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A REMARK ON CONFIGURATION SPACES OF TWO POINTS
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Abstract We prove a homotopy invariance result for a certain covering space of the space of ordered
configurations of two points in M × X where M is a closed smooth manifold and X is any fixed aspherical
space which is not a point.
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1. Introduction

It is known that the homotopy type of the ordered configuration space F2(M) of two
distinct points in a closed manifold M is not determined by the homotopy type of M .
Longoni and the second named author found a counterexample to this homotopy invari-
ance problem in [8]. The counterexample is given by the pair of homotopy equivalent
3-dimensional lens spaces L7,1 and L7,2. In this case, it turns out that the universal cov-
ering spaces of F2(L7,1) and F2(L7,2) are also not homotopy equivalent. More pairs of lens
spaces have been examined by Evans-Lee [5], providing evidence for the conjecture that
any pair of non-homeomorphic lens spaces gives a counterexample. On the other hand,
there is a positive result by Levitt [7] who proved the homotopy invariance of F2(M)
when M is 2-connected.

The nature of the counterexample suggested the modified question of the homotopy
invariance of F2(M) with respect to the simple-homotopy type of M . This ques-
tion remains open. An easy way of producing simple-homotopy equivalent manifolds
is by taking product with S1: the product property of the Whitehead torsion shows
that a homotopy equivalence f : M

�→ N yields a simple-homotopy equivalence f × id :
M × S1 �s→ N × S1. In this paper, we consider the space FS1

2 (M × S1) of pairs of points
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in M × R which lie in distinct Z-orbits. This defines a (Z× Z)-covering space over
F2(M × S1). A special case of our main result is that the homotopy type of this space is
a homotopy invariant of M .

More generally, if X is a fixed aspherical space which is not the one-point space, then
the homotopy type of a certain covering space of F2(M ×X) is homotopy invariant in
M (Theorem 2.5). If X is also contractible, this implies the homotopy invariance of
F2(M ×X) (Corollary 2.7). These statements are false, of course, when F2(X) = ∅, i.e.,
when X consists of a single point. The proof of Theorem 2.5 uses a description of the
covering space of F2(M ×X) as a homotopy pushout (Proposition 2.4) and the fibre
homotopy invariance of the spherical tangent bundle of a closed smooth manifold [1].

2. Configurations of two points in a product of spaces

Throughout this section, M is a closed smooth manifold and X is a path-connected
Hausdorff space with a basepoint x ∈ X and a universal covering p : X̃ → X.

2.1. Preliminaries

The configuration space F2(M) ⊂M ×M consists of ordered pairs of distinct points
in M , i.e.,

F2(M) = {(m1,m2) ∈M2 | m1 �= m2}.
Assume that M has a Riemannian metric d. For ε > 0, we consider the following open
subspaces of M ×M ,

F2(M)ε := {(m1,m2) ∈ F2(M) | d(m1,m2) < ε}
and

DT (M)ε := {(m1,m2) ∈M ×M | d(m1,m2) < ε}.
There is a (homotopy) pushout square

F2(M)ε
��

��

F2(M)

��

DT (M)ε
�� M ×M.

(1)

For ε small enough, the projection F2(M)ε →M , (m1,m2) �→ m1, is homotopy equiv-
alent, fibrewise over M , to the spherical tangent bundle of M (see also [7]). The fibre
homotopy type of the spherical tangent bundle of M depends only on the homotopy type
of M by the results of [1,4]. On the other hand, for ε small, the corresponding projec-
tion DT (M)ε →M is a homotopy equivalence and fibre homotopy equivalent to the disk
tangent bundle of M .

2.2. Orbit 2-configurations in a product

Let G := π1(X,x)× π1(X,x). We consider the following covering space of the configu-
ration space of two points in M ×X.
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Definition 2.1. The X-orbit configuration space FX
2 (M ×X) of two points in M ×X

is the covering space of F2(M ×X) defined by

FX
2 (M ×X) := {((m1, x1), (m2, x2)) ∈ F2(M × X̃)|(m1, p(x1)) �= (m2, p(x2))}.

