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METAVALUATIONS

ROSS T. BRADY

Abstract. This is a general account of metavaluations and their applications, which can
be seen as an alternative to standard model-theoretic methodology. They work best for what
are called metacomplete logics, which include the contraction-less relevant logics, with pos-
sible additions of Conjunctive Syllogism, (A→B)&(B→C) → .A→C, and the irrelevant,
A→ .B→A, these including the logic MC of meaning containment which is arguably a good
entailment logic. Indeed, metavaluations focus on the formula-inductive properties of theo-
rems of entailment form A→B, splintering into two types, M1- and M2-, according to key
properties of negated entailment theorems (see below). Metavaluations have an inductive
presentation and thus have some of the advantages that model theory does, but they represent
proof rather than truth and thus represent proof-theoretic properties, such as the priming
property, if �A ∨ B then �A or �B, and the negated-entailment properties, not-�∼(A→B)
(for M1-logics, with M1-metavaluations) and �∼(A→B) iff �A and �∼ B (for M2-logics,
withM2-metavaluations). Topics to be covered are their impact on naive set theory and para-
dox solution, and also Peano arithmetic and Godel’s First and Second Theorems. Interesting
to note here is that the familiar M1- and M2-metacomplete logics can be used to solve the
set-theoretic paradoxes and, by inference, the Liar Paradox and key semantic paradoxes. For
M1-logics, in particular, the final metavaluation that is used to prove the simple consistency
is far simpler than its correspondent in the model-theoretic proof in that it consists of a limit
point of a single transfinite sequence rather than that of a transfinite sequence of such limit
points, as occurs in the model-theoretic approach. Additionally, it can be shown that Peano
Arithmetic is simply consistent, usingmetavaluations that constitute finitarymethods.Both of
these results use specific metavaluational properties that have no correspondents in standard
model theory and thus it would be highly unlikely that such model theory could prove these
results in their final forms.

Metavaluations are a tool for proving certain kinds of proof-theoretic
properties by adding proof into an otherwise semantic valuation for the
formulae of a logical system. Such a metavaluation is set up by assigning
T or F to each formula by induction. However, we include provability of a
formula or formulae into their inductive conditions. Typically, v(A→B) =
T iff �A→B and if v(A) = T then v(B) = T. Some inductive conditions are
unchanged, e.g., v(A∨B) = T iff v(A) = T or v(B) = T. This would then
enable the priming property, if �A∨B then �A or �B, to be shown, once
the metacompleteness property, v(A) = T iff �A, is proved. This property is
proved by soundness, if �A then v(A) = T, and completeness, if v(A) = T
then �A. Completeness is easily shown by formula-induction since
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v(A→B) = T implies �A→B. Soundness is proved by the usual induc-
tion on proof steps, with soundness for Modus Ponens following easily from
the above inductive condition for v(A→B) = T. As we can see from the
metacompleteness property, the method of metavaluations is really a kind
of proof theory. Moreover, variations on the above theme do abound, as we
will see in the following pages.
This article is expository, taking one through the history of metavalua-
tions, looking into their applications, both initial and more recent. In the
process, we will compare this methodology with that of standard model
theory and show that, as well as repeating some results, we are also able
to achieve some new results which would, at least, be very difficult to show
using standard model theory.

§1. The history. We start by putting metavaluations into their historical
context. Although Robert Meyer introduced them in his (1976) article,
entitled “Metacompleteness”, there were essentially two precursors, both
worth noting.
Firstly, the methodology used by Ronald Harrop in (1956) to show the
priming and existential properties for sentential intuitionist logic and its
arithmetic involved the use of a deletion process on the set of theorems
through an enumeration of formulae, ordered according to the number of
connectives contained therein. This deletion process is formula-inductive,
through its use of formula enumeration in the process of applying it. This
process was also designed to ensure that Modus Ponens holds in the newly
deleted set, as well as ensuring that the standard conjunction and disjunction
properties also hold. (See p. 350 of (1956), where this is set out in the form of
three deletion conditions.) He then showed by induction on proof that the
original set of theorems are all contained in the final deleted set, and thus
that the two sets are the same. He goes on to prove the priming property,
if �A∨B then �A or �B, for sentential intuitionist logic and that it and the
existential property, if �∃xA then �An/x, for some numeral n, where A is a
closed formula, both hold in intuitionist arithmetic.
The similarity with Meyer’s metavaluations can be seen as follows. The
standard conjunction and disjunction properties of the deleted set follow
his metavaluations and Harrop’s ensuring that Modus Ponens holds in the
deleted set can be similarly achieved through use of Meyer’s metavaluation
for→. Also, the alignment of the deleted set with the original set is similar to
that achieved by soundness and completeness of themetavaluations, yielding
what is called metacompleteness. (See also Brady (2006), p. 155)
Secondly, Meyer in (1971) introduces the notion of metavaluation v for
a classical modal logic L as a function on formulae taking them to {0,1},
satisfying the following conditions:

(i) v(�A) = 1 iff ��A in L, and
(ii) v(A→B) = v(A)→v(B), v(∼A) = ∼v(A), and similarly for the other
nonmodal connectives, the operations∼ and→on themetavaluations
being understood classically.
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[Here, the metavaluation regards the valuation of necessitated formulae
atomically, along with the usual atomic formulae.]
A formula A is true on a metavaluation v iff v(A) = 1.
Then, a coherentmodal logic is defined as one for which every theorem is
metavalid, where a formula A is metavalid iff it is true on all metavaluations
of the logic. He goes on to show that a wide range of modal logics are
coherent, and hence have the S4-property: ��A ∨ �B iff ��A or ��B.
Meyer in (1972–1975) started amanuscript on coherence but, unfortunately,
did not finish it, as far as the author is aware.
Thus, metavaluations are defined inductively on formulae, but do embody
elements of proof. The ‘meta-’ refers to the fact that the valuation is depen-
dent on such proof, differentiating it from a valuation in standard model
theory, which is inductively built up from the independent valuations of
atoms with help from semantic primitives. As in the above example,metaval-
uations can therefore provide a shortcut method of proving properties about
proof itself, that might be more circuitous using algebraic or purely seman-
tic methods. However, later on, we include applications which replace such
theoremhood by elements of a theory, commonly used in completeness
arguments but still based on proof theory.
Following up the historical theme, Meyer added at the proof stage of his
(1976), on p. 514:

Since the ideas here are very simple, it is not surprising, as Professor
Kripke has pointed out to me, that they have occurred in a number of
related forms to other authors, e.g., to Harrop, Rasiowa, Dwyer, and
Fine, the first two of whom, with Kleene and others, have been inter-
ested in them in particular with intuitionist logics and mathematics in
mind, while the latter two (and I) have been more interested in modal
and relevant applications.

We will briefly clarify some of this work. Harrop in (1956) does refer to
a number of authors, including some of the above, who have proved the
priming property for intuitionist logic using a variety of methods, including
Gentzen and algebraic methods. Further, Harrop in his (1960), extends
the use of his method of (1956), which is sketched above, to show, for
intuitionistic propositional calculus, that
(�) if A→B∨C is a theorem then either A→B orA→C is also a theorem,
provided A contains no relevant occurrence of ∨.
Harrop also shows, for intuitionist elementary number theory, that (�) also
holds, subject to the above proviso but with the added condition that A, B
andCare closed formulae, and further that ifA→∃xB is a theorem then so is
A→ Bn/x, for some numeral n, with A satisfying the above proviso together
with the condition that both A and ∃xB are closed formulae. Kleene, in his
(1962) and (1963), takes Harrop’s work on intuitionist propositional logic,
predicate logic and elementary number theory a step further, by finding
necessary and sufficient conditions to replace Harrop’s sufficient conditions,
which are set out above.
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Fine has recently made the author aware of his unpublished contribution
(1971–3) which, similar to that of Meyer in (1971), uses a metavaluational
method to prove a disjunctive property for some modal logics. Indeed,
Fine replaces Meyer’s metavaluation for �A, viz. v(�A) = 1 iff ��A, by
the valuation v(�A) = T iff �A, though provability here is generalized to
theories which contain the modal logic K and are closed under Modus
Ponens. Logics are then closed under the Necessitation rule as well. Fine
then shows, for the modal logics K, KT, K4, and S4, that they satisfy the
following Separation Property:
whenever�B1∨�B2 ∨ · · · ∨�Bn ∨C is a theorem, where C is nonmodal,
either C is a theorem or �Bi is a theorem, for some i = 1, 2, . . . , n.
(Nonmodal formulae do not contain any modal operators at all.)
He also goes on to prove, as corollaries of this property, that these logics
are decidable and complete.
We continue with the main results of Meyer (1976), where he intro-
duces metavaluations for positive logics, both sentential and quantified.
This extends to a very wide range of sentential logics, including the posi-
tive relevant logic R+, with possible addition of A→ .B→A to form RK+,
and full intuitionist logic, with the defined negation ¬A =df A→F, where
F→A is included as an axiom. There is imposed a very minimal logical
requirement that t be an axiom and that Modus Ponens (A, A→B ⇒ B),
Adjunction (A, B ⇒ A&B) and Disjunction Introduction (A ⇒ A∨B;
B⇒ A∨B) be rules, though even these can be reduced in some cases. Stan-
dard quantificational axioms and rules can be added for the quantified
logics.
Meyer introduces what he calls the canonical metavaluation V from for-
mulae to {T, F}, defined inductively for sentential logic L, containing the
following connectives and constants1:

