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For the Cauchy problem for the nonlinear infiltration equation{
ut = 1

m
(um)xx, x ∈ �, t > 0, m � 1,

u|t=0 = u0(x), x ∈ �,

we use its linear solution u(x, t, 1) to approach the nonlinear solution u(x, t, m), and obtain the

explicit estimate: ∫ T

0

∫
�

|u(x, t, m) − u(x, t, 1)|2 dx dt � (C∗(m − 1))2,

where C∗ = O(Tγ) and γ = 1+m−α
2(1+m)

for any 0 < α < 1.

1 Introduction

We consider the degenerate parabolic equation

ut =
1

m
(um)xx, m > 1.

Although the equation has been studied by many authors some years ago, there are

also some new results for the equation in recent years [6, 8, 9]. In these papers, the

qualitative behaviour of the solutions of the equations is studied. But there are few works

on the continuous dependence on the nonlinearities of the equations. In 1981, Benilan

& Crandall [1] studied a similar problem for degenerate parabolic equations, but their

results are not written in terms of explicit estimates. Cockburn & Gripenberg [4] also

discussed a similar problem, and obtained a continuous dependence results in the space

L1(�) for any fixed t > 0. To the knowledge of the authors, there are no other results on

such problems.

Let u(x, t, m) be the solutions for m � 1. it is well-known that ‖u(·, t, m)‖L2 is bounded

for any given t > 0, so ‖u(·, t, m)−u(·, t, m0)‖L2 is bounded also. Therefore, we hope we can

obtain the continuous dependence on the nonlinearities in L2(QT ), not in L2(�), where,
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QT = � × (0, T ). So the present paper discusses the problem in L2(QT ). We obtain the

following result:

‖u(x, t, m) − u(x, t, 1)‖L2(QT ) � C∗(m − 1),

where C∗ = O(Tγ) and γ = m+1−α
2(1+m)

for any 0 < α < 1.

We begin by recalling some known results. For the Cauchy problem{
ut = 1

m
(um)xx, x ∈ R, t > 0, m � 1,

u|t=0 = u0(x), x ∈ R
(1.1.1)

with

0 � u0(x) � M, u0 ∈ L1(R), um0 (x) is Lipschitz continuous on x ∈ R, (1.1.2)

we can very easily obtain the following results on the existence and uniqueness.

Lemma 1.1 For any positive constant T , the Cauchy problem (1.1) with the conditions (1.2)

has a unique weak solution u(x, t, m) ∈ C(QT ) such that ∂
∂x
um(x, t, m) ∈ C(QT ) and

0 � u(x, t, m) � M for (x, t) ∈ QT , m � 1, (1.1.3)

u(x, t, m) ∈ C([0,+∞);L1(R)) for m � 1, (1.1.4)∫
R

u(x, t, m) dx =

∫
R

u0(x) dx for t > 0, m � 1 (1.1.5)

Proof The classical case m = 1 is well-known and it is easy to see that u(x, t, 1) is also

classical. If m > 1, the existence and uniqueness of u(x, t, m) are given by Friedman &

Kamin [3] and Gilding & Peletier [5], the continuity of generalized derivative ∂um

∂x
is given

by Theorem 3 in Gilding & Peletier [5], (1.3) is given by Friedman [2] (see p. 34), and

(1.4) and (1.5) are given by Vazquez [7]. �

Apart from these results, there are also other conclusions about the problem (1.1), such

as the large time behaviour [7]. A function u(x, t, m) will be called a weak solution of

(1.1), (1.2) if

(i) u is bounded, continuous and nonnegative in QT ;

(ii) um has a bounded generalized derivative with respect to x in QT ;

(iii) u satisfies the identity∫ T

0

∫
R

[(
1

m
um

)
x

φx − uφt

]
dx dt =

∫
R

φ(x, 0)u0(x) dx (1.1.6)

for all φ ∈ C1(QT ) which vanish for large |x| and for t = T .

It is necessary to indicate that the solutions u(x, t, m) are obtained by the following steps

[4, p. 132–133].

