with the
independent Bernoulli site percolation. For the proof, we refer the reader to [15, Theorem 7.65]
or [29, Theorem B26] for instance.

Proposition 2.3. Suppose that X = (Xv)v∈Zd is a finitely dependent family of random variables
taking values in {0, 1}. For a given 0< p< 1, X stochastically dominates ηp provided
infv∈Zd P(Xv = 1) is sufficiently close to 1.

2.2. Upper tail estimate for the first passage time

As mentioned in Subsection 1.1, the tail estimate (1.4) is established for x ∈Z
d and t ≥ ‖x‖4

1.
The condition t ≥ ‖x‖4

1 is reasonable to derive the integrability of T(0, x), but it is not enough
to study the deviation of T(0, x) around the time constant μ(x). In fact, since μ(x) is of order
‖x‖1, the bottom ‖x‖4

1 of the range of t deviates from μ(x) too much. Hence, the aim of this
subsection is to improve the condition t ≥ ‖x‖4

1 as in the following proposition.

Proposition 2.4. There exist constants C11,C12,C13, and α5 such that, for all x ∈Z
d and

t ≥ C11‖x‖1,

P(T(0, x) ≥ t) ≤ C12e−C13t α5 . (2.1)

Before the proof, we need some preparation. Let N be a positive integer to be chosen large
enough later and set N′ := �N1/4/(4d)�. Moreover, set q := 2N′q + ( − N′,N′]d for q ∈Z

d.
Then, the boxesq, q ∈Z

d, form a partition of Zd and each site in Z
d is contained in precisely

one box. A site v of Zd is said to be white if the following conditions hold:

• q ∩ I �=∅ for all q ∈Z
d with q ⊂ B∞(Nv,N).

• T(x, y) ≤ N for all x, y ∈ B∞(Nv,N) ∩ I with ‖x − y‖1 ≤ N1/4.

We say that v is black otherwise.

Lemma 2.1. We can find p ∈ (pc, 1) and N ≥ 1 such that (1{v is white})v∈Zd stochastically
dominates ηp and the infinite white cluster Cw∞ := C∞((1{v is white})v∈Zd ) exists.

Proof. Let us first check that, for every v ∈Z
d, the event {v is white} depends only on states

in B1(Nv, 2N). It suffices to show that, for all x, y ∈ B1(Nv,N), the event {T(x, y) ≤ N} depends
only on states in B1(Nv, 2N). By the definition of the first passage time, the event {T(x, y) ≤ N}
can be replaced with the event that there exist m ≥ 1 and x0, x1, . . . , xm ∈Z

d, with x0 = x and
xm = y such that

m−1∑
i=0

τ (xi, xi+1) ≤ N.

Since every frog can only move to an adjacent site at each step, the above sum is strictly bigger
than N provided ‖xi − x0‖1 >N for some 1 ≤ i ≤ m. Hence, the xi must satisfy ‖xi − Nv‖1 ≤
2N. This means that the event {T(x, y) ≤ N} depends only on states in B1(Nv, 2N).
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We next show that infv∈Zd P(v is white) converges to 1 as N → ∞. The union bound proves

P(0 is black) ≤
∑
q≥1

q⊂B∞(0,N)

P(q ∩ I =∅) +
∑

x,y∈B∞(0,N)
‖x−y‖1≤N1/4

P(T(0, y − x)>N).

The first summation is not larger than cNd
P(0 �∈ I)c′Nd/4

for some constants c and c′, and it
clearly goes to 0 as N → ∞. By (1.4), we can also see that the second summation vanishes
as N → ∞. Therefore, from translation invariance, infv∈Zd P(v is white) converges to 1 as
N → ∞.

With these observations, the proof is complete by using Proposition 2.3 and the same
strategy taken in the proof of Proposition 5.2 of [30]. �

After the preparation above, we move to the proof of Proposition 2.4.

Proof of Proposition 2.4. Without loss of generality, we can assume that ‖x‖1 ≥ d4. Let p
and N be the constants appearing in Lemma 2.1. Consider the events

�1 := {there exists v1 ∈ Cw∞ ∩ B1(0, t1/4) and there exists v2 ∈ Cw∞ ∩ B1(v(x), t1/4) such

that dw(v1, v2)< 4C8t},
�2 := {T(0, y)< (3N)4t and T(z, x)< (3N)4t for all y ∈ B1(0, 2Nt1/4) and

z ∈ B1(Nv(x), 2Nt1/4) ∩ I},
where dw(·, ·) is the chemical distance for (1{v is white})v∈Zd and v(x) is the site v of Z

d

minimizing ‖Nv − x‖∞ with a deterministic rule to break ties. Note that, on the event
�1 ∩ �2 ∩ {0 ∈ I},

T(0, x)< {2(3N)4 + 4C8N2}t, t ≥ ‖x‖1.

To complete the proof, we shall estimate P(�c
1) and P(�c

2). Lemma 2.1 implies that P(�c
1) is

bounded from above by

P

(
dηp (v1, v2) ≥ 4C8t for all v1 ∈ C∞(ηp) ∩ B1

(
0, t1/4

)
and v2 ∈ C∞(ηp) ∩ B1

(
v(x), t1/4

))
≤ 2P

(C∞(ηp) ∩ B1(0, t1/4) =∅
)+ ∑

v1∈B1(0,t1/4)
v2∈B1(v(x),t1/4)

P(4C8t ≤ dηp (v1, v2)<∞).

(2.2)

From Proposition 2.1(a), the first term on the right-hand side of (2.2) is not larger than
2C6e−C7t1/4 . Note that, for t ≥ ‖x‖1, v1 ∈ B1(0, t1/4), and v2 ∈ B1(v(x), t1/4),

‖v1 − v2‖1 ≤ 2t1/4 + 1

N
‖Nv(x) − x‖1 + ‖x‖1

N
≤ 4t.