(i) V(p) = F, for each sentential variable p;
(ii) V(t) = T;
(iii) V(F) = F;
(iv) V(A&B) = T iff V(A) = T and V(B) = T;
(v) V(A∨B) = T iff V(A) = T or V(B) = T;
(vi) V(A→B) = T iff �A→B;
(vii) V(¬A) = T iff �¬A.
[Note that (iii) and (vii) are just included for the intuitionist logic.]
Since the atomic formulae are all given fixed values, there is a single
metavaluation defined, and called ‘canonical’ as Meyer will go on to prove
that V(A) = T iff �A, through the intermediate use of a canonical quasi-
valuation.
A quasi-valuation V′ adds ‘and either V′(A) = F or V′(B) = T’ to the
RHS of (vi) and ‘and V′(A) = F’ to the RHS of (vii). He then shows that
V(A) = T iff V′(A) = T.

1The use of metavaluations of sentential constants in general for classical logics was
introduced in Brady (2010). This work could also be included as part of this survey of
metavaluations, but we feel the article is long enough already.
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He then defines a logic L to be metacomplete when this property, V(A) =
T iff �A, holds for the logic. Then, by (v), the Priming Property, if �A∨B
then �A or �B, follows.
Meyer extended this process to their quantified logics through the addition
of standard quantificational axioms and rules and the following inductive
steps for the metavaluation V:

(i) V(A) = F, for atomic formulae A; [extending the previous (i)]
(viii) V(∀xA) = T iff V(At/x) = T, for all terms t;
(ix) V(∃xA) = T iff V(At/x) = T, for some term t.
The Existential Property, if �∃xA then �At/x, for some term t, then
follows by metacompleteness and (ix). Meyer also added identity =with the
usual axiom and rule [t=t; t=u⇒A(t)↔A(u)], and extended V to include
identity statements:

(x) V(t=t) = T;
(xi) V(t=u) = F, if t and u are distinct terms of the quantified logic.

The key remaining problem concerns the addition of a primitive (nonintu-
itionist) negation, to round out the logics. It was left to Slaney in (1984) and
(1987) to provide the answers. In (1984), he introduced the �-metavaluation
v�(A), which will ultimately mean ‘not-�∼A’, in contrast to metavaluation
v(A) meaning ‘�A’, for the logic concerned. Importantly, the range of logics
for which this pair of metavaluations will work is significantly reduced from
that of Meyer in (1976). Such logics are to be called ‘metacomplete logics’.
Slaney’s metavaluations are as follows, with my above terminology,
a slightly simplified layout, and a small v:

(i) v(p) = F; v�(p) = T, for sentential variables p.
(ii) v(A&B) = T iff v(A) = T and v(B) = T;

v�(A&B) = T iff v�(A) = T and v�(B) = T.
(iii) v(A∨B) = T iff v(A) = T or v(B) = T;

v�(A∨B) = T iff v�(A) = T or v�(B) = T.
(iv) v(∼A) = T iff v�(A) = F;

v�(∼A) = T iff v(A) = F.
(v) v(A→B) = T iff �A→B, if v(A) = T then v(B) = T, and if v�(A) = T
then v�(B) = T.
v�(A→B) = T, for M1-logics.
v�(A→B) = T iff, if v(A) = T then v�(B) = T, for M2-logics.

Note that Slaney’s metavaluation v is like Meyer’s quasi-valuation V′,
but (legitimately) drops �∼A from the valuation of v(∼A) = T. Slaney’s
metavaluation will be the primary focus in what follows.
The distinction between M1- and M2-logics is made on pp. 396–397 of
Slaney’s (1987) article, and will divide the metacomplete logics into two
types:M1-metacomplete andM2-metacomplete. He considers the following
axioms and rules, upon which M1- and M2-logics are defined:
Axioms:

1. A→A.
2. A&B→ A.
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3. A&B→ B.
4. (A→B)&(A→C)→ .A→B&C.
5. A→ A∨B.
6. B→ A∨B.
7. (A→C)&(B→C)→ .A∨B→ C.
8. A&(B∨C)→ (A&B) ∨ (A&C). (Slaney has ‘ . . . ∨C’.)
9. ∼∼ A→ A.
Rules:
1. A, A→B⇒ B.
2. A, B⇒ A&B.
3. A→B, C→D⇒ B→C→ .A→D.
4. A→∼B⇒ B→∼A.
The above axioms and rules give us the basic system B of Routley-Meyer.
The system B can be weakened significantly for the results to go through,
as Meyer in (1976) considers, but we think B is basic enough for the time
being. Nevertheless, we will later need to remove the distribution axiom, A8.
Wegive additional axiomsand rules for the construction of stronger logics:
Additional axioms:
10. A→∼B→ .B→∼A.
11. A→B→ .C→A→ .C→B.
12. A→B→ .B→C→ .A→C.
13. (A→B)&(B→C)→ .A→C.
14. A→ .A→A.
15. A→ .B→A.
16. (A→ B∨C)&(A&B→ C)→ .A→C.
17. A→ .A→B→ B.
18. (A→ .B→C)→ .B→ .A→C.
19. A&(A→B)→ B.
Additional rules:
5. A⇒ B→A.
6. A⇒ A→B→ B.
7. A⇒∼(A→∼A). [Or, equivalently, A,∼B⇒∼ (A→B).2] (R7 is added
on for M2-logics. See also the last paragraph of Section 2.)

8. ∼A, A∨B⇒ B. [Added for future reference.]
Some familiar logics:
DW: B + A10.
TW: DW + A11 + A12.
DJ: DW + A13.
TJ: TW + A13.
EW: TW + R6.
RW: TW + A17.
RWK (or BCK): RW + A15 (or R5).

2This equivalence is a so-called ‘deductive equivalence’, which not only allows for the use
of axioms and rules (and meta-rules) in its establishment, but also the use of the uniform
substitution rule applied to sentential variables.
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R: RW + A19 (or A13). [N.B. R is not metacomplete in either sense.]
RM: R + A14. [RM is not metacomplete either.]

An M1-logic is any logic axiomatizable as B, plus zero or more of A10-16,
R5. [So, TJ + A15 + A16 is the maximal M1-logic formed from the above
axioms and rules.]
An M2-logic is one axiomatizable as B plus R7, plus zero or more of
A10-12,14-15,17-18,R5-6. (Slaney uses R6 here instead of my weaker R7.)
[So, RWK is the maximal M2-logic formed from the above.]
[N.B. A19 is not included in either metacomplete logic, nor is the LEM,
A∨∼A.]
As in Slaney (1984), it can be shown for M1- and M2-logics that if
v(A) = T then �A and if v�(A) = F then �∼A (completeness theorem),
by induction on formulae, and conversely if �A then v(A) = T (soundness
theorem), by induction on proof steps. The consistency theorem in the form,
if v(A) = T then v�(A) = T, can easily be shown, by induction on formulae.
For some cases in the proof of the soundness theorem, completeness and/or
consistency is needed for soundness to be proved, and thus completeness is
done first, followed by consistency. A logic is calledmetacompletewhen both
these soundness and completeness theorems are shown.With use ofmetaval-
uation condition (iii), the Priming Property, if �A∨B then �A or �B, can be
shown. And, by (v), the negated entailment properties, not-�∼(A→B) (for
M1-logics) and �∼(A→B) iff �A and �∼B (for M2-logics), can easily be
shown.
For the quantified logics, we separate the free and bound variables, for
ease of operation:
a,b,c, . . . range over free variables.
x,y,z, . . . range over bound variables.
Terms s,t,u, . . . can be individual constants (when introduced) or free
variables, and just ∀ and ∃ are primitive.
We just add the standard axioms and rules that apply to any of the sentential
systems:
Quantificational axioms:

1. ∀xA→ At/x, for any term t.
2. ∀x(A→B)→ .A→ ∀xB.
3. ∀x(A∨B)→ A∨∀xB.
4. At/x→ ∃xA, for any term t.
5. ∀x(A→B)→ .∃xA→ B.
6. A&∃xB→ ∃x(A&B).
Quantificational rule:

1. Aa/x⇒ ∀xA, where a is not free in A.
As inMeyer (1976), the above axioms and rules can beweakened consider-
ably for metacompleteness to still apply. Later, we will consider the removal
of the distribution axioms QA3 and QA6, together with the sentential
distribution A8.
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The additional conditions for metavaluations v are:

(vi) v(∀xA) = T iff v(At/x) = T, for all terms t;
(vii) v(∃xA) = T iff v(At/x) = T, for some term t.
The completeness, consistency and soundness results can be shown in a
similar manner to before, and these will yield, using (vii), the Existential
Property: if �∃xA then �At/x, for some term t.

