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SUMMARY
We present a control method for a simple limit-cycle bipedal walker that uses adaptive frequency
oscillators (AFOs) to generate stable gaits. Existence of stable limit cycles is demonstrated with
an inverted-pendulum model. This model predicts a proportional relationship between hip torque
amplitude and stride frequency. The closed-loop walking control incorporates adaptive Fourier
analysis to generate a uniform oscillator phase. Gait solutions (fixed points) are predicted via
linearization of the walker model, and employed as initial conditions to generate exact solutions via
simulation. Global stability is determined via a recursive algorithm that generates the approximate
basin of attraction of a fixed point. We also present an initial study on the implementation of
AFO-based control on a bipedal walker with realistic mass distribution and articulated knee joints.
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1. Introduction
There is a growing body of research on the control of rhythmic movements in robots by means of
coupled nonlinear oscillators. Oscillator-based robot control is inspired in part by biological neural
circuits called central pattern generators (CPGs), which control rhythmic movements in vertebrates.
CPG-inspired control architectures have been employed, for instance, to generate different gait
modalities in artificial bipeds and quadrupeds.1 Reinforcement learning based on CPGs has been
employed to enable automatic control acquisition by a biped robot.2 In the CPG walker control
proposed by Verdaasdonk,3 energy efficiency is accomplished by enabling the oscillator to tune
into the resonance frequency of the limbs. However, the CPG’s tuning ability requires the intrinsic
oscillator frequency to be relatively close to the resonant frequency of the limb. This limitation can be
overcome by using nonlinear oscillators with frequency adaptation capabilities. Nakanishi4 proposed
a frequency adaptation algorithm for bipedal walking based on phase resetting. The stabilizing
properties of phase resetting in a biped have been investigated by Fu.5 Coupled nonlinear oscillator
systems are also capable of achieving inter-leg coordination in bipedal walkers as well as coordination
among the leg’s own segments.4, 6

This paper focuses on adaptive frequency oscillators (AFOs) and their potential use for the
stabilizing control of a biped robot. An AFO is a nonlinear oscillator that features a learning component
to adapt its intrinsic frequency to the frequency of a periodic or quasi-periodic input signal.7 Control
algorithms based on AFOs allow automated, on-line learning and encoding of dynamical movement
primitives by a robot.4, 8, 9 The encoding of rhythmic movements via dynamical systems not only
enables the robot to perform natural, human-like movements, but also allows modulating them in
amplitude, frequency, or phase by modifying the dynamical system’s parameters.10, 11

The phase and frequency of an AFO’s limit cycle are altered whenever the oscillator is coupled
to an external dynamical system. Thus an interesting research question is whether an AFO-driven
controller has the capacity to stabilize a dynamic system that is naturally unstable. In this paper,
we address that question in the context of controlling a bipedal walker. The walker analyzed here
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constitutes the simplest embodiment of the “limit-cycle walking” paradigm, in which the walker tends
towards a nominal periodic trajectory over the course of multiple steps, even though the trajectory
is locally uncontrollable most of the time.12 This class of walkers follows the principle of exploiting
the natural dynamics of the bipedal walk, in particular the pendulum-like behavior of the swing leg,
and has been shown to be extremely efficient from an energetic point of view.13, 14

Limit-cycle walking relaxes the requisite for continuous static stability, which is at the core of
zero-moment point (ZMP) control.15 This greatly reduces the demand for actuator output but makes
the walker more challenging to stabilize. Passive dynamic walking gaits typically exhibit very narrow
domains of attraction and are therefore highly sensitive to perturbations.16, 17 Different strategies have
been proposed for increasing a dynamic biped’s capability for disturbance rejection. These include
controlling the placement of the leading leg before foot impact using a spring-like constraint18 and
retracting the swing leg before impact.19 These methods have led to the implementation of successful
walking prototypes.

We developed an AFO-based algorithm for the control of the simplest limit-cycle walker.13 The
algorithm uses a single AFO forming a closed feedback loop with the walker mechanism. The
resulting system is capable of performing a periodic, highly stable gait cycle of which the stride
frequency and step length can be tuned by adjusting the control gains. The AFO-based control drives
the walker by means of hip-joint torques. The torque profiles and their timing are controlled by the
phase of the AFO. A form of adaptive Fourier analysis11 is employed to make the AFO instantaneous
frequency as uniform as possible.

Our walking control method distinguishes between two phases of the gait cycle: stance, in which
the leg is in contact with the ground, and swing, in which the leg has unconstrained movement. A
specific control law is applied to each phase. In selecting these laws, we have sought to make the
hip torques reasonably similar to the profiles generated by the hip-joint muscle groups in humans.
These torque profiles, combined with the controller’s stabilizing properties, are intended to make the
method suitable for driving not only autonomous bipedal robots, but also powered exoskeletons and
similar assistive devices for the human lower extremities.

Section 2 introduces the concept of limit-cycle walkers and their global stability, and presents the
dynamic walking model with hip actuation that constitutes the focus of this research. As a preparatory
study for the control of the bipedal walker, Section 3 analyzes the feedback control of an inverted
pendulum using an AFO. The describing function method is employed to predict the existence of limit
cycles in the closed system and to determine the effect of the system’s parameters on the amplitude
and phase of the limit cycle. The AFO-based control of the dynamic walker model is formulated in
Section 4. The AFO uses the inter-leg separation angle as its input signal. Key features of the control
method include the use of adaptive Fourier analysis to generate a uniform oscillator phase, and of a
virtual spring with a movable equilibrium point to achieve gait stability. Section 5 presents a method
for deriving gait solutions for the closed-loop dynamic walker, and analyzes the properties of the
feasible walking solutions as functions of the control parameters. In that section we also analyze the
orbital stability of the walker, which is indicative of the walker’s ability to reject disturbances. Section
6 presents a study of the global stability of the walker, which includes an algorithm for generating
the basin of attraction of a particular walking solution. Finally, Section 7 offers an initial study on
the implementation of AFO-based control on a bipedal walker with a more realistic mass distribution
and articulated knee joints. Potential stability issues are identified and their implications for control
design are discussed.