This combined with Proposition 2.1(b) shows that the second term on the right-hand side of
(2.2) is exponentially small in t. Consequently, P(�c

1) decays faster than e−C7t1/4 . On the other
hand, we have, for t ≥ ‖x‖1 and z ∈ B1(Nv(x), 2Nt1/4),

‖x − z‖1 ≤ ‖x − Nv(x)‖1 + ‖Nv(x) − z‖1 ≤ 3Nt1/4.
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This together with (1.4) proves that P(�c
2) is bounded from above by a multiple of

td/2 exp{−C2(3N)4 α1 t α1}. Therefore, (2.1) immediately follows from the above bounds for
P(�c

1) and P(�c
2). �

We close this section with the corollary of Proposition 2.4.

Corollary 2.1. Suppose that E[ω(0)]<∞. Then there exist constants C14, C15, and α6 such
that, for all x ∈Z

d and t> 0,

P(there exists v1, v2 ∈ I with ‖v1 − v2‖1 ≥ t such that T(0, x)=T(0, v1)+τ (v1, v2)+T(v2, x))

≤ C14‖x‖2d
1 e−C15t α6 . (2.3)

Proof. Since the left-hand side of (2.3) is smaller than or equal to P(T(0, x) ≥ t), the
corollary immediately follows from Proposition 2.4 provided t ≥ C11‖x‖1.

Assume that t<C11‖x‖1. We use Proposition 2.4 to show that the left-hand side of (2.3) is
bounded from above by

C12 exp{−C13(C11‖x‖1) α5} +
∑

v1,v2∈B1(0,C11‖x‖1)
‖v1−v2‖1≥t

P(τ (0, v2 − v1) = T(0, v2 − v1))

≤ C12e−C13t α5 +
∑

v1,v2∈B1(0,C11‖x‖1)
‖v1−v2‖1≥t

{I1(v2 − v1) + I2(v2 − v1)}, (2.4)

where, for z ∈Z
d,

I1(z) := P

⎛⎝ max
0≤k≤C11‖z‖1

1≤�≤ω(0)

‖Sk(0, �)‖1 ≥ ‖z‖1

⎞⎠,
I2(z) := P

⎛⎝ max
0≤k≤C11‖z‖1

1≤�≤ω(0)

‖Sk(0, �)‖1 < ‖z‖1, τ (0, z) = T(0, z)

⎞⎠.

To estimate I1(v2 − v1), we rely on the following simple large deviation estimate for the simple
random walk; see [28, Lemma 1.5.1]. For any γ > 0, there exists a constant c (which may
depend on γ ) such that, for all n, u ≥ 0,

P

(
max

0≤k≤n
‖Sk(0, 1)‖1 ≥ γ u

√
n

)
≤ ce−u.

Fix v1, v2 ∈ B1(0,C11‖x‖1) with ‖v1 − v2‖1 ≥ t, and set γ = C11
−1/2, n = C11‖v2 − v1‖1, and

u = ‖v2 − v1‖1/2
1 . Then,

I1(v2 − v1) ≤
∞∑

L=1

P(ω(0) = L)
L∑
�=1

P

(
max

0≤k≤C11‖v2−v1‖1
‖Sk(0, �)‖1 ≥ ‖v2 − v1‖1

)
≤E[ω(0)]ce−t1/2 .
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We again use Proposition 2.4 to obtain, for v1, v2 ∈ B1(0,C11‖x‖1) with ‖v1 − v2‖1 ≥ t,

I2(v2 − v1) ≤ P(C11‖v2 − v1‖1 < τ (0, v2 − v1) = T(0, v2 − v1))

≤ C12 exp{−C13(C11t) α5}.

Therefore, (2.3) follows from (2.4) and these bounds for I1(v2 − v1) and I2(v2 − v1). �

3. Upper large deviation bound

In this section we give the proof of Theorem 1.1. We basically follow the approach taken in
[12, Subsection 3.3]. Let us first prepare some notation and lemmata.

Lemma 3.1. For each x ∈Z
d, P-a.s. and in L1,

μ(x) = lim
k→∞

1

k
T∗(0, kx) = lim

k→∞
1

k
E[T∗(0, kx)] = inf

k≥1

1

k
E[T∗(0, kx)]. (3.1)

Proof. From (1.2), we have, on the event {0 ∈ I} of positive probability,

μ(x) = lim
k→∞, kx∈I

1

k
T(0, kx) = lim

k→∞, kx∈I
1

k
T∗(0, kx).

Therefore, once the integrability of T∗(0, x) is proved, (3.1) follows from the subadditive
ergodic theorem for the process T∗(ix, jx), 0 ≤ i< j, i, j ∈N0.

For the integrability,

E[T∗(0, x)] ≤
∫ ∞

0
P

(
‖0∗‖1 >

t

3C11

)
dt +

∫ ∞

0
P

(
‖x − x∗‖1 >

t

3C11

)
dt

+
∫ ∞

0
P

(
T∗(0, x) ≥ t, ‖0∗‖1 ≤ t

3C11
, ‖x − x∗‖1 ≤ t

3C11

)
dt.

It is clear that the first and second terms on the right-hand side are finite. Moreover, the third
term is not larger than

3C11‖x‖1 +
∑

y∈B1(0,t/(3C11))
z∈B1(x,t/(3C11))

∫ ∞

3C11‖x‖1

P(T(0, z − y) ≥ t) dt,

and the integrability of T∗(0, x) follows by using Proposition 2.4. �

We denote by Sd the symmetric group on {1, . . . , d}. For each x = (x1, . . . , xd) ∈R
d, σ ∈

Sd, and ε ∈ {+1,−1}d, we define

�σ,ε(x) :=
d∑

i=1

ε(i)xσ (i)ξi.