§2. Examining metacomplete logics. Before going further with applica-
tions of metavaluations, we should examine the particular features of these
logics. The Priming Property, �A∨B then �Aor �B, ensures that these logics
are disjunctively constructive, which is appropriate for logics based on proof.
That these logics are based on proof is seen from the soundness and com-
pleteness theorems, yielding v(A) = T iff �A. Note that there is no variety
of models used here, though we did see this with Meyer’s earlier concept of
coherence in (1971).
Where these logics differ from truth-based models is that the Priming
Property does not in general extend to the interiors of→-formulae, of form
A→B, i.e., not to the A and not to the B. However, there are exceptions
for formulae of form A→ B∨C, which, with application of Modus Ponens,
becomes A ⇒ B∨C, whereupon either B or C must be established upon
the assumption of A. In the case of distribution, this antecedent A is itself
disjunctive, in the form of D&(E∨F), and upon choice of disjunct, either the
B or the C can be proved. [However, with the contraposed Modus Ponens
Axiom, ∼B→ ∼A∨∼ (A→B), this creates a problem, which is indeed why
A19 is neither an M1- nor an M2-logic.] These exceptions can be clearly
extended to formulae of the form, A1→ .A2→ . . . . .An→ B∨C.
These logics are also existentially constructive in that the Existential Prop-
erty holds for these logics with the above addition of quantifiers. Again,
because these logics are based on proof, this is appropriate. The above point
about the interiors of→-formulae can be made here as well.
Due tometavaluation condition (v), these logics have an entailment focus,
since all their theorems are inductively built up from provable entailments,
together with sentential variables. So, the entailments are seen to be like
atoms, though the same point can be made for the conclusions of their rule-
forms. Indeed, it is reasonable to say thatmetacomplete logics are entailment
logics and further that a good entailment logic ought to be metacomplete.
[See below for this latter point, where the logic MC is presented.]
Regarding negation, it can be immediately seen that the LEM fails in gen-
eral, since by the Priming Property, �A∨∼A only when either �A or �∼A.
Also, the DS, ∼A, A∨B⇒ B, depends on the consistency of the formula A,
as does A→ .B→A. So, the two main characteristics of classical logic, i.e.,
the LEM and the DS, are absent, at least initially, from metacomplete log-
ics. Since, given the logic B, the LEM is deductively equivalent2 to both the
rules, A→∼A ⇒ ∼A and A→B ⇒ ∼A∨B, the →-forms, A→∼A → ∼A
and A→B→∼A∨B, are also not included. Further, reductio arguments in
the form A→ B&∼B⇒∼A are not included, as A→ B&∼B is deductively
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equivalent to B∨∼ B → ∼A. In terms of main negation properties, that
leaves double negation, A↔ ∼∼A, contraposition, A→B ↔ .∼B→∼A,
and hence the De Morgan’s Laws, ∼(A&B)↔∼A∨∼B and ∼(A∨B)↔ ∼
A&∼B, all of which can be included in metacomplete logics. So, negation
is essentially De Morgan, with the Boolean properties LEM and DS added
as appropriate. Regarding negated entailments, these are of course deter-
mined according to whether the logic is anM1- or M2-logic. For M1-logics,
negated entailments∼(A→B) are never theorems, whilst for M2-logics they
must all be built up from the theorems A and ∼B.
We can take the logic MC of meaning containment (see below) as a good
example of an entailment logic which is M1-metacomplete. Importantly, an
entailment needs a concept such as meaning containment to provide sub-
stance to it and in turn provide guidance in its application. Further, meaning
containment provides justification for entailments that have traditionally
been expressed as a necessitated implication.
Historically, the logic DJd was introduced and supported in Brady (1996)
and further in (2006). [DJd is DJ with the addition of the disjunctive meta-
rule, if A ⇒ B then C∨A ⇒ C∨B.] This logic was modified over time by
the removal of the sentential distribution axiom A8, which was essentially
replaced by its rule form, achieved by replacing the above single-premise
meta-rule by the two-premise meta-rule, if A, B ⇒ C then D∨A, D∨B ⇒
D∨C (MR1). This gives us the logic MC of meaning containment, as
concluded in Brady and Meinander (2013).
For the quantified logic MCQ, we add the axioms QA1-2,4-5 and rule
QR1, removing the quantificational distribution axioms QA3 and QA6.
Then, we add the existential version, if A, Ba/x⇒Ca/x then A, ∃xB⇒∃xC
(QMR1), of the sentential two-premise meta-rule. This and the correspond-
ing sentential meta-rule have the proviso that QR1 does not generalize on
any free variable in the premises of the antecedent rules, A, B⇒ C and A,
Ba/x⇒ Ca/x, of the respective meta-rules.
This enables us to make an observation about M2-logics. The key differ-
ence betweenM1- andM2-logics is the presence of the rule,A⇒∼(A→∼A),
or equivalently, A, ∼B⇒ ∼(A→B) in the M2-logics. Once metacomplete-
ness is shown then the converse: if �∼(A→B) then �A and �∼B, also holds
admissibly. Observe that, using the two-premise disjunctive meta-rule MR1,
we can show that the rule A, ∼B ⇒ ∼(A→B) is derivable, given that the
LEM holds for A→B and the DS holds for B. To see this, we start with
Modus Ponens, A, A→B ⇒ B, and apply MR1 to obtain: ∼(A→B)∨A,
∼(A→B)∨(A→B) ⇒ ∼(A→B)∨B. Given A and the LEM, ∼(A→B)∨B,
and then, given ∼B and the DS, ∼ (A→B) follows. So, the rule that M2-
logics depend on for their definition is provable using specific application
of the basic classical properties, the LEM and the DS. And, one can con-
clude that the M1-logics are purer as entailment logics, whilst the M2-logics
involve some classical features not standardly present in such logics.

§3. Applications of metavaluations. Whilst metavaluations can be rather
straightforwardly applied toM1- andM2-logics, their inductive presentation
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can be tweaked in quite a variety of ways to yield some interesting results.
We briefly present a number of these, which are inclusive of all applications
known to the author, but are by no means exhaustive with regard to their
possible uses. (However, see note 1.) We show how metavaluations can
be applied (i) to prove the admissibility of �, which is essentially the DS, in
relevant logics, (ii) to prove that everymetacomplete logic is characterized by
its reduced frames, (iii) to prove that the Cut Rule holds for classical logic,
(iv) to show negation completeness for Strenge Peano Arithmetic, (v) to
provide a rejection system for first-degree formulae, (vi) to help distinguish
cancellation negation from its noncancellation properties, (vii) to prove the
simple consistency of Peano arithmetic by finitary methods, and (viii) to
prove the simple consistency and also the nontriviality of naive set theory.
This sequence of applications is roughly in chronological order, deter-
mined by the lead article when several articles are involved. We group
together articles according to their topic and methodology.