Construct a sequence of functions {u0,k} with u0.k(x) ∈ C∞[−k, k] such that

(1) u0.k −→ u0 as k −→ ∞, uniformly on bounded intervals;
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(2) u0,k+1 � u0,k for all k � 1;

(3) k−1 � u0,k � M0 for all k � 1, where M0 � M;

(4) u0,k = M0 on [−k,−k + 1]
⋃

[k − 1, k] for all k � 1;

(5) | ∂
∂x
um0,k| � K for all k � 1, where K0 � K,

in which K is a positive constant such that

|um0 (x1) − um0 (x2)| � K|x1 − x2| for x1, x2 ∈ �.

For any given k � 1, Lemma 2 of Gilding & Peletier [5] assures the existence and

uniqueness of

uk(x, t, m) ∈ C∞(
Q

k

T

)
, (1.1.7)

solution of ⎧⎪⎨⎪⎩
ut = 1

m
(um)xx, for (x, t) ∈ Qk

T = (−k, k) × (0, T ],

u(±k, t) = M0, for t ∈ [0, T ],

u(x, 0) = u0,k(x), for x ∈ [−k, k],

(1.1.8)

with

k−1 � uk � M0 for (x, t) ∈ Q
k

T . (1.1.9)

Theorem 2 of Gilding & Peletier [5] shows that the limit functions

u(x, t, m) = lim
k−→+∞

uk(x, t, m) for (x, t) ∈ QT (1.1.10)

are indeed the weak solutions of (1.1) for m > 1.

In this paper, we shall establish the following result.

Theorem Let u(x, t, m) be the solutions of the Cauchy problem (1.1) with the conditions

(1.2) for m ∈ [1, 2). Then∫ T

0

∫
R

|u(x, t, m) − u(x, t, 1)|2 dx dt � (C∗(m − 1))2, (1.1.11)

where C∗ = O(Tγ) and γ = 1+m−α
2(1+m)

for any 0 < α < 1 when T is large enough.

As an example, we test our result on explicit solutions, namely the Barenblatt solution

of the equation Bt = (Bm)xx (m > 1) and the fundamental solution of the heat equation

Jt = Jxx. However, because the solutions B and J are not bounded as t tends to zero, so

although we can employ the method of the theorem, the result is different from (1.11).

2 Some lemmas

Lemma 2.1 Assume 1 < m < 2. For any given T > 0, let uk(x, t, m) be the solutions of (1.8)

on Q
k

T . Then for any l > 0 and 2l < k, there exist positive constants C0 and C1 such that

∣∣(um
2

k

)
x

∣∣ �

(
2

(
C1

l

)2

+
2m

2 − m
C0M∗t

−1

) 1
2

(2.2.1)
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for (x, t) ∈ [−l, l] × (0, T ], where M∗ = max
(x,t)∈Qk

T

uk.

Proof We first perform the change uk = V
2
m . In view of 2l < k, we have

Vt = V 2− 2
m Vxx + V 1− 2

m (Vx)
2 for (x, t) ∈ [−2l, 2l] × (0, T ]. (2.2.2)

It follows from (1.7) and (1.9) that V ∈ C∞(Q
k

T ). We differentiate (2.2) with respect to

x and multiply through by Vx. Writing p = Vx we obtain

1

2
(p2)t − V 2− 2

m ppxx =

(
4 − 2

m

)
V 1− 2

m p2px +

(
1 − 2

m

)
V− 2

m p4

for (x, t) ∈ [−2l, 2l] × (0, T ]. (2.2.3)

Let f(x) be a C∞
0 (�) function such that 0 � f(x) � 1 and

f(x) =

{
1, |x| � 1,

0, |x| � 2.

For l > 0 and τ > 0, we define the functions

fl(x) = f
(x

l

)
(2.2.4)

and

g(t) =

{
f( t−2τ

τ
), 0 � t < τ,

1, τ � t � T .

Set

ζ(x, t) = fl(x)g(t).

Then

0 � ζ(x, t) � 1

and

ζ(x, t) =

{
1, for (x, t) ∈ [−l, l] × [τ, T ],

0, for (x, t) ∈ QT − (2l, 2l) × (0, T ]

and there exists a positive constant C0 such that

|ζx| �
C0

l
, |ζxx| �

C0

l2
, |ζt| �

C0

τ
, for (x, t) ∈ QT .

Let

Z = (pζ)2,

then Z ∈ C(Q
k

T ). Set

Z(x0, t0, m) = max
(x,t)∈Qk

T

Z(x, t, m).