Then, O(Zd) := {�σ,ε : σ ∈ Sd, ε ∈ {+1,−1}d} is the group of orthogonal transformations
that preserve the grid Z

d. Consequently, its elements also preserve the �1-norm ‖ · ‖1 and
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the time constant μ( · ). For x ∈R
d and (g1, . . . , gd) ∈ (O(Zd))d, the linear map Lg1,...,gd

x is
defined by

Lg1,...,gd
x (y) :=

d∑
i=1

yigi(x), y = (y1, . . . , yd) ∈R
d.

To study the first passage time in each direction x, we want to find a basis of Rd adapted to
the studied direction, i.e. made of images of x by elements of O(Zd). The following technical
lemma, which is obtained by Garet–Marchand [12, Lemma 2.2], gives the existence of such a
basis.

Lemma 3.2. For each x ∈R
d, there exists a family (g1,x, g2,x, . . . , gd,x) ∈ (O(Zd))d with

g1,x = IdRd such that the linear map Lx := L
g1,x,...,gd,x
x satisfies

C16‖x‖1‖y‖1 ≤ ‖Lx(y)‖1 ≤ ‖x‖1‖y‖1, y ∈R
d,

where C16 is a universal constant not depending on x, y, and (g1,x, g2,x, . . . , gd,x).

Proof of Theorem 1.1. We fix an arbitrary ε > 0 and break the proof into three steps.
Step 1. In this step we choose appropriate constants for our proof. By (1.3), μ(y) ≥ 1 holds

for all y ∈R
d with ‖y‖1 = 1. Hence, there exists δ > 0 such that, for all y ∈R

d with ‖y‖1 = 1,(
1 + 3δ

2C11

)
(1 + δ)2μ(y) + 2δ < μ(y)(1 + ε) (3.2)

and

δ <
C11

2
.

To shorten notation, write

β := δ

2C11
<

1

4
.

Take M ∈N large enough such that

M ≥ d

δ
max

{
μ(ξ1)

2
,

8C11

C16

}
≥ 4, (3.3)

and choose p ∈ (0, 1) to satisfy

p> p′
(

β

1 + 2β

)
> pc, (3.4)

where p′( · ) is the parameter appearing in Proposition 2.2.
Step 2. In this step we tackle the construction of the renormalization procedure. Let N be a

positive integer to be chosen large enough later. A site v ∈Z
d is said to be good if the following

conditions hold, for all y ∈Z
d/M with ‖y‖1 = 1:
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(1) T∗(NLMy(v),NLMy(v + ξ )) ≤ MNμ(y)(1 + δ) for all ξ ∈ Ed.

(2) (NLMy(v))∗ is included in B1(NLMy(v),
√

N), and (NLMy(v + ξ ))∗ belongs to
B1(NLMy(v + ξ ),

√
N) for all ξ ∈ Ed.

Otherwise, v is called bad.

Lemma 3.3. There exists N ∈N such that (1{v is good})v∈Zd stochastically dominates ηp.

Proof. Since the set {y ∈Z
d/M : ‖y‖1 = 1} is finite, Lemma 3.1 implies that P(v is bad)

converges to 0 as N → ∞. Therefore, due to Proposition 2.3, our task is now to show
the finite dependence of (1{v is good})v∈Zd . Condition (ii) depends only on the configuration
in B1(NLMy(v),

√
N) and B1(NLMy(v + ξ ),

√
N). We have ‖NLMy(v) − NLMy(v + ξ )‖1 ≤ MN

from Lemma 3.2, and condition (ii) particularly depends only on the configuration in
B1(NLMy(v), 2MN). The same argument as in the proof of Lemma 2.1 implies that condition
(i) depends only on the configuration in B1(NLMy(v), 2MNμ(ξ1)(1 + δ)). Note that Lemma 3.2
ensures that if ‖v − w‖1 > (2/C16)μ(ξ1)(1 + δ), then, for all y ∈Z

d/M with ‖y‖1 = 1,

‖NLMy(v) − NLMy(w)‖1 > 2MNμ(ξ1)(1 + δ).

With these observations, (1{v is good})v∈Zd is finitely dependent. �
For a given x ∈Z

d \ {0}, we set x′ := x/‖x‖1. Then, there exists x̂ ∈Z
d/M such that ‖̂x‖1 =

1 and ‖x′ − x̂‖1 ≤ d/(2M). Note that, by (1.3) and (3.3),

|μ(x′) −μ(̂x)| ≤μ(ξ1)‖x′ − x̂‖1 ≤μ(ξ1)
d

2M
≤ δ (3.5)

and

‖x′ − x̂‖1 ≤ C16β

8
. (3.6)

The definition of LM x̂ and Lemma 3.2 tell us that, for all 1 ≤ i ≤ d,

μ(LM x̂(ξi)) = Mμ(̂x), ‖LM x̂(ξi)‖1 = M,

and, for all y ∈R
d,

C16M‖y‖1 ≤ ‖LM x̂(y)‖1 ≤ M‖y‖1.

