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Modulation of the turbulence regeneration cycle
by inertial particles in planar Couette flow
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Two-way coupled direct numerical simulations are used to investigate the effects of
inertial particles on self-sustained, turbulent coherent structures (i.e. the so-called
regeneration cycle) in plane Couette flow at low Reynolds number just above the
onset of transition. Tests show two limiting behaviours with increasing particle
inertia, similar to the results from previous linear stability analyses: low-inertia
particles trigger the laminar-to-turbulent instability whereas high-inertia particles tend
to stabilize turbulence due to the extra dissipation induced by particle–fluid coupling.
Furthermore, it is found that the streamwise coupling between phases is the dominant
factor in damping of the turbulence and is highly related to the spatial distribution
of the particles. The presence of particles in different turbulent coherent structures
(large-scale vortices or large-scale streaks) determines the turbulent kinetic energy of
particulate phase, which is related to the particle response time scaled by the turnover
time of large-scale vortices. By quantitatively investigating the periodic character of
the whole regeneration cycle and the phase difference between linked sub-steps, we
show that the presence of inertial particles does not alter the periodic nature of the
cycle or the relative length of each of the sub-steps. Instead, high-inertia particles
greatly weaken the large-scale vortices as well as the streamwise vorticity stretching
and lift-up effects, thereby suppressing the fluctuating amplitude of the large-scale
streaks. The primary influence of low-inertia particles, however, is to strengthen
the large-scale vortices, which fosters the cycle and ultimately reduces the critical
Reynolds number.

Key words: multiphase flow, particle/fluid flow, turbulence simulation

1. Introduction
Turbulence in the atmospheric boundary layer is responsible for the dispersion of

pollutants, dust, sand and other constituents (Garratt 1994). However, even with dilute
volume concentrations, turbulence modulation by particles still poses a formidable
challenge to fully understanding how these constituents alter their own transport
(Balachandar & Eaton 2010). Turbulence in the atmospheric boundary layer is
characterized by very high Reynolds numbers, and is therefore subject to the numerous
interactions between inner and outer layers, including the dynamics of the so-called
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FIGURE 1. (Colour online) Sketch of various wall regions and boundary layers in wall
units (Jiménez & Pinelli 1999; Pope 2000) and the regeneration cycle sub-steps (Hamilton
et al. 1995; Waleffe 1997; Schoppa & Hussain 2002) in a domain size called ‘minimal’
unit. In the top-right is the flow field in turbulent PCF in miniunit. Large-scale vortex
(LSV) is shown by vector fields and coloured by the streamwise vorticity. Large-scale
streak (LSS) is shown by the contour of the streamwise velocity magnitude.

very-large-scale motions which develop (Smits, McKeon & Marusic 2011; Inoue et al.
2012; Jiménez 2018). Since in many atmospheric multiphase flows the dispersed phase
is emitted from a surface (e.g. sand saltation, bubbles bursting at a water surface),
the effect of particulates on inner–outer interactions and more specifically on the
regeneration cycles of near-wall coherent motions is the primary interest of the
present study. While the complexity of high-Reynolds-number, multiphase, turbulent
flows is high due in large part to the wide range of relevant spatial and temporal
scales, the present aim is to simplify the problem and examine one key aspect of
the larger picture: the regeneration cycle of coherent structures in the overlap region
of wall-bounded turbulence. In this regard, turbulent plane Couette flow (PCF) at
low Reynolds number is known to contain the self-sustained processes exhibited by
turbulent coherent structures (Hamilton, Kim & Waleffe 1995; Waleffe 1997), as
well as large-scale structures interacting with smaller near-wall motions (Komminaho,
Lundbladh & Johansson 1996; Kitoh, Nakabyashi & Nishimura 2005). This set-up is
therefore a representative, computationally inexpensive candidate for shedding light
on particle transport and the fundamental modification of the regeneration cycle and
inner/outer interactions.

It is commonly accepted that the full regeneration cycle in the inner layer exhibits
the main characteristics of turbulence (Hamilton et al. 1995; Waleffe 1997; Jiménez &
Pinelli 1999; Kawahara & Kida 2001; Schoppa & Hussain 2002). Figure 1 provides a
schematic of the various regions near the wall, as well as the key turbulent structures
and processes which make up the regeneration cycle in the region of 20< y+< 60; see
Waleffe (1997) and Jiménez & Pinelli (1999). This self-sustained regeneration cycle is
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Modulation of turbulence regeneration cycle by inertial pointwise particles 903

marked by three important structures: large-scale vortices (LSVs), large-scale streaks
(LSSs) and x-dependent meandering streaks; each stage of the regeneration process
is associated with sequential sub-processes. Specifically, the streaks are generated by
a linear process, the so-called lift-up effect, whereas the following two processes are
the result of nonlinear interactions called streak breakdown and vortex regeneration.
The regeneration cycle was first investigated by Hamilton et al. (1995) in PCF
using a so-called ‘miniunit’ configuration, which is the minimal geometric domain
that is sufficient to accommodate the self-sustained flow structures for single-phase
turbulence. This minimal simulation domain was carefully examined in Couette flow
configuration by Hamilton et al. (1995) and pressure-driven flow by Jiménez & Moin
(1991). In both cases, the spanwise length is slightly larger than 100 wall units, which
corresponds to the spanwise characteristic spacing between two coherent structures.

The modulation of the regeneration cycle has been found to be related to the spatial
distribution of a particulate phase. In fully resolved simulations with finite-sized,
neutrally buoyant particles, the cycle is promoted in turbulent pressure-driven flow,
and is hardly modified in turbulent PCF (Brandt 2014; Wang, Abbas & Climent
2018). In the case of PCF, particles are more likely to be present in the core of
the large-scale rolls which are mainly responsible for dissipating energy. The same
phenomenon is also observed experimentally in Taylor–Couette flow (Majji, Banerjee
& Morris 2018) if the particle concentration is low and and the particles are relatively
small compared with the gap. However, in pressure-driven flow, finite-size neutrally
buoyant particles show a non-monotonic effect on laminar-to-turbulent transition.
From an experiment of particle-laden, pressure-driven pipe flow, Matas, Morris &
Guazzelli (2003) found that low volume concentrations (less than 20 %) of large
particles (particle to pipe diameter ratio of around 1/20) sustain the turbulent state
and decrease the transition threshold, whereas a high concentration of small particles
advances the transition threshold significantly. Wang et al. (2018) further found
that particles tend to trigger instability in pressure-driven flow due to the particles’
preferential presence in near-wall streaks.

In general, turbulence modulation is found to depend on the size ratio between the
particle and turbulence length scales, and on the time scale ratio between the particle
response time with a characteristic time scale of the flow – i.e. the dimensionless
Stokes number St (Gore & Crowe 1989; Elghobashi 1994). Gore & Crowe (1989),
for instance, proposed a relationship of size ratio between particle diameter and
the flow integral length scale to flow turbulent intensity attenuation/augmentation.
Tanaka & Eaton (2008) formulated a dimensionless particle momentum number
to predict turbulence modulation which includes the flow microscale (Kolmogorov
scale), the energy-containing scale, as well as the Stokes number. At high Reynolds
number, Tanaka & Eaton (2008) divided the turbulent modification into three regions:
moderate momentum number tends to attenuate the turbulence whereas low or high
momentum number tend to augment the turbulence. For heavy particles which can
be reasonably modelled using only a drag force (i.e. neglecting lift, added mass
and Basset history terms; see Maxey & Riley (1983)), Balachandar & Eaton (2010)
proposed that the turbulence modulation mechanisms can be simplified: turbulence
reduction comes from enhanced inertia and increased dissipation arising from particle
drag, whereas the turbulence enhancement is due to enhanced velocity fluctuation
from wake dynamics. A large body of work on turbulent kinetic energy modification
(Squires & Eaton 1990; Elghobashi & Truesdell 1993; Pan & Banerjee 1996; Burton
& Eaton 2005), interphasial energy transfer (Zhao, Andersson & Gillissen 2013),
particle transfer and segregation (Marchioli & Soldati 2002) or drag reduction (Li
et al. 2001; Dritselis & Vlachos 2008) can be found in the literature.
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904 G. Wang and D. H. Richter

While we are ultimately interested in the modulation of high-Reynolds-number
wall turbulence due to inertial particles, our specific focus in this work is on
the modification of the near-wall regeneration cycle and its close connection with
laminar-to-turbulent transition as a model for inner–outer interactions; this influence
of a dispersed phase in turbulent flows has received relatively little attention. At
Reynolds numbers close to the onset of transition, Klinkenberg, De Lange & Brandt
(2011) proposed a stability Stokes number, where at small values (fine particles) the
critical Reynolds number decreases proportionally to the particle mass fraction, and
where at intermediate values yields an increase of the critical Reynolds number, the
enhancement is proportional to the volume fraction. Through linear analysis of the
Orr–Sommerfeld equation coupled to a dispersed phase via drag, Saffman (1962)
theoretically predicted that fine particles tend to destabilize the gas flow whereas
coarse particles have a stabilizing action. The drag coupling between phases therefore
has competing effects: low-inertia particles tend to destabilize the flow by adding
to the effective density of the gas, and high-inertia particles tend to act as an extra
dissipation source, thereby stabilizing the flow. Following the formulation proposed
by Saffman (1962), Michael (1964), Rudyak, Isakov & Bord (1997) and Klinkenberg
et al. (2011) numerically solved the modified Orr–Sommerfeld equation for plane
Poiseuille flow. Michael (1964) showed an increased critical Reynolds number at low
particle concentration whereas Rudyak et al. (1997) and Klinkenberg et al. (2011)
found that the critical Reynolds number reaches a maximum and then decreases
gradually with increasing particle relaxation time.

