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Block Decomposition and Weighted
Hausdorff Content

Hiroki Saito,Hitoshi Tanaka, and Toshikazu Watanabe

Abstract. Block decomposition of Lp spaces with weighted Hausdorò content is established for 0 <
p ⩽ 1 and the Feòerman–Stein type inequalities are shown for fractional integral operators and some
variants ofmaximal operators.

1 Introduction

he purpose of this paper is to develop a two-weight theory of dyadicHausdorò con-
tent. Let D be the set of all dyadic cubes in Rn , that is,

D ∶= {2−k(m + [0, 1)n) ∶ k ∈ Z,m ∈ Zn}.
We ûrst introduce the weighted Hausdorò content (cf. [16, 17]) and Choquet spaces.
By weights we will always mean nonnegative and locally integrable functions on Rn .
Given ameasurable set E and a weight w, w(E) = ∫E w dx, ∣E∣ denotes the Lebesgue
measure of E and 1E denotes the characteristic function of E.

Letw be aweight onRn . If E ⊂ Rn and 0 < d ≤ n, then the d-dimensionalweighted
Hausdorò content Hd

w of E is deûned by

Hd
w(E) ∶= inf

∞

∑
j=1

−∫
Q j
wdxℓ(Q j)d ,

where the inûmum is taken over all coverings of E by countable families of dyadic
cubesQ j , the barred integral −∫Q w dx stands for the usual integral average ofw overQ,
w(E)/∣E∣, and by ℓ(Q) we denote the side length of the cube Q. When w ≡ 1, we
simply denote by Hd , which is the d-dimensional (dyadic) Hausdorò content. When
d = n, one has Hn

w(E) = w(E). We emphasize that the set function Hd
w is strong

subadditive (cf. [11]), that is,

Hd
w(E ∪ F) +Hd

w(E ∩ F) ≤ Hd
w(E) +Hd

w(F), E , F ⊂ Rn .

he Choquet integral of f ≥ 0 with respect to a set function C is deûned by

∫
Rn
f dC ∶= ∫

∞

0
C({x ∈ Rn ∶ f (x) > t}) dt.
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142 H. Saito,H. Tanaka, and T. Watanabe

he Choquet space Lp(C), 0 < p <∞, is the set of all functions f such that ∫Rn ∣ f ∣p dC
is ûnite.

hanks to the strong subadditivity of the set function Hd
w , one has sublinearity (cf.

[11]), that is, for nonnegative functions f and g,

∫
Rn

( f + g) dHd
w ≤ ∫

Rn
f dHd

w + ∫Rn
g dHd

w ,

which implies that the quantity

∥ f ∥Lp(Hd
w)
∶= (∫

Rn
∣ f ∣p dHd

w)
1/p

is the norm when 1 ≤ p <∞ and the quasi-norm when 0 < p < 1.
We consider the following dyadicmaximal operator. For a locally integrable func-

tion f on Rn , the dyadic fractional maximal operator Mα , 0 ≤ α < n, is deûned by

Mα f (x) ∶= sup
Q∈D

1Q(x)−∫
Q
∣ f ∣ dyℓ(Q)α .

If α = 0, M0 is the usual dyadic Hardy–Littlewood maximal operator and it will be
denoted by M.

In [12], the authorsproved the following. For an arbitraryweightw, the Feòerman–
Stein type inequality

(1.1) ∥Mα f ∥Lp(Hδ
w)
≤ Cp∥ f ∥Lp(Hd

Mγpw
)

holds for 0 ≤ γ ≤ α, d/n < p < d/α and δ = d − (α − γ)p. In both sides of (1.1),
the relationship between fractional order and Hausdorò dimension is controlled by
the simple equation δ + αp = d + γp. A main ingredient in the proof of (1.1) is the
following Sawyer type testing estimate. he testing inequality

(1.2) ∫
Rn

Mα[1Q]p dHδ
w ≤ C p

p−∫
Q
Mγpw dxℓ(Q)d

holds for any dyadic cube Q ∈ D. It wasn’t so clear why the testing inequality (1.2)
implies the norm inequality (1.1). In this paper, introducing block decomposition
with weighted Hausdorò content, we clarify its structure. Once we have had the de-
composition, precious two-weight estimates for positive subadditive operators can be
proved.

