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The 2017–2018 WinterMeeting of the Association of Symbolic Logic was held on January
12–13, 2018 at the San Diego Convention Center and the San Diego Marriott Hotel and
Marina in conjunction with the annual Joint Mathematics Meetings. The members of the
Program Committee were Jan Reimann (Chair), Philip Scowcroft, and Anush Tserunyan.
The program consisted of seven invited 50-minute talks and eight contributed talks. The
ASL hosted a welcoming reception on Friday, January 12th, at the San Diego Marriott
Hotel.

An AMS/ASL co-sponsored Special Session on Set Theory, Logic and Ramsey Theory,
organized by Andrés Caicedo and José Mijares was held on Wednesday and Thursday,
January 10th and 11th, in the San Diego Convention Center.

The fifty-minute invited addresses at the ASL meeting were as follows:

Cameron Donnay Hill (Wesleyan University), 0, 1-Laws and pseudofiniteness of
ℵ0-categorical theories.
Antonina Kolokolova (Memorial University of Newfoundland), Power of reasoning over

richer domains.
Aristotelis Panagiotopoulos (California Institute of Technology), Games orbits play.
Emily Riehl (Johns Hopkins University), A synthetic theory of∞–categories in homotopy

type theory.
Simon Thomas (Rutgers University), The isomorphism and bi-embeddability relations for

countable torsion abelian groups.
Sebastien Vasey (Harvard University), Nonelementary classification theory.
Keita Yokoyama (JAIST, Japan), Ramsey’s theorem in arithmetic.

Abstracts of the invited talks and contributed talks given (in person or by title) bymembers
of the Association for Symbolic Logic follow.

For the Program Committee
Jan Reimann

Abstracts of invited talks

� CAMERONDONNAY HILL, 0,1-Laws and pseudofiniteness of ℵ0-categorical theories.
Department of Mathematics and Computer Science, Wesleyan University, 265 Church St.,
Middletown, CT 06459, USA.
E-mail: cdhill@wesleyan.edu.
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I will survey some recent results around questions of the form “What are pseudofinite ℵ0-
categorical theories like?” and “What are almost-sure ℵ0-categorical theories like?” Ideally,
we would like to answer such questions solely in terms of structural properties the theories’
models—without reference to ultraproducts or probability theory. I will present evidence that
certain higher amalgamation properties and model-theoretic properties like super-simplicity
are sufficient to answer our questions completely.

� ANTONINA KOLOKOLOVA, Power of reasoning over richer domains.
Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL
A1B 3X5, Canada.
E-mail: antonina.kolokolova@gmail.com.
E-mail: kol@mun.ca.
How does the richness of underlying concepts affects the power of reasoning systems built

on them? This question arises in many different settings. Here, we look at it from proof
complexity and from bounded arithmetic perspective.
For the former, we focus on proof complexity of satisfiability modulo theories (SMT)

framework. There, propositional SAT solvers operate over Boolean combinations of atoms
from an underlying theory (such as theory of linear arithmetic or uninterpreted functions
with equality), using a dedicated theory solver to analyse viability of supposed satisfying
assignments from the theory perspective, and derive new facts by theory reasoning. A natural
question is just howmuch it helps to augment propositional, resolution-based reasoning with
the power of the theory. We show that even a theory of uninterpreted functions, decidable
in near-linear time, helps enormously: resolution over that theory can simulate a much more
powerful Frege (natural deduction) system.
Then, switching to bounded arithmetic setting, we ask whether existence of expander

graphs, combinatorial objects that arewidely used in derandomization, canbe provenwithout
algebraic reasoning. Surprisingly, we show that this is indeed the case: it is possible to
prove existence of expanders by purely combinatorial and probabilistic reasoning, using only
concepts definable by polynomial-size formulas. An interesting corollary of this result is
that monotone Frege reasoning is just as powerful as its nonmonotone counterpart, in stark
contrast to circuit complexity.
Based on joint work with Vijay Ganesh and Robert Robere, and Buss, Koucky and

Kabanets.