Other configurations have also been theoretically predicted: Dimas & Kiger (1998)
studied a particle-laden mixing layer and DeSpirito & Wang (2001) analysed a
particle-laden jet. A similar conclusion is drawn that small, low-inertia particles
induce a destabilization effect whereas large-Stokes-number particles stabilize, and
that the effect is approximately proportional to the particle mass loading (at least in
dilute concentrations). For these stability analyses, however, the particles often must
be assumed to be homogeneously distributed or distributed with an assumed profile;
nonlinear effects such as particle preferential accumulation and the dynamics of the
near-wall regeneration cycles are difficult to include in the analysis. Some nonlinear
studies on transition do exist, including those of Klinkenberg et al. (2011, 2013), who
also find that small inertia tends to decrease the critical Reynolds number whereas
particles with intermediate Stokes numbers increase the critical Reynolds number.
From dilute limit to high mass loading, Capecelatro, Desjardins & Fox (2018) find
that fluid-phase turbulence kinetic energy is generated by mean-shear production in
dilute limit (Φm 6 1), whereas it is entirely generated by drag production at high mass
loading (Φm > 10). In the intermediate regime (2 6 Φm 6 4), the flow relaminarizes
due to higher rate of dissipation compared to production of turbulence kinetic energy.
Mechanisms regarding the disruption of turbulence regeneration, however, are still an
open question.

To study the particle-induced modulation of the self-sustained regeneration cycle
in wall turbulence, numerical simulations are performed for particle suspensions
in PCF in a ‘miniunit’ domain. In previous work, finite-size particles with low
Stokes number are found to hardly modify the regeneration cycle due to particles
preferentially accumulating in the LSVs (Wang et al. 2018). At a higher Reynolds
number, however, pointwise inertial particles with moderate to high Stokes numbers
preferentially ‘operate’ on flow structure scales associated with the particle response
time scale (Richter & Sullivan 2013, 2014; Richter 2015), but this effect on the
regeneration cycle remains unclear. While these previous simulations of particle-laden
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turbulent flows have identified numerous modifications to the flow statistics, energy
spectra and coherent structures, the dynamical processes behind these modifications
have not been analysed in detail. Therefore a primary purpose of this work is to
link our existing knowledge of particle-laden turbulence modification with the flow
dynamics via modifications to the near-wall regeneration cycle. In this paper, § 2
presents the numerical method, the flow configuration and parameter choices. Particle
inertial effects on transition are presented in § 3. The modulation of the turbulence
regeneration cycle is reported through modal analysis in § 4.

2. Simulation method and validation
2.1. Numerical method

Direct numerical simulations of single-phase flows are performed for an incompressible
Newtonian fluid. A pseudospectral method is employed in the periodic directions
(streamwise, x, and spanwise, z) and second-order finite differences are used for
spatial discretization in wall-normal y direction. The solution is advanced in time by
a third-order Runge–Kutta scheme. Incompressibility is achieved by correcting the
pressure contribution, which is a solution of a Poisson equation. The fluid velocity
and pressure fields are a solution of the continuity equation (2.1) and momentum
balance equations (2.2) and (2.3):

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=−

1
ρf

∂p
∂xi
+ ν

∂ui

∂xj∂xj
+

1
ρf

Fi, (2.2)

Fk
i =−

8∑
ks=1

Nks∑
n=1

wn
ks

4Vks

f n
i . (2.3)

Using a projection technique, the body force in the momentum balance equation
(2.3) accounts for the particle momentum contribution to node k of the fluid based
on particles in all of the eight computational volumes (ks) which share this node.
Parameter wn

ks
is the linear geometric weight for each particle n based on its distance

from node k, and the inner summation is over all Nks particles in the volume ks.
Numerical simulations of particle trajectories and suspension flow dynamics

are based on the standard Lagrangian point-particle approximation where the
particle-to-fluid density ratio r ≡ ρp/ρf � 1 and the particle size is smaller than
the smallest viscous dissipation scales of the turbulence. As a consequence of this
and the low volume concentrations (a maximum volume fraction of ΦV less than
1 × 10−3 is used in this study), only the Stokes drag force and two-way coupling
have been incorporated (see Balachandar & Eaton 2010). The velocity of particle
n is governed in (2.4) and particle trajectories are then obtained from numerical
integration of the equation of motion (2.5):

dun
p,i

dt
=

f n
i

mp
=

1
τp
[1+ 0.15(Ren

p)
0.687
](un

f ,i − un
p,i), (2.4)

dxn
i

dt
= un

p,i, (2.5)

where τp = ρpdp
2/18µ is the Stokes relaxation time of the particle, mp is the particle

mass and the particle Reynolds number Ren
p = |u

n
f ,i − un

p,i|d
n
p/ν is based on the
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magnitude of the particle slip velocity (un
f ,i − un

p,i) and particle diameter dn
p. In this

work, the average Ren
p is between 0.125 (r = 80, two-way) and 3.25 (r = 8000,

one-way), which is far smaller than the suggested maximum Rep≈ 800 for the Stokes
drag correction in (2.4) (Schiller 1933). Thus the Rep correction to the Stokes drag
is minimal in this study. In order to highlight the effect of particle response time, we
do not consider gravitational settling. Other terms in the particle momentum equation
(see Maxey & Riley 1983) are neglected since they remain small compared with drag
when the density ratio r� 1. These neglected terms are also found to have less effect
on the stability analysis in relatively low-Reynolds-number turbulence as demonstrated
by Klinkenberg, de Lange & Brandt (2014). Particle–particle collisions are not taken
into consideration due to the low volume concentrations, and we exert a purely
elastic collision between particles and the upper/lower walls. This purely elastic
wall collision is commonly used in gas–solid turbulence (Li et al. 2001; Sardina
et al. 2012; Zhao et al. 2013). However, we have tested the restitution coefficient
|un

p,init/u
n
p,final| between 0.5 and 1 and do not observe significant changes to particle

distributions or two-way coupling, consistent with Li et al. (2001).
In addition to the point force approximation as implemented in (2.3), there are

other techniques that can be used to account for two-way coupling in particle-laden
flows. For example Pan & Banerjee (1996) use the pressure gradient and stress tensor
from an analytic velocity disturbance field to replace the point force, Capecelatro
& Desjardins (2013) use a volume filtering operator to replace the point sources by
smoother, locally filtered fields and Gualtieri et al. (2015) present an exact regularized
point particle method which includes the far-field disturbance by applying a multipole
expansion to obtain the Stokeslet. In order to validate our current method, we
compared both with the results of Zhao et al. (2013) at Reτ = 180 with τ+p = 30 as
well as with results from Capecelatro & Desjardins (2013) at Reτ= 235 with τ+p = 65.
The mean velocity profile, concentration profile and root mean square (RMS) velocity
profile agree well with each other (not shown here), which suggests that the current
particle in cell method for two-way coupling is suitable for our study, and is not
sensitive to the two-way coupling scheme. Additional details and validation of the
numerical scheme can be found in previous work for both one-way coupling and
two-way coupling (Richter & Sullivan 2013; Sweet, Richter & Thain 2018).

2.2. Single-phase PCF
Simulation of PCF turbulence in the miniunit configuration is used in the rest of
this paper, at a relatively low Reynolds number (just above the onset of transition to
turbulence). The flow is driven by two walls moving at equal and opposite velocities,
and by imposing a no-slip condition on each. Boundary conditions in the lateral, wall-
parallel directions are periodic. The Reynolds number is defined using half of the
relative wall velocity and half of the gap between the two walls. The turbulent state is
obtained by inducing fluctuations into a laminar flow at a high Reynolds number and
once a turbulent state is developed, the Reynolds number is decreased gradually to a
desired Reynolds number. The grid used in this work is Nx ×Ny ×Nz = 32× 64× 32
(grid convergence tests (not shown here) have ensured that results are independent of
grid resolution) corresponding to a resolution in wall units of 1x+×1y+(wall, centre)
×1z+ ≈ 6.8 × (1, 1.5) × 4.7. Figure 2 shows the mean velocity profile and velocity
fluctuations in all three directions, in comparison with Wang et al. (2017) who used a
second-order centred finite volume method and Kawahara & Kida (2001) who used a
pseudospectral discretization in all three directions. We can see that the RMS velocity
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FIGURE 2. (Colour online) Comparison between current study and published data
from Kawahara & Kida (2001) and Wang, Abbas & Climent (2017) in single-phase flow
at Reb= 400: (a) mean velocity profiles; (b) fluctuation velocity RMS in three directions.

fluctuations from the present simulations agree well with Kawahara & Kida (2001),
whereas there is a small discrepancy between the current work and Wang et al. (2017)
in the streamwise and spanwise directions near the centre region. This might be due
to the slight difference of domain size in the spanwise direction which confines the
shape of two counter-rotating rolls in miniunit.