his paper is organized as follows. In Section 2we introduce block decomposition
with weightedHausdorò content and give a characterization of two-weight inequali-
tieswithHausdorò content for a subadditive operator. In Section 3we apply this char-
acterization theorem to several maximal operators, including the strongmaximal op-
erator and the fractional maximal operator on unweightedChoquet spaces, to reprove
some known results for these operators. In Section 4 we discuss the weighted esti-
mates for the composition ofmaximal operators, the fractionalmaximal operator, and
the fractional integral operator. In appendices, we will verify theHardy–Littlewood–
Sobolev inequality for the fractional integral operatorwithHausdorò content andwill
consider an application for the Riesz potential (usual fractional integral operator).

he letter C will be used for unimportant constants that may change from one
occurrence to another. Constants with subscripts, such as C1, C2, do not change in
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Block Decomposition andWeighted Hausdorò Content 143

diòerent occurrences. By the notation A ≈ B wemean that C−1B ≤ A ≤ CB with some
positive ûnite constant C independent of appropriate quantities. We write X ≲ Y ,
Y ≳ X if there is an independent constant C such that X ≤ CY .

2 Block Decomposition with Weighted Hausdorff Content

In what follows we introduce block decomposition with weightedHausdorò content.

Deûnition 2.1 Let v be a weight on Rn , 0 < p ≤ 1 and 0 < d < n. he block
space Bp;∞,d(v) is deûned by the set of all measurable functions f on Rn with the
quasi-norm

∥ f ∥Bp;∞,d(v) ∶= inf{∥{c j}∥l p ∶ f =∑
j
c jb j} <∞,

where b j is a (p;∞, d , v)-block and

∥{c j}∥l p ∶= (∑
j
∣c j ∣p)

1/p

and the inûmum is taken over all possible decompositions of f . We say in addition
that a function b onRn is a (p;∞, d , v)-block provided that b is supported on a dyadic
cube Q ∈D and satisûes

∥b∥L∞(−∫
Q
v dxℓ(Q)d)

1/p

≤ 1.

heorem 2.2 Let v be a weight on Rn , 0 < p ≤ 1 and 0 < d < n. hen Lp(Hd
v ) =

Bp;∞,d(v) with ∥ ⋅ ∥Lp(Hd
v )
≈ ∥ ⋅ ∥Bp;∞,d(v).

Proof Assume that the nonnegative function f belongs to Lp(Hd
v ). Consider Ek =

{x ∈ Rn ∶ f (x) > 2k}, k ∈ Z. hen,

(2.1) ∫
Rn
f p dHd

v ≈∑
k

2pkHd
v (Ek).

Indeed, by sublinearity,

∫
Rn
f p dHd

v ≲∑
k

2pkHd
v (Ek).

Conversely,

∑
k

2pkHd
v (Ek) =

1
log 2

∑
k

2pkHd
v (Ek)∫

2k

2k−1

dt
t

≤ 1
log 2

∑
k

2pk ∫
2k

2k−1
Hd

v ({x ∈ Rn ∶ f (x) > t}) dt
t

≲ ∫
∞

0
Hd

v ({x ∈ Rn ∶ f (x) > t}) tp−1 dt

≈ ∫
Rn
f p dHd

v .
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We can select a set of the pairwise disjoint dyadic cubes {Qk , j} ⊂ D such that
Ek ⊂ ⋃ j Qk , j and

(2.2) ∑
j
−∫
Qk , j

v dxℓ(Qk , j)d ≤ 2Hd
v (Ek).

Upon deûning
∆k , j ∶= Qk , j / ⋃

i
Qk+1, i ,

we see that the sets ∆k , j are pairwise disjoint and supp f = ⋃k , j ∆k , j . With this, we
obtain

f =∑
k , j
ck , jbk , j ,

where

ck , j = 2k+1(−∫
Qk , j

v dxℓ(Qk , j)d)
1/p

and

bk , j =
f χ∆k , j

ck , j
.