� ARISTOTELIS PANAGIOTOPOULOS, Games orbits play.
Mathematics Department, California Institute of Technology, 253-37, Pasadena, CA 91125,
USA.
E-mail: panagio@caltech.edu.
Classification problems occur in all areas of mathematics. Descriptive set theory provides

methods to assign complexity to such problems. Using a technique developed by Hjorth,
Kechris, and Sofronidis proved for example, that the problem of classifying all unitary oper-
ators U(H) of an infinite dimensional Hilbert space up to unitary equivalence �U is strictly
more difficult than classifying graph structureswith domainN up to isomorphism.Wepresent
a game-theoretic approach to anticlassification results for orbit equivalence relations and use
this development to reorganize conceptually the proof of Hjorth’s turbulence theorem. We
also introduce a dynamical criterion for showing that an orbit equivalence relation is not
Borel reducible to the orbit equivalence relation induced by a CLI group action; that is, a
group which admits a complete left invariant metric (recall that, by a result of Hjorth and
Solecki, solvable groups are CLI).We deduce that�U is not classifiable byCLI group actions.
This is a joint work with Martino Lupini.

� EMILY RIEHL AND MICHAEL SHULMAN, A synthetic theory of ∞-categories in ho-
motopy type theory.
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore,
MD 21218, USA.
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E-mail: eriehl@math.jhu.edu.
URL Address: http://www.math.jhu.edu/∼eriehl.
Department of Mathematics, University of San Diego, 5998 Alcalá Park San Diego, CA
92110, USA.
E-mail: shulman@sandiego.edu.
URL Address: http://home.sandiego.edu/∼shulman/.
Homotopy type theory is a new field of mathematics that grew out of recently-discovered

connections between type theory, homotopy theory, and higher category theory. Voevod-
sky’s discovery of a model for intentional type theory in a category whose objects repre-
sent homotopy types or ∞-groupoids rather than sets led him to introduce a new axiom
asserting that “identity is equivalent to equivalence.” A profound consequence is that all
constructions within homotopy type theory are automatically homotopy invariant. For this
reason and taking account of the increasing variety of semantic models, homotopy type
theory is developing into a viable “implicit foundation” for the unformalized mathematics
done by mathematicians working with objects in settings that have intrinsic homotopical
content.
In this talk, we propose foundations for a synthetic theory of∞-categories in homotopy

type theory [1], using the common nickname for the weak infinite-dimensional categories
more properly referred to as “(∞, 1)-categories.”Ourwork ismotivated by aparticularmodel
of homotopy type theory [5], which contains a well-known model of∞-categories [4] whose
category theory can be developed synthetically [2]. We introduce simplices and cofibrations
into homotopy type theory to probe the internal categorical structure of types, and define
Segal types, in which binary composites exist uniquely up to homotopy, and Rezk types, in
which the categorical isomorphisms are equivalent to the type-theoretic identities—a “local
univalence” condition. We then demonstrate that these simple definitions suffice to develop
the synthetic theory of∞-categories. So far this includes functors, natural transformations,
co- and contravariant type families with discrete (∞-groupoid) fibers, a “dependent” Yoneda
lemma that looks like “directed identity-elimination,” and the theory of coherent adjunctions
closely resembling [3].
[1] E. Riehl andM. Shulman, A type theory for synthetic∞-categories, 2017, pp. 1–75,

arXiv:1705.07442.
[2] E. Riehl and D. Verity, ∞-category theory from scratch, 2015, pp. 1–53,

arXiv:1608.05314.
[3] , Homotopy coherent adjunctions and the formal theory of monads. Advances in

Mathematics, vol. 286 (2016), no. 2, pp. 802–888.
[4] C. Rezk, A model for the homotopy theory of homotopy theory. Transactions of the

American Mathematical Society, vol. 353 (2001), no. 3, pp. 973–1007.
[5]M. Shulman, The univalence axiom for elegant Reedy presheaves. Homology, Homo-

topy, and Applications, vol. 17 (2015), no. 2, pp. 81–106.

� SIMON THOMAS, The isomorphism and bi-embeddability relations for countable torsion
abelian groups.
Mathematics Department, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ
08854, USA.
E-mail: simon.rhys.thomas@gmail.com.
In this talk, I will discuss the isomorphism ∼=TA and bi-embeddability ≡TA relations

on the space of countable torsion abelian groups. As I will explain, the bi-embeddability
relation has a strictly simpler complete invariant than the isomorphism relation. Thus it is
somewhat counterintuitive that ∼=TA and ≡TA turn out to be incomparable with respect to
Borel reducibility. However, under a relatively mild large cardinal assumption, we obtain the
intuitively correct result if we replace Borel reducibility by Δ12 reducibility.
This is joint work with Filippo Calderoni.