Denote by dg(·, ·) the chemical distance for (1{v is good})v∈Zd . We now consider the event

G := {there exists v ∈A(0, β‖x‖1), there exists w ∈A(x, β‖x‖1) such that

dg(v,w)< (1 + 3β)‖x‖1},
where

x :=
⌊‖x‖1

MN

⌋
ξ1

and

A(z, r) :=
{

y ∈Z
d :

r

2
≤ ‖y − z‖1 ≤ r

}
, z ∈Z

d, r> 0.

https://doi.org/10.1017/apr.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.8


198 N. KUBOTA

It is easy to see that, on the event G, for some v ∈A(0, β‖x‖1) and w ∈A(x, β‖x‖1),

T∗(NLM x̂(v),NLM x̂(w))<MNμ(̂x)(1 + δ)(1 + 3β)‖x‖1. (3.7)

Furthermore, Lemma 3.3 proves

P(Gc) ≤ P(dηp (v,w) ≥ (1 + 3β)‖x‖1 for all v ∈A(0, β‖x‖1) and w ∈A(x, β‖x‖1))

≤ 2P

(
B1

(
0,
β‖x‖1

2

)
∩ C∞(ηp) =∅

)
+

∑
v∈B1(0,β‖x‖1)
w∈B1(x,β‖x‖1)

P

(
1 + 3β

1 + 2β
‖v − w‖1 ≤ dηp (v,w)<∞

)
.

Thanks to β < 1
4 and (3.4), Proposition 2.1(a) and Proposition 2.2 imply that, for some

constants c and c′,

P(Gc) ≤ ce−C7β‖x‖1/(2MN) + c

(
β‖x‖1

MN

)2d

e−c′(1−2β)‖x‖1/(MN). (3.8)

Step 3. Finally, we complete the proof. There is no loss of generality in assuming that

‖x‖1 ≥ 4MN

βC16
. (3.9)

By the definition of x′ and (3.2),

P(T(0, x) ≥ (1 + ε)μ(x)) = P(T(0, x) ≥μ(x′)(1 + ε)‖x‖1)

≤ P

(
T(0, x)>

(
1 + 3δ

2C11

)
(1 + δ)2μ(x′)‖x‖1 + 2δ‖x‖1

)
. (3.10)

Let A be the event that T(0, y)< δ‖x‖1 for all y ∈ NLM x̂(A(0, β‖x‖1)) + B1(0,
√

N) and
T(z, x)< δ‖x‖1 for all z ∈ [NLM x̂(A(x, β‖x‖1)) + B1(0,

√
N)] ∩ I. By (3.5) and (3.7), on the

event G ∩ A ∩ {0 ∈ I}, there exist v ∈A(0, β‖x‖1) and w ∈A(x, β‖x‖1) such that

T(0, x) ≤ T(0, (NLM x̂(v))∗) + T∗(NLM x̂(v),NLM x̂(w)) + T((NLM x̂(w))∗, x)

≤ MNμ(̂x)(1 + δ)(1 + 3β)‖x‖1 + 2δ‖x‖1

≤
(

1 + 3δ

2C11

)
(1 + δ)2μ(x′)‖x‖1 + 2δ‖x‖1.

This means that the right-hand side of (3.10) is bounded from above by P(Gc) + P(Ac).
Due to (3.8), our task is to estimate P(Ac). We use Lemma 3.2 and (3.9) to obtain, for
y ∈ NLM x̂(A(0, β‖x‖1)) + B1(0,

√
N),

‖y‖1 ≤ MNβ‖x‖1 + √
N ≤ β‖x‖1 + √

N ≤ 17

16
β‖x‖1 ≤ δ

C11
‖x‖1

and

‖y‖1 ≥ MNC16
β‖x‖1

2
− √

N ≥ C16
β‖x‖1

2
− MN

C16β

2
− √

N ≥ 13

32
C16β‖x‖1.
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Similarly, for z ∈ NLM x̂(A(x, β‖x‖1)) + B1(0,
√

N),

13

32
C16β‖x‖1 ≤ ‖z − NLM x̂(x)‖1 ≤ 17

16
β‖x‖1.

In addition, by (3.6), we have, for z ∈ NLM x̂(A(x, β‖x‖1)) + B1(0,
√

N),

‖x − z‖1 ≤ ‖x − NLM x̂(x)‖1 + ‖NLM x̂(x) − z‖1

≤ 3

8
C16β‖x‖1 + 17

16
β‖x‖1

≤ 2β‖x‖1

= δ

C11
‖x‖1

and

‖x − z‖1 ≥ ‖z − NLM x̂(x)‖1 − ‖NLM x̂(x) − x‖1

≥ 13

32
C16β‖x‖1 − 3

8
C16β‖x‖1

= C16

32
β‖x‖1.

Therefore,

P(Ac) ≤
∑

(13/32)C16β‖x‖1≤‖y‖1≤(17/16)β‖x‖1

P(T(0, y)>C11‖y‖1)

+
∑

(13/32)C16β‖x‖1≤‖z−NLM x̂(x)‖1≤(17/16)β‖x‖1

P(T(0, x − z)>C11‖x − z‖1),

and this combined with Proposition 2.4 completes the proof. �

4. Lower large deviation and concentration bounds

The aim of this section is to prove Theorems 1.2 and 1.3. Let us first show Theorem 1.2 by
using Theorem 1.3. The proof of Theorem 1.3 will be given after that of Theorem 1.2.

Proof of Theorem 1.2. Let v(x) denote a site of I satisfying

T(0∗, x) = T(0∗, v(x)) + τ (v(x), x).

We first prove that, for all ε > 0, there exist constants C17 and C18 such that

P(T(v(x), x∗) ≥ ε‖x‖1) ≤ C17 exp
{−C18‖x‖ α5∧ α6

1

}
. (4.1)

Corollary 2.1 tells us that there exist constants c and c′ such that

P(there exists v1, v2 ∈ I with ‖v1 − v2‖1 ≥ ε(2C11)−1‖x‖1 such that T(0∗, x) = T(0∗, v1)

+τ (v1, v2) + T(v2, x))

≤ ce−c′‖x‖ α6
1 .
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It follows that

P(T(v(x), x∗) ≥ ε‖x‖1)

≤ ce−c′‖x‖ α6
1 + P

(
‖x − x∗‖1 ≥ ε‖x‖1

2C11

)
+ P

(
T(v(x), x∗) ≥ ε‖x‖1, ‖v(x) − x‖1 <

ε‖x‖1

2C11
, ‖x − x∗‖1 <

ε‖x‖1

2C11

)
.