2. Dynamic Walking Model with Hip Actuation
A stable limit cycle is an isolated, closed trajectory in state space to which neighboring trajectories
converge. A limit-cycle walker utilizes the fact that the gait cycle is stable when observed at a
“landmark” state, even when the system is not locally stable or even locally controllable for the rest
of the trajectory.12 Thus a stable gait cycle can be represented as a Poincaré return map. The walker’s
forward motion maps the landmark state of the k-th stride z+

k (state after leading foot impact) to a
new state z+

k+1 after one step: z+
k+1 = f(z+

k ). A periodic gait cycle exists if the walkers’ landmark state
is exactly repeated after one step: z∗ = f(z∗), where z∗ is known as a fixed point.

The orbital stability of the gait cycle can be determined by linearizing the stride function f about
z∗. The gait solution z∗ is stable if the eigenvalues of the Jacobian of the stride function are contained
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Fig. 1(a) Simplest dynamic walker. Condition m/M → 0 decouples the motions of the stance leg and the swing
leg. The pose of the stance leg is defined by the absolute angle θ ; the pose of the swing leg is defined by the
inter-leg aperture angle β. The model is propelled by a hip torque τh,st acting on the stance leg. A torque τh,sw

drives the swing leg towards a desired separation angle βeq,f before striking the ground. (b) Inverted-pendulum
model of the dynamic walker. The torque τh acting on the pendulum is equivalent to the stance leg torque τh,st

on the dynamic walker. Using the assumption that the swing leg does not perturb the trajectory of the stance leg,
we replace the stance leg and the torque τh,sw with a pair of virtual walls, each on one side of the pendulum.
The impact of the pendulum on the virtual wall is equivalent to the foot’s impact on the ground.

in the unit circle in the complex plane. However, the linearized model only guarantees stability for
small deviations from the gait solution. A global stability analysis is required to find the complete
range of initial conditions, i.e. initial landmark states z+

0 from which the walking model can reach a
steady gait cycle instead of falling down. If, for instance, one chooses the initial instant of leg swing
as the walker’s landmark state, the initial condition is defined by the angular positions and angular
velocities of the walker’s legs at that state. For a known periodic gait cycle, the entire set of initial
conditions that lead to it is known as the basin of attraction. In this paper we present an efficient
method for computing the basin of attraction of the dynamic walker, based on the cell mapping
method developed by Wisse et al.18

The starting point of our dynamic walker is the simplest walking model (SWM) studied by Garcia16

and Kuo.13 The SWM, represented in Fig.1(a), is essentially a two-link mechanism with point masses
located at the “hip” joint and the feet. Per the simplification proposed by Garcia,16 in the equation of
motion of the stance leg the ratio of foot mass to hip mass (m/M) tends to zero. This limit case is not
to be understood as making the feet massless. Instead, it represents a condition in which the swing
leg is unable to perturb the trajectory of the hip mass. In this way, the movements of the walker’s legs
are decoupled from each other.

A periodic gait cycle can be achieved on the SWM by a hip torque acting on the stance leg.13 This
torque adds momentum to the hip mass in order to replace the momentum transferred to the ground
at foot impact. Actuating the swing leg, on the other hand, has no effect on the forward propulsion of
the walker since the leg’s mass is negligible compared to that of the hip. However, actuation of the
swing leg can be employed to tune the stride frequency13 and to enhance gait stability.12 The scaled
equations of motion of the SWM under the assumption of negligible mass of the swing leg are

θ̈ − sin θ = −τh,st (1)

β̈ − θ̈ − sin β θ̇2 + sin β cos θ = −τh,sw. (2)

At the end of the swing phase, the impact of the leading foot produces an instantaneous change in
angular velocity. Conservation of angular momentum leads to a set of transition equations that yield
the initial conditions for the next step.16

3. Gait Control Based on Adaptive Frequency Oscillators: Inverted-Pendulum Model
A central pattern generator (CPG) is a distributed biological neural network that can produce
coordinated rhythmic signals without input from the brain or from sensory feedback.20 Models
of CPG’s have been used to control the locomotion of autonomous robots.10, 21 In this study, we
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Fig. 2. Block diagram of the inverted-pendulum model driven by an AFO-generated torque τh. The input to the
backlash nonlinearity is the pendulum angle θ (t), which is assumed to be nearly sinusoidal.

developed a method for bipedal walking control using an AFO to perform the role of a CPG. An AFO
can adapt in phase and frequency to an external input even when there is a large difference between
the oscillator’s initial frequency and the input frequency.7

In this section we show how an AFO can generate a stable limit cycle when coupled to a simplified,
quasi-linear model of the bipedal walker. This model allows finding stable fixed points for the
oscillation frequency ω analytically. The model also provides useful insights as to which parameters
of the closed-loop AFO-walker system determine the final oscillation frequency.