It is easy to check that each bk , j is a (p;∞, d , v)-block, since we have f (x) ≤ 2k+1 if
x ∈ ∆k , j . To prove that f ∈ Bp;∞,d(v), it remains to verify that {ck , j p} is summable.
It follows that

∥{ck , j}∥p
l p = 2p∑

k , j
2pk−∫

Qk , j
v dxℓ(Qk , j)d

≲∑
k

2pkHd
v (Ek)

≈ ∥ f ∥p
Lp(Hd

v )
,

wherewehaveused (2.1) and (2.2). hisproves Lp(Hd
v ) ⊂ Bp;∞,d(v)with ∥⋅∥Bp;∞,d(v) ≲

∥ ⋅ ∥Lp(Hd
v )
.

We now prove converse. Suppose that f belongs to Bp;∞,d(v). hus, f = ∑ j c jb j

with {c j} ∈ l p and each b j is a (p;∞, d , v)-block. Assume that Q j is the support cube
of b j . hen we have

∫ ∣b j ∣p dHd
v ≤ ∥b j∥p

L∞−∫Q j
v dxℓ(Q j)d ≤ 1.

hus, thanks to p ∈ (0, 1] and the sublinearity of dHd
v ,

∫ ∣ f ∣p dHd
v ≤∑

j
∣c j ∣p ∫ ∣b j ∣p dHd

v ≤∑
j
∣c j ∣p

and, hence, Bp;∞,d(v) ⊂ Lp(Hd
v ) with ∥ ⋅ ∥Lp(Hd

v )
≤ ∥ ⋅ ∥Bp;∞,d(v). hese complete the

proof. ∎

Remark heorem 2.2 for p = 1 and v ≡ 1 was ûrst veriûed in [3, Remark 3.4].
Block spaces as the predual ofMorrey spaces were ûrst introduced in [18]. he Fatou
property of block spaces was shown in [13].
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By the use of heorem 2.2, we give a characterization of two-weight inequalities
with Hausdorò content for a subadditive operator.

Suppose that T is a subadditive operator. Let w and v be arbitrary weights on Rn ,
and 0 < d , δ < n.

heorem 2.3 Let 0 < p ≤ 1 and q ≥ p. hen the following statements are equivalent.
(a) he two-weight norm inequality

∥T f ∥Lq(Hδ
w)
≤ C1∥ f ∥Lp(Hd

v )

holds.
(b) he testing inequality

∥Tb∥Lq(Hδ
w)
≤ C2

holds for any (p;∞, d , v)-block b.
Moreover, the least possible constants C1 and C2 are comparable.

Proof By testing (a) on f = b, we see that (b) follows at once from (a). We shall
verify the converse.
Decompose f ∈ Lp(Hd

v ) as f = ∑ j c jb j , where ∥{c j}∥l p ≈ ∥ f ∥Lp(Hd
v )
and b j is a

(p;∞, d , v)-block. hanks to subadditivity of T and the assumption 0 < p ≤ 1, we
have that

∣T f ∣p ≤∑
j
∣c j ∣p ∣Tb j ∣p .

By the triangle inequality of the norm ∥ ⋅ ∥Lq/p(Hδ
w)
, we have further that

∥T f ∥p
Lq(Hδ

w)
= ∥ ∣T f ∣p∥ Lq/p(Hδ

w)

≤∑
j
∣c j ∣p∥ ∣Tb j ∣p∥ Lq/p(Hδ

w)

≤ C2
p∑

j
∣c j ∣p

≈ C p
2 ∥ f ∥

p
Lp(Hd

v )
,

where we have used (b). his completes the proof. ∎

3 Examples: Unweighted Cases

In what follows we reprove some known results as an application ofheorem 2.3.

Example 3.1 We applyheorem 2.3with T = M. Itwas shown in [8, Lemma 1] that

∫
Rn

M[1Q]p dHd ≲ ℓ(Q)d , d
n
< p <∞.

his yields (b), and thus (a):

∥M f ∥Lp(Hd) ≲ ∥ f ∥Lp(Hd) ,
d
n
< p ≤ 1.

Especially,
∥M f ∥L1(Hd) ≲ ∥ f ∥L1(Hd) ,
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which yields
∥M[∣ f ∣p]∥L1(Hd) ≲ ∥ ∣ f ∣p∥ L1(Hd)

, p > 1.