Since the second term has the desired form, our task is to bound the last probability. To this
end, we use Proposition 2.4 to obtain, for some constants C and C′,

P

(
T(v(x), x∗) ≥ ε‖x‖1, ‖v(x) − x‖1 <

ε‖x‖1

2C11
, ‖x − x∗‖1 <

ε‖x‖1

2C11

)
≤

∑
y∈Zd

‖y−x‖1<(2C11)−1ε‖x‖1

∑
z∈Zd

‖x−z‖1<(2C11)−1ε‖x‖1

P(T(0, z − y) ≥ ε‖x‖1)

≤ Ce−C′‖x‖ α5
1 .

Hence, (4.1) follows.
Take t = ε

√‖x‖1 and recall that 0∗ = 0 under P= P( ·| 0 ∈ I). Then, by (1.3) and (3.1),

P(T(0, x) ≤ (1 − ε)μ(x)) ≤ P(0 ∈ I)−1
P

(
T(0∗, x) −E[T∗(0, x)] ≤ −t

√‖x‖1

)
.

The last probability is bounded from above by

P

(
T(0∗, x) − T∗(0, x) ≤ − t

2

√‖x‖1

)
+ P

(
T∗(0, x) −E[T∗(0, x)] ≤ − t

2

√‖x‖1

)
.

Note that

T∗(0, x) ≤ T(0∗, v(x)) + T(v(x), x∗) + τ (v(x), x) ≤ T(0∗, x) + T(v(x), x∗),

and (4.1) implies that

P

(
T(0∗, x) − T∗(0, x) ≤ − t

2

√‖x‖1

)
≤ P

(
T(v(x), x∗) ≥ ε

2
‖x‖1

)
≤ C17 exp

{−C18‖x‖ α5∧ α6
1

}
.

Furthermore, Theorem 1.3 proves that

P

(
T∗(0, x) −E[T∗(0, x)] ≤ − t

2

√‖x‖1

)
≤ C4 exp

{
−C5

(ε
2

√‖x‖1

) α4
}
,

and, therefore, the theorem follows. �
Proof of Theorem 1.3. For each t> 0, define the two-point function σt(·, ·) as follows. Take

K > d(C11 + γ + 1). First, if ‖x − y‖∞ ≤ t and τ (x, y)> 4Kt, then set σt(x, y) := 4Kt. Next, if
‖x − y‖∞ > t then set σt(x, y) := 4K‖x − y‖∞. Otherwise, set σt(x, y) := τ (x, y). By definition,
for any x, y ∈Z

d,

‖x − y‖1 ≤ σt(x, y) ≤ 4K(t ∨ ‖x − y‖∞). (4.2)
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We write Tt(x, y) for the first passage time from x to y corresponding to σt(·, ·), i.e.,

Tt(x, y) := inf

{
m−1∑
i=0

σt(xi, xi+1) : m ≥ 1, x0 = x, xm = y, x1, . . . , xm−1 ∈Z
d

}
.

Proposition 4.1. There exist constants C19, C20, and α7 such that, for all x ∈Z
d \ {0} and

0 ≤ t ≤ ‖x‖1,

max{P(Tt(0
∗, x∗) �= T∗(0, x)),E[(Tt(0

∗, x∗) − T∗(0, x))2]1/2} ≤ C19‖x‖4d
1 e−C20t α7 .

Proposition 4.2. For all γ > 0, there exists a constant C21 such that, for all x ∈Z
d \ {0} and

0 ≤ t ≤ γ√‖x‖1,

P

(
|Tt(0, x) −E[Tt(0, x)]| ≥ t

√‖x‖1

)
≤ 2e−C21t.

Let us postpone the proofs of these propositions to the end of this section, and continue
the proof of Theorem 1.3. To this end, without loss of generality, we can assume that ‖x‖1 ≥
(32KE[1 ∨ ‖0∗‖∞])2. Take c ≥ 1 large enough such that, for all t ≥ c(1 + log ‖x‖1)1/ α7 ,

C19‖x‖4d
1 e−C20t α7 ≤ C19e−C20t α7/2 ≤ t

4
.

From (4.2) and Proposition 4.1, we have

|E[T∗(0, x)] −E[Tt(0, x)]| ≤E[|T∗(0, x) − Tt(0
∗, x∗)|] + 2E[Tt(0, 0∗) ∨ Tt(0

∗, 0)]

≤ C19‖x‖4d
1 e−C20t α7 + 8KE[t ∨ ‖0∗‖∞].

Hence, for all t ≥ c(1 + log ‖x‖1)1/ α7 ,

|E[T∗(0, x)] −E[Tt(0, x)]| ≤ t

2

√‖x‖1.

This together with Proposition 4.1 leads to

P

(
|T∗(0, x) −E[T∗(0, x)]| ≥ t

√‖x‖1

)
≤ C19e−C20t α7/2 + P

(
|Tt(0

∗, x∗) −E[Tt(0, x)]| ≥ t

2

√‖x‖1

)
.