3.1. The admissibility of � in relevant logics. This method uses metavalu-
ations to enhance key aspects of a canonical model standardly used to prove
completeness of a logic with respect to its standard model-theoretic seman-
tics. In this respect, it is unlike its other usages, but does represent a type
of usage that has prospects for further development. However, even here,
canonical modelling is set up in proof-theory, and so this is not so divergent
from the other proof-theoretic methodology.
Reporting on Meyer’s proof and methods in his (1976a), Dunn firstly in
(1986), and secondly in Dunn and Restall (2002), sets out a prime regular
R-theoryT (see below for definition) such that an arbitrary nontheoremAof
the logicR is not derivable inR from the formulae in T. This is called theWay
Up Lemma and is based on Henkin’s method, which uses an enumeration
of the formulae. Then, in order to show that there is a normal prime regular
R-theory T′ contained in T, a metavaluation v is introduced for such an
R-theory T′:
(i) v(p) = T iff p ∈ T, for all sentential variables p.
(ii) v(A∨B) = T iff v(A) = T or v(B) = T.
(iii) v(∼A) = T iff ∼A ∈ T and v(A) = F.
(iv) v(A→B) = T iff A→B ∈ T and if v(A) = T then v(B) = T.
[v(A&B) = T follows by the De Morgan definition of &.]
One can see that this metavaluation v, with regard to the connectives

∼ and →, picks up the feature of Meyer’s quasi-valuation V′ of Section 1.
Indeed, this is a hybrid between a classical valuation and Meyer’s quasi-
valuation.
Then, by the usual formula induction, the completeness theorem: if
v(A) = T then A ∈ T, and if v(A) = F then ∼A ∈ T, was proved. It can
then be shown that the metavaluation v is consistent and negation-complete
in the respective forms: if v(∼A) = T then v(A) = F, and if v(A) = F then
v(∼A)=T.By putting T′= {A: v(A)=T}, the completeness theorem shows
that T′ is contained in T and, by this consistency and negation-completeness,
T′ is normal. Also, T′ is prime, due to (ii). It remains to show that T′ is a
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regular R-theory, which is done by checking the axioms and rules of R to
show that all theorems of R are in T′, together with the R-theory condition:
if �RA→B and A ∈ T′ then B ∈ T′. This yields what is called the Way Down
Lemma which, together with the Way Up Lemma, gives us the admissibility
of � (A, ∼A∨B⇒ B) for the logic R, for which the normality of T′ is a key
component, as sketched on pp. 35–36 of their (2002). This is a quicker and
neater proof of the admissibility of � for R than appears inMeyer and Dunn
(1969).
What is unusual here, in light of Slaney’s work, is that metavaluations are
used for a logic such as R containing the LEM. Note that there is no use of
Slaney’s �-metavaluation, but there is a reason why the classical negation is
used. It is because normality is what we are proving here, which is essentially
classical negation for T′, and the metavaluation is set up to encapsulate in
T′ what we are trying to prove.
Mares and Meyer in (1992) also adopt this method to prove the admissi-
bility of � for the modal logic R4, which consists of the relevant logic R of
Anderson and Belnap (1975), plus the following axioms concerning �, with
the definition, ♦A =df ∼�∼A:
1. �A→ A.
2. �A→ ��A.
3. �(A→ B)→ .�A→ �B.
4. �A & �B→ �(A&B).
5. �(A∨B)→ ♦A ∨ �B.
6. If A is an axiom then �A is an axiom.
The logicNRofMeyer’s (1968) consists of R, plus the above axioms 1-4,6,
yielding a necessitated R.However,NRdoes not contain themodal logic S4,
which is standardly used in the capture of entailment as a necessitated
implication. The axiom 5 was then added to this logic NR, yielding R4,
which enables the modal logic S4 to be contained therein (hence, the
symbolism ‘R4’).
Mares andMeyer use Meyer’s above metavaluation v, replacing his T by a
prime theory Ti of R4 such that �−1T⊆ Ti ⊆ ♦−1T, where T is an arbitrary
prime theory, �−1T =df {A: �A ∈T} and ♦−1T =df {A: ♦A ∈T}. They
call their metavaluation vi (for Ti), adding the valuation for �:
vi(�A) = T iff ∀j(if STiTj then vj(A) = T), where S is the accessibility
relation between prime theories Ti and Tj.
This accessibility relation ensures that the axioms 1-6 are sound. The
remainder of the proof is similar that of Meyer (1976a).
Seki in (2011) takes Meyer’s process a step further to establish the admis-
sibility of � for a wider range of relevant modal logics L. He introduces the
following metavaluation v as a two-place function defined on formulae and
regular prime L-theories s, where L is one of a wide range of relevant modal
logics, sententially containing the logic B together with the LEM and the
rule, C∨A⇒ C∨∼(A→∼A).
(i) v(p,s) = T iff p ∈ s, for all sentential variables p.
(ii) v(A&B,s) = T iff v(A,s) = T and v(B,s) = T.
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(iii) v(A∨B,s) = T iff v(A,s) = T or v(B,s) = T.
(iv) v(∼A,s) = T iff ∼A ∈ s and v(A,s) = F.
(v) v(A→B,s) = T iff A→B ∈ s and if v(A,s) = T then v(B,s) = T.
(vi) v(�A,s) = T iff �A ∈ s and v(A,s) = T.
(vii) v(♦A,s) = T iff ♦A ∈ s� or v(A,s) = T, where s� is defined as

{A: ∼A/∈ s}.
Seki defines Tr(s) as {A: v(A,s) = T} and subsequently proves that:
(1) For any regular prime L-theory s, s� ⊆ Tr(s) ⊆ s.
(2) If A ∈Tr(s), for all regular prime L-theories s, then A is a theorem
of L.

(3) For any regular prime theory s, ∼A ∈ Tr(s) iff A /∈Tr(s).
(4) If A is a theoremof L then, for all regular primeL-theories s, A∈Tr(s).
He goes on to prove the admissibility of � for any such logic L,which includes
the purely sentential logics without modal operators.

3.2. The characterization of metacomplete logics by reduced frames. We
now return to more standard usages of metavaluations, based on Slaney’s
M1- and M2-logics. In his (1987), he generalizes his treatment of metavalu-
ations, using this to ensure that eachM1- andM2-logic can be characterized
by its reduced Routley-Meyer frames.
We start this generalization for a logic L, which is M1- or
M2-metacomplete and contains the basic logic B. Let A′ be a nontheorem
of L. Instead of the set of theorems, Slaney considers a regular L-theory
T, closed under the rules of L, with A′ not in T. (An L-theory satisfies the
Adjunction rule and preservation of provable entailments, and a regular
L-theory is an L-theory containing all the theorems of L.) Such a theory T
can be constructed using the Henkin enumeration of formulae, as set out on
pp. 399–400 of Slaney’s (1987).
Slaney then sets out two pairs of metavaluations, v1 and v1�, and v2 and
v2�, the first pair v1 and v1� being for M1-logics and v2 and v2� being for
M2-logics. These metavaluations are set up in such a way as to replace
provability in L by what is essentially the membership of T, and are set out
as follows: [We use v when v1 and v2 are the same, to save space.]

(i) v(p) = T iff p ∈ T; v�(p) = T iff p ∈ T or ∼p /∈T, for sentential
variables p.

(ii) v(A&B) = T iff v(A) = T and v(B) = T;
v�(A&B) = T iff v�(A) = T and v�(B) = T.

(iii) v(A∨B) = T iff v(A) = T or v(B) = T;
v�(A∨B) = T iff v�(A) = T or v�(B) = T.

(iv) v(∼A) = T iff v�(A) = F and v(A) = F and ∼A ∈ T;
v�(∼A) = T iff v(A) = F.

(v) v(A→B) = T iff A→B ∈ T, if v(A) = T then v(B) = T, and if v�(A)
= T then v�(B) = T.
v1�(A→B) = T.
v2�(A→B) = T iff, if v2(A) = T then v2�(B) = T.

Then, Slaney proves a series of lemmas and corollaries, as follows:
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If v1(A) = T then A ∈ T, and if v2(A) = T then A ∈ T. (Completeness)
If v1(A) = T then v1�(A) = T, and if v2(A) = T then v2�(A) = T.
(Consistency)
If v1�(A) = F then ∼A ∈ T, and if v2�(A) = F then ∼A ∈ T, leading to:
v1(∼A) = T iff v1�(A) = F, and v2(∼A) = T iff v2�(A) = F, which gets
the metavaluations of negation back to the earlier shape.
{A:v1(A) = T} and {A:v2(A) = T} are then regular, prime and consistent
L-theories, closed under the rules of L. (Soundness)
These true metavaluations enable the addition of primeness and consis-
tency to the properties of T. Now, {A: v1(A) = T} and {A: v2(A) = T} can
be used to construct a reduced L-model falsifying A′, by the method used
in the completeness proof for the Routley-Meyer semantics (see Routley,
Meyer, Plumwood and Brady (1982), Chapter 4).
Hence, every M1- and M2-logic can be characterized by its reduced
frames, i.e., those with a single base world which verifies the theorems of L.