Since we have (M f )p ≤ M[∣ f ∣p],
∥M f ∥Lp(Hd) ≲ ∥ f ∥Lp(Hd) , p > 1.

hus, we conclude that

∥M f ∥Lp(Hd) ≲ ∥ f ∥Lp(Hd) ,
d
n
< p <∞.

Example 3.2 For a locally integrable function f onRn , the dyadic strong maximal
operator MS is deûned by

MS f (x) ∶= sup
R

1R(x)−∫
R
∣ f ∣ dy,

where the supremum is taken over all dyadic rectangles R ⊂ Rn forming the Cartesian
product of the dyadic intervals in R. In [10], it is proved that

∫
Rn

MS[1Q]p dHd ≲ ℓ(Q)d

holds for min(1, d) < p < ∞. Invoking the same argument as in Example 3.1, when
0 < d < 1, we obtain

∥MS f ∥Lp(Hd) ≲ ∥ f ∥Lp(Hd) , d < p <∞, 0 < d < 1.

Example 3.3 We treat the fractional maximal operator Mα , 0 ≤ α < n. We have
that the testing inequality

(3.1) ∥Mα[1Q]∥Lq(Hδ) ≲ ℓ(Q)d/p , q ≥ p,
d
n
< p < d

α
,
δ
q
+ α = d

p
,

holds for every Q ∈D. Indeed, we proved the pointwise expression in [12]

(3.2) Mα[1Q](x) = ℓ(Q)α( 1Q(x) +
∞

∑
j=1

2−(n−α) j1π j(Q) / π j−1(Q)(x)) ,

where π0(Q) = Q and π j(Q) is the smallest dyadic cube containing π j−1(Q) for
j = 1, 2, . . . . his and the sublinearity of dHδ give us that

∥Mα[1Q]∥q
Lq(Hδ)

= ∫
Rn

Mα[1Q]q dHδ

≤ ℓ(Q)αq
∞

∑
j=0

2−q(n−α) jHδ(π j(Q))

= ℓ(Q)δ+αq
∞

∑
j=0

2(δ−q(n−α)) j

≲ ℓ(Q)δ+αq = ℓ(Q)qd/p ,

where we have used the fact that

Hδ(π j(Q)) = ℓ(π j(Q)) δ = 2δ jℓ(Q)δ
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and

δ − q(n − α) = q( δ
q
− n + α) = q( d

p
− n) < 0.

It follows from heorem 2.3 and the testing inequality (3.1) that

∥Mα f ∥Lq(Hδ) ≲ ∥ f ∥Lp(Hd) , q ≥ p,
d
n
< p < min( 1,

d
α
) , δ

q
+ α = d

p

and, when 1 < d/α, that

(3.3) ∥Mα f ∥Lq(Hδ) ≲ ∥ f ∥L1(Hd) , q ≥ 1,
δ
q
+ α = d .

If 1 < p < d/α, then, in (3.3), letting f = ∣g∣p and r = pq and using (Mβ g)p ≤
Mα[∣g∣p], βp = α, we have that

∥Mβ g∥Lr(Hδ) ≲ ∥g∥Lp(Hd) , r ≥ p,
δ
r
+ β = d

p
.

In conclusion, we obtain

∥Mα f ∥Lq(Hδ) ≲ ∥ f ∥Lp(Hd) , q ≥ p,
d
n
< p < d

α
,
δ
q
+ α = d

p
.

Remark Example 3.3 of α = 0 is an extension of Example 3.1, which is a classical
theorem due to Orobitg and Verdera in [1,2, 8]. Especially, we have that

∥M f ∥Lpn/d(Rn) ≲ ∥ f ∥Lp(Hd) ,
d
n
< p <∞,

which also follows from Hardy–Littlewoodmaximal theorem and [8, Lemma 3].

4 Fefferman–Stein Type Inequalities

In what follows we investigate the weighted estimates of (b) in heorem 2.3 by the
same strategy as in the previous section.