2.3. Suspension flow configurations
Table 1 contains several selected parameters for the statistical and modal analysis in
this study (i.e. the cases used for all analyses but not including the transition tests of
§ 3.1). The case number indicates the bulk Reynolds number, density ratio and particle
volumetric concentration used in that particular simulation. Turbulence–laminar
transition occurs near case 380–900–4. Hamilton & Abernathy (1994) found a
minimum threshold of streamwise vorticity circulation of the LSVs (below which
the transition happens), and therefore we use this case to check if this threshold is
modified by the presence of inertial particles.

The Kolmogorov scale is difficult to determine and somewhat ambiguous at the low
turbulence levels in these simulations, although we can estimate that the minimum
dissipation scale is about 1.5 times the viscous length scale at the wall, which itself
is about 2.0 times the viscous length scale in the centre (Pope 2000). The ratio of
the particle to fluid time scale defines the Stokes number Stturb ≡ τp/τf , where τf ≡

Ly/max(v′|w′) is related to the turnover time scale of the LSVs (Massot 2007; Wang
et al. 2017). The estimation of τf is about 25 time units (time unit defined as h/Uw)
from figure 7(a). In the context of high-Reynolds-number atmospheric boundary layer
flows, the particle Stokes number τ+p based on the viscous scale corresponds to a
diameter of d≈ 30 µm to d≈ 90 µm at Reτ≈ 104 within 1 m of the surface when the
particle density is of the order of 1000 kg m−3. In order to gain insight into the finite-
size effects on particle dispersion and turbulence modulation, we specifically select
one group of parameters τ+p and Stturb to be nearly the same as the finite-size particles
used in Wang et al. (2017). There are two cases, 500–5000–4 and 500–8000–4, with
extremely high density ratios that are intended to help build a complete understanding
of the effect of Stokes number on particle dispersion in the LSVs in our model flow.
These high density ratios are simulated with one-way coupling only since they fully
laminarize the flow at Reb = 500.
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Miniunit in plane Couette flow
Ly/d= 80; Lx × Ly × Lz = 2.75× 1.0× 1.88

Nx ×Ny ×Nz = 32× 64× 32
1x+ ×1y+(wall, centre) ×1z+ = 6.8× (1.0, 1.5)× 4.7

Case r Φm uτ δν Reτ L+y d+ τ+p Stturb Couple
(Reb–r–Φv) (ρp/ρf ) (×10−2) (×10−2)

500–0–0 — — 4 1.25 40 80 — — — —
Finite size 5 0.1 4.1 1.25 40 80 4 4.44 0.056 FCM
500–80–4 80 0.032 4.1 1.23 40.6 81.2 1.01 4.58 0.056 2-way
500–80–10 80 0.08 4.1 1.23 40.6 81.2 1.01 4.58 0.056 2-way
500–500–4 500 0.1 4.1 1.21 41.2 82.5 1.03 29.5 0.347 2-way
500–900–4 900 0.36 4.1 1.23 40.6 81.2 1.02 51.6 0.625 2-way
380–900–4 900 0.36 4.6 1.09 36.7 73.4 0.92 41.9 0.499 2-way
500–5000–4 5000 2.0 4.1 1.25 40 80 1.01 278 3.47 1-way
500–8000–4 8000 3.2 4.1 1.25 40 80 1.01 444 5.56 1-way

TABLE 1. Parameters of baseline numerical simulations. The Reynolds number Reb ≡

Uwh/ν, where Uw is half of the relative velocity and h= Ly/2 is half of the gap between
two walls. The friction Reynolds number is Reτ ≡ uτh/ν and the particle Stokes relaxation
time is τp≡ ρpd2/(18ρf ν), where d represents the particle diameter. The superscript ‘+’ is
the dimensionless number based on viscous scale, where δν , uτ and ν/u2

τ correspond to
the viscous length scale, velocity scale and time scale, respectively. FCM (force coupling
method) is a low-order multipole expansion for capturing finite-size effects used by Wang
et al. (2017).

3. Effect of inertial particle response time
3.1. Effects of particle response time and mass loading on transition

While linear stability analysis is a key tool in understanding the effects of a dispersed
phase on transition, it often must assume that the flow is uniformly (or with some
other specified distribution) laden with particles, and that the flow is two-dimensional
(Saffman 1962; Michael 1964; Dimas & Kiger 1998; Rudyak, Isakov & Bord 1998).
Clearly, this type of analysis is fundamentally limited in uncovering nonlinear effects
such as the regeneration cycle or inertial accumulation of particles (Squires & Eaton
1990; Eaton & Fessler 1994), and theoretical predictions are difficult to develop.
The interactions of inertial particles with coherent structures (e.g. LSSs and LSVs
in PCF; see figure 6a) complicate matters and necessitate a fully nonlinear analysis.
For this reason we examine the turbulent-to-laminar transition threshold from an
empirical point of view, by simulating a fully developed turbulent PCF experiencing
(i) successive reduction of the Reynolds number for several density ratios (figure 3a,b),
(ii) successive increase of the particle density at a fixed Reynolds number (figure 3c)
and (iii) successive increase of the particle mass loading for several density ratios
at a fixed Reynolds number (figure 3d). Identifying a rigorous turbulent–laminar
transition threshold would require a large number of simulations to form converged
relaminarization statistics. Instead of pinpointing this value, we are instead interested
in classifying the particle influence as either stabilizing or destabilizing and examining
the impact of the particles on flow features, and therefore do not attempt to specify
the true critical Reynolds numbers.

Transition of single-phase flow is observed at Rec ∼ 320 which is nearly the
same as in Wang et al. (2018) in the miniunit domain. The wall friction coefficient
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FIGURE 3. (Colour online) Effect of inertial particles on the turbulence-to-laminar
transition as indicated by the temporal evolution of Cf . This is demonstrated by gradually
decreasing Reb, density ratio (r) and bulk volumetric concentration (ΦV) starting from
a fully turbulent simulation at Reb = 500. (a) Case 500–80–4, decreasing Reb = 500 to
Reb = 290; (b) case 500–900–4, decreasing Reb = 500 to Reb = 400; (c) fixed Reb = 500
and increasing density ratio r= 80 to r= 3000; (d) fixed Reb= 500 and two density ratios
r= 1800 and r= 3000, Φb decreasing from 4× 10−4 to 1× 10−4.

Cf = 2τw/(ρU2
w) (summed on both walls) is used as an indicator of current flow

regime. The same initial turbulent flow configurations were chosen from the
single-phase flow simulations at Reb = 500 for all tests. The particles were then
randomly seeded in the simulation domain. The two-phase flow simulations were
integrated for at least 1200 time units (h/Uw) before the Reynolds number was
abruptly decreased, in order to accurately evaluate the transition threshold. The
evolution in time of the wall friction coefficient is shown in figure 3 for the various
tests. Figure 3(a,b) shows the successive reductions of the Reynolds number down to
turbulent-to-laminar transition for r = 80 (Rec ∼ 290) and r = 900 (Rec ∼ 400) with
the same volumetric concentration of ΦV = 4 × 10−4. We also perform similar tests
(not shown in this figure) for r = 200 (Rec ∼ 240), r = 300 (Rec ∼ 260) and r = 500
(Rec ∼ 310). Figure 3(c) shows the successive increase of the particle density up to
the turbulence-to-laminar transition for Reb = 500 (transition occurs between r = 900
and r = 1800) with the same volumetric concentration of ΦV = 4 × 10−4. Finally,
figure 3(d) shows the successive increase of the particle volume/mass loading for two
density ratios r= 1800 (transition occurs by ΦV = 4× 10−4) and r= 3000 (transition
occurs by ΦV = 2× 10−4).