It follows from the definition of ζ(x, t) that (x0, t0) ∈ (−2l, 2l) × (0, T ] and

Zx = 0 and Zt − V 2− 2
m Zxx � 0 at (x0, t0).
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Hence,

pxζ = −pζx at (x0, t0)

and

p2(V 2− 2
m ζζxx − 2V 2− 2

m (ζx)
2 − ζζt) �

(
1

2
(p2)t − V 2− 2

m ppxx

)
ζ2 at (x0, t0). (2.2.5)

Using (2.5) in (2.3), we find that

2 − m

m
(pζ)2 �

2 − 4m

m
Vpζζx + V 2(2ζ2

x − ζζxx) + V
m
2 ζζt at (x0, t0).

Notice that uk � M∗, so V
m
2 � M∗. Therefore, for 1 < m < 2, there exists a positive

constant C1 such that

(pζ)2|(x0 ,t0) �
2 − 4m

2 − m
Vpζζx +

m

2 − m
V 2(2(ζx)

2 − ζζxx) +
m

2 − m
M∗C0τ

−1

�

(
C1

l

)2

+
1

2
(pζ)2|(x0 ,t0) +

m

2 − m
M∗C0τ

−1.

Thus,

(pζ)2|(x0 ,t0) � 2

(
C1

l

)2

+
2m

2 − m
M∗C0τ

−1. (2.2.6)

It follows from the definition of Z(x0, t0) that (2.6) holds for all (x, t) ∈ [−2l, 2l] × (0, T ],

especially, for (x, t) ∈ [−l, l] × {τ}. Notice that ζ(x, τ) = 1 for x ∈ [−l, l], hence

|p(x, τ, m)| �

(
2

(
C1

l

)2

+
2m

2 − m
M∗C0τ

−1

) 1
2

for x ∈ [−l, l].

This yields (2.1) immediately. �

Lemma 2.2 For any given T > 0, assume u(x, t, m) be the weak solutions of (1.1) with the

conditions (1.2) on QT . Then for any given m ∈ [1, 2), there is a positive constant C2 such

that

|(um(x, t, m))x| � C2t
− 1

2 for (x, t) ∈ QT . (2.2.7)

Proof By Lemma 1, for any x, x′ ∈ [−l, l], 0 < 2l < k, (2.1) yields

|u
m
2

k (x′, t, m) − u
m
2

k (x, t, m)| = |
∫ x′

x

∂

∂x
u

m
2

k (ξ, t, m)dξ|

�

(
2

(
C1

l

)2

+
2m

2 − m
M∗C0t

−1

) 1
2

|x′ − x|,

Letting k −→ ∞, and then letting l −→ ∞, recalling from (1.3) and (1.10), we have

∣∣um
2 (x′, t, m) − u

m
2 (x, t, m)

∣∣ �

(
2m

2 − m
MC0t

−1

) 1
2

|x′ − x|
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for (x, t), (x′, t) ∈ QT . Letting x′ −→ x yields |(um
2 )x| � ( m

2−m
MC0t

−1)
1
2 . This gives (2.7) for

1 < m < 2.

To end the proof of the lemma, we notice that

u(x, t, 1) =
1

2
√

πt

∫
R

u0(ξ)e
−(x−ξ)2

4t dξ.

It is easy to find that (2.7) also holds for m = 1. �

3 Proof of the theorem

Let u(x, t, m) be the solutions of the problem (1.1) with the conditions (1.2) on QT . Define

η =

∫ t

T

(
1

m
um(x, τ, m) − u(x, τ, 1)

)
dτ for t ∈ (0, T ).

It is not difficult to see that fl(x)η are admissible test functions in (1.6), in which fl(x) is

defined by (2.4). Thus, with the choice φ = fl(x)η in (1.6), we have∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))φt dx dt =

∫ T

0

∫
R

Hxφx dx dt, (3.3.1)

in which,

H =
1

m
um(x, t, m) − u(x, t, 1).

Notice that∫ T

0

∫
R

Hxφx dx dt =

∫ T

0

∫
R

Hxηf
′
l (x) dx dt +

∫ T

0

∫
R

Hxηxfl(x) dx dt

def
= I1 + I2.