A study by Buchli21 analyzed an AFO forming a feedback loop with a linear-time-invariant (LTI)
system. The system was shown to converge to a limit cycle with a frequency equivalent to the natural
frequency of the LTI system; this frequency adaptation was described as “finding resonance." The
notion of resonance tuning has also been applied to a CPG-driven bipedal walker to signify that the
step frequency is proportional to the pendulum frequency of the swing leg.3 However, as we will
show, the AFO allows generating stable gait cycles for a wide range of frequencies rather than just
the natural frequency.

The quasi-linear model represents the lumped mass and the stance leg of the walker as an inverted
pendulum in Fig. 1(b). The AFO driving the pendulum is defined by the dynamical system

φ̇ = ω − ε �(t) sin φ (3)

ω̇ = −ε �(t) sin φ, (4)

where φ is the oscillator phase, ω is the oscillator’s intrinsic (but adaptable) frequency, and �(t) is
the angular velocity of the pendulum. The torque τh acting on the pendulum is proportional to the
AFO output cos φ. The coupling strength ε determines the rate of adaptation of ω to the frequency
of the input �(t). A virtual wall on each side of the pendulum provides a crude approximation of the
foot’s impact on the ground. The walls are placed at a constant angle of separation β. Choosing an
arbitrary β is consistent with the fact that, in the SWM, the motion swing leg is independent from
that of the stance leg.

We model the separation between the virtual walls as a backlash nonlinearity. Limit cycles in a
dynamic system with backlash can be predicted using the describing function method.22 A describing
function is a complex function defining the change in amplitude and phase of the nonlinearity’s output
relative to its input. In this method, the response of the nonlinear element to a sinusoidal input is
treated as a Fourier series, but only the fundamental component of the output signal is considered
in the model. This assumption is justified if the linear part of the system has good low-pass filtering
characteristics. To satisfy the low-pass requirement, we have modeled the virtual walls as a linear
spring-damper combination with a low stiffness coefficient. Damping also models the kinetic energy
loss in the walker at ground strike.

The closed-loop inverted-pendulum model is represented in block-diagram form in Fig. 2. The
output of the AFO, u(t), is multiplied by a gain τho (specified in units of torque) to generate the torque
acting on the pendulum, τh(t). The input to the backlash nonlinearity is the pendulum angle θ(t),
which is analogous to the absolute angle of the stance leg in the walker. We assume this input to be
the sinusoid θ(t) = 	 cos ωt . The problem of finding a limit-cycle solution is equivalent to finding a
nontrivial solution (	, ω) to the system’s characteristic equation

C(	̂, ω) ≡ N(	̂) − Q(	̂, ω) = 0, (5)
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Fig. 3. (Colour online) Limit cycles of the inverted-pendulum model with backlash describing function. (a)
Normalized limit-cycle solutions (	̂, ω) as a function of parameter τho/β. (b) Gradients of the pendulum model
function ∂C(	̂,ω)

∂ω
as a function of τho/β. Parameter values: coupling ε = 5, ωn = 2π , ζ = 1.

where 	̂ = 	/β > 1/2, N(	̂) is the backlash describing function, and Q(	̂, ω) is another complex
function modeling the rest of the system’s dynamics. The backlash describing function is given by

Re{N(	̂)} = 1

π

(
π

2
+ B(	̂) + 1

2
sin 2B(	̂)

)
(6)

Im{N(	̂)} = −cos2 B(	̂)

π
, (7)

where B(	̂) = sin−1(1 − 	̂−1). The function Q(	̂, ω) (see derivation in Appendix A) is given by

Re{Q(	̂, ω)} =
k

(
ω2 + 1

) +
(

τho

β

)
	̂−1cω

c2ω2 + k2
(8)

Im{Q(	̂, ω)} =
−cω

(
ω2 + 1

) +
(

τho

β

)
	̂−1k

c2ω2 + k2
. (9)

Figure 3(a) shows limit-cycle solutions (	̂, ω) for Eq. (5). The main finding is that, unlike the AFO-
coupled LTI system referred to earlier,21 here the frequency of the limit cycle is not determined by the
intrinsic dynamics of the system. Instead, frequency can be modulated by the independent parameters
τho and β. In terms of walking, the fact that ω grows monotonically with τho/β suggests that the
walker’s step frequency (which is commensurate with ω) could be increased by simply increasing
the amplitude of the torque on the stance leg. On the other hand, the same relationship suggests that,
for a fixed torque amplitude, there may be an inverse relationship between step frequency and step
length, the latter being proportional to β.

Figure 3(b) shows that the gradient ∂C(	̂,ω)
∂ω

has negative real and imaginary parts for a wide range
of values of τho/β, indicating that the limit-cycle solutions for the inverted pendulum have orbital
stability. Thus the AFO can in principle generate a locally stable gait cycle in the bipedal walker,
provided that the motion of the swing leg is effectively independent from that of the stance leg.
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Fig. 4. Model of the complete dynamic walker control. The phase generator employs a canonical dynamical
system to perform an on-line Fourier analysis of the error signal E, and extract the phase φ of the fundamental
frequency component. Hip torques are indexed to the phase of an individual stride, given by ϕ = 2φ.

4. Bipedal Gait Control Driven by an Adaptive Frequency Oscillator

4.1. Adaptive Fourier analysis using AFOs
We present now an AFO-driven feedback controller for the complete dynamic walker. Controlling the
relative phase of the legs’ movement is key to achieving a stable gait.4 Our dynamic walker control
accomplishes this by linking the swing and stance torques to a reference phase φ(t). The “phase
generator” takes the inter-leg separation angle β and performs an on-line frequency analysis to
extract its fundamental frequency and phase component. The complete model of the walker, featuring
the phase generator and the torque profile functions, is shown in Fig. 4.