The space FX
2 (M ×X) admits a natural free action by the group G and the quotient

is the configuration space F2(M ×X). For M = ∗, the space FX
2 (M ×X) is the standard

orbit configuration space of X̃, denoted F̃2(X). There is a pushout square

F2(M)× F̃2(X) ��

��

F2(M)× X̃2

��

M2 × F̃2(X) �� FX
2 (M ×X)

(2)

where the maps are the obvious open inclusions. These maps respect the respective actions
of G and there is an induced pushout square

F2(M)× F2(X) ��

��

F2(M)×X2

��

M2 × F2(X) �� F2(M ×X).

Combining the pushout decompositions in (1) and (2), we obtain the following result.

Lemma 2.2. There is a G-equivariant homeomorphism

(DT (M)ε × F̃2(X))
⋃

F2(M)ε×F̃2(X)

(F2(M)× X̃2)
∼=−→ FX

2 (M ×X).

Proof. This follows easily from the diagram of G-equivariant maps

F2(M)ε × F̃2(X) ��

��

F2(M)× F̃2(X) ��

��

F2(M)× X̃2

��

DT (M)ε × F̃2(X) �� M2 × F̃2(X) �� FX
2 (M ×X).

Since both squares are pushouts, so is the composite square. �
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Corollary 2.3. Assume that F2(X) is non-empty (i.e., X has at least two points).
Then there is a pushout of G-equivariant maps

(F2(M)ε × F̃2(X))
⋃

F2(M)ε×G(DT (M)ε ×G) ��

��

DT (M)ε × F̃2(X)

��

(F2(M)× X̃2)
⋃

F2(M)ε×G(DT (M)ε ×G) �� FX
2 (M ×X).

Proof. Let q : G→ F̃2(X) be the inclusion of an orbit where G is regarded as a discrete
topological group. Consider the following diagram:

F2(M)ε × G

id×q

��

�� DT (M)ε × G

��

id×q

���������������������

F2(M)ε × F̃2(X) ��

��

(F2(M)ε × F̃2(X)) ∪F2(M)ε×G (DT (M)ε × G)

��

����� DT (M)ε × F̃2(X)

��

F2(M) × X̃2 �� (F2(M) × X̃2) ∪F2(M)ε×G (DT (M)ε × G) ������� F X
2 (M × X).

Note that all of the maps respect the corresponding G-actions. The squares on the left
are pushouts by definition. The composite bottom square is a pushout by Lemma 2.2.
Therefore the bottom right square is also a pushout, as required. �

2.3. Homotopy invariance

The somewhat complicated diagram in Corollary 2.3 can be simplified at the expense of
losing G-equivariance. First, let ε > 0 be small enough so that the closed inclusion of the
subspace of F2(M)ε which consists of those pairs of points which are exactly (ε/2)-apart,

ST (M) := {(m1,m2) ∈M ×M | d(m1,m2) = ε/2} j
↪→ F2(M)ε,

is a homotopy equivalence, the projection ST (M)→M , (m1,m2) �→ m1, is fibre homo-
topy equivalent to the spherical tangent bundle of M , and the projection DT (M)ε →M
is a homotopy equivalence. We denote DT (M) := DT (M)ε.

We obtain the following homotopy pushout decomposition of FX
2 (M ×X). Here

homotopy pushout is always considered with respect to the weak homotopy equivalences.

Proposition 2.4. Suppose that X̃ is weakly contractible and F2(X) �= ∅ (i.e., X

has at least two points). Let q : ∗ → F̃2(X) be the inclusion of a point. Then the space
FX

2 (M ×X) is weakly equivalent to the homotopy pushout of the maps

M2 ←− (ST (M)× F̃2(X))
⋃

ST (M)×{∗}
DT (M)× {∗} −→ DT (M)× F̃2(X)

which are defined by the projection away from F̃2(X) and the point q.

https://doi.org/10.1017/S0013091517000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000384


A remark on configuration spaces of two points 603

Proof. The proof is similar to that of Corollary 2.3. Consider the following commuta-
tive diagram

ST (M)× ∗

j×q

��

�� DT (M)× ∗

��

id×q

�������������������

F2(M)ε × F̃2(X) ��

��

F2(M)ε × F̃2(X) ∪ST (M) DT (M) �����

��

DT (M)× F̃2(X)

��

F2(M)× X̃2 �� F2(M)× X̃2 ∪ST (M) DT (M) ������� FX
2 (M ×X).