Clearly, two limiting cases exist: at small density ratios (thus small Stokes numbers
since dp is held constant) the flow experiences destabilization and the critical Reynolds
number is lowered, and at high density ratios (high Stokes numbers) the particles
tend to stabilize the turbulence and increase the critical Reynolds number. This is
consistent with the linear stability prediction given by Saffman (1962). For particles
with high density ratios, the damping effect on turbulence varies monotonically with
mass loading (again consistent with previous studies (Saffman 1962; Dimas & Kiger
1998; DeSpirito & Wang 2001)), at least in the dilute regimes considered here. The
turbulence attenuation effect is enhanced with an increased particle mass loading as
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FIGURE 4. (Colour online) Turbulence–laminar transition threshold indicated by the
temporal evolution of Cf . A ‘conditional’ test of sensitivity due to inertial particle drag
force applied in different spatial regions in case 500–3000–4.

seen in figure 3(d). In pressure-driven flow, Klinkenberg et al. (2011) proposed a
modified Reynolds number (Rem = (1 + Φm)Reb) for heavy particles via analysis of
the standard Orr–Sommerfeld–Squire system. This effective Reynolds number can only
predict turbulence damping (and an increase of the critical Reynolds number) and has
a proportional increase with the particle mass loading. Comparing this estimate based
on Rem to the present simulations, we obtain

Rec ∼ 400–450 for r= 900 and ΦV = 4× 10−4 (predicted Rem = 435);
Rec ∼ 500 for r= 900 to 1800 and ΦV = 4× 10−4 (predicted Rem = 435–550);
Rec ∼ 500 for r= 1800 and ΦV = 2× 10−4 to 4× 10−4 (predicted Rem = 435–550);
Rec ∼ 500 for r= 3000 and ΦV = 1× 10−4 to 2× 10−4 (predicted Rem = 416–512).

We therefore find that the transition Reynolds number found in the PCF laden with
high-inertia particles (Stturb> 0.5, where turbulence is attenuated) is in the range of the
estimates using the modified Reynolds number predicted by Klinkenberg et al. (2011).

3.2. Conditional test of two-way coupling
For pointwise particles, two-way coupling is realized by applying a corrected three-
dimensional Stokes drag with Navier–Stokes equation as in (2.4). The extra dissipation
(the loss of kinetic energy due to fluid–particle interactions; see Zhao et al. (2013))
plays the key role in providing a stabilizing effect. In order to further investigate
the key coupling components that lead to stabilization and turbulence attenuation, we
perform a ‘conditional’ test in this section.

As shown in figure 4, we begin with the case 500–3000–4 (initialized from an
unladen turbulent flow field at Reb=500) with randomly distributed particles. The flow
decays into laminar flow with normal, full two-way coupling. By artificially removing
the interphase coupling force in either the streamwise x direction or both the y and
z directions throughout the whole domain, we first find that streamwise coupling is
the primary mechanism that attenuates the turbulence (i.e. without y and z coupling
the flow still transitions from turbulent to laminar). From here, the streamwise
coupling is only removed (i) from the spatial region where the regeneration cycle is
active (0.2 < y/h < 0.8) or (ii) from the inactive region (y/h < 0.2 and y/h < 0.8).
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FIGURE 5. (Colour online) (a,b) Contour of temporal average of streamwise vortex
stretching term in one single cross-section (y, z plane) within 50 time units and
isolines of temporal and streamwise average of streamwise vorticity within 50 time
units. (c,d) Contour (logarithmic scale) of temporal and streamwise average of normalized
concentration by the bulk value and isolines of temporal and streamwise average of
streamwise vorticity within 50 time units. (a,c) Case 500–500–4; (b,d): case 500–900–4.

Turbulence is sustained by removing streamwise coupling in the region associated
with the regeneration cycle, suggesting that it is streamwise coupling in this region
that is responsible for laminarization. Further, we remove the streamwise coupling in
different radial positions relative to the LSVs (strong streamwise vorticity |ωx|> 0.1 is
in the central region of the LSVs, |ωx|> 0.015 is a larger region containing |ωx|> 0.1
and 0.015< |ωx|< 0.1 is an annulus formed by subtracting the area |ωx|> 0.1 from
|ωx| > 0.015). This analysis, shown in figure 4 as red diamonds, demonstrates that
streamwise coupling, specifically in the region associated with the annulus given by
0.015 < |ωx| < 0.1 and in the region associated with the regeneration cycle, should
be considered as the most sensitive region which might be altered by the inertial
particles, leading to turbulence attenuation.

To visualize this stabilization process that occurs in the annulus of region 0.015<
|ωx|< 0.1, figure 5(a,b) shows the contour of streamwise vorticity stretching ωx∂u/∂x.
This is a streamwise-dependent quantity, so we time-average (50 time units) at a single
cross-section at x= Lx/2. Figure 5(c,d) shows the contour of the normalized particle
concentration with respect to the bulk concentration at the same location and averaged
over the same time. The isolines in all panels are the streamwise-averaged streamwise
vorticity (ωx(y, z)). Figure 5(a,c) and figure 5(b,d) show cases 500–500–4 and 500–
900–4, respectively. It is clear that strong vorticity stretching happens in the range of
0.015< |ωx|< 0.1, which is a key component of the self-sustaining regeneration cycle.
The intensity of this stretching is reduced in case 500–900–4 (contour in figure 5b)
compared to that of case 500–500–4 (contour in figure 5a). Simultaneously, we find
that there are more particles present in the range of 0.015< |ωx|< 0.1 in case 500–
900–4 (figure 5d) than in case 500–500–4 (figure 5c).

As a result, we associate the turbulence attenuation with the streamwise coupling
of high-inertia particles (e.g. Stturb = 0.625), and their presence in the range of
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0.015 < |ωx| < 0.1 is of key significance since this is the region which has the
strongest streamwise vortex stretching effect. Below, we argue that the streamwise
vortex stretching and the LSVs are the key sub-steps in the regeneration cycle, and
coupled to each other. The preferential presence of particles in this streamwise vortex
stretching region is an important phenomenon which alters the regeneration cycle and
thus the transition from turbulent to laminar flow, and has been observed at higher
Reynolds numbers (Lee & Lee 2015).

3.3. Particle distribution and velocity profile
For inertial pointwise particles, their spatial distribution is determined through the
drag force exerted from large-scale turbulent structures to the particles. Due to inertia,
heavy particles tend to be expelled from the vortex centre to the low-vorticity but
high-strain-rate regions (Druzhinin & Elghobashi 1998). As argued above, this process
plays a key role in turbulence modulation since particles tend to accumulate in regions
associated with streamwise vortex stretching. In a similar study focused on neutrally
buoyant finite-sized particles, Wang et al. (2018) found that particles accumulating
in the streaks tend to enhance the turbulence whereas particles accumulating in the
large-scale rolls hardly modify turbulence levels.

Figure 6(a) shows an instantaneous particle distribution over a (y, z) cross-sectional
plane with different density ratios (r = 80–8000) at the same Reynolds number
(Reb = 500) and volumetric concentration (Φv = 4 × 10−4) at a point in time
corresponding to the strongest LSSs during the regeneration cycle. From left to
right, top to bottom, it is clear that particles with low to moderate inertia tend
to accumulate in the LSSs whereas particles with a higher inertia distribute more
homogeneously and spread throughout the Couette gap, a behaviour seen in other
particle-laden, wall-bounded turbulent flows. Along the same lines, particles with
density ratio from r = 300 to 500 are mostly trapped inside the LSSs, even during
the streak breakdown process (not shown). Either lower (e.g. r = 80) or higher (e.g.
r=900) than this density ratio, the particles can stray from the LSS regions, consistent
with known behaviour of inertial particles (Maxey 1987; Druzhinin & Elghobashi
1998). In a Taylor–Green vortex (TGV) set-up, Massot (2007) proposed a threshold
of the ratio between particle response time and the TGV turnover time scale. Below
the threshold, particles will stay inside this cell whereas particles tend to move to
the other cells above the value. We numerically obtained the single-particle trajectory
in TGV flow with the same particle time scale corresponding to particles in the
present simulated turbulent LSVs. The particle behaviour in TGV flow is analogous
to particle distribution in turbulent PCF with the same particle time scale (data are
not shown here). Case 500–80–4 has a low Stturb ≈ 0.056 causing the particles to
behave more as tracers and stay in one LSV, whereas case 500–8000–4(1way) with
a high Stturb ≈ 5.56 leads to particles which cannot follow the streamlines and cross
the LSVs after being ejected by ejection events. Particles with intermediate Stokes
numbers, as in case 500–500–4 with Stturb ≈ 0.35, are expelled from the LSVs and
become trapped inside the LSSs.