The phase generator is based on the canonical dynamical system proposed by Petric et al.11 A
single AFO is combined with a feedback structure that performs an adaptive, on-line Fourier analysis.
The AFO phase φ tracks the phase of the fundamental component of the error signal E = β − βm,
where β is the measured inter-leg angle and βm is the reconstructed inter-leg angle, given by the
Fourier series

βm =
N∑

k=0

ak cos(kφ) + bk sin(kφ). (10)

In Eq. (10), N is the number of components of the Fourier series and ak and bk are the Fourier
components’ amplitudes, which are governed by the adaptation laws

ȧk = η cos(kφ) E (11)

ḃk = η sin(kφ) E, (12)

where η is a learning constant. The role of Eq. (10) in our control method is only as a filter to make
the slope of φ as uniform as possible; the walker could in principle be driven by the AFO alone.

4.2. Model of hip-joint torque during stance
Our dynamic walker uses a simple bell-shaped motor primitive to imitate the burst-like behavior of
the hip extensor muscles during walking.23 To control the timing of the burst, the torque profile is
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linked to the phase of one single stride. Because the AFO phase φ completes one cycle (φ = 0 to
2π) for every two strides, the stride phase is given by ϕ = 2φ. The stance torque profile is defined in
terms of ϕ as

τh,st = τh,o ϕ e−ϕ/Kst . (13)

Thus the amplitude and decay rate of the torque profile are controlled by the parameters τho and Kst

respectively.

4.3. Spring-damper torque for swing leg with traveling equilibrium point
The stabilization strategy follows the principle formulated by Wisse18 of guaranteeing that the swing
leg will strike the ground at the proper leg separation angle β. This can be accomplished by generating
a virtual spring with a traveling equilibrium point. In this scheme, the initial equilibrium of the spring
coincides with the initial position of the swing leg. The equilibrium point βeq travels from an initial
position βeq,o to a final position βeq,f following a smooth trajectory controlled by ϕ:

τh,sw = κ(β − βeq(ϕ)) + νβ̇, (14)

where βeq(ϕ) = βeq,f + (βeq,o − βeq,f )e−ϕ/Ksw and Ksw controls the rate at which the equilibrium
point converges to its final value. The term κ in Eq. (14) is the virtual spring constant. A torsional
damping term with coefficient ν = 2

√
κ is included to ensure that the swing leg behaves as a critically

damped system. This prevents the leg from oscillating about the equilibrium point before foot strike.
In the course of a walking stride, the hip torque profiles (13) and (14) are applied simultaneously

to the corresponding legs. Then, at foot impact, the swing leg becomes the stance leg for the next
stride and vice versa. The control model assumes that some form of foot-impact detection is available
in order to switch the torque profiles among the legs.

5. Gait Solutions for the Dynamic Walker
The gait cycle of the dynamic walker is represented as a Poincaré return map from the walker’s state
after foot impact. This state combines both the walker’s independent kinematic variables (θ , θ̇ ) and
the AFO state variables

z+ = [θ+ θ̇+ φ+ ω+]T . (15)

Thus a stable gait corresponds to a fixed point z∗ = f(z∗). In this section, we present walking solutions
(fixed points) for the dynamic walker. Our focus is the direct kinematics problem, i.e. to find, for a
certain combination of control parameters (τho, βeq,f ) and AFO parameters, the landmark state z∗
that defines the walking solution.

Searching for solutions via an optimization algorithm is unlikely to succeed due to the inherent
instability of the walker mechanism. Because a large proportion of the possible initial conditions
will cause the walker to fall down in simulation, in general it is not possible to generate a smooth
cost function for the optimization. Instead, we used a linearized model of the AFO-driven walker
model to obtain an approximate gait solution, and employed that solution as the initial condition
for simulating the gait of the original nonlinear walker. The underlying assumption was that, if the
linearized solution was sufficiently close to an actual fixed point, orbital stability would allow the
nonlinear walker to reach the fixed point after a certain number of strides.

The derivation of the linearized walking model is presented in Appendix B. Aside from the
linearization of the walker dynamics, the other major assumption is that the AFO has already
converged to a periodic limit cycle, and thus the AFO frequency ω can be treated as constant.
The adjustable parameters of the linearized model are the hip torque amplitude τho and the spring
equilibrium point βeq = βeq,f . Equations (68), (70), and (72) in Appendix B can be solved numerically
to yield the approximate gait parameters 	, �, and Ts . These parameters are then employed as initial
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Fig. 5. (Colour online) Time plots for gait solutions. A gait solution is considered to be valid if the walker can
execute 100 steps in simulation without falling down. Plots show only a portion of the simulation starting at
about 61 s; it is assumed that by this time the walker has reached a uniform gait cycle (fixed point). In these
plots the time trajectories of the linearized model (subscript ‘LS’) are compared against those of the original,
nonlinear walking model. (a) stance leg angle θ , (b) angle of separation between legs β, and (c) hip torque
acting on the stance leg, τh. The following parameter values were used for the simulation: coupling parameter
ε = 10, learning constant η = 8, stance leg torque gain τho = 1, and final equilibrium angle βeq,f =−0.5.

conditions for a simulation of the original closed-loop walking model:

θ+(0) = 	

θ̇+(0) = −�

φ(0) = 0
ω(0) = π/Ts.