For the second term on the right-hand side,

|Tt(0
∗, x∗) −E[Tt(0, x)]| ≤ |Tt(0

∗, x∗) − Tt(0, x)| + |Tt(0, x) −E[Tt(0, x)]|
≤ Tt(0, 0∗) ∨ Tt(0

∗, 0) + Tt(x, x∗) ∨ Tt(x
∗, x)

+ |Tt(0, x) −E[Tt(0, x)]|.
Using (4.2) again we obtain

P

(
|Tt(0

∗, x∗) − E[Tt(0, x)]| ≥ t

2

√‖x‖1

)
≤ 2P

(
4K(t ∨ ‖0∗‖∞) ≥ t

6

√‖x‖1

)
+ P

(
|Tt(0, x) − E[Tt(0, x)]| ≥ t

6

√‖x‖1

)
,

and the theorem is a consequence of Proposition 4.2. �
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In the rest of this section we shall prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1. Let 0 ≤ t ≤ ‖x‖1. We first estimate P(Tt(0∗, x∗) �= T∗(0, x)). To
this end, consider the following events �j, 1 ≤ j ≤ 5:

�1 :=
{∥∥0∗∥∥

1 ≤ t

8
,
∥∥x − x∗∥∥

1 ≤ t

8

}
,

�2 :=
⋂

y,z∈B1(0,7K‖x‖1)

{
y ∈ I implies that T(y, z) �= T(y, v1) + τ (v1, v2) + T(v2, z)

for all v1, v2 ∈ I with ‖v1 − v2‖1 ≥ t

2

}
,

�3 :=
⋂

y,z∈B1(0,7K‖x‖1)
‖y−z‖∞≤2t

{y ∈ I implies that T(y, z) ≤ 2Kt},

�4 :=
⋂

y,z∈B1(0,7K‖x‖1)
‖y−z‖∞≥t/2

{y ∈ I implies that T(y, z) ≤ K‖y − z‖∞},

�5 :=
⋂

y,z∈B1(0,7K‖x‖1)

{y ∈ I implies that T(y, z) ≥ Tt(y, z)}.

We shall observe that Tt(0∗, x∗) = T∗(0, x) holds on the event
⋂5

j=1 �j. Denote by (xi)m
i=0

a finite sequence of Zd satisfying that x0 = 0∗, xm = x∗, and Tt(0∗, x∗) =∑m−1
i=0 σt(xi, xi+1).

Moreover, the index i0 is defined by

i0 := max{0 ≤ i ≤ m : T(0∗, xi) = Tt(0
∗, xi)}.

On the event �1, we have ‖0∗‖1 ≤ K‖x‖1 and it holds by (4.2) that

Tt(0
∗, x∗) ≤ 4K(t ∨ ‖0∗ − x∗‖∞) ≤ 4K

{
t ∨
(

t

4
+ ‖x‖∞

)}
≤ 5K‖x‖1.

This proves that the xi are included in B1(0, 6K‖x‖1) on the event �1. Let x′
i0

denote a site
of I satisfying T(0∗, xi0 ) = T(0∗, x′

i0
) + τ (x′

i0
, xi0 ). Note that ‖x′

i0
− xi0‖1 ≤ t/2 and ‖x′

i0
‖1 ≤

7K‖x‖1 on the event �1 ∩ �2. Assume that i0 <m. Then, on the event �1 ∩ �5,

T(0∗, xi0+1)> Tt(0
∗, xi0+1) = Tt(0

∗, xi0 ) + σt(xi0 , xi0+1) = T(0∗, xi0 ) + σt(xi0 , xi0+1).

We now consider the following three cases:

1. ‖xi0 − xi0+1‖∞ ≤ t and τ (xi0 , xi0+1)> 4Kt;

2. ‖xi0 − xi0+1‖∞ > t;

3. ‖xi0 − xi0+1‖∞ ≤ t and τ (xi0 , xi0+1) ≤ 4Kt.

Case 1: On the event �1 ∩ �2,

‖x′
i0 − xi0+1‖∞ ≤ ‖x′

i0 − xi0‖∞ + ‖xi0 − xi0+1‖∞ ≤ t

2
+ t ≤ 2t.
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Therefore, on the event �1 ∩ �2 ∩ �3 ∩ �5,

T(0∗, xi0+1)> T(0∗, xi0 ) + σt(xi0 , xi0+1)

= T(0∗, xi0 ) + 4Kt

≥ T(0∗, x′
i0 ) + T(x′

i0 , xi0+1)

≥ T(0∗, xi0+1).

This is a contradiction.
Case 2: On the event �1 ∩ �2,

‖x′
i0 − xi0+1‖∞ ≥ ‖xi0+1 − xi0‖∞ − ‖xi0 − x′

i0‖∞ ≥ t

2
,

and on the event �1 ∩ �2 ∩ �5,

T(0∗, xi0+1)> T(0∗, xi0 ) + σt(xi0 , xi0+1)

= T(0∗, xi0 ) + 4K‖xi0 − xi0+1‖∞
≥ T(0∗, x′

i0 ) + 2Kt + 2K‖xi0 − xi0+1‖∞.

It follows that on the event �1 ∩ �2 ∩ �4 ∩ �5,

T(0∗, xi0+1)> T(0∗, x′
i0 ) + 2K‖x′

i0 − xi0‖∞ + 2K‖xi0 − xi0+1‖∞
≥ T(0∗, x′

i0 ) + 2K‖x′
i0 − xi0+1‖∞

≥ T(0∗, x′
i0 ) + T(x′

i0 , xi0+1) ≥ T(0∗, xi0+1),

and this leads to another contradiction.
Case 3: Since σt(xi0 , xi0+1) = τ (xi0 , xi0+1), on the event �1 ∩ �5,

T(0∗, xi0+1)> T(0∗, xi0 ) + σt(xi0 , xi0+1) = T(0∗, xi0 ) + τ (xi0 , xi0+1) ≥ T(0∗, xi0+1),

which is also a contradiction.
With these observations, on the event

⋂5
j=1 �j, i0 = m must hold and Tt(0∗, x∗) = T∗(0, x)

is valid. It remains to estimate the probability of
⋃5

j=1 �
c
j . Obviously, P(�c

1) is exponentially
small in t. The following bound is an immediate consequence of Proposition 2.4 and
Corollary 2.1: For some constants c and c′,