� SEBASTIEN VASEY, Nonelementary classification theory.
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.

https://doi.org/10.1017/bsl.2018.56 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.56


ASSOCIATION FOR SYMBOLIC LOGIC 2017–2018 WINTER MEETING 487

E-mail: sebv@math.harvard.edu.
URL Address: http://math.harvard.edu/∼sebv/.
The classification theory of elementary classes was started byMichael Morley in the early

sixties, when he proved that a countable L�,� theory with a single model in some uncountable
cardinal has a single model in all uncountable cardinals. The proof of this result, now called
Morley’s categoricity theorem, led to the development of forking, a joint generalization of
linear independence in vector spaces and algebraic independence in fields, which is now a
central pillar of modern model theory.
Lately, it has become apparent that forking also exists in several nonelementary contexts.

Prime among those is the axiomatic framework of abstract elementary classes (AECs),
encompassing the class of models of any L∞,�-theory and closely connected to the more
general accessible categories. A test question to judge progress in this direction is the forty
year old eventual categoricity conjecture of Shelah, which says that a version of Morley’s
categoricity theorem should hold of anyAEC. Iwill survey recent developments, including the
connections with category theory and large cardinals, as well as my resolution of the eventual
categoricity conjecture for classes of models axiomatized by a universal L∞,�-theory.

� KEITA YOKOYAMA, Ramsey’s theorem in arithmetic.
School of Information Science, Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa 923-1292, Japan.
E-mail: y-keita@jaist.ac.jp.
Calibrating the strength of various combinatorial principles is one of the important topics

in the study of reversemathematics. Especially, deciding the strength of Ramsey’s theorem for
pairs is hard and it is precisely studied from the viewpoints of both of computability theory
and proof theory (see, e.g., [3]). In this talk, I will focus on the first-order consequences of
infinite Ramsey’s theorem and overview the recent developments.
To decide the first-order part of a second-order theory, a standard approach is proving

Π11-conservation over some induction or bounding axiom by showing �-extension property.
In [1], Cholak/Jockusch/Slaman showedWKL0 + RT22 + IΣ

0
2 is a Π

1
1-conservative extension

of IΣ02 andWKL0 +RT2 + IΣ03 is a Π
1
1-conservative extension of IΣ

0
3, and they posed whether

they are Π11-conservative over BΣ
0
2 and BΣ

0
3, respectively. For RT

2, the answer is yes, which
is shown by sharpening the argument in [1] (see [4]). For RT22, the question is more difficult,
but it is now known that WKL0 + RT22 is actually Π

0
3-conservative over BΣ

0
2 (see [2]). The

key idea for this proof is the indicator argument originally introduced by Paris and Kirby
in 1970’s. Here, we will characterize the first-order part ofWKL0 + RT22 by generalizing the
indicator argument used in [2] with an idea of forcing.
[1] P. A. Cholak, C.G. Jockusch, andT.A. Slaman,On the strength of Ramsey’s theorem

for pairs. The Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 1–55.
[2] C.-T. Chong, T. A. Slaman, and Y. Yang, Π11-conservation of combinatorial principles

weaker than Ramsey’s Theorem for pairs.Advances inMathematics, vol. 230 (2012), pp. 1060–
1077.
[3]D. Hirschfeldt, Slicing the Truth, Lecture Notes Series, Institute for Mathematical

Sciences, National University of Singapore, 2014.
[4] L. Patey andK. Yokoyama, The proof-theoretic strength of Ramsey’s theorem for pairs

and two colors, submitted.
[5] T. A. Slaman and K. Yokoyama, The strength of Ramsey’s theorem for pairs and

arbitrary many colors, submitted.