This non-monotonic change in particle distribution can be seen in figure 6(b),
where the normalized particle volume concentration is shown. With increasing density
ratio from 500–80–4 to 500–300–4, the concentration decreases in the centre whereas
it increases in the near-wall region. We observe an opposite tendency when further
increasing the density ratio from 500–300–4 to 500–1200–4. At higher density ratios
with two-way coupling, transition to laminar flow occurs in the present simulations.
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FIGURE 6. (Colour online) (a) Contours of the magnitude of the streamwise flow velocity
(colourbar in upper left panel) and instantaneous particle positions projected onto the
(y, z) cross-section when the LSS is strongest before breakdown, coloured according to
magnitude of particle streamwise velocity (colourbar in upper right panel). The particle
size shown in the panels is magnified four times for better visualization. Top-left: case
500–80–4; top-right: case 500–500–4; bottom-left: case 500–900–4; bottom-right: case
500–8000–4 (one-way coupling). (b) Mean volume concentration normalized by the bulk
concentration. (c) Mean streamwise velocity scaled by Uw.

At higher flow Reynolds number (Reb= 2025), the increase of particle concentrations
in the centre with increasing particle response time (τ+p ≈ 90 corresponding to
Stturb ≈ 1.06) is also observed by Richter & Sullivan (2013). For the sake of
highlighting the long particle response time effect on the particle distribution, we
also show cases 500–3000–4 and 500–8000–4 with one-way coupling, where we can
find a nearly homogeneous concentration profile because particles cannot follow the
streamlines.

Despite the slip velocity between the particulate phase and fluid phase, the shape
of the mean particle velocity profile is mainly determined by the carrier phase. In
particular, the mean particle streamwise velocity will reflect the local mean fluid
velocity profile of the structure it is contained within (e.g. LSSs or LSVs). Hamilton
et al. (1995) have shown that for the miniunit configuration, the characteristic ‘S’
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FIGURE 7. (Colour online) RMS velocity fluctuations in cases with density ratios.
(a) Fluid phase in three directions. (b–d) Particulate phase in three directions: (b)
streamwise direction fluctuation; (c) wall-normal direction fluctuation; (d) spanwise
direction fluctuation. In (b–d), fluid phase in single phase is plotted as a reference.

shape of the mean velocity profile in PCF is governed primarily by the LSVs in
single-phase flow. Figure 6(c) compares the mean fluid velocity (solid black line)
to the mean particle velocities up/Uw of particles with varying density. There
is a clear distinction between the nearly linear (respectively ‘S’) shape of the
mean particle velocity curve for 500–300–4 (respectively 500–3000–4(1way)) if
the particles are trapped in the LSSs (respectively across the whole domain). Again,
this effect is non-monotonic with particle inertia. For cases 500–3000–4(1way) and
500–8000–4(1way), the qualitative shape of the mean particle velocity is similar
to that of mean fluid velocity in single-phase flow; this discrepancy is due to the
difference between the particle response time scale and the turnover time of the LSV.

3.4. Turbulence intensity
The RMS velocity fluctuations for the various cases are plotted in figure 7. Figure 7(a)
shows the RMS velocities in all three directions for the fluid phase, where it
is apparent that u′f rms is nearly unchanged whereas in the core region v′f rms and
w′f rms decrease slightly with increased particle inertia. The particulate RMS velocity
fluctuations are shown in figure 7(b–d); the single-phase velocity fluctuations are also
plotted as a reference (solid black lines). As noted by Yu, Vinkovic & Buffat (2016),
particles moving away from the wall are associated mainly with ejections while
particles moving towards the wall are associated with sweeps. As seen above, inertial
particles with low to moderate Stokes numbers tend to remain in the high-strain-rate
region (see figure 6) – regions associated with high u′f rms. This results in high
values of u′p rms across the whole Couette flow gap which can be seen in figure 7(b).
Thus the increase of particulate streamwise turbulent kinetic energy compared with
single-phase flow is due to the accumulation of particles in the LSS which contains
high streamwise turbulent kinetic energy.
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The effect is opposite for v′p rms and w′p rms. The fluid velocity fluctuations v′f rms
and w′f rms are high in the outer regions of the LSVs (not shown here). Therefore
when the inertial particles collect in high-strain-rate regions (intermediate Stokes
numbers), their spanwise and wall-normal velocity fluctuations are much smaller
than the fluid average. At low Stokes numbers, long residence times in the LSVs
allow particles to gain wall-normal and spanwise kinetic energy (figure 7c,d). At
high Stokes number, particles tend to again distribute homogeneously throughout the
whole domain. Particles move across LSVs, but their inability to quickly adjust their
velocity results in suppressed values of v′p rms and w′p rms.

As a final note, we have compared the particle distribution, mean velocity and RMS
velocity fluctuations (not shown here) between case 500–80–4 and a simulation with
finite-size particles from Wang et al. (2017); both have the same particle response
time. We find that even for the same Stokes number, finite-size particles collect
more in the central region and that their mean velocity and fluctuations are similar
to the fluid phase. This difference is due directly to finite-size effects which should
be considered for physical systems where particle diameters are larger than the
dissipation scales of the flow.

4. Modal analysis of the regeneration cycle modulation
Turbulence regeneration mechanisms in wall turbulence involve three-dimensional,

multiscale structures, and the relevant nonlinear dynamics involved is neglected
when performing linear stability analyses on laminar-to-turbulent transition and streak
stability. Therefore to leverage the present nonlinear simulations, modal analysis is
used to determine the natural mode shapes and frequencies in this miniunit PCF
system – this strategy significantly simplifies the range of temporal and length scales
in the turbulent flow, thereby highlighting the essential features (e.g. LSSs and LSVs)
in the regeneration cycle. To start, it is helpful to provide a list of relevant quantities
which are useful in defining the various stages/structures of the regeneration cycle,
which will be further analysed in this section.
(i) The turbulent kinetic energy contained in the streaks and its corresponding Fourier
modes yield information about the contributions from various scales in the flow. We
define M(kx = mα, kz = nβ) as the vertically integrated modal RMS velocity modes
in the two periodic directions (x and z), following Hamilton et al. (1995):

M(mα, nβ)≡
{∫ Ly

0
[û′

2
(mα, y, nβ)+ v̂′

2
(mα, y, nβ)+ ŵ′

2
(mα, y, nβ)] dy

}1/2

, (4.1)

where (α, β) are the fundamental wavenumbers in the streamwise and spanwise
directions (defined as (2π/Lx, 2π/Lz)), and m and n are integers. In principle, each
mode (mα, nβ) provides information about specific structures in the flow. For instance
in the miniunit domain (note that this may not necessarily be true in full domains):
M(0, β) represents the LSSs since it is the zeroth mode in the streamwise direction,

and any mode (0, nβ) with n 6= 0 is an x-independent structure;
M(α, 0) represents meandering streaks where the other M(mα, nβ) with n 6= 0

modes are very weak.
(ii) Circulation represents the intensity of the LSVs in the miniunit. Hamilton &
Abernathy (1994) and Hamilton et al. (1995) stipulated that over one cycle, vortices
must have a maximum circulation above a given threshold in order to produce an LSS
through the lift-up process. Thus this integrated quantity provides a good measure
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of whether or not this essential process can occur. The circulation of the streamwise
vortices of mode zero in the streamwise direction (x-independent) and mode n 6= 0 in
the z direction (z-dependent) is given by

C(0, nβ)≡
∫ Ly

0
ω̂x(0, y, nβ) dS(n), (4.2)

where S(n) ≡ dy · Lz/n is the transverse surface with y varying from 0 to Ly and
z varying from 0 to 2π/(nβ) for n 6= 0. Based on our calculations, the maximum
circulation in the miniunit domain always corresponds to n = 1, and therefore we
define circulation as C(0, β) and use this measure to stand for the intensity of LSVs.
(iii) Lift-up: in the buffer layer, elongated streaks form on both sides of an LSV
(see figure 6a). The so-called lift-up effect has been identified as a very robust
mechanism for the generation of streaky motions in both transitional and turbulent
flows (Ellingsen & Palm 1975; Hamilton et al. 1995; Brandt 2014). Fluid in the
near-wall region is lifted away from the wall by the longitudinal vortical structures
into a region of higher-speed fluid (so-called ejection), producing a low-speed streak.
Simultaneously on the other side of the vortex, high-speed fluid is pushed towards
the wall (so-called sweep), creating a high-speed streak. Consequently in shear flows,
the main linear mechanism for transient disturbance growth is the lift-up effect that
produces low- and high-speed streaks in the streamwise velocity (Ellingsen & Palm
1975). Bech et al. (1995) stated that the inner shear layer is formed via the lift-up of
low-speed streaks from the viscous sub-layer. Once this occurs, the shear layers are
coupled to an instantaneous velocity profile with an inflectional character, and they
have been observed to become unstable and break up into chaotic motion, so-called
‘bursting’. Specifically in Fourier space, Hamilton et al. (1995) have shown that the
term most responsible for extracting energy from the mean shear flow is given by

L(0, nβ)≡
∫ Ly

0
v̂′(0, y, nβ)