By (1.5), ∫
R

|H | dx �

(
1

m
Mm−1 + 1

)
u0,

where u0 =
∫
R
u0 dx. Hence Lemma 2.2 implies that there exist positive constants C3 and

C4, which do not depend on l, such that

|I1| �

∫ T

0

∫
l�|x|�2l

C0

l
|Hxη(x, t)| dx dt

�
C0

l

∫ T

0

∫
l�|x|�2l

|Hx|
(∫ T

0

|H(x, τ)|dτ
)
dx dt

�
C0C3

l

∫ T

0

t−
1
2

∫
l�|x|�2l

∫ T

0

|H(x, τ)|dτ dx dt

�
C4

l
.
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It is easy to see that

I2(T )|T=0 = 0,

dI2

dT
= −1

2

∫
R

d

dT

(∫ T

0

Hx dt

)2

fl(x) dx.

Thus I2 � 0 and therefore,∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))φt dx dt �
C4

l
. (3.3.2)

On the other hand,∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))φt dx dt

=

∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))Hfl(x) dx dt

=
1

m

∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))(um(x, t, m) − u(x, t, m))fl(x) dx dt

+
1

m

∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))2fl(x) dx dt

+
1 − m

m

∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))u(x, t, 1)fl(x) dx dt.

It follows from 0 � u � M that

um(x, t, m) − u(x, t, m) =

∫ 1

0

(
d

ds
(u(x, t, m))sm+(1−s)

)
ds

= (m − 1)uη(x, t, m) ln u(x, t, m)

with η = m + θ(1 − m), 0 < θ < 1. Letting l −→ ∞, using (3.2), we have∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))2 dx dt

� (m − 1)

∫ T

0

∫
R

|u(x, t, m) − u(x, t, 1)|(|uη(x, t, m) ln u(x, t, m)| + u(x, t, 1)) dx dt.

Hölder’s inequality implies that∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))2 dx dt

� 2(m − 1)2
∫ T

0

∫
R

(|uη(x, t, m) ln u(x, t, m)|2 + u2(x, t, 1)) dx dt.

By [7] (p.791), there are positive constants C(m) for m � 1 such that

u(x, t, m) � C(m)t−
1

1+m for (x, t) ∈ QT .
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Since η > 1 and u � M, hence, for any 0 < α < 1 there exists a positive constant C5

which does not depend on m ∈ [1, 2) such that u2η−1−α| ln u|2(C(m))α � C5, and therefore,∫ T

0

∫
R

(u(x, t, m) − u(x, t, 1))2 dx dt

� 2(m − 1)2
∫ T

0

∫
R

(
C5t

− α
1+m u(x, t, m) + C(1)t−

1
2 u(x, t, 1)

)
dx dt

� 2(m − 1)2u0

(
m + 1

1 + m − α
C5T

1+m−α
1+m + 2C(1)T

1
2

)
. (3.3.3)

Denote

(C∗)2 = 2u0

(
m + 1

1 + m − α
C5T

1+m−α
1+m + 2C(1)T

1
2

)
,

Then (3.3) yields (1.11). Clearly, 1+m−α
1+m

> 1
2

for all α ∈ (0, 1), so

C∗ = O(Tγ) with γ =
1 + m − α

2(1 + m)

if T is large enough.

4 An example

As an example, we test the present result on explicit solutions, namely the Barenblatt

solution and the fundament solution of the heat equation. Let

G(s) = [(β2 − c2s2)+]
1

m−1 ,

where

c2 =
l(m − 1)

2m
, l =

1

1 + m

and β is a positive constant such that
∫
R
G(x) dx = 1. By Friedman & Kamin [3],

B = t−lG
(x

tl

)
is a solution of the equation

Bt = (Bm)xx, m > 1

and B(x, 0) = δ(x), where δ(x) is the δ-function. Denote J = 1√
πt
e− x2

t . It is well-known

that J is the fundament solution of the heat equation Jt = Jxx with J(x, 0) = δ(x).

Clearly, the functions Bm and J1 are not bounded as t −→ 0, so the condition (1.2)

of our theorem is not satisfied. Fortunately, we can also use the above procedure. But

certainly, the result is different.