4.1 Composition of the Dyadic Hardy–Littlewood Maximal Operator

A composition ofmaximal operators plays an important role in the weight theory. In
[9], Pérez established the weighted inequalities for singular integrals and their com-
mutators with non-a priori assumption on the weights. he proof is based on the
fact that the singular integral operators and their commutators concerned in [9] are
controlled by the composition of theHardy–Littlewoodmaximal operator. he com-
position of the Orlicz maximal operator and the fractional Orlicz maximal operator
also have been studied in [4,5]. In this subsectionwe shall show the pointwise behav-
ior of the dyadic Hardy–Littlewood maximal operator acting on 1Q and will invoke
the same strategy as in the previous section.
For the function 1Q , Q ∈ D, we shall compute the value of Mk[1Q](x), where Mk

denotes the k-fold composition of the dyadicHardy–Littlewoodmaximal operatorM.
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Lemma 4.1 For k = 1, 2, . . . and Q ∈D, we have

Mk[1Q](x) = a(k)0 1Q(x) +
∞

∑
j=1

2−n ja(k)j 1π j(Q) / π j−1(Q)(x),

where
a(k)0 = a(1)j = 1

and, letting A = 1 − 2−n ,

a(k)j = 1 + jA+ j( j + 1)
2!

A2 + ⋅ ⋅ ⋅ + j( j + 1) ⋅ ⋅ ⋅ ( j + k − 2)
(k − 1)! Ak−1 .

Proof By considering the density of the function, we see that

(4.1) M1[1Q](x) = 1Q(x) +
∞

∑
j=1

2−n j1π j(Q) / π j−1(Q)(x)

and that, for k = 2, 3, . . . ,

Mk[1Q](x) = −∫
π j(Q)

Mk−1[1Q](y) dy for all x ∈ π j(Q) / π j−1(Q).

Starting from (4.1), we ûrst obtain

a(2)j = 2n j−∫
π j(Q)

M1[1Q](y) dy = 1 + jA,

where we have used
∣π j(Q) / π j−1(Q)∣ = 2 jn ∣Q∣A.

Next, we have that

a(3)j = 2n j−∫
π j(Q)

M2[1Q](y) dy

= 1 + jA+ (
j

∑
k=1

k)A2

= 1 + jA+ j( j + 1)
2!

A2 .

We have also that

a(4)j = 2n j−∫
π j(Q)

M3[1Q](y) dy

= 1 + jA+ (
j

∑
k=1

k)A2 + (
j

∑
k=1

k(k + 1)
2!

)A3

= 1 + jA+ j( j + 1)
2!

A2 + j( j + 1)( j + 2)
3!

A3 .

Continuing these steps, we obtain the desired relation. ∎

Remark 4.2 It follows from the Taylor expansion that

(4.2) (1 − t)− j = 1 + jt + j( j + 1)
2!

t2 + j( j + 1)( j + 2)
3!

t3 + ⋅ ⋅ ⋅ .
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Surprisingly, the coeõcient a(k)j corresponds to the ûrst k-th sum of (4.2) with t = A.
hus,

lim
k→∞

a(k)j = (1 − A)− j = 2n j .

Let 0 < d , δ < n, d/n < p ≤ q <∞, δ/q = d/p. Letw be aweight onRn and Q ∈D.
We shall compute

(i) ∶= ∥Mk[1Q]∥Lq(Hδ
w)

.
here holds by Lemma 4.1

(i)q = ∫
Rn

Mk[1Q](x)q dHδ
w

≤
∞

∑
j=0

2−qn j(a(k)j )qHδ
w(π j(Q))

≤ ℓ(Q)δ
∞

∑
j=0

2(δ−qn) j(a(k)j )q−∫
π j(Q)

w dx

= ℓ(Q)qd/p
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dx

= { ℓ(Q)d(
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dx)
p/q

}
q/p

,

where we have used

Hδ
w(π j(Q)) ≤ −∫

π j(Q)
w dxℓ(π j(Q)) δ = ℓ(Q)δ2δ j−∫

π j(Q)
w dx .

Since we have had

(i) ≤ { ℓ(Q)d(
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dx)
p/q

}
1/p

,

in order toobtain the estimate (b) ofheorem 2.3,wemust seek aweight v that satisûes

(
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dx)
p/q

≤ −∫
Q
v dx for all Q ∈D.