The two squares on the left are pushouts by definition. The top map is a cofibration,
therefore they are also homotopy pushouts (see, e.g., [2, Appendix, Proposition 4.8]).
The bottom composite square is a pushout by Lemma 2.2. This pushout decomposition
of FX

2 (M ×X) arises from an open covering defined by two open subsets and therefore
it defines a homotopy pushout (see also [3] for more general results). It follows that the
bottom right square is also a homotopy pushout.

There is an obvious commutative diagram

DT (M)× F̃2(X) DT (M)× F̃2(X)

(F2(M)ε × F̃2(X)) ∪ST (M) DT (M)

��

��

(F2(M)ε × F̃2(X)) ∪ST (M) DT (M)

��

��

F2(M)× X̃2 ∪ST (M) DT (M)
∼

�� M2

where the bottom map is a weak homotopy equivalence, using that X̃ → ∗ is a weak

homotopy equivalence, ST (M)
j
 F2(M)ε is a homotopy equivalence, and the homo-

topy pushout in Diagram (1). Therefore the homotopy pushouts of the vertical pairs of
maps are weakly homotopy equivalent. Similarly, they can be identified with the required

homotopy pushout using the homotopy equivalence ST (M)
j
 F2(M)ε and the fact that

ST (M) ⊂ DT (M) is a cofibration. �

Theorem 2.5. Suppose that X has a weakly contractible universal covering space and
F2(X) �= ∅ (i.e., X has at least two points). If M and N are homotopy equivalent closed
smooth manifolds, then the spaces FX

2 (M ×X) and FX
2 (N ×X) are weakly homotopy

equivalent.
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Proof. By the fibre homotopy invariance of the spherical tangent bundle [1,4], there
is a homotopy commutative square

ST (M)
�

��

��

ST (N)

��

M
�

�� N

where the vertical maps are (any of) the (two homotopic) projections and the horizontal
maps are homotopy equivalences. The projection DT (M)→M is a homotopy equiv-
alence and, under this identification, the inclusion DT (M) ⊂M ×M is homotopic to
the diagonal inclusion Δ : M →M ×M . Thus, the homotopy pushout decomposition in
Proposition 2.4 is weakly homotopy invariant in M and the result follows. �

Corollary 2.6. Let X, M and N be as in Theorem 2.5. Suppose that π1(X) is finite.
Then there is a zig-zag of maps connecting F2(M ×X) and F2(N ×X) and inducing
isomorphisms in rational homology.

Proof. The claim is obvious when M and N are 0-dimensional. If the dimension is
positive, the zig-zag of maps is as follows

F2(M ×X)← FX
2 (M ×X) 
w FX

2 (N ×X)→ F2(N ×X)

where the weak homotopy equivalence in the middle is from Theorem 2.5 and the other
two maps are the natural projections. These two maps are finite covering maps and it
is easy to check that they induce bijections on π0. Therefore they induce isomorphisms
between the rational homology groups. �

Corollary 2.7. Let M and N be homotopy equivalent closed smooth manifolds.

(a) Suppose that X is weakly contractible and F2(X) �= ∅. Then F2(M ×X) and
F2(N ×X) are weakly homotopy equivalent.

(b) FS1

2 (M × S1) and FS1

2 (N × S1) are homotopy equivalent.

Corollary 2.8. The spaces FS1

2 (L7,1 × S1) and FS1

2 (L7,2 × S1) are homotopy equiv-
alent.

Since L7,1 and L7,2 are not homeomorphic, the spaces L7,1 × S1 and L7,2 × S1 are
also not homeomorphic by results of [6] (see, e.g., the proof in [6, p. 177]). However,
they are simple-homotopy equivalent because the Whitehead torsion of f × idS1 van-
ishes for every homotopy equivalence f . In [8], it was shown that the orbit configuration
spaces F̃2(L7,1) and F̃2(L7,2) are not homotopy equivalent, thus disproving the homo-
topy invariance of configuration spaces. It remains open whether the configuration spaces
F2(L7,1 × S1) and F2(L7,2 × S1) are homotopy equivalent and whether, more generally,
the correspondence M �→ F2(M × S1) is homotopy invariant. Based on the properties of
the Whitehead torsion, this problem relates to the general question about the homotopy
invariance of configuration spaces with respect to simple-homotopy equivalences.
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