3.3. The proof of the cut rule for classical logic. Dunn andMeyer in (1989)
used a metavaluation to prove Gentzen’s Cut Rule in the form: if M∨A and
∼A∨N are theorems then so is M∨N. This application of metavaluations
is even more unusual in that it is used for classical logic itself, with the
metavaluation actually being an instance of a classical valuation.
For a prime, rich theory T, they define its metavaluation v:

(i) v(A) = T iff A ∈ T, for atomic formulae A.
(ii) v(∼A) = T iff v(A) = F.
(iii) v(A∨B) = T iff v(A) = T or v(B) = T.
(iv) v(∃xA) = T iff v(Aa/x) = T, for some free variable a.
They follow the Gentzen separation of free and bound variables:
a, b, c, . . . free variables.
x, y, z, . . . bound variables.
Note that T is a theory if it is closed under deducibility in classical logic,
and such a theory T is rich iff, whenever ∼Aa/x ∈ T, for all free variables
a, then ∼∃xA ∈ T. Note too that there is no need to conjoin ∼A ∈ T in
(ii), this then yielding a classical valuation but with the atoms evaluated in
accordance with their membership of the theory T.
As in Section 3.1 above, T is constructed in their Way Up Lemma using
Henkin’s method, and its metavaluation v is used to determine a subset of
T satisfying normality. This is encapsulated by the Completeness Lemma
in the form: if v(A) = T then A ∈ T, and if v(A) = F then ∼A ∈ T, for
such a metavalution v and theory T. However, the Soundness Lemma, if
�A then v(A) = T, was proved for all valuations v, in the standard classical
sense of valuation. Putting all this together, they prove the Soundness and
Completeness Theorem, �A iff v(A) = T, for all metavaluations v of rich
prime theories T. They are then able, using (ii) and (iii), to prove the Cut
Theorem: if M∨A and ∼A∨N are theorems of classical logic, formulated
without Cut, then so isM∨N.This again provides amuch quicker and neater
proof of the admissibility of Cut for classical logic than Gentzen’s original
proof.
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3.4. Negation completeness for Strenge Peano Arithmetic. Meyer and
Restall in (1999) use metavaluations to establish the Priming Property in
the form of negation completeness for sentences of Peano Arithmetic based
on the logic E (called E#), but with the addition of the infinitary �-rule.
This extended system is called E##. They then extend E## to TE#, which is
what they call strenge true arithmetic, by ensuring negation completeness for
the sentences of E## in the process. TE# is established from E## by using
metavaluations that are similar to that used by Meyer in (1971), in that they
both employ provability for the intensional connective/operator, leaving the
remaining connectives (and quantifier) with classical valuations. However,
here, the metavaluation for→ has the effect ofMeyer’s quasi-valuation from
his (1976).
We set out their metavaluation V for arithmetic sentences as a set TR of
truths, as follows:
VAt If A is an atomic sentence u=v, then A ∈ TR iff A is arithmetically
correct.

V∼ ∼B ∈ TR iff B /∈TR.
V& B&C ∈ TR iff B ∈ TR and C ∈ TR.
V∨ B∨C ∈ TR iff B ∈ TR or C ∈ TR.
V∀ ∀xBx ∈ TR iff, for all numerals n, Bn ∈ TR.
V→ B→C ∈ TR iff both E##� B→C and if B ∈ TR then C ∈ TR.
By letting TE# be the system TR of true sentences on V, they then go on
to prove their soundness theorem for E##:
E# ⊆ E## ⊆ TE#.
This establishes the result they aimed for. And, they were also able to
prove the admissibility of � for TE#, through use of this metavaluation.

3.5. A rejection system for first-degree formulae. In Brady (2008), we
determine a rejection system for the logic L1, which is the first-degree
entailment system Efde of Anderson and Belnap (1975), together with the
following NonEntailment Rules:

1. A, B⇒ A&B.
2. A⇒ A∨B.
3. B⇒ A∨B.
4. A⇒∼∼A.
5. ∼A⇒ ∼(A&B).
6. ∼B⇒∼(A&B).
7. ∼A, ∼B⇒∼(A∨B).
As such, L1 is the first-degree formula fragment of B, DW and DJ, and
essentially differs fromAnderson andBelnap’s Efdf (see Section 19of (1975))
in that theLEMandnegated entailments are absent. L1 isM1-metacomplete,
with metacompleteness properties:

(I) If �A∨B then �A or �B.
(II) Not - �∼(A→B).
(III) If �A&B then �A and �B.
(IV) If �∼∼A then �A.
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(V) If �∼(A&B) then �∼A ∨ ∼B.
(VI) If �∼(A∨B) then �∼A & ∼B.
As in Brady (2008), we consider properties (I)–(VI) as an axiom and
rules for the purpose of framing the rejection axiomRA2 and rejection rules
RR3-9, in what follows:
Rejection-Axioms.

1. � p&∼q&r&∼r→∼ p∨q∨s∨∼s.
2. � ∼(A→B).
Rejection Rules.

1. �A→B, � A→C⇒ � B→C.
2. �B→C, � A→C⇒ � A→B.
3. � A, � B⇒ � A∨B.
4. � A⇒ � A&B.
5. � B⇒ � A&B.
6. � A⇒ � ∼∼A.
7. � ∼A⇒ � ∼(A∨B).
8. � ∼B⇒ � ∼(A∨B).
9. � ∼A, � ∼B⇒ � ∼(A&B).
10. � AB/p⇒ � A, where B is uniformly substituted for p in A.
We call this rejection logic L1r.
Some Key Rejection Theorems.

1. � p.
2. � ∼p.
Following (2008), we start with the following R-soundness theorem, and
then proceed to prove the R-completeness theorem using R-metavaluations
and the R-metacompleteness theorem.
R-Soundness Theorem:
For all formulae A, if �A then not-� A.
Thus, each theorem of L1 is not provable in the rejection system L1r.
We introduce the following R-metavaluations vr and vr�:

(i) vr(p) = T; vr�(p) = F.
(ii) vr(A&B) = T iff vr(A) = T or vr(B) = T;

vr�(A&B) = T iff vr�(A) = T or vr�(B) = T.
(iii) vr(A∨B) = T iff vr(A) = T and vr(B) = T;

vr�(A∨B) = T iff vr�(A) = T and vr�(B) = T.
(iv) vr(∼A) = T iff vr�(A) = F;

vr�(∼A) = T iff vr(A) = F.
(v) vr(A→B) = T iff � A→B.

vr�(A→B) = F.
R-metacompleteness Theorem.
For all formulae A, vr(A) = T iff � A.
This yields a number of properties below, which will enable the
axiomatization of L1r to be enhanced.
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(Ir) If � A&B then � A or � B.
(IIr) If � A∨B then � A and � B.
(IIIr) If � ∼∼A then � A.
(IVr) If � ∼(A&B) then � ∼A∨∼B.
(Vr) If � ∼(A∨B) then � ∼A&∼B.
These are admissible rules of L1r and as such we can use them in addition
to the primitive rules RR1-10. These rules enable us to use normal forms
which, togetherwith the tautological entailments fromAndersonandBelnap
(1975), yield the proof of:
R-Completeness Theorem.
For all formulae A, if not-�A then � A.
Thus, each nontheorem of L1 is provable in the above rejection
system L1r.

3.6. Distinguishing cancellation negation. InBrady (2008a), a treemethod
is used to distinguish cancellation negation by isolating the negation proper-
ties all of whose negations cancel out when brought together in anunpacking
of the components of the formula. This unpacking takes the form of a
tree constructed from the formula with help from the inductive process of
metavaluation appropriate to the system of logic involved. It suffices to say
that the logic must be metacomplete to start with, of either of the two
types.
To set out the tree system for M1- and M2-logics, we place T, T�, F or
F� in front of each formula A according to whether v(A) = T, v�(A) = T,
v(A) = F, or v�(A) = F, respectively. As for classical trees, we use a reduc-
tio argument and assume that the formula under consideration takes the
v metavaluation to F, with the aim of showing that each branch closes by
having a T and F or a T� and F� in front of the same formula within each
branch. In this case, we will say that the M-tree (as they are to be called)
closes. If each of the metavaluation conditions holds for theorems of a meta-
complete logic to start with, this method should work, as the theorems of
form �A→B occurring in metavaluation for A→B will be theorems anyway,
since the theorems of metacomplete logics are all inductively built from such
entailment theorems. The upshot is that any negation property expressed as
a theorem of such a logic must have this cancellation property, and any such
negation is essentially a cancellation negation.
We set out the tree rules as follows:

∼: T ∼ A F ∼ A T� ∼ A F� ∼ A

F�A T�A FA TA

& : TA&B FA&B

���
��� ��

��
� T�A&B F�A&B

���
���

��
��

�

TA FA FB T�A F�A F�B

TB T�B
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∨ : TA∨B
��
��
��

��
��

� FA∨B T�A&B

���
���

�
		

		
		

F�A∨B

TA TB FA T�A T�B F�A
FB F�B

→ : TA→B













���
���

���
FA→B

��
��
�

��
��

�

FA






��
��
��
��

TB

��
��
��
��

��
��
��
��

TA T�A

F�A T�B F�A T�B

FB F�B

For M1-logics:
T�A→B F�A→B

Redundant, since true. x
Closure, since false.