(16)

Figure 5 shows a comparison between simulations of the original walker model and its linearized
version. The plots illustrate how agreement between the behavior of models can be quite high as
long as the walking solution from the linearized model effectively converges to a fixed point of its
nonlinear counterpart. It should be noted that, since this is a rigid-leg model, there is no compliance
involved in foot impact, and as a result the walking gait does not have a finite-time double-support
phase. Thus the transfer of momentum from the walker to the ground is instantaneous.

We implemented the AFO-driven walking model in Matlab/Simulink (The Mathworks, Natick,
MA, USA) to find walking solutions. Simulations employed a variable-step solver (ode45) with
maximum step size of 0.01 s. The walker is considered to have reached a fixed point when the
magnitude of the difference between successive states is less than a certain error threshold: ||z+

k+1 −
z+
k || < ez. The search for a fixed point is considered to fail if the walker either falls down in simulation

or fails to reach the threshold condition before a predetermined number of steps Ns . For the present
study, we chose Ns = 100.

Figure 6 shows an example of a gait simulation. The adaptation of the AFO frequency ω(t) to a
uniform value is readily apparent. As ω(t) adapts, the hip torque profiles τh,st (t) and τh,sw(t) and the
ground reaction force Fy(t) adopt a periodic behavior.
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Fig. 6. (Colour online) Simulation results for the dynamic walker with AFO-driven feedback control. Plots
show example time trajectories of (a) AFO phase φ and intrinsic frequency ω, (b) stance leg torque τh,st (with
inter-leg separation angle β for reference), (c) swing leg torque τh,st (ditto), and (d) ground reaction force Fy on
the stance foot. In order to make the slope of the phase as uniform as possible, the inter-leg angle β is multiplied
by −1 every other step, thereby ensuring a smooth transition. Simulation parameters: coupling parameter ε =
10, learning constant η = 8, virtual spring constant κ = 50, stance leg torque gain τho = 4, final equilibrium
angle βeq,f =−0.7.

Figure 7 presents a map of solution points (θ∗, θ̇∗) for different combinations of τho and βeq,f .
The selected values of coupling parameter ε = 10 and spring constant κ = 50 yielded a fairly large
array of gait solutions. In general, increasing τho for a constant βeq,f increases the initial angular
speed θ̇∗ while keeping the stride amplitude (determined by θ∗) nearly constant. A point of interest is
that the AFO-based closed-loop control can generate solutions outside the boundaries of the passive
SWM.13, 18 The passive SWM requires the initial kinetic energy after foot strike, K+ = 1

2 θ̇2 (after
normalization), to be greater than the change in potential energy required for the hip mass to “pole
vault” over the stance foot, �P = 1 − cos θ . This condition is represented by the boundary curve in
Fig. 7. An initial condition placed above the boundary will cause the passive walker to eventually fall
backward. By contrast, the AFO-driven walker was able to generate walking solutions outside this
boundary.

5.1. Orbital stability
Orbital stability of the walker, i.e. stability to small deviations of the landmark state z+ from the
fixed-point value z∗ can be determined from the Jacobian matrix of the return map,

J(z∗) = ∂f(z)

∂z

∣∣∣∣
z=z∗

. (17)

A return map is stable for small perturbations of z∗ if all the eigenvalues of its Jacobian are within the
unit circle. The smaller the eigenvalues, the faster the walker will converge to the fixed point z∗. The
Jacobian J(z∗) can be approximated numerically using a perturbation method. For each term fi(z) in
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Fig. 8. Eigenvalues of the return map Jacobians for different gait solutions (θ∗, θ̇∗). (a) In this plot the white
disk centered at each solution point represents the magnitude of the maximum eigenvalue for (θ∗, θ̇∗). For
reference, a gray disk represents the unit circle. Continuous curves represent contours of constant τho. (b)
Maximum eigenvalue magnitudes in the absence of perturbation on θ̇∗. The majority of the eigenvalues become
of near-zero magnitude, suggesting that the system is mostly sensitive to velocity perturbations.

f(z), the k-th column term in the Jacobian is

Ji,k = ∂fi

∂zk

� fi(z∗ + �zk) − fi(z∗)

�zk

, (18)

where �zk is a vector in which the k-th terms equals �zk and the remaining terms are equal to zero.
Figure 8 shows the maximum eigenvalue magnitudes for the gait solutions previously derived.

In all cases the eigenvalues were within the unit circle, indicating that, for moderate perturbations,
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Fig. 9. (Colour online) Frequency and forward speed of the gait solutions for the dynamic. Contour plots
represent constant values of τho/βeq,f . (a) AFO frequency ω∗ vs. final spring equilibrium angle βeq,f . (b)
Walker forward speed v∗

f vs. βeq,f .

the system will return to the fixed point after a certain number of steps. However, there is no clear
correlation between the eigenvalues of a particular solution and its proximity to the boundaries of the
solutions’ region. Therefore the eigenvalues of the Jacobian are of limited use in predicting the size
of the region of feasible walking solutions. On the other hand, the eigenvalues provide a measure of
the sensitivity of the limit cycle to variations in the different state variables. The kinematic variable
that most severely impacts the stability of the walker is the angular velocity θ̇∗ of the stance leg. This
point is evidenced by obtaining the Jacobian for the case of zero perturbation in θ̇∗. As is shown in
Fig. 8(b) the eigenvalues become nearly zero for most of the walking solutions, indicating that the
periodic limit cycle will recover quickly from perturbations to state variables other than θ̇∗.

For a more precise estimation of the walker’s stability, it is necessary to determine the global
stability of each gait solution. In Section 6, we present a fast algorithm for determining the approximate
basin of attraction of a particular gait solution.