We have the following theorem.

heorem 4.3 Let 0 < d , δ < n, d/n < p ≤ q < ∞, δ/q = d/p. Let w be a weight on
Rn .
(a) If p ≤ 1, then there exists a constant C independent of k such that the Feòerman–

Stein type inequality

∥Mk f ∥Lq(Hδ
w)
≤ C∥ f ∥Lp(Hd

v )

holds, where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dy)
p/q

.
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(b) If p ≥ 1, then there exists a constant C independent of k such that the Feòerman–
Stein type inequality

∥Mk f ∥Lq(Hδ
w)
≤ C∥ f ∥Lp(Hd

v )
,

holds, where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−
q
p (n−d/p) j(a(k)j )q/p−∫

π j(Q)
w dy)

p/q

.

(c) If p ≥ 1, then there exists a constant C independent of k such that the Feòerman–
Stein type inequality

∥Mk f ∥Lp(Hd
w)
≤ C∥ f ∥Lp(Hd

v )

holds, where

v(x) ∶= sup
Q∈D

1Q(x)
∞

∑
j=0

2−(n−d/p) ja(k)j −∫
π j(Q)

w dy.

Proof By the above discussion andheorem 2.3, we need only verify (b). It follows
from (a) that

(4.3) ∥Mk f ∥Lq(Hδ
w)
≤ C∥ f ∥L1(Hd

v )
, q ≥ 1,

δ
q
= d ,

where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−q(n−d/p) j(a(k)j )q−∫
π j(Q)

w dy)
1/q

.

In (4.3), letting f = ∣g∣p and q = pr and using (Mk g)p ≤ Mk[∣g∣p], we have

∥Mk g∥Lr(Hδ
w)
≤ C1/p∥g∥Lp(Hd

v )
, r ≥ p,

δ
r
= d

p
,

where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−
r
p (n−d/p) j(a(k)j )r/p−∫

π j(Q)
w dy)

p/r

.

his means (b). ∎

4.2 Fractional Maximal Operator

We treat again the fractional maximal operator Mα , 0 ≤ α < n. Let 0 < d , δ < n, q ≥ p,
d/n < p < d/α, δ/q + α = d/p. Let w be a weight on Rn and Q ∈ D. In the same
manner as Example 3.3, we shall compute

(ii) ∶= ∥Mα[1Q]∥Lq(Hδ
w)

.
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Using (3.2), we have that

(ii)q = ∫
Rn

Mα[1Q]q dHδ
w

≤ ℓ(Q)αq
∞

∑
j=0

2−q(n−α) jHδ
w(π j(Q))

≤ ℓ(Q)δ+αq
∞

∑
j=0

2(δ−q(n−α)) j−∫
π j(Q)

w dx

= ℓ(Q)qd/p
∞

∑
j=0

2−q(n−d/p) j−∫
π j(Q)

w dx

= { ℓ(Q)d(
∞

∑
j=0

2−q(n−d/p) j−∫
π j(Q)

w dx)
p/q

}
q/p

,

where we have used

Hδ
w(π j(Q)) ≤ −∫

π j(Q)
w dxℓ(π j(Q)) δ = ℓ(Q)δ2δ j−∫

π j(Q)
w dx

and

δ − q(n − α) = q( δ
q
− n + α) = −q(n − d

p
) .

his implies

(ii) ≤ { ℓ(Q)d(
∞

∑
j=0

2−q(n−d/p) j−∫
π j(Q)

w dx)
p/q

}
1/p

.

We have the following theorem.

heorem 4.4 Let 0 < d , δ < n, q ≥ p, d/n < p < d/α, δ/q + α = d/p. Let w be a
weight on Rn .
(a) If p ≤ 1, then the Feòerman–Stein type inequality

∥Mα f ∥Lq(Hδ
w)
≲ ∥ f ∥Lp(Hd

v )

holds, where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−q(n−d/p) j−∫
π j(Q)

w dy)
p/q

.

(b) If p ≥ 1, then the Feòerman–Stein type inequality

∥Mα f ∥Lq(Hδ
w)
≲ ∥ f ∥Lp(Hd

v )

holds, where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−
q
p (n−d/p) j−∫

π j(Q)
w dy)

p/q

.