For M2-logics:

T�A→B
���

���
�

��
��

��
F�A→B

FA T�B TA
F�B

For the sake of the logical rules, we add the following tree rule, to enable a
T to be placed in front of each of the premises of each of the logical rules,
given that each such premise is closed when F is placed in front:

��
��

��
��

TA FA

Theorem. TheM-trees of the theorems of theM1-logic TJ (and hence all
weaker logics) are all closed.
Theorem. TheM-trees of the theorems of theM2-logicRW (and hence all
weaker logics) are all closed.
The negation picked out by this method is De Morgan, determined by
double negation and contraposition, with De Morgan’s Laws following.
However, for M2-logics only, the rule A ⇒ ∼(A→∼A) is included as
well. The LEM, A∨∼A, fails, as it should, as does A→∼ A → ∼A and
(A→ B&∼B)→ ∼A, from which the LEM is derivable. The DS also fails,
as it should. Both the LEM and the DS are what might be called single
negations, as there is no opportunity for these negations to cancel out.

3.7. The simple consistency of Peano Arithmetic using finitary methods.
This is a complex proof, but we will pick out the key details from Brady
(2012). Though the proof works for a range of metacomplete logics, we
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focus on the logic of meaning containment MCQ, further reducing it to
MCQ–, with the quantificational extension below:
∃xA =df ∼∀x∼A.
Quantificational Axioms:
1. ∀xA→ At/x, for any term t.
2′. A→ ∀xA. (Note that x cannot occur free in A.)
Quantificational Rule:

1. Aa/x⇒ ∀xA, where a is not free in A.
Quantificational Meta-Rule.
1. If A, Bm/x⇒ Cm/x then A, ∃xB⇒ ∃xC, with the proviso that, in the
derivation A, Bm/x⇒ Cm/x, QR1 cannot generalize on any variable
free in either of the premises A and Bm/x. Similarly, MR1 is subject to
the same proviso concerning the derivation A, B⇒ C.

[m,n,. . . are individual constant (i.e., natural number) schemes.]
We now present MC#, based on MCQ–, with the addition of =, ′, +, x:
MC#.
Identity Axioms.
1. a=a.
2. a=b→ b=a.
3. a=b&b=c→ a=c.
Identity Rule.
1. s=t, A(s) ⇒ A(t), where, for terms s and t, t is substituted for s in a
single argument place.

Number-theoretic Axioms.

1. ∼ a′ = 0.
2. a + 0 = a.
3. a + b′ = (a+b)′.
4. a x 0 = 0.
5. a x b′ = (axb) + a.
Number-theoretic Rules.
1. s=t⇒ s′=t′.
2. s′=t′ ⇒ s=t.
3. ∼s=t⇒ ∼s′=t′.
4. ∼s′=t′ ⇒∼s=t.
Number-theoretic Meta-Rule.
If A(m)⇒ A(m′) then A(0)⇒ A(t), where t is a term, i.e., an (arbitrary)
numerical constant or variable. [Mathematical Induction]
Classicality Axiom.
1. a=b ∨ ∼a=b. [The LEM for a=b.]
We then introduce the following metavaluations v and v�:

(i) v(s=t) = T iff s=t is a theorem of MC#, for constant terms s and t.
v�(s=t) = v(s=t), for constant terms s and t. [Ensuring classicality
of s=t]
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For the following metavaluations (ii)–(v), we let A and B be
sentences.

(ii) v(A&B) = T iff v(A) = T and v(B) = T.
v�(A&B) = T iff v�(A) = T and v�(B) = T.

(iii) v(A∨B) = T iff v(A) = T or v(B) = T.
v�(A∨B) = T iff v�(A) = T or v�(B) = T.

(iv) v(∼A) = T iff v�(A) = F.
v�(∼A) = T iff v(A) = F.

(v) v(A→B) = T iff A→B is a theorem of MC#, if v(A) = T then
v(B) = T, and if v�(A) = T then v�(B) = T.
v�(A→B) = T.

We add the followingmetavaluations v and v� to account for the quantifier
∀, where ∀xA is a sentence and An/x is a constant instance of A, obtained
by substituting the numerical constant scheme n for x in A.

(vi) v(∀xA)=T iff v(An/x)= T, for all numerical constants n, recursively
generated. (see later)
v�(∀xA) = F iff v�(An/x) = F, for some numerical constant n,
recursively determined. (see later)
In the case of vacuous quantification,
v(∀xA) = T iff v(A) = T and v�(∀xA) = F iff v�(A) = F.
Then, to take account of free variables, we add the following
metavaluation:

(vii) v(A) = T iff v(Ai) = T, for all constant instances Ai of A, recursively
generated.
v�(A) = F iff v�(Ai) = F, for all constant instances Ai of A,
recursively generated.

We express ‘v(An/x) = T, for all numerical constants n, recursively gener-
ated’ as the conjunction: v(A0/x) = T and, for all m, if v(Am/x) = T then
v(Am

′
/x) = T. Since negation is constructive for these logics, the recursive

determination for v�(∀xA) = F is established by a process, leading to a
witness for the existential and, as such, is a complementary (De Morgan)
process to that of recursive generation of the universal.
We list the following results:

Lemma 3.1 (Soundness). If A is a theorem of MC# then v(A) = T, and
hence:
if ∼A is a theorem of MC# then v�(A) = F.
Corollary. For any identity s=t, for constant terms s and t, not both s=t
and ∼s=t are provable inMC#.
Lemma 3.2 (Completeness).

(1) If v(A) = T then A is a theorem ofMC#, and :
(2) If v�(A) = F then ∼A is a theorem ofMC#.
Theorem 3.3. The system MC# is metacomplete, i.e., v(A) = T iff A is
provable inMC#, and also v�(A) = F iff ∼A is provable inMC#.

https://doi.org/10.1017/bsl.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.29


METAVALUATIONS 315

Corollaries. ForMC#:

(1) If �A∨B then �A or �B, for sentences A, B. [Priming Property]
(2) If �A∨B then, for all constant instances Ai∨Bi of A∨B, �Ai or �Bi.
[Extended Priming Property for formulae A and B]

(3) If �∃xA then �Am/x, for some numerical constantm, for sentence ∃xA.
[Satisfaction Property]

(4) If �∃xA then, for all constant instances ∃xAi of ∃xA, �Aim/x, for some
numerical constant m. [Extended Satisfaction Property for formula
∃xA]

Theorem 3.4 (Consistency). If v(A) = T then v�(A) = T. Thus,MC# is
simply consistent.

The reason this proof is finitary is that the metavaluations are rooted
in proof theory and do not involve standard model theory, thus circum-
venting the familiar argument that the consistency is proved relative to the
theory required to set up the modelling. Note too, as shown by (vi), that
the universal quantifier is evaluated in terms of the two steps of mathe-
matical induction, which is a finitary process, ensuring in turn that this
metavaluational argument is finitary.

Theorem 3.5. TheDS, ∼A, A∨B⇒ B, is an admissible rule ofMC#.
The DS is then added toMC# and the appropriate cases of LEM are then
proved, thus allowing rules of form A ⇒ B to be replaced by formulae of
form A⊃B. This in turn allows mathematical induction to be carried out
for these formulae, re-creating classical arithmetic, up to a point, including
the familiar primitive recursive arithmetic. Though this procedure can be
widely used for specific formulae, it does not generally apply to formula-
schemes. Further, the LEM does not hold for the Godel sentence G, on
pain of Godel’s First Theorem, since, by the Priming Property, if �G∨∼G
then �G or �∼G, neither of which hold, given the consistency of classical
arithmetic. (For more on this, see Section 4(iii) below.)What stops this from
happening is the absence of the rule, ∀x(A∨B) ⇒ A∨∀xB, since otherwise
the fact that the LEM applies to atomic sentences would inductively extend
to all→-free sentences including the quantified ones.
3.8. The simple consistency and non-triviality of naive set theory. We con-
tinue with Brady’s proof of simple consistency of naive set theory, previously
proved by a model-theoretic approach in his (1983) and (2006), but proved
using metavaluations in his (2014). Then, we consider Brady’s model-
theoretic proof of nontriviality of naive set theory in (2006) and briefly
indicate how it is adapted for metavaluations in his (2011).
Each of these model-theoretic approaches use a transfinite sequence of
transfinite sequences of 3-valued models in the form:
M0,0, M0,1, . . ., M0,�0 .
M1,0, M1,1, . . ., M1,�1 .
. . . . . . . . . . . .
M�,0, M�,1, . . ., M�,�� .
. . . . . . . . . . . .