∂U(y)
∂y

dy, (4.3)

where v̂′ is the wall-normal fluctuation velocity in Fourier space and ∂U(y)/∂y is the
gradient of the mean steamwise velocity.
(iv) Steamwise vortex stretching: during streak breakdown, nonlinear interactions
reinforce the streamwise LSVs, leading to the formation of a new set of streaks,
and completing the regeneration cycle. Hamilton et al. (1995) proposed that the
strengthening of the vortices is due to interactions among the α-modes, which grow
during the streak breakdown. Schoppa & Hussain (2002) suggested that the vortex
formation is inherently three-dimensional, with direct stretching (inherent to streak
(x, z)-waviness) of near-wall ωx sheets leading to streamwise vortex collapse. They
provided insights into the dynamics of near-wall vortex formation through the inviscid
equation for streamwise vorticity:

∂ωx

∂t
=−u

∂ωx

∂x
− v

∂ωx

∂y
−w

∂ωx

∂z︸ ︷︷ ︸
advection

+ ωx
∂u
∂x︸ ︷︷ ︸

stretching

+
∂v

∂x
∂u
∂z
−
∂w
∂x
∂u
∂y︸ ︷︷ ︸

tilting

+
∂Fz

∂y
−
∂Fy

∂z︸ ︷︷ ︸
particle feedback

. (4.4)

In fully developed turbulent single-phase flow, the greatest contribution, in
magnitude, to the temporal evolution of the vorticity ∂ωx/∂t is related to the tilting
term (Sendstad & Moin 1992). However, Schoppa & Hussain (2002) have shown
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that this term mainly contributes to the thin tail of the near-wall ωx layer, and is
not responsible for x-independent streamwise vortex formation ((0, β) mode in the
miniunit). In particle suspension flow, an additional term named particle feedback
is added in the streamwise vorticity equation representing the contribution from the
inhomogeneous distribution of the feedback force from the particles to the fluid. In
appendix A, we do the comparison between the contributions to LSVs with (0, β)
from the stretching term and the particle feedback term within 20 < y+ < 60 where
the regeneration cycle happens. The contribution from the particle feedback term to
the LSV formation is much less than the contribution from the stretching term (about
10 % in case 500–80–4 and 17 % in case 500–900–4). Instead, vortex formation is
dominated by stretching of streamwise vorticity. The local ωx stretching is sustained
in time and is mainly responsible for the vortex collapse, whose location coincides
with the +ωx∂u/∂x peak. The meandering of streaks provides the generation of
∂u/∂x, and then direct stretching of positive and negative ωx occurs in regions
where ∂u/∂x is generated across the wavy streak flanks during the streak breakdown
process. The stretching term is active only during the peaks of the cycle when local
three-dimensionality is induced after streak breakdown (see Jiménez & Moin 1991).
In Fourier space, the stretching term can be written as

S(mα, nβ)≡
∫ Ly

0
ω̂x(pα, y, qβ)

∂ û(rα, y, sβ)
∂x

dy, (4.5)

where the total time rate of change of streamwise vorticity in the (mα, y, nβ) mode is
the summation of terms over all values of p, q, r, s such that p+ r=m and q+ s= n.
The contribution to the LSV with (0, β) comes from wavenumber combinations which
satisfy p+ r = 0 and q+ s= 1. For the streamwise direction, Hamilton et al. (1995)
demonstrated that p = ±1 and r = ∓1 are the dominant terms producing additional
streamwise vorticity in the right places where the higher x-wavenumber modes are
negligible. It is difficult, however, to specify a single pair of modes combining both
x-wavenumber and z-wavenumber which are dominant.

Therefore, we consider all pairs p = ±1 and r = ∓1 satisfying the condition m =
p + r = 0 in the streamwise direction and q = −2 to 3 and s = 3 to −2 satisfying
the condition n = q + s = 1 in the spanwise direction (a total 12 pairs of x and z
wavenumbers). A discrete Fourier transform can be expressed as a complex number
containing the modulus and argument, and in appendix B we show the modulus of
each of the 12 pairs of wavenumbers and their phase differences with the meandering
streak. Since the summation of these 12 pairs as shown in figure 13 reflects around
91 % of the summation of all modes, we use this summation as a measure of the
streamwise vortex stretching effect.

4.1. Intensity of the characteristic terms of regeneration cycle
Figure 8 shows the temporal evolution of the quantities defined in the previous
section: the wall-normal integrated amplitude of LSSs (M(0, β); figure 8a), the
strength of the meandering streak (represented by mode M(α, 0); figure 8a), LSV
strength (represented by C(0, β); figure 8b), the vortex stretching term (represented by
S(0, β) which is the summation of all 12 pairs of p=±1 and r=∓1 in combination
with q = −2 to 3 and s = 3 to −2; figure 8c) and the lift-up term (represented by
L(0, β) mode; figure 8d). Clearly, all of the signals are fluctuating in time with a
similar period corresponding to the three regeneration steps as shown in figure 1. In
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FIGURE 8. (Colour online) Modal decomposition of the various sub-steps composing
the regeneration cycle as shown in figure 1 and outlined in § 4. Four cases are shown:
500–0–0 (unladen), 500–80 (500–80–4 and 500–80–10 with Stturb = 0.056, turbulence
enhancement) and 500–900–4 (Stturb = 0.625, turbulence attenuation). (a) M(nα, mβ) as
in (4.1) representing turbulent kinetic energy contained in the streaks; (b) C(0, β) as in
(4.2) representing for the intensity of the LSV; (c) S(0, β) as in (4.5) representing the
vorticity stretching effect to LSV; (d) L(0, β) representing the lift-up effect induced by
LSV to enhance LSS as in (4.3). The initial 1200 time units (h/Uw) are shown.

single-phase flow, Hamilton et al. (1995) estimated this period is slightly less than
100 time units (h/Uw) at Reb = 500. In flow influenced by low-inertia finite-size
particles, Wang et al. (2017) also observed a similar period.

Figure 8 shows that the amplitudes of M(0, β) and M(α, 0) are diminished
by the inertial particles of case 500–900–4 (dotted black line), which is consistent
with the behaviour observed by Wang et al. (2017) for finite-size particles. However
for low particle inertia, the amplitude of M(α, 0) is nearly unchanged due to low
mass fraction (case 500–80–4) whereas it is suppressed with the presence of more
particles of the same Stokes number (case 500–80–10). The presence of a large
number of inertial particles (either when they enhance or attenuate the turbulence)
tends to stabilize the amplitude of LSSs (M(0, β)) but not significantly affect the
time-averaged intensity of the streaks.
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M(0, β) M(α, 0) C(0, β) L(0, β) S(0, β)
Average (×10−2)

Unladen flow 6.64 1.32 14.0 0.27 0.63
500–80–4 6.64 1.30 14.1 0.26 0.58
500–80–10 6.62 1.26 14.7 0.26 0.55
500–900–4 6.62 1.28 12.4 0.22 0.55

Period (h/Uw)

Unladen flow 104 104 104 99 104
500–80–4 94 89 99 89 94
500–80–10 89 84 80 84 84
500–900–4 121 121 121 105 116

TABLE 2. The average and period of five characteristic terms of the regeneration cycle.
The error of the period due to the resolution of the signals is in the range of ±2.5 time
units.

The time-averaged intensities of C(0, β), S(0, β) and L(0, β) are provided
in table 2, where we see that these characteristic terms are all suppressed when
turbulence attenuation occurs due to particles (case 500–900–4). However, for cases
with turbulence enhancement (cases 500–80–10 and 500–80–4), the primary difference
is the amplified intensity of the circulation (C(0, β), also seen in figure 8b), and
this amplification increases with particle concentration. The strengthened LSVs are
critical for sustaining the turbulence and thus are consistent with the observed lower
transitional Reynolds number (Rec ∼ 290 in case 500–80–4 versus Rec ∼ 320 for
single-phase flow as shown in figure 3a). As found by Hamilton & Abernathy (1994),
there is a minimum threshold of circulation below which the turbulence collapses
and the flow becomes laminar. At lower Reynolds numbers and/or higher particle
concentrations, we indeed see that this is the case (not shown here), and it appears
that the primary effect of the particles is to modify the LSV strength during both
stabilization and destabilization.