Proof his can be proved by the same arguments in the proof of heorem 4.3 and
in Example 3.2. ∎
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4.3 Fractional Integral Operator

he dyadic fractional integral operator Iα , 0 < α < n, is deûned by

Iα f (x) ∶= ∑
Q∈D

1Q(x)−∫
Q
f dyℓ(Q)α .

his was ûrst introduced by Sawyer and Wheeden [15], and one can prove that (cf.
[6]) a ûnite number of family of dyadic fractional integral operators control the Riesz
potential (usual fractional integral operator), which is given by

Iα f (x) ∶= ∫
Rn

f (y)
∣x − y∣n−α dy.

It is easy to see that
Mα f (x) ≤ Iα f (x) a.e. x ∈ Rn .

In general, there is no pointwise inequality in the reverse direction, but the two quan-
tities are comparable in Lp sense, that is,

∥Iα f ∥Lp(Rn) ≤ Cα ,p∥Mα f ∥Lp(Rn) , 0 < α < n, 0 < p <∞.

For Q ∈ D, we shall compute Iα[1Q](x). It suõces to consider the point x in
E ∶= ⋃∞j=0 π j(Q). If x ∈ Q, we see that

∑
x∈P ,P⊂Q ∶P∈D

−∫
P
1Q dyℓ(P)α = ∑

x∈P ,P⊂Q ∶ P∈D
ℓ(P)α

≈ ℓ(Q)α

and that
∞

∑
j=0

∣Q∣
∣π j(Q)∣ ℓ(π

j(Q))α ≈ ℓ(Q)α .

hus,

(4.4) Iα[1Q](x) ≈ ℓ(Q)α , x ∈ Q .

If x ∈ E and x ∉ Q, then, letting j0 be the ûrst integer that satisûes x ∈ π j0(Q), we
have that
(4.5)

Iα[1Q](x) =
∞

∑
j= j0

∣Q∣
∣π j(Q)∣ ℓ

(π j(Q)) α ≈ ℓ(Q)α2−(n−α) j0 , x ∈ π j0(Q) / π j0−1(Q).

By (3.2), (4.4) and (4.5), we obtain

Iα[1Q](x) ≈ Mα[1Q](x), x ∈ Rn .

We have the following theorem.

heorem 4.5 Let 0 < d , δ < n, q ≥ p, d/n < p < d/α, p ≤ 1, δ/q + α = d/p. Let w be
a weight on Rn . hen, the Feòerman–Stein type Inequality

∥Iα f ∥Lq(Hδ
w)
≲ ∥ f ∥Lp(Hd

v )
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holds, where

v(x) ∶= sup
Q∈D

1Q(x)(
∞

∑
j=0

2−q(n−d/p) j−∫
π j(Q)

w dy)
p/q

.

Remark One can not expect the following inequality:

∣Iα g∣p ≲ Iα[∣g∣p], p > 1.

5 Appendices

In what follows we give two appendices.

5.1 The Hardy–Littlewood–Sobolev inequality

We shall verify the Hardy–Littlewood–Sobolev inequality for Iα , 0 < α < n, with
Hausdorò content.

heorem 5.1 Let 0 < d < n, d/n < p < d/α and q be deûned by 1/q = 1/p − α/d.
hen we have

∥Iα f ∥Lq(Hd) ≲ ∥ f ∥Lp(Hd) .

Proof Choose a dyadic cube P ∈D so that x ∈ P and

Iα f (x)
2

≤
⎧⎪⎪⎨⎪⎪⎩

∑x∈Q ,Q⊂P∶Q∈D −∫Q f dyℓ(Q)α ,
∑x∈Q ,Q⊃P∶Q∈D −∫Q f dyℓ(Q)α .

A calculus of geometric series gives

∑
x∈Q ,Q⊂P∶Q∈D

−∫
Q
f dyℓ(Q)α ≲ ℓ(P)αM f (x).