https://doi.org/10.1017/bsl.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.29


316 ROSS T. BRADY

The models, M0,�0 , M1,�1 , . . ., M�,�� , . . ., of these transfinite sequences are
all fixed points of those sequences, which are so because of the persistence
properties of two of the three values of the models. These fixed points are
achieved due to the ordinals outstripping the denumerable set of formulae,
forcing two consecutive models to evaluate formulae with the same values.
These models themselves have a fixed point, Mκ,�κ , due to a similar type of
persistence property. So, the finalmodel structure:M0,�0 ,M1,�1 , . . .,M�,�� ,. . .,
Mκ,�κ , is what is used to determine the logics and set theory for which the
consistency applies.
The metavaluational approaches also use a transfinite sequence of trans-
finite sequences, but each of the models M�,� are replaced by a pair of
metavaluations v�,� and v�,��, to deal with negation and thus to capture
the effect of the three values taken by the models. These are set out as
follows:
v0,0, v0,1, . . ., v0,�0 .
v1,0, v1,1, . . ., v1,�1 .
. . . . . . . . . . . .
v�,0, v�,1, . . ., v�,�� .
. . . . . . . . . . . .
v0,0�, v0,1�, . . ., v0,�0

�.
v1,0�, v1,1�, . . ., v1,�1

�.
. . . . . . . . . . . .
v�,0�, v�,1�, . . ., v�,��

�.
. . . . . . . . . . . .
The metavaluations v�,� and v�,�� in these sequences are each paired off,
to produce a combined metavaluation. The metavaluations, v0,�0 , v1,�1 , . . .,
v�,�� , . . . and v0,�0

�, v1,�1
�, . . ., v�,��

�, . . . of these transfinite sequences are all
fixed points of those sequences, established as such by a persistence theorem
and the fact that the formulae are only countably infinite. However, they
themselves have respective fixed points, vκ,�κ and vκ,�κ

�, due to a similar
persistence property.
For the simple consistency, the axioms and rule of the naive set theory
are:
1. t∈{x:A} ↔ At/x. (CA)
2. ∀z(z∈s↔ z∈t)⇒ ∀w(s∈w↔ t∈w). (ER)
3. 1.
4. ∼0.
Where:
a,b,c,. . . range over free variables.
w,x,y,z. . . range over bound variables.
{x:A} is a term, for any bound variable x and formula A.
s,t,. . . range over terms.
The identity s=t between sets can then be defined as ∀z(z∈s↔ z∈t).
For M1-logics, we will strengthen (ER) to the Extensionality Axiom:
∀z(z∈s↔ z∈t)→ ∀w(s∈w↔ t∈w). (EA)
Westartby letting vandv� beany suchmetavaluationand �-metavaluation,
respectively, and assign what we can at this level of generality.
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For the atomic formulae, 1 and 0, we put:
v(1) = T, v�(1) = T, v(0) = F, and v�(0) = F.
For atomic formulae of form t∈a, for the free variable a:
v(t∈a) = F and v�(t∈a) = T.
For the connectives (except ‘→’) and quantifiers, we followMeyer (1976),
Slaney (1984) and (1987) (also in Section 4.2 of Brady (2006)):
v(A&B) = T iff v(A) = T and v(B) = T.
v�(A&B) = T iff v�(A) = T and v�(B) = T.
v(A∨B) = T iff v(A) = T or v(B) = T.
v�(A∨B) = T iff v�(A) = T or v�(B) = T.
v(∼A) = T iff v�(A) = F.
v�(∼A) = T iff v(A) = F.
v(∀xA) = T iff v(At/x) = T, for all terms t.
v�(∀xA) = T iff v�(At/x) = T, for all terms t.
v(∃xA) = T iff v(At/x) = T, for some term t.
v�(∃xA) = T iff v�(At/x) = T, for some term t.
It remains to set out the metavaluations and �-metavaluations for atomic
formulae of the form t∈{x:A}, and for→-formulae, for each member of the
above sequences.
This process is carried out by double transfinite induction, firstly within
each of the �-sequences, v�,0, v�,1, . . ., v�,�� , and v�,0

�, v�,1�, . . ., v�,��
�, and

then over each of these sequences as a whole for v and v�. We simply divide
this induction into the four cases:
v0,0 and v0,0�; v�,0 and v�,0�, for � > 0; v�,� and v�,��, for � a successor
ordinal; v�,� and v�,��, for � a limit ordinal.

Case 1. For v0,0 and v0,0�:
v0,0(t∈{x:A}) = F; v0,0�(t∈{x:A}) = T.
v0,0(A→B) = T iff �A→B; v0,0�(A→B) = T, for M1- and M2-logics.
Case 2. For v�,0 and v�,0�, where � > 0:
v�,0(t∈{x:A}) = F; v�,0�(t∈{x:A}) = T.
v�,0(A→B) = T iff �A→B and, if v	,�	(A) = T then v	,�	(B) = T, and if
v	,�	

�(A) = T then v	,�	
�(B) = T, for all 	 < �.

v�,0�(A→B) = T, for M1-logics.
v�,0�(A→B) = T iff, if v	,�	(A) = T then v	,�	 �(B) = T, for all 	 < �, for
M2-logics.

Case 3. For v�,� and v�,��, where � is a successor ordinal:
v�,�(t∈{x:A}) = T iff v�,�−1(At/x) = T.
v�,��(t∈{x:A}) = T iff v�,�−1�(At/x) = T.
v�,�(A→B) = T iff v�,0(A→B) = T.
v�,��(A→B) = T iff v�,0�(A→B) = T, for M1- and M2-logics.
Case 4. For v�,� and v�,��, where � is a limit ordinal:
v�,�(t∈{x:A}) = T iff v�,	(t∈{x:A}) = T, for some 	 < �.
v�,��(t∈{x:A}) = T iff v�,	�(t∈{x:A}) = T, for all 	 < �.
v�,�(A→B) = T iff v�,0(A→B) = T.
v�,��(A→B) = T iff v�,0�(A→B) = T, for M1- and M2-logics.
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These cases follow the model-theoretic approach of Brady (1983) and
(2006), but here we follow the usual metavaluations for A→B instead of
using the matrix logics L3 or C3 of (1983) and (2006), respectively.
In order to justify the above metavaluations, we need to establish the fixed
points v�,�� and v�,��

�, for the �-sequences, and also the fixed points, vκ,�κ
and vκ,�κ

�.
Theorem 3.6 (Persistence). For ordinals �, 	 and �, and a formula A, let
	 < �.
Then, if v�,	(A) =T then v�,�(A) =T, and if v�,	�(A)=F then v�,��(A) = F.
Theorem 3.7 (Persistence). For ordinals 
 and �, and a formula A→B, let

 < �. Then, if v
,0(A→B) = F then v�,0(A→B) = F, and if v
,0�(A→B) = F
then v�,0�(A→B) = F.
Theorem (Completeness). For all ordinals � and �, if v�,�(A) = T then

�A, and if v�,��(A) = F then �∼A. Hence, if vκ,�κ(A) = T then �A, and if
vκ,�κ

�(A) = F then �∼A.
Theorem (Consistency). For all ordinals � and �, if v�,�(A) = T then
v�,��(A) = T. Hence, if vκ,�κ(A) = T then vκ,�κ

�(A) = T.
This not only enables a consistency proof to be eventually obtained but
also enables the pair of metavaluations to function as a three-valued logic,
in a similar way to the model-theoretic approach.
Theorem (Soundness). If �A then vκ,�κ(A) = T, and hence if �∼A then
vκ,�κ

�(A) = F.
Simple consistency then follows from the Soundness andConsistencyThe-
orems. Completeness is only needed for the soundness proofs of the axioms:
A→ .B→A(A15),A→ .A→B→B (A17), and (A→ .B→C)→ .B→ .A→C
(A18).
Theorem (Metacompleteness). �A iff vκ,�κ(A) = T, and hence �∼A iff
vκ,�κ

�(A) = F.
Corollary. For any M1-metacomplete logic, the above transfinite
sequences of transfinite sequences of metavaluations reduce to a single pair
of transfinite sequences:
v0,0, v0,1, . . ., v0,�0 ; v0,0

�, v0,1�, . . ., v0,�0
�. [I.e., κ = 0.]

Note that the last two corollaries in Brady (2014) are incorrect and that
this is all that we can claim here.
For nontriviality, the proof using metavaluations in Brady (2011) has the
following four key differences with the above simple consistency proof:
(I) There is no Completeness Theorem, the Soundness Theorem being
sufficient for the NonTriviality Theorem, thus allowing the separa-
tion of the proof-theory from the metavaluations evaluated as T.