Abstracts of contributed talks

� ATHAR ABDUL-QUADER, Classifying Enayat models of Peano Arithmetic.
Bronx Community College, 2155 University Avenue, Bronx, NY 10453, USA.
E-mail: aabdulquader@gradcenter.cuny.edu.
Simpson, in [2], used arithmetic forcing to show that every countable modelM |= PA

has an undefinable, inductive subset X ⊆ M such that the expansion (M, X ) is pointwise
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definable. Enayat later showed, in [1], that there are many models with the property that
every expansion upon adding a predicate for an undefinable class is pointwise definable. We
refer to models with this property as Enayat models. That is, a modelM |= PA is Enayat if
for each undefinable class X ⊆ M , the expansion (M, X ) is pointwise definable. In this talk
we show that a model is Enayat if it is countable, has no proper cofinal submodels and is a
conservative extension of each of its elementary cuts.
[1] A. Enayat, Undefinable classes and definable elements in models of set theory and arith-

metic. Proceedings of the American Mathematical Society, vol. 103 (1988), no. 4, pp. 1216–
1220.
[2] S. G. Simpson, Forcing and models of arithmetic. Proceedings of the American Mathe-

matical Society, vol. 43 (1974), no. 1, pp. 193–194

� FRANCIS ADAMS, The loose number of graphs on topological spaces.
Mathematics and Statistics, Georgia State University, 25 Park Place, 14th Floor, Atlanta,
GA 30303, USA.
E-mail: fadams@gsu.edu.
Given a graph G on a topological space X , we define the loose number of G , �(G). This

invariant depends on the graph-theoretic properties ofG as well as the topology on the vertex
set X . When X is separable metric, �(G) lies between two well-known graph invariants, the
chromatic number and the coloring number. Evaluating this cardinal leads to interesting
connections with forcing, infinitary combinatorics, descriptive set theory, and topology. We
discuss these connections and provide many examples.
Much of this work is joint with Jindrich Zapletal.

� RACHEL EPSTEIN AND KAREN LANGE, Computable reducibility and equality on a
given set.
Department of Mathematics, Georgia College, Milledgeville, GA 31061, USA.
E-mail: rachel.epstein@gcsu.edu.
Department of Mathematics, Wellesley College, 106 Central St., Wellesley, MA 02481, USA.
E-mail: klange2@wellesley.edu.
An equivalence relationE on the set of all computably enumerable (c.e.) sets is computably

reducible to an equivalence relation F on the c.e. sets, writtenE ≤ F , if there is a computable
function f such that Wn E Wm if and only if Wf(n) F Wf(m). Coskey, Hamkins, and R.
Miller have explored the hierarchy of equivalence relations on the c.e. sets. Here we look at a
natural class of equivalence relations and fit them into the hierarchy. The equivalence relation
EA on the c.e. sets is given byWn EA Wm if and only ifWn ∩ A =Wm ∩ A. If A is c.e., then
it is not hard to show that EA is computably bireducible to the equality equivalence relation
on the class of c.e. sets, which we call =ce . If A is co-c.e., then EA ≤=ce and the reduction is
strict if and only if A is hyper-hyper-immune. We also construct sets A and B such that EA
and EB are incomparable under computable reducibility.

� SHAY LOGAN, Constant domain semantics for contractionless first-order relevance logics.
Department of Philosophy and Religious Studies, North Carolina State University, Raleigh
NC 27607, USA.
E-mail: salogan@ncsu.edu.
Kit Fine showed (see [1]) that quantified relevance logics are incomplete for the naı̈ve

constant-domain semantics. So in order to give a semantics for which quantified relevance
logics are complete, he resorted in [2] to a varying-domain semantic theory known as stratified
semantics.
In this talk I give a constant-domain stratified semantics for contractionless first-order

relevance logics. Roughly, I do so by blending together Fine’s semantics and the four-valued
semantics for contractionless propositional relevance logics given in [3]. In the resulting
semantic theory, the domain of a model comes in two pieces:D and Ω.D contains ‘ordinary’
objects—those that canbe namedby individual constants.Ω contains countablymany objects
that are ‘arbitrary’ in the following two senses:
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• First, at any level X of the stratification, almost every � ∈ Ω is featureless in all the
X -setups.

• Second, if � ∈ Ω is featureless at level X , there is another level Y where, for any
d ∈ D ∪ Ω that isn’t featureless at X , � is extensionally indistinguishable from d
throughout some fragment of the level-Y model.

The semantics then says ∀xφ(x) is true in a setup s at a levelX just when there is an arbitrary
object � and a level Y such that φ(�) is true in all situations at level Y that are extensions
of s .
[1]K. Fine, Incompleteness for quantified relevance logics, Directions in Relevant Logic (J.