5.2. Comparison to the inverted-pendulum model with backlash
The inverted-pendulum model with backlash previously analyzed showed the frequency of the limit
cycle to be proportional to the ratio τho/β (Fig. 3(a)). To show that the dynamic walker has the same
qualitative behavior, we generated a set of gait solutions using the ratio τho/βeq,f as an adjustable
parameter. From Fig. 9(a), it can be inferred that step frequency (approximately 2ω∗) is proportional
to τho/βeq,f and varies inversely with stride length, which is typically nearly equal to βeq,f . Figure
9(b) shows that the walker’s average forward speed vf is quite uniform for constant τho/βeq,f . This
is due to the fact that v∗

f , ω∗, and βeq,f are related by

v∗
f ∼ ω∗βeq,f (19)

and, from Fig. 9(a), for constant τho/βeq,f there is an approximately inverse relationship between ω∗
and βeq,f .
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6. Global Stability of the Dynamic Walker
We present now a method for determining the global stability properties of the dynamic walker. The
objective is to find, for a particular gait solution z∗, the largest region of possible initial conditions
from which the walker’s gait will converge to the specified gait solution. A sequence of k successive
strides from an initial state zo is represented as zk = fk(zo). A periodic gait cycle z∗ is defined by
z∗ = f(z∗). This gait cycle constitutes a globally stable fixed point if there exists a set A(z∗) of initial
states in the vicinity of z∗ such that the walker converges to z∗ in a finite number of steps:

A(z∗) = {zo | fk(zo) = z∗} for k ≥ Ns, (20)

where Ns is a finite integer. We refer to A as the basin of attraction of z∗.
We obtain the approximate basin of attraction of the gait cycle z∗ using a method similar to cell

mapping.17, 24 The region of possible initial states zo is subdivided into discrete “cells” of interval
size �z. A cell c is a vector of the same dimension as z, composed of integer values ci . A point z in
state space is mapped to a cell c via the transformation

c = �(z) | (ci − 1)�zi ≤ zi < ci�zi. (21)

The inverse transformation returns the center of the cell in state space coordinates, zc:

zc = �−1(c) | zc,i =
(

ci − 1

2

)
�zi. (22)

In general, to obtain the discretized basin of attraction, we use the center zc of each cell as an
initial state for the walker, and test whether the walking simulation converges to z∗, i.e. whether the
following sequence of states exists for the walker:

Z(zc, z∗) = {z(k) | z(k) = fk(zc) = z∗ for k > Ns}. (23)

The discretized counterpart of Eq. (23) is a sequence of cells

C(zc, z∗) = �(Z(zc, z∗)) ≡ {c(k) = �(z(k)) | z(k) ⊂ Z}. (24)

Thus the discretized basin of attraction is the set of all possible sequences of cells ending in c∗ = �(z∗):

Ac(z∗) =
⋃

{C(zc, z∗)}. (25)

It would be computationally too expensive to generate the basin of attraction for all feasible initial
states c because zc is four-dimensional. Instead, we will employ a model of reduced dimensions by
making a few simplifying assumptions. The first assumption is that the walking model always starts
from same initial conditions for the AFO, namely φ(0) = φ∗ = 0 and ω(0) = ω∗ � π/Ts , where
Ts is the stride period of z∗. This is reasonable because we only intend to design for robustness to
perturbations in the kinematic initial conditions, i.e. the initial values of θ and θ̇ .

A bolder assumption is that every two strides the algorithm will reset the AFO phase and frequency
to their fixed-point values, i.e. enforce φ+ = 0 and ω+ = ω∗. Resetting is applied precisely every
two strides because, in a uniformly periodic gait, φ undergoes one cycle (i.e. goes from 0 to 2π)
for every two strides. The Fourier coefficients are reset to their initial values as well. Thus the state
space of the walker is reduced to a two-dimensional space. Moreover, in this way every cell in the
discretized basin of attraction can function either as an initial condition, or as an intermediate state
in a gait sequence that began elsewhere. The latter property allows implementing the algorithm in a
recursive manner.

In our recursive algorithm, a cell is labeled a “visited” cell if it is either an initial state, or is
arrived at via successive Poincaré mappings. The mapping sequence stops when the walker either
fails to complete a stride (i.e. falls down) or reaches a previously visited cell. Initially Ac contains
only the cell c∗. The algorithm recursively creates a border of cells Bc around Ac using a “dilation”
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Fig. 10. (Colour online) Generation of the basin of attraction using a fast algorithm with phase resetting. (a) The
current basin Ac includes one cell containing the gait solution z∗. A boundary of cells Bc is generated around
Ac by means of a dilation operator. (b) A walking simulation begins from an initial condition located at the
center of a boundary cell (z1, representing the center of b1 in state space) and reaches a cell belonging to Ac. (c)
All the cells visited in the preceding simulation are appended to Ac. The set Vs of visited cells (thick border)
is increased accordingly. (d) Basin of attraction Ac and set of visited cells Vc after all the boundary cells have
been tested and removed from Bc. “Crossed-out” cells represent initial conditions that failed to generate a path
into Ac. (e) A new boundary is generated around Ac, but excluding any previously visited cells (Vc).

morphological operator.25 Each cell on Bc is tested as an initial condition for walking. If the cell can
successfully generate a path into Ac, then all the cells in the path are added to Ac. The algorithm is
presented in pseudocode in Table 1, with Fig. 10 as a reference.