(II) One such deviation is the Law of ExcludedMiddle (A∨∼A), this not
being included in the simply consistent theory as it yields inconsis-
tency.Here, wewill add this Law as far aswe are able, no longer being
constrained by the Priming Property (which is not proved due to the
lackofCompletenessTheorem). Inorder toextendtheLawto include
→-formulae for M2-logics only, we alter all the �-metavaluations for

https://doi.org/10.1017/bsl.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.29


METAVALUATIONS 319

A→B by conjoining �A→B as well. It is then shown that Russell’s
Paradox is derivable from this restricted LEM.

(III) For theM1-logics, as inBrady (2014), themetavaluationswill reduce
to a single pair of transfinite sequences. However, without complete-
ness, the value of having this facility is somewhat reduced. Note too
that Corollary 21 on p. 359 of (2011) is incorrect, though Corollary
20 is fine as it stands.

(IV) In the soundness proof for theExtensionalityRule and elsewhere, the
twometavaluations v and v� together function as a 4-valued logic, as
they can independently assign a formula A to be T or F. These four
values reduce to three values when the consistency result, if v(A) = T
then v�(A) = T, is shown or the negation-completeness result, if
v�(A) = T then v(A) = T, is shown. The former result will not hold
here and the latter result is only partially shown, yielding a partial
Law of Excluded Middle, leaving the logic as essentially 4-valued.

§4. In conclusion. (i) Metavaluations can provide an alternative method-
ology to that of standard model theory, by-and-large representing proof-
theory, whilst still being applicable as model-theoretic constructs that are
proof-theoretically defined in part. They are specially applicable where parts
of their inductive structure represent properties to be shown, even though
other parts may encapsulate completeness by conjunctive or disjunctive
insertion of a provability or some membership statement of a theory. The
general idea is to create a metavaluation where completeness is easily shown
by formula induction, leaving a soundness theorem to be proved by the
usual induction on proof steps. As mentioned in the Abstract, and in
Sections 3.7 and 3.8, key metavaluational properties can be used to show
that a simpler metavaluational modelling can be obtained for naive set
theory and that a finitary proof of the consistency of Peano arithmetic is
possible.
(ii) As indicated in Section 3.8, M1- and M2-logics are closely aligned
to logics which solve the set-theoretic paradoxes, especially as the LEM,
A∨∼A, and the Modus Ponens axiom, A&(A→B) → B, cannot occur in
such logics. As discussed in Section 2, M1-logics are essentially entailment
logics. So, it is worth considering the relationship between entailment and
the paradoxes. Each of the set-theoretic paradoxes are expressed in terms
of what Russell called “contextual definitions”, i.e., the introduced set is
defined in terms of its generating predicate. [E.g., ∀x(x ∈ R↔ x /∈ x), with
the predicate ‘x /∈ x’ introducing the Russell set R.] Now, a definition is
really a meaning identity between the definiens and the definiendum and
an ideal connective to use would be one representing meaning equivalence,
expressible as the conjunction of two meaning containments.
Brady has introduced and worked upon the logicMC ofmeaning contain-
ment in (1996) and (2006), making adjustments in Brady and Meinander
(2013) concerning the forms of distribution. As such, MC seems to be about
as close as one is likely to get to capturing an appropriate logic for meaning
containment. And, MC is an M1-logic and is certainly a good entailment
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logic, being based on meaning containment. So, such a logic would be ideal
as a logic to express the sort of definition used in the set-theoretic paradoxes
(and the Liar Paradox below), and it is an M1-entailment logic. And, this
widening out of the scope of logics would provide quite some wriggle room
if there is a need to alter the logic of meaning containment.
In order to convert such an entailment A↔B into a classical equiva-
lence A≡B, the direct way would be to use the entailment rules, A→B ⇒
∼A∨B and B→A ⇒ ∼B∨A, which are deductively equivalent to ∼A∨A
and ∼B∨B, respectively, given the logic B with MR1. From a constructive
point of view, appropriate to metacomplete logics, these instances of the
LEM in the context of paradoxes would be very dubious. Indeed, it can be
shown for the logic DJ that neither R ∈ R nor R /∈ R (nor their disjunc-
tion R∈R ∨ R/∈R) is derivable, through examination of simply consistent
models of naive set theory (c.f. Sections 5.3 and 5.4 of Brady (2006)). This
sets up a barricade between the co-entailment A↔B and its classical equiv-
alence A≡B, preventing any clear passage from A↔B to A≡B. Thus, the
logic one needs to express these paradoxes is an entailment logic, and not
classical logic. What this then amounts to is that a human-made defini-
tion does not guarantee that the LEM holds for the definiens or for the
definiendum.
These same considerations apply to the semantic paradoxes that also use
key definitions. E.g., For the Liar Paradox, p: Fp introduces the sentence
p, which is defined by the expression ‘p is false’. Again, the appropriate
connective is a co-entailment ‘↔’, representing meaning identity in a logic
such as MC. Thus, this yields the formal expression p ↔ T∼p, and, since
T∼p↔∼p by Tarski’s formal definition of truth, we derive p↔∼p, where
the above arguments again apply. (More on this topic can be found in Brady
(2015).)
(iii) We briefly examine Godel’s First and Second Theorems in the light of
the results of Section 3.7 above. In the case of both of these, the classically-
based results are not in dispute.
Regarding the Second Theorem, Peano Arithmetic, based on MCQ–, is
consistent, proved by finitary methods, as indicated above in Section 3.7.
However, since the Peano Arithmetic is based on MCQ–, with the absence
of the rule, ∀x(A∨B) ⇒ A∨∀xB, the full classical Peano Arithmetic is not
provable.
Regarding the First Theorem, however, unprovability in classical Peano
Arithmetic is going to translate into unprovability inMC#, maintaining the
First Theorem for MC#. This can be simply shown by replacing each ‘→’ in
MC# by ‘⊃’ in classical Peano Arithmetic, and so any theorem of MC# is
also a theorem of classical Peano Arithmetic, under this replacement. Thus,
neither G nor ∼G can be theorems of MC#, G being the Godel sentence,
subject of course to the consistency of classical Peano Arithmetic. And,
neither is G∨∼G a theorem, this being due to the Priming Property for the
sentence G: if �G∨∼G then �G or �∼G.
(iv) As flagged by Slaney in his (1984) articles, there may be other
metavaluations, i.e., other than M1- and M2-valuations, determined by
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3- or 4-valued matrix logics, especially as they provide different characteri-
zations for negated entailments. These matrices are obtained by removal of
the provability �A→B from Slaney’s metavaluation of A→B, as occurs in
Section 1. This then yields a 4-valued logic with the following values, t, b, n
and f, for the formula A:

t. v(A) = T and v�(A) = T.
b. v(A) = T and v�(A) = F.
n. v(A) = F and v�(A) = T.
f. v(A) = F and v�(A) = F.

Given the metacompleteness theorem, v(A) = T iff �A and v�(A) = F
iff �∼A, the value t represents �A and not-�∼A, value b represents �A
and �∼A, value n represents not-�A and not-�∼A, and value f represents
not-�A and �∼A. So, we can think of value t being for classical proof, value
b being for an inconsistency, value n being for a negation incompleteness,
and value f being for classical nonproof.
Since the simple consistency result, if v(A) = T then v�(A) = T, is easily
proved by induction on formulae, for both M1- and M2-logics, the value
b above can thereby be removed, creating a 3-valued logic with just values
t, n and f. Such 3-valued logics are discussed on p. 167 of Slaney’s (1984).
Another reason for removing the value b is that the metavaluation of all
sentential variables is n, from which the value t can be obtained from either
of the →-matrices below and the value f can be then obtained from the
∼-matrix. There is no such passage to reach the value b.
We consider the 4-valued matrix logics that correspond to M1- and M2-
metavaluations. The matrices below for ∼, & and ∨ are common:

∼ & t b n f v t b n f
t f t t b n f t t t t t
b b b b b f f b t b t b
n n n n f n f n t t n n
f t f f f f f f t b n f

The→-matrices differ for M1- and M2-metavaluations, as follows:
(For M1−logics) → t b n f (For M2−logics) → t b n f

t t n n n t t f n f
b t t n n b t b n f
n t n t n n t n t n
f t t t t f t t t t

The M2-matrix for → is the matrix logic BN4 of Brady (1982), whilst
the M1-matrix replaces b by t and f by n, in the four respective positions,
creating an →-matrix consisting entirely of t and n. This phenomenon is
produced by the constant assignment of T to v�(A→B).
At the moment, it is unclear what the relation is between metavalua-
tions and their corresponding matrix valuations or what other →-matrices
might be suitable to yield other metavaluations. This is subject to further
research.
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