Norman and R. Sylvan, editors), Springer, Netherlands, 1989, pp. 205–225.
[2] , Semantics for quantified relevance logic. Journal of Philosophical Logic, vol. 17

(1988), no. 1, pp. 27–59.
[3]G. Restall, Four-valued semantics for relevant logics (and some of their rivals). Journal

of Philosophical Logic, vol. 24 (1995), no. 2, pp. 139–160.

� MICHAELMCGRADY, The molecular structure of mathematical proof.
Mica Scientific, Ltd., 223 Taylor Avenue South, North Bend, WA 98045, USA.
E-mail: michael.mcgrady@gmail.com.
Finite classes are decidable. All mathematical logic formulas are members of finite classes

ordered by their number of dyadic predicates. There is a mathematical proof procedure in
the first-order logic that allows for a semi-automated, partly heuristic discovery procedure for
the decision procedure for finite sets of formulas that are defined by the number i of dyadic
predicates P1α� . . . P

i
α� in a reduction class for validity. Hence, this proof procedure, based on

Herbrand’s fundamental theorem of logic, is itself at least a heuristic solution to an alternative
version of the Entscheidungsproblem (decision problem) for finite sets. The keystone of the
proof procedure is that the dyadic predicate atomic formulas P1α,� . . . P

i
α,� have a ubiquitous

molecular structureΣ = (P1m−1,m∨P1m−2,m∨· · ·∨P10,m)∨· · ·∨(Pim−1,m∨Pim−2,m∨· · ·∨Pi0,m) such
that m, i ∈ Z

+ underlying first-order logic proofs seen through the lens of a closed, prenex
normal form, highly restricted reduction class for validity ∃x∃yMxx′y where x′ = x + 1,
and which allows the discovery procedure to find the decision procedure. This presentation
demonstrates such a discovery procedure with a proof of a decision procedure.

� JOACHIMMUELLER-THEYS, The total unprovability of unprovability.
Kurpfalzstr. 53, 69 226 Nußloch bei Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.
I. Let Σ � Q (minimal arithmetic), and Σ � � imply Σ � �(���) (1), Σ � �(�� → 	�)→(
�(���) → �(�	�)) (2), Σ � �(���) → �

(
��(���)�

)
(3). κ�� := ¬�(���). If Σ is consistent,

Σ �� κ�0� , like �0 = ⊥, 0 .= 1.
Universalisation Lemma. Σ �� ¬�(�⊥�) implies Σ �� ¬�(���).

Proof. Since Σ � ⊥ → �, by (1), Σ � �(�⊥ → ��), whereby, by (2), Σ � �(�⊥�) → �(���),
whence Σ � ¬�(���)→ ¬�(�⊥�). So Σ � ¬�(���) implies Σ � ¬�(�⊥�), whereby the claim.
Theorem (unprovability of unprovability). If Σ is consistent, Σ �� ¬�(���) for all �.
Proof. By Löb’s Theorem, Σ �� ¬�(�⊥�), whence, by the lemma, the claim.
II. Certain issues become trivial now, as the conclusion of the theorem is implied by any

proposition.

Corollary 1 (total negative self-irrepresentability). Σ �� � implies non Σ � ¬�(���).
Corollary 2. If κ�� states consistency in whatever sense & Σ is consistent, Σ �� κ�� .
III. Now let �(x) express Σ-provability in the standard model, viz. N |= �(���) iff Σ � �.

Then N |= κ�� implies Σ consistent, and κ�� is a consistency sentence :iff Σ consistent implies
N |= κ�� .
Proposition. (a1) If Σ �� �, κ�� is a consistency sentence;

(a2) If Σ � ¬�, κ�� is a consistency sentence;
(b) If Σ is consistent and κ�� is a consistency sentence, Σ �� �.
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Corollary 3 (unprovability of all consistency sentences). If Σ is consistent and κ�� is a
consistency sentence, Σ �� κ�� .
Corollary 4 (Gödel’s second incompleteness theorem). If Σ is consistent and κ�� is a con-

sistency sentence induced by Σ � ¬�, Σ �� κ�� .

Remark. If Σ � PA is decidable, the results become true for � being the provability
predicate ProvΣ and Con�Σ := κ

�
ProvΣ .