To do this, we also set

η =

∫ t

T

(Bm − J)dτ for t ∈ (0, T ).
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Because (B − J)t = (Bm − J)xx and (B − J) −→ 0 as x −→ ∞, so∫ T

0

∫
R

(B − J)ηt dx dt =

∫ T

0

∫
R

(B − J)xηx dx dt.

The same procedure yields∫ T

0

∫
R

(B − J)xηx dx dt = −1

2

∫
R

(∫ T

0

(B − J)x dt

)2

dx.

Thus, we also have∫ T

0

∫
R

(B − J)2 dx dt � 2(m − 1)2
∫ T

0

∫
R

(|Bη lnB|2 + J2) dx dt, (4.4.1)

where 1 < η < m. To estimate the right hand of (4.1), we first find∫ T

0

∫
R

J2 dx dt = T
1
2 . (4.4.2)

Secondly, since
∫
c|s|�β

(β2 − c2s2)
1

m−1 ds = 1, then,∫ β

0

(β2 − ξ2)
1

m−1 dξ =
c

2
.

Perform the change ξ = β cos θ, thus

β
m+1
m−1

∫ π
2

0

(sin θ)
m+1
m−1 dθ =

c

2
,

or,

β =

(
c

2

) m−1
m+1

(∫ π
2

0

(sin θ)
m+1
m−1 dθ

)− m−1
m+1

.

Recalling c =
√

l(m−1)
2m

and using L’Hospital’s method, we know that there is a positive

constant ε such that

0 <
( c

2

) m−1
m+1

< ε

and

0 <

(∫ π
2

0

(sin θ)
m+1
m−1 dθ

)− m−1
m+1

< ε

uniformly for all m ∈ [1, 2). Thus, 0 < β < ε2 for all m ∈ [1, 2). Therefore, if we set ξ = c
tl
x,

then∫ T

0

∫
R

|Bη lnB|2 dx dt =
1

c

∫ T

0

∫
|ξ|�β

tl−2lη(β2 − ξ2)
2η
m−1

[
− l ln t − ln(β2 − ξ2)

1
m−1

]2

�
2

c

∫ T

0

∫
|ξ|�β

tl−2lη(β2 − ξ2)
2η
m−1

[
(l ln t)2 + (ln(β2 − ξ2)

1
m−1 )2

]
.
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Clearly, (β2 − ξ2)
2η
m−1 and (β2 − ξ2)

2η
m−1 (ln(β2 − ξ2)

1
m−1 )2 are bounded for all |ξ| � β, so there

is a positive constant k1 such that∫ T

0

∫
R

|Bη lnB|2 dx dt �
k1

c

∫ T

0

tl−2lη[(ln t)2 + 1)] dt.

Since ∫ T

0

tl−2lηdt =
1

1 + l − 2ηl
T 1+l−2ηl ,∫ T

0

tl−2lη(ln t)2dt = O(T 1+l−2ηl(lnT )2) as T is large enough,

so recalling c =
√

l(m−1)
2m

again, we know that there is a positive constant k2 such that

∫ T

0

∫
R

|Bη lnB|2 dx dt �
k2

2
√
m − 1

T 1+l−2ηl(lnT )2, as T is large enough. (4.4.3)

Finally, combining (4.1), (4.2) and (4.3), we can obtain our result.

Corollary If B is the Barenblatt solution and J is the fundament solution of the heat

equation. Then there is a positive constant C∗ such that∫ T

0

∫
R

(B − J)2 dx dt � C∗(m − 1)
3
2 (4.4.4)

where 1 < η < m and C∗ = O(T
2+m−2η

1+m (lnT )2) as T is large enough.

5 Conclusion

Set

Ã = {u(x, t, m); m � 1} ,
where u(x, t, m) are the solutions of the Cauchy problem{

ut = 1
m
(um)xx, x ∈ �, t > 0,

u|t=0 = u0(x), x ∈ �,

u0(x) satisfies (1.2). We prove that in this paper, the classical solution u(x, t, 1) is a limit

of functions of Ã in space L2(QT ) as m −→ 1. The convergence speed is controlled by

Tγ|m− 1|, where γ = 1+m−α
2(1+m)

. But if u0(x) is not bounded, then the speed is different. As an

example of such a case, we show the convergence speed of the Barenblatt solution tends

to the fundament solution of the heat equation in the last section of the paper.
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