Since d/n < p implies 1 < np
d ,

−∫
Q
f dyℓ(Q)α ≤ ℓ(Q)α(−∫

Q
f

np
d dx)

d
np

= ℓ(Q)α−d/p(∫
Q
f

np
d dx)

d
np

≲ ℓ(Q)α−d/p(∫
Q
f p dHd)

1/p

≲ ℓ(Q)α−d/n∥ f ∥Lp(Hd) ,

where we have used the formula, [8, Lemma 3],

∫ g dx ≤ n
d
(∫ gd/n dHd)

n/d

.
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If we assume d/n < p < d/α, a calculus of geometric series again gives

∑
x∈Q ,Q⊃P∶Q∈D

−∫
Q
f dyℓ(Q)α ≲ ℓ(P)α−d/p∥ f ∥Lp(Hd) .

hus,

Iα f (x) ≲ sup
t>0

min{ tαM f (x), tα−d/p∥ f ∥Lp(Hd)}

≈ ∥ f ∥
αp
d
Lp(Hd)

⋅ [M f (x)]1−
αp
d .

If we choose q > p so that p
q = 1 − αp

d , then

∥Iα f ∥Lq(Hd) ≲ ∥ f ∥
αp
d
Lp(Hd)

⋅ (∫
Rn

(M f )p dHd)
1/q

≲ ∥ f ∥
αp
d
Lp(Hd)

⋅ ∥ f ∥
p
q

Lp(Hd)

≈ ∥ f ∥Lp(Hd) .

his completes the proof. ∎

Remark 5.2 Since Mα f (x) ≤ Iα f (x) holds for any positive f , we observe that the
corresponding results hold for the fractional maximal operator as well.

5.2 The Riesz Potential

Recall that the Riesz potential (usual fractional integral operator) Iα , 0 < α < n, is
deûned by

Iα f (x) ∶= ∫
Rn

f (y)
∣x − y∣n−α dy.

Let T ∶= {0,±1/3}n . For τ ∈ T, we deûne the τ translate dyadic cubes by

Dτ ∶= {2−k(m + τ + [0, 1)n) ∶ k ∈ Z, m ∈ Zn}

and deûne the dyadic fractional integral operator Iα[Dτ] by

Iα[Dτ] f (x) ∶= ∑
Q∈Dτ

1Q(x)−∫
Q
f dyℓ(Q)α .

It was shown in [6] that the inequality

(5.1) Iα f (x) ≲ ∑
τ∈T

Iα[Dτ] f (x), x ∈ Rn

holds for the nonnegative locally integrable function f .
Letw be aweight onRn . If E ⊂ Rn and 0 < d ≤ n, then the d-dimensionalweighted

Hausdorò content Hd
w[Dτ] of E with respect to Dτ is deûned by

Hd
w[Dτ](E) ∶= inf

∞

∑
j=1
−∫
Q j
w dxℓ(Q j)d ,
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where the inûmum is taken over all coverings of E by countable families of dyadic
cubes {Q j} ⊂Dτ . It was shown in [17, Proposition 3.4.2] that the relation

(5.2) Hd
w[Dτ](E) ≈ Hd

w[Q](E)
holds for any E ⊂ Rn , τ ∈ T and doublingweightw. Here,Q stands for the family of all
cubes in Rn which have their sides parallel to the coordinate axes. he relation (5.2)
entails the norm equivalences

(5.3) ∥ f ∥Lp(Hd
w[D

τ]) ≈ ∥ f ∥Lp(Hd
w[Q]) ,

when the weight w is restricted to doubling weight.
Let now assume that two-weight norm inequality

(5.4) ∥Iα[Dτ] f ∥Lq(Hδ
w[D

τ]) ≲ ∥ f ∥Lp(Hd
vτ [D

τ]) , τ ∈ T

holds for appropriate parameters. hen, by (5.1), (5.3) and (5.4) we have that, for any
doubling weight w,

∥Iα f ∥Lq(Hδ
w[Q]) ≲ ∑

τ∈T
∥Iα[Dτ] f ∥Lq(Hδ

w[D
τ])

≲ ∑
τ∈T

∥ f ∥Lp(Hd
vτ [D

τ])

≲ ∑
τ∈T

∥ f ∥Lp(Hd
v [D

τ])

≲ ∥ f ∥Lp(Hd
v [Q]) ,

where
v = ∑

τ∈T
vτ

and in the last inequality we need the further assumption that v is doubling.
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