Acknowledgment. The central insight developed from the ASL Spring Meeting 2017 and
was outlined atLogicColloquium2017: “On the Provability ofConsistency” (complementary
abstract/handout: The Unprovability of All Consistency Formulæ).

� ERMEK NURKHAIDAROV, The automorphism group of a recursively saturated model of
Peano Arithmetic.
Department of Mathematics, Pennsylvania State UniversityMont Alto, 1 Campus Dr., State
College, PA 17237, USA.
Department of Mathematics and Statistics, James Madison University, 60 Bluestone Drive,
Harrisonburg, VA 22807, USA.
E-mail: esn1@psu.edu.
Let M to be a countable recursively saturated model of Peano Arithmetic. If M has an

element which is bigger than the standard cut � but smaller than any nonstandard definable
elements, we call such M wide. Pointwise stabilizers are the basic open subgroups of the
automorphism group ofM .
A countable recursively saturated model of Peano Arithmetic is characterized by two in-

variants: its first order theory and its standard system. We show that the automorphism
group of a wide, countable recursively saturated models of Peano Arithmetic codes its stan-
dard system. From which we obtain:

Theorem 1. Suppose that M1 and M2 are wide, countable, recursively saturated models
of Peano Arithmetic such that their automorphism groups are topologically isomorphic. Then
SSy(M1) = SSy(M2).

This theorem is an improvement on a result from [1], who proved it for arithmetically
saturated models.
[1] R. Kossak and J. H. Schmerl, The automorphism group of an arithmetically saturated

model of Peano Arithmetic. Journal of the London Mathematical Society, vol. 52 (1992),
pp. 235–244.
[2] E. Nurkhaidarov, Automorphism groups of arithmetically saturated models. The Jour-

nal of Symbolic Logic, vol. 71 (2006), pp. 203–216.
[3] , Decoding in the automorphism group of a recursively saturated model of arith-

metic.Mathematical Logic Quaterly, vol. 61 (2015), pp. 179–188.

� JAKE PARDO, Reverse mathematics of hypergraph colorings.
Department of Mathematics, Walker Hall, Appalachian State University, Boone, NC 28607,
USA.
E-mail: pardojj@appstate.edu.
Reverse mathematics essentially seeks to break results from all areas of mathematics down

into their most basic axioms. Graph theory has proven to be a topic replete with fascinating
reverse mathematical results, and so it only makes sense to ask similar questions about what
happens when we extend our scope to include hypergraphs. I will discuss a bit of what is
currently known about the reverse mathematics of hypergraph colorings as well as explain
some recent joint work with Davis, Hirst, and Ransom.
[1] C. Berge,Hypergraphs: Combinatorics of Finite Sets, North Holland, 1989.
[2] J. Hirst,Reverse mathematics and rank functions for directed graphs.Archive forMath-

ematical Logic, vol. 39 (2000), pp. 569–579.
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Abstracts of papers submitted by title

� JOHN CORCORAN, Truth-value making relations.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
We study several relations expressed by the two-place relational verb-phrases ‘X makes Y

true’ and ‘X makes Y false’, or synonyms such as ‘X verifies Y’ and ‘X falsifies Y’ [3, pp. 180,
283]. This abstract gives three examples. Notation and terminology follow [2].
Some usages mislead because the object “made true” or “made false” already had the

truth-value in question. Other usages mislead because the object “made true” or “made
false” doesn’t—and by nature can’t—have a truth-value. The object “made true” or “made
false” isn’t true or false. Aristotle discussed related confusions in Categories xii, 14b16.
In one usage, the number two makes the proposition “some number is even” true; three

makes “every number is even” false. These have been called, respectively, proexample and
counterexample relations [1].† Two is a proexample for “some number is even”; three is a
counterexample for “every number is even”. Here we have propositions which by nature have
truth-values; those “made true (or false)” didnŠt come to have that truth-value.
In another usage, the intended interpretation of number-theoretic English makes the

sentence ‘some number is even’ true and it makes ‘every number is even’ false. Here we have
uninterpreted English sentences which by nature cannot have truth-values: they are true
(false) under the interpretations that “make them true (false)” [3, passim].
In still another usage, the fact that some number is even makes the proposition “some

number is even” true; the fact that not every number is even makes “every number is even”
false. Compare Aristotle, ibid.
[1] J. Corcoran, Counterexamples and proexamples, this Bulletin, vol. 11 (2005), p. 460.
[2] , Sentence, proposition, judgment, statement, and fact,Many Sides of Logic, (W.