4.2. Periodic behaviour and phase difference of the regeneration cycle
To better understand the effects of particles on the timing of the regeneration cycle,
we calculate a temporal autocorrelation of the five signals in figure 8:

Rss(1t)=
s′(t)s′(t+1t)

s′2rms

, (4.6)

where s′ is the fluctuation of a signal with respect to the time-averaged value.
The temporal autocorrelation is calculated over 3600 time units to ensure converged

statistics. Figure 9(a) plots the five temporal autocorrelations in single-phase flow,
case 500–80–4 is shown in figure 9(b) and case 500–900–4 is shown in figure 9(c).
The time difference between the first two maxima of the correlation coefficient is
taken as the period of the cycle and these are summarized in table 2. We can see
that the period changes due to the presence of the particles, and that in cases of
turbulence enhancement, the period is shortened (similar phenomenon is observed by
Pan & Banerjee (1996), where particles enhance the turbulence with an increasing
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FIGURE 9. (Colour online) Temporal autocorrelation functions of the five signals shown
in figure 8. (a) Single-phase flow, case 500–0–0. Suspension flow: (b) case 500–80–4;
(c) case 500–900–4.

frequency of the sweep activity), while for turbulence suppression, the period is
lengthened. Along these lines, in single-phase flow, Hamilton et al. (1995) observed
that the period of the regeneration cycle is shortened at lower Reynolds numbers, e.g.
18 cycles in 1500 time units at Reb = 400 versus 16 cycles in 1500 time units at
Reb = 500. Therefore comparing to single-phase flow, the period of the regeneration
cycle increases in case 500–900–4 (turbulence is attenuated, behaving as a lower
Reynolds in single-phase flow) whereas the period of the regeneration cycle decreases
in cases 500–80–4 and 500–80–10 (turbulence is enhanced, behaving as a higher
Reynolds in single-phase flow).

The regeneration cycle consists of three sequential sub-processes sketched in
figure 1: streak formation, streak breakdown and streamwise vortex regeneration.
The key mechanisms are: the LSSs are generated by a linear lift-up process by the
LSVs, the LSSs break down to meandering streaks by complex nonlinear interactions
and wavy streaks (x-dependent, contributing to ∂u/∂x) interact with streamwise
vorticity (ωx) to strengthen the LSVs, which is another nonlinear process. This cycle
is recognized as a robust, spatial–temporal evolution and time-stable self-sustaining
process. We noted above that the period of this cycle (e.g. signal M(0, β)) is around
104 time units in single-phase flow, 94 time units in case 500–80–4 and 121 time
units in case 500–900–4. It is instructive to further analyse the phase difference
during the regeneration cycle, especially in order to quantify the inertial particle
effect during turbulence modulation. As can be seen in figure 8, the LSSs (M(0, β))
and the meandering streaks (M(α, 0)) nearly have opposite phase. Two subsequent
sub-steps, the vortex stretching (S(0, β)) and the lift-up (L(0, β)) induced by LSVs,
are closely synchronous with the temporal evolution of circulation (C(0, β)). Vortex
stretching, lift-up and circulation all seem to remain in phase with the meandering
streaks. To verify this, we perform a temporal cross-correlation study of the five
signals based on (4.7):

Rs1s2(1t)=
s′1(t+1t)s′2(t)

s′1 rmss
′

2 rms
, (4.7)

where s′1 and s′2 are the fluctuations of signals s1 and s2 with respect to the
time-averaged value. For instance, R(M(0, β), M(α, 0)) represents temporal
cross-correlation between M(0, β) (LSS) and M(α, 0) (meandering streaks),
thereby providing information on temporal lag between the two processes. If
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FIGURE 10. (Colour online) Temporal cross-correlation functions of the five signals shown
in figure 8. (a) Single-phase flow, case 500–0–0. (b) Suspension flow, case 500–80–4.
(c) Suspension flow, case 500–900–4. More than 3000 time units of phase shifts are
calculated but only the range of −100 to 100 time units is shown.

M(0, β),M(α, 0) M(α, 0), C M(α, 0), S S, C C,L L,M C,M
Unladen flow 40 17 8 11 17 30 44
500–80–4 34 16 6 11 11 30 40
500–80–10 28 16 6 11 16 28 34
500–900–4 44 17 8 11 17 38 58

TABLE 3. Time difference (time units) between connected sub-steps of the regeneration
cycle. The error due to the resolution of the signals is in the range of ±2.5 time units.

R(M(0, β), M(α, 0)) is positive, it reflects that M(0, β) occurs prior in time
to M(α, 0) during one regeneration cycle – the physical explanation for this specific
case is that the LSS is formed, and subsequently breaks down into meandering
streaks.

Figure 10 illustrates the phase difference between M(0, β), M(α, 0), C(0, β),
S(0, β) and L(0, β) averaged over 3600 time units. Starting from the LSS (M(0, β))
stage, we have chosen seven correlation coefficients between every pair of connected
sub-steps. Figure 10(a) shows these coefficients for single-phase flow, in figure 10(b)
for case 500–80–4 and in figure 10(c) for case 500–900–4. We quantify the phase
shifts in table 3. Although inertial particles in case 500–900–4 have been found to
attenuate the turbulence activity, the inertial particles actually do not significantly
alter the basic regeneration cycle or its timing. The shortened or lengthened period of
the regeneration cycle is mainly due to the particle modulation of streak breakdown
from M(0, β) (LSS) to M(α, 0) (meandering streaks) and streak formation from
C(0, β) (LSV) to M(0, β) (LSS). Here we should point out that the vortex
regeneration is not necessary for every cycle; it might be absent for some cycles
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FIGURE 11. (Colour online) Sketch of phase difference between connected sub-steps and
the period of the regeneration cycle in minimal unit: (a) case 500–0–0 in comparison with
(b) case 500–80–4 and (c) case 500–900–4. (d) Qualitative comparison of the averaged
value and the amplitude of the signals with single-phase flow.

(Hamilton et al. 1995), but its minimum value has to be above a threshold to
produce unstable streaks.

Finally, we can summarize the primary effect of inertial particles on turbulence
regeneration by continuing to use case 500–80 (including 500–80–4 and 500–80–10
with Stturb = 0.056) and case 500–900–4 (Stturb = 0.625) as representative examples of
turbulence enhancement and turbulence attenuation, respectively. A temporal evolution
of the regeneration cycle can be seen in the schematic sketch in figure 11(a–c). In this
figure, we highlight the key turbulent structures and sub-steps by their corresponding
metrics. The summation of the transition from M(0, β) to M(α, 0), from M(α, 0)
to C(0, β) and from C(0, β) to M(0, β) yields roughly 101 time units in single-
phase flow, 90 time units in case 500–80–4 and 119 time units in case 500–900–4
corresponding to the whole period 104 time units, 94 time units and 120 time units,
respectively. Taking into consideration the resolution of signals, it is reasonable to
believe that the summed phase differences are consistent with the calculated period
of the regeneration cycle.

The regeneration cycle is therefore a temporal sequence of processes which has a
stable periodicity, even under the influence of inertial particles – phase differences
between linked sub-steps are nearly unchanged by the presence of particles except
streak formation and breakdown. Instead, during turbulence enhancement (case
500–80), as can be seen in figure 11(d), the particles simply strengthen the magnitude
of the LSVs (C(0, β)), whereas during turbulence attenuation (case 500–900–4), the
particles substantially reduce the magnitude of key turbulent structures and their
corresponding sub-steps. Once the magnitude of the LSVs (C(0, β)) is below a
certain threshold (as in case 380–900–4), particles act to abruptly shut off the
regeneration, thereby delaying turbulent-to-laminar transition. It is worth noting that a
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similar upward shift of the transitional Reynolds owing to the vortex suppression
is also observed during turbulence modulation laden with polymer additives –
the modifications to the ‘exact coherent states’ are due to the suppression of the
streamwise vortices due to the polymers exerting an opposite force to the fluid
motion in the vortices and weakening the streamwise vortices (see Stone et al. 2004).

5. Concluding remarks

This work investigates the effect of inertial pointwise particles on the self-sustained
process of the coherent structures in turbulent PCF. A ‘miniunit’ configuration with
a low Reynolds number slightly above the onset of transition not only highlights the
key turbulent structures making up the regeneration cycle, but can be simulated with
much reduced computational cost. Two-way coupling of Lagrangian point particles
with direct numerical simulations of Eulerian fluid flow is the methodology used in
this work.

Through examining the particle inertial effect on transition, we find that lower
particle inertia tends to advance the transition from laminar to turbulent flow whereas
high particle inertia tends to delay the transition. These two limiting cases reflect
the competition between the destabilization of the extra mixed-phase density and
the stabilization due to the extra dissipation caused by the particle drag. While the
nonlinear simulations capture features such as preferential accumulation, these results
are in qualitative agreement with the previous linear stability analysis with assuming
uniformly distributed particles. In agreement with other studies of particle-laden,
wall-bounded turbulent flow, the particle response time alters where they tend to
collect. The particle spatial distribution in turbulence is found to relate to the particle
response time scaled by the characteristic LSV turnover time, which in turn affects the
regeneration cycle. In the present domain, particles can reside either in the so-called
LSS regions (high strain) or in the LSV regions (high vorticity). Low particle inertia
(e.g. Stturb = 0.056) leads to long residence times in the same LSV, whereas high
particle inertia (e.g. Stturb = 0.625) results in particles crossing the LSVs leading to
a more homogeneous particle distribution. Between these extremes, particles with a
moderate response time scale (e.g. Stturb = 0.347) are expelled from the LSVs and
then collect in the LSSs leading to more particles accumulating in the near-wall
region.