The end condition numel(Ac − Ac,old ) = 0 is satisfied when the last boundary Bc generated by
the algorithm produces no new cells for the basin of attraction. Figure 11 shows the example of a
basin of attraction for a particular gait solution (θ∗ = 0.29501 and θ̇∗ = −0.49043) computed using
the fast algorithm with phase resetting.

7. Towards an AFO-Driven Gait Control for a Walker with Multiple Degrees of Freedom
The next goal in this research is to extend the AFO-driven gait control to more complex walkers
with multiple degrees of freedom (DOF). Coordination among the joint torques can be accomplished
by making them time-invariant functions of the AFO phase φ. This approach has the advantage of
reducing the number of DOF of the system, effectively making the oscillator perform the role of a
CPG. But in order to design the control for multiple joints, it is important to understand how the
control’s performance may change when applied to a bipedal walker with realistic dynamics. To this
end, we tested the AFO on a dynamic walking model that features articulated knee joints and a finite
ratio of hip to foot mass. The objective was to determine whether the stability and gait properties of
the system would be affected by (1) the swing leg perturbing the trajectory of the stance leg given the
finite mass ratio, and (2) the impact-like behavior of the knee joint when the swing leg is extended.
For the present study, the ratio of hip to foot mass chosen was 10.

The modified dynamic walker, shown in Fig. 12, is based on the model presented in Fu;5 it features
curved feet and assumes a locking mechanism for the knees. The model’s walking gait consists of
two qualitatively distinct modes. The first mode begins at toe-off with the stance leg fully extended
at its knee joint locked. The swing leg’s knee joint is free to rotate, thereby allowing the foot to clear
the ground. The second mode begins when the swing leg becomes fully extended, at which point the
knee joint becomes locked; thus the swing leg strikes the ground as a single rigid body. Details on
the dimensioning of the dynamic walker’s variables and the walker’s mode transitions are given in
Appendix C.
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Initialize basin of attraction: Ac ← �(z∗) ;
Initialize set of visited cells: Vc ← Ac ;
repeat

Ac,old ← Ac;
Generate boundary: Bc ← (dilation(Ac) − Vc) see Fig. 10(a);
Label cells of Bc as bj (j = 1 . . . numel(Bc)) ;

while numel(Bc) > 0 do
for bj with lowest index j do

z ← �−1(bj ) walker state associated with bj ;
Z ← {z} initialize set of walker states ;
repeat

z ← f2(z) attempt two strides ;
if z is valid then Z ← Z ∪ {z} ;
Reset (φ, ω) ;

until z not valid or (�(Z) ∩ Vc �= ∅) see Fig. 10(b);

Vc ← Vc ∪ �(Z);
if �(Z) ∩ Ac �= ∅ then Ac ← Ac ∪ �(Z) see Fig. 10(c) ;

end
Remove bj from Bc;

end
until numel(Ac − Ac,old ) = 0;

Table 1: Generation of the discretized basin of attraction: fast algorithm with resetting of AFO
phase and frequency. (Note: the function numel() returns the number of elements in a set.)

In order to reduce the dimensionality of the model, we removed the online Fourier analysis and
employed an AFO that uses the inter-leg angle β directly as its input:

φ̇ = ω − ε β(t) sin φ (26)

ω̇ = −ε β(t) sin φ. (27)

Unlike the previous model, this AFO completes one cycle of φ (0 to 2π) per single stride.
To isolate the effects of the finite mass ratio, we ran simulations from different initial conditions

keeping the walker’s knees locked. Initial conditions were picked from within the walker’s exact basin
of attraction (Fig. 16); the initial angular velocities were made dimensional using the formulas in
Appendix C. Simulations showed that, although the resulting slope of φ is considerably less uniform,
the stabilizing effects of the AFO are still present. As shown in Fig. 13, the walker was able to
reach the fixed point after only a few steps. The fixed-point stepping frequency was 2.98 Hz, in close
agreement with the value predicted by the original walker model, 3.11 Hz after dimensionalization.
The mean forward speed of the walker was 1.730 m/s.

As a preamble to designing a control for the angular motion of the knee joint, we tested the effect
of the impulsive forces at knee-lock on the walker’s gait. We ran simulations in which the knee joint
was allowed to rotate passively, constrained only by a virtual torsional spring. Although we currently
lack a systematic procedure for determining the torsional spring constant, we found a stable gait by
selecting a value κ̂kn equivalent to 5% the spring constant of the hip joint (κ̂). The selected value
κ̂kn also allowed for the swing leg’s foot to clear the ground. The simulated gait is shown in Fig. 14.
However, a significant change occurred in the stepping frequency, which decreased from 2.98 Hz in
the simulation with rigid legs to 2.01 Hz. Step length on its part remained essentially unchanged; thus
the walker’s forward speed decreased to 1.185 m/s.

Simulations at higher values of κ̂kn did not yield stable gaits except by increasing the stance torque
gain; otherwise the walker would fall down after a few steps. Figure 15 shows an example simulation
in which κ̂kn was increased to 10% the spring constant on the hip and the stance torque was increased
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Fig. 11. (Colour online) Basin of attraction (white cells) for a gait solution (fixed point) of the dynamic walker,
using fast algorithm with resetting of the AFO phase and frequency. The gait solution is θ∗ = 0.29501 and θ̇∗ =
−0.49043. The boundary (dark gray cells) is composed of initial conditions for which the walker’s gait fails
before reaching the fixed point. The curve labeled “GRF" is the running boundary, beyond which the stance
foot will break ground contact. The dashed curve represents the stability boundary for the passive SWM.17

Simulation parameters: ε = 10, η = 8, k = 50, τho = 2.5, βeq,f =−0.6.