P(�c
2) + P(�c

3) + P(�c
4) ≤ c‖x‖4d

1 exp{−c′t α5∧ α6}.
To estimate P(�c

5), let us introduce the event �6(w) that T(0,w) �= T(0, v1) + τ (v1, v2) +
T(v2,w) for all v1, v2 ∈ I with ‖v1 − v2‖∞ ≥ t. Since T(0,w) ≥ Tt(0,w) on the event �6(w) ∩
{0 ∈ I}, we have

P(�c
5) ≤

∑
y,z∈B1(0,7K‖x‖1)

P(T(0, z − y) − Tt(0, z − y)< 0)

≤
∑

y,z∈B1(0,7K‖x‖1)

P(�6(z − y)c).

From Corollary 2.1, this is bounded from above by a multiple of ‖x‖4d
1 e−C15t α6 . Therefore, we

get the desired bound for P(Tt(0∗, x∗) �= T∗(0, x)).
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We next estimate E[(Tt(0∗, x∗) − T∗(0, x))2]1/2. Schwarz’s inequality implies that

E
[
(Tt(0

∗, x∗) − T∗(0, x))2]
=E
[
(Tt(0

∗, x∗) − T∗(0, x))21{Tt(0∗,x∗)�=T∗(0,x)}
]

≤ (E[Tt(0
∗, x∗)4]1/2 +E

[
T∗(0, x))4]1/2)

P(Tt(0
∗, x∗) �= T∗(0, x))1/2.

By (4.2),

E
[
Tt(0

∗, x∗)4]≤ (4K)4
E
[
(t ∨ ‖0∗ − x∗‖∞)4]≤ (12K)4(2E[‖0∗‖4

1] + 1)‖x‖4
1.

On the other hand, letting r(s) := s1/4/(3C11), we have

E
[
T∗(0, x))4]≤ (3C11‖x‖1)4 +

∫ ∞

(3C11‖x‖1)4
P
(
T∗(0, x)4 ≥ s

)
ds

≤ (3C11‖x‖1)4 + 2
∫ ∞

(3C11‖x‖1)4
P(‖0∗‖1 ≥ r(s)) ds

+
∫ ∞

(3C11‖x‖1)4

∑
y∈B1(0,r(s))
z∈B1(x,r(s))

P
(
T(y, z) ≥ s1/4, y ∈ I) ds.

It follows from Proposition 2.4 that E[T∗(0, x))4] is not greater than a multiple of ‖x‖4
1.

Combining these bounds with that for P(Tt(0∗, x∗) �= T∗(0, x)), we can derive the desired
bound for E[(Tt(0∗, x∗) − T∗(0, x))2]1/2, and the proof is complete. �

Before starting the proof of Proposition 4.2, let us prepare some notation and lemmata. For a
given x ∈Z

d \ {0} and t> 0, tile Zd with copies of ( − t/2, t/2]d such that each box is centered
at a point in Z

d and each site in Z
d is contained in precisely one box. We denote these boxes

by q, q ∈N, and consider the random variables

Uq := ((ω(z))z∈q, (S·(z, �))z∈q,�∈N), q ∈N.

Note that (Uq)∞q=1 are independent and identically distributed. Due to (4.2), Tt(0, x) depends
only on states in some finite boxes 1, . . . , Q, and Tt(0, x) can be regarded as a function of

(Uq)Q
q=1:

Z := Tt(0, x) = Tt(0, x,U1, . . . ,UQ).

In addition, let (U′
q)Q

q=1 be independent copies of (Uq)Q
q=1 and define

Z′
q := Tt(0, x,U1, . . . ,Uq−1,U′

q,Uq+1, . . . ,UQ), 1 ≤ q ≤ Q.

Our main tools for the proof of Proposition 4.2 are Chebyshev’s inequality and the following
exponential versions of the Efron–Stein inequality; we refer the reader to [7, Theorem 6.16]
and [13, Lemma 3.2]. For any λ, θ > 0 with λθ < 1,

log E[ exp{−λ(Z −E[Z])}] ≤ λθ

1 − λθ
log E

[
exp

{
λV−
θ

}]
, (4.3)
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where

V− :=
Q∑

q=1

E
[
(Z − Z′

q)2−
∣∣U1, . . . ,UQ

]
.

Furthermore, if there exist δ > 0 and functions (φq)Q
q=1, (ψq)Q

q=1, and (gq)Q
q=1 such that, for all

1 ≤ q ≤ Q,

(Z − Z′
q)− ≤ψq(U′

q), (Z − Z′
q)2− ≤ φq(U′

q)gq(U1, . . . ,UQ),

and E[eδψq(Uq)φq(Uq)]<∞, then, for any λ, θ > 0 with λ< δ ∧ θ−1,

log E[ exp{λ(Z −E[Z])}] ≤ λθ

1 − λθ
log E

[
exp

{
λW

θ

}]
, (4.4)

where

W :=
Q∑

q=1

E
[
eδψq(Uq)φq(Uq)

]
gq(U1, . . . ,UQ).

We use the following lemmata to estimate the right-hand sides of (4.3) and (4.4).