The particulate turbulent kinetic energy is highly related to particle spatial
distribution and the associated slip velocity. Due to the preferential distribution
of moderate-inertia particles (e.g. Stturb = 0.347) in the LSSs, the particulate turbulent
kinetic energy is higher than that of the fluid in the streamwise direction whereas
it is lower in wall-normal and spanwise directions. Particles with a large response
time scale (e.g. Stturb = 0.625) cannot follow the streamlines, resulting in a more
homogeneous distribution, which results in a more homogeneous turbulent kinetic
energy of the particulate phase; however, it still exceeds the fluid phase kinetic
energy in the steamwise direction.

Modal analysis is performed to examine the effect of the particles on the nonlinear
regeneration cycle. For a representative set of cases at Reb = 500, we quantitatively
obtain its period to be roughly 104 time units in single-phase flow (case 500–0–0),
whereas the period is around 94 time units in case 500–80–4 (turbulence enhancement
happens in this case with Stturb = 0.056), and the period is around 121 time units
in case 500–900–4 (turbulence attenuation happens in this case with Stturb = 0.625).
Furthermore, the phase differences between the linked sub-steps are obtained based on
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the maximum cross-correlation coefficient. The duration of each sub-step of the cycle
as a fraction of the whole period of the regeneration cycle is about 43 % (respectively
44 % and 48 %) from LSV to LSS, 40 % (respectively 38 % and 38 %) from LSS to
meandering streaks and 17 % (respectively 18 % and 14 %) from meandering streaks
to LSV, in single-phase flow (respectively 500–80–4 and 500–900–4). The vortex
regeneration process (from meandering streaks to LSV) is very fast whereas the
lift-up process and streak breakdown process are relatively slow. The low-inertia
particles (e.g. Stturb = 0.056) enhance the turbulence which shortens the period of the
regeneration cycle whereas the high-inertia particles (e.g. Stturb = 0.625) attenuate the
turbulence which lengthens the period of the regeneration cycle.

Even though inertial particles are found to have little effect on the phase differences
between the linked sub-steps compared with the whole period, the intensity of
circulation, lift-up and streamwise vorticity stretching are greatly suppressed (the
reductions are about 15 % compared to single-phase flow in case 500–900–4) due to
the presence of heavy inertial particles (e.g. Stturb = 0.625). The reduced intensity of
circulation does not directly change the mean value of the streaks, while the amplitude
of the LSSs is stabilized significantly due to the suppression of the LSVs following
a suppressed lift-up effect. During turbulence attenuation by heavy inertial particles,
the simulations show that it is streamwise particle–fluid coupling in an annulus
region in the outer region of the LSVs coinciding with the region where streamwise
vortex stretching is most active that plays the key role in suppressing the streamwise
vortex stretching term and further deceasing the LSVs. However, during turbulence
enhancement in cases 500–80, the circulation of LSVs is strengthened so that the
minimum circulation threshold happens at a lower transition Reynolds number.
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Appendix A. Particle feedback effect on the near-wall vortex formation
The streamwise vorticity transport equation for an incompressible inviscid flow is

expressed in (4.4). The vorticity stretching term +ωx∂u/∂x represents the enhancement
of vorticity and is responsible for the cascade process in turbulence. Sendstad & Moin
(1992) found that the tilting term −(∂w/∂x)(∂u/∂y) is the largest contribution to (4.4)
close to the wall, and Hamilton et al. (1995) showed that the advection (redistribution)
and stretching terms are responsible for the newly produced streamwise vorticity
needed for LSV regeneration. In the work of Schoppa & Hussain (2002), they
further qualitatively stated that the vortex formation is dominated by stretching of
streamwise vorticity, because the spatial and temporal streamwise vortex collapse is in
the necessary places associated with streamwise vorticity stretching. In particle-laden
flow, due to the inhomogeneous distribution of the feedback force exerting from the
particles to the fluid, an additional term ∂Fz/∂y − ∂Fy/∂z needs to be considered
as well.
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FIGURE 12. (Colour online) (a,b) Stretching term and particle feedback term contributions
to equation (4.4) with (0, β) integrated within 20 < y+ < 60. Dashed line: streamwise
vortex stretching term. Solid line: particle feedback term. (c,d) Contour of temporal
average of streamwise stretching term in one single cross-section (y, z plane) averaged
over 50 time units. Included are isolines of temporal- and streamwise-averaged streamwise
vorticity. Dashed line: negative streamwise vorticity. Solid line: positive streamwise
vorticity. (e, f ) Contour of the temporal average of the particle feedback term in one single
cross-section (y, z plane) over 50 time units. Isolines are the same as they are in (c,d).
(a,c,e) Case 500–80–4. (b,d, f ) Case 500–900–4.

We compare the temporal evaluation of the stretching term and particle feedback
terms in figure 12(a,b) along with their spatial distributions in the (y, z) plane
in figure 12(c–f ). Figure 12(a,c,e) and figure 12(b,d, f ) show case 500–80–4 and
case 500–900–4, respectively. In figure 12(a,b), we plot the amplitudes of both
stretching term and particle feedback term contributing to the LSV with mode (0, β).
We find that the evolution of the particle feedback term is synchronous with the
stretching term. However, compared with the stretching term (considered to be the
main contribution to the regeneration of streamwise vorticity), the direct contribution
from the particle feedback term is relatively small due to the low mass loading (about
10 % in case 500–80–4 and 17 % in case 500–900–4). However, whether the location
of the particle feedback term coincides with the streamwise vorticity formation is
still unclear. In figure 12(e, f ), we time-average (50 time units) the particle feedback
term at a single cross-section at x = Lx/2. The particle feedback term is active
between the negative and positive streamwise vorticity region, where the region is
filled by streaks. In streaks, the particle feedback term occurs with alternate positive
and negative values. It is not only in the locations where the streamwise vorticity
is strengthened. As a comparison, we show the stretching term in figure 12(c,d),
where the location of ωx stretching coincides with the streamwise vorticity, which is
responsible for the vortex formation.
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FIGURE 13. (Colour online) Temporal average intensity of vorticity stretching term
in (4.5) of 12 pairs of modes. Comparison between single-phase flow (500–0–0) and
suspension flow (500–80–4 and 500–900–4).

Appendix B. Particle effects on 12 modes of vorticity stretching term
In the modal analysis of the regeneration cycle, the generation of streamwise

vorticity is mainly caused by the streamwise vortex stretching term ω̂x(pα, qβ)∂ ûx
(rα, sβ)/∂x in Fourier space, where p, q, r, s must satisfy p + r = m and q + s = n.
The maximum circulation is always due to the x-independent streamwise vorticity
with mode (0, β) based on our observations. Therefore even though it is only the
relations p + r = 0 and q + s = 1 which contribute to ∂ω̂x(0, β)/∂t, there are still
(Nx − 1)(Nz − 2) pairs of ω̂x(pα, qβ) and ∂ ûx(rα, sβ)/∂x to be examined. In the
streamwise direction, the work of Hamilton et al. (1995) has simplified the above
relation to α-modes (p = ±1 and r = ∓1 satisfy m = p + r = 0) dominant relation
where the higher x-wavenumber mode (|p| > 1 and |r| > 1 satisfy m = p + r = 0)
contributions to ∂ω̂x(0, β)/∂t are negligible. Furthermore, we have compared all
(Nz − 2) spanwise combinations satisfying n = q + s = 1 and then find the main
contribution in the spanwise direction as q = −2 to 3 combining with s = 3 to −2
satisfying relation q+ s= 1, which are used to represent the vorticity stretching term
in this work (total of 12 pairs of x and z wavenumbers).

Figure 13 plots the wall-normal integrated modulus of vorticity stretching in (4.5)
for the 12 modes for cases 500–0–0, 500–80–4 and 500–900–4. We can see that
for the same z wavenumber, the integrated modulus of vorticity stretching is similar
between p= 1, r =−1 and p=−1, r = 1. On the other hand, the contribution from
modes q = 0, s = 1 and q = −1, s = 2 reflects 64 %, 61 % and 58 % of the total
modulus of all wavenumbers in single-phase flow, case 500–80–4 and case 500–900–4,
respectively.

Figure 14 shows the phase difference between M(α, 0) (meandering streaks
contributing to ∂u/∂x) with six pairs of mode q, s with fixed p = 1, r = −1 (the
other six pairs of mode q, s with fixed p = −1, r = 1 give similar results). Except
when the phase difference is about 8 time units for q= 0, s= 1, all others are in the
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FIGURE 14. (Colour online) Phase shifts between vorticity stretching term (six pairs of
modes with fixed p= 1, r=−1) with the meander streak M(α, 0). (a) Single-phase flow
(500–0–0). Particle-laden flow: (b) case 500–80–4 and (c) case 500–900–4.

range of 0–5 time units. We do the summation of all these signals (both modulus
and argument angle) to produce figure 10.
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