Carnielli et al., editors), College Publications, 2009.
[3]W. Goldfarb, Deductive Logic, Hackett, 2003.

� JOHN CORCORANAND JOHN GLANVILLE, The Aristotelian dictum de omni?
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Much has been written about “the” so-called dictum de omniDDO.Many different propo-

sitions have been identified as the dictum de omni.
Some forms of DDO concern both universal and individual attribution, e.g., every term

belonging universally to a given term belongs individually to each thing coming under the given
term. Some logicians find resonance between certain forms of universal-individual DDOs and
the rule of universal instantiation in first-order logic.
Other forms concern three universal attributions, e.g., every term belonging universally to

a given term belonging universally to a third term belongs universally to the third term. Some
logicians find resonance between certain forms of three-universalDDOs and either the derived
rule in first-order logic called syllogism or the law of inclusion-transitivity in the theory of
classes. Besides universal-individual and three-universal forms of DDO, there are several
others.
Ironically, despite a perplexing lack of agreement as towhatDDO is there is near unanimity

as to the exact passage in Aristotle where it is supposedly found: Prior Analytics 24b26-30.
For one thing to be in another as a whole and for the other to be predicated of all of the

one is the same thing. We say that it is predicated of every when you can’t take anything of
which the other will not be said.—Translation Barnes [1, p. 387].
There is also wide agreement not only that Aristotle took DDO to “justify” or “ground”

the “validity” or “self-evidence” of† a first-figure syllogism he took evident but also that
Aristotle was right to have done so.
This lecture argues that no recognized form of DDO found or implied by 24b26-30, that

Aristotle cited no such proposition in support of claims he made about his deductive system,
and that no such proposition could ever be coherently enlisted in such a role.
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[1] J. Barnes, Truth, etc.: Six Lectures on Ancient Logic, OxfordUniversity Press, Oxford,
2007.

� JOHN CORCORAN AND JOSÉ MIGUEL SAGÜILLO, Teaching paradoxes and ortho-
doxes.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Logic, University of Santiago de Compostela, Santiago 15782, Spain.
E-mail: josemiguel.saguillo@usc.es.
Following [1, pp. 21f], an argumentation is a paradox to persons who (1) believe its reason-

ing shows its conclusion follows from its premises, (2) believe its premises, and (3) disbelieve
its conclusion. Obviously, for a given argumentation to be a paradox to a given person that
person must have a mistaken belief. A paradox is an argumentation that is a paradox to
someone. Paradoxes are participant-relative: only a participant’s beliefs can make an argu-
mentation a paradox. Mathematical writing often presumes as participant a community of
mathematicians [2].
Ideally, a paradox is resolved by a participant through either discovering a logical fallacy

in the argumentation’s reasoning or discovering the conclusion isn’t false or discovering a
premise isn’t true.
Resolving is thus also participant-relative: only a change in a participant’s beliefs can

resolve that participant’s paradox.
Building on this Bulletin, vol. 23 (2017), pp. 261–262, we teach this concept of paradox

in juxtaposition with the new “opposite” concept of orthodox.
An argumentation is an orthodox to persons who (1) believe its reasoning shows its con-

clusion follows from its premises, (2) believe its premises, and (3) believe its conclusion. An
orthodox is an orthodox to someone.
Many orthodoxes are demonstrations. Indeed, every argumentation believed to be a

demonstration is an orthodox to every person with that belief.
In some cases a participant resolves a paradox by changing the disbelief of the conclusion

into a belief, thus the very same argumentation that had been a paradox for a participant be-
comes an orthodox for that same participant. Conversely, a participant dissolves an orthodox
by changing the belief of the conclusion into a disbelief, thus the very same argumentation
that had been an orthodox becomes a paradox.
[1] J. Corcoran, Argumentations and logic. Argumentation, vol. 3 (1989), pp. 17–43.
[2] A. Garciadiego, The emergence nonlogical paradoxes of the theory of sets, 1903–1908.

Historia Mathematica, vol. 12 (1985), pp. 337–351.
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