Lemma 4.1. Write πt(0, x) = (0 = x0, x1, . . . , xm = x) for the finite sequence of Zd that has
Tt(0, x) =∑m−1

i=0 σt(xi, xi+1), chosen with a deterministic rule to break ties. Moreover, let Rq

be the event that πt(0, x) intersects q. Then we have, for 1 ≤ q ≤ Q,

(Z − Z′
q)− ≤ 8Kt1Rq . (4.5)

Proof. Since (Z − Z′
q)− = (Z′

q − Z)1{Z≤Z′
q}∩Rq , we focus on the event {Z ≤ Z′

q} ∩ Rq from
now on. Let us first treat the case where x ∈q. Define i0 := min{0 ≤ i ≤ m : xi ∈q} and set
a := xi0 . Then, since ‖a − x‖∞ ≤ t,

Z′
q − Z ≤ Tt(a, x,U1, . . . ,Uq−1,U′

q,Uq+1, . . . ,UQ) ≤ 4Kt.

For the case where x �∈q, let us introduce the indices i1 and i2 as follows:

i1 := min{0 ≤ i ≤ m − 1: xi ∈q}, i2 := max{0 ≤ i ≤ m − 1: xi ∈q}.
In addition, write a := xi1 , b := xi2 , and c := xi2+1. If ‖a − c‖∞ ≤ t, then

Z′
q − Z ≤ Tt(a, c,U1, . . . ,Uq−1,U′

q,Uq+1, . . . ,UQ) ≤ 4Kt.

If ‖a − c‖∞ > t and ‖b − c‖∞ ≤ t, then

Z′
q − Z ≤ Tt(a, c,U1, . . . ,Uq−1,U′

q,Uq+1, . . . ,UQ)

≤ 4K‖a − c‖∞
≤ 4K(‖a − b‖∞ + ‖b − c‖∞)

≤ 8Kt.
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Otherwise (i.e. ‖a − c‖∞ > t and ‖b − c‖∞ > t),

Z′
q − Z ≤ Tt(a, c,U1, . . . ,Uq−1,U′

q,Uq+1, . . . ,UQ) − σt(b, c)

≤ 4K(‖a − c‖∞ − ‖b − c‖∞)

≤ 4K‖a − b‖∞
≤ 4Kt.

With these observations, Z′
q − Z ≤ 8Kt is valid in the case where x �∈q, and (4.5) follows. �

Lemma 4.2. There exists a constant C22 ≥ 1 such that

Q∑
q=1

1Rq ≤ C22K

(
1 ∨ ‖x‖∞

t

)
.

Proof. Let πt(0, x) = (0 = x0, x1, . . . , xm = x). For each z ∈Z
d, write w(z) for the center of

the box q containing z. Then, define ρ0 := 0 and, for j ≥ 1,

ρj+1 := min

{
ρj < i ≤ m : xi �∈ w(xρj) +

(
− 3t

2
,

3t

2

]d}
,

with the convention that min ∅ := ∞. Define J := max{j ≥ 1: ρj <∞} and assume that

J > 4K

(
1 ∨ ‖x‖∞

t

)
.

By definition, we have Tt(0, x) ≥ Jt and, hence,

Tt(0, x) ≥ Jt> 4K(t ∨ ‖x‖∞),

which contradicts (4.2). Therefore,

J ≤ 4K

(
1 ∨ ‖x‖∞

t

)
,

and the proof is complete since πt(0, x) intersects at most 3d(J + 1)qs. �
We are now in a position to prove Proposition 4.2.

Proof of Proposition 4.2. Fix arbitrary γ > 0, x ∈Z
d \ {0}, and 0 ≤ t ≤ γ√‖x‖1. We use

Chebyshev’s inequality to obtain, for all u, λ≥ 0,

P(|Tt(0, x) −E[Tt(0, x)]| ≥ u) ≤ e−λu
E[ exp{λ|Z −E[Z]|}]

≤ e−λu(E[ exp{−λ(Z −E[Z])}] +E[ exp{λ(Z −E[Z])}]).
(4.6)

On the other hand, Lemmata 4.1 and 4.2 show that

V− ≤ (8Kt)2
Q∑

q=1

1Rq ≤ C22(8Kt)2
(

1 ∨ ‖x‖∞
t

)
.
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Moreover, taking δ := 1/t, φq := (8Kt)2, ψq := 8Kt, and gq := 1Rq (see the notation above
(4.4)), we use Lemmata 4.1 and 4.2 again to obtain

W ≤ (8Kt)2e8K
Q∑

q=1

1Rq ≤ C22(8Kt)2e8K
(

1 ∨ ‖x‖∞
t

)
.

These bounds combined with (4.3), (4.4), and (4.6) prove that, for all u ≥ 0 and for all λ, θ > 0
with 0<λ< t−1 ∧ (2θ )−1,

P(|Tt(0, x) −E[Tt(0, x)]| ≥ u) ≤ 2e−λu exp

{
λ2

1 − λθ
C22(8K)2e8Kt(t ∨ ‖x‖∞)

}
≤ 2 exp

{
2C22(8K)2e8Kt(t ∨ ‖x‖∞)λ2 − uλ

}
.

Substitute u = t
√‖x‖1 for

P(|Tt(0, x) −E[Tt(0, x)]| ≥ t
√‖x‖1) ≤ 2 exp{2C22(8K)2e8Kt(t ∨ ‖x‖∞)λ2 − t

√‖x‖1λ}.
To minimize the right-hand side, we choose

λ=
√‖x‖1

4C22(8K)2e8K(t ∨ ‖x‖∞)
.

Since t ≤ γ√‖x‖1, C22 ≥ 1, and K ≥ γ ,

λ≤
√‖x‖1

2K2‖x‖∞
≤

√‖x‖1

2K‖x‖1
= 1

2K
√‖x‖1

<
1

t
.

In addition, taking θ = (3λ)−1 leads to 0<λ< t−1 ∧ (2θ )−1. Therefore,

P

(
|Tt(0, x) −E[Tt(0, x)]| ≥ t

√‖x‖1

)
≤ 2 exp

{
− t

8C22(8K)2e8K(1 + γ )

}
,

which proves the proposition. �
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