Fig. 12. (Colour online) Biped walker diagrams. (a) Phase 1. (b) Phase 2.

by 60%. In this case the stepping frequency increased back to 2.81 Hz and the forward speed to 1.696
m/s. Given that the walker is more sensitive to velocity than angle perturbations (Figs. 8(a) and 8(b)),
a probable explanation for the loss of stability is the velocity perturbations caused by the impulsive
force occurring at knee lock. While a single velocity perturbation can be tolerated as long as it occurs
within the basin of attraction, repeated perturbations can drive the walker outside the basin by making
it cross the “passive walker” boundary (Fig. 11).
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Fig. 13. (Colour online) Dynamic walker with knees and finite hip mass to foot mass ratio: simulation with
knees locked for different initial conditions (θ , θ̇ ). Vertical dashed lines represent ground collisions. (a) Initial
stance leg angle at each step. (b) Initial stance leg angular velocity at each step. (c) AFO phase and frequency.
(d) Stance angle and inter-leg separation angle. Simulation parameters: coupling parameter ε = 40, learning
constant η = 8, final equilibrium angle βeq,f = −0.6 rad, stance leg torque gain τ̂h,o = 20.4375 N-m, virtual
spring constant κ̂ = 40.875 N-m/rad, damping coefficient ν̂ = 3.8218 N-m-s/rad.

Although velocity perturbations due to knee collision could be compensated with velocity feedback
acting on the stance torque, such approach is not desirable. Our AFO-based control aims to stabilize
the walker using the phase of an angular trajectory as its sole feedback. A better alternative is to
design a torque profile for the knee joint similar to the spring-damper torque profile we employed
on the hip joint of the swing leg (Eq. (14)). The damping component would in principle reduce the
intensity of the impact at knee-lock. However, the equilibrium trajectory of the knee spring needs to
be designed such that it minimizes velocity perturbations not only at knee lock but also throughout
the first mode of the walker’s gait.

8. Discussion
We investigated the capabilities of a CPG-like control based on an AFO to generate globally stable
gait cycles in a bipedal walking model. First, we demonstrated how a feedback system formed by an
AFO and inverted pendulum representing the stance leg and the lumped hip mass of the walker can
generate orbitally stable limit cycles. The key finding was that the frequency of the limit cycle can
be controlled independently of the swing amplitude by applying an arbitrary gain (τho) to the torque
acting on the pendulum. This contrasts with CPG control of bipedal walkers based on resonance
tuning3, 26 in which the oscillator entrains itself to the natural frequency of the swing leg.

The small ratio of leg mass to hip mass in the SWM allows decoupling the movement of the swing
leg from that of the stance leg. The practical consequence of this property is the ability to control the
stance angle θ∗ and the angular velocity θ̇∗ of the fixed point independently (see Fig. 7).

In spite of its greater complexity with respect to the inverted-pendulum control, the full walker
control preserved the basic relationship of proportionality between torque amplitude and step
frequency. Thus we have demonstrated that CPG-based control of a bipedal walker does not
necessarily have to tune itself to the resonant frequency of the walker’s legs. Similarly to the model
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Fig. 14. (Colour online) Dynamic walker with knees: simulation with ratio of hip spring constant to knee spring
constant of 20. Vertical dotted lines represent knee collisions; vertical dashed lines represent ground collisions.
(a) AFO phase and frequency. (b) Stance angle and inter-leg separation angle. (c) Hip joint and knee joint angles
with respect to vertical. (d) Stance leg torque. (e) Knee joint torque. (f) Swing leg foot elevation above ground.
Simulation parameters: coupling parameter ε = 40, learning constant η = 8, final equilibrium angle βeq,f =
−0.6 rad, stance leg torque gain τ̂h,o = 20.4375 N-m, virtual spring constant κ̂ = 40.875 N-m/rad, damping
coefficient ν̂ = 3.8218 N-m-s/rad, knee joint virtual spring constant κ̂kn = 2.0438 N-m/rad.

by Wisse,18 the virtual spring constant has the role of stabilizing the gait, but is not determinant of
the step frequency. On the other hand, the energetic efficiency of the AFO-based control for different
stride frequencies still needs to be studied.

Simulations for different values of ε suggested that this parameter may have an optimum value
for walking control, beyond which the region of feasible gait solutions (Fig. 7) begins to contract.
However, the influence of ε and other AFO parameters needs to be studied in a more systematic
fashion. The absence of ε in Eq. (5) suggests that this parameter does not have a significant role in
determining steady-state values of step frequency and stride length. But at the same time, the coupling
strength ε determines the rate of adaptation of AFO frequency,7 and as such may have a critical role in
maintaining stability as the walker’s gait progresses towards steady state. There is a need for a design
methodology for AFO parameters (and CPG-based walking controls in general) to obtain arbitrary
gait cycles in terms of frequency, amplitude, or waveform.20

To determine the global stability of a particular gait solution, we developed a fast algorithm that
reduces the dimensionality of the walker’s landmark state (15) by resetting the AFO at the end of
every AFO cycle, which represents two steps of the walker. The algorithm has the advantage of speed
because it uses recursion. The question is how much the behavior of the walker is altered by the
resetting of φ and ω. If the walker’s gait is initially at the fixed point z∗, resetting will not make any
difference provided that ω+ is exactly equal to ω∗. For slightly different values of ω+, the walker
will either produce a stable period-2 gait in the vicinity of z∗, or fall down after executing a certain
number of steps near z∗. (A period-2 gait is a “limping” gait, i.e. one in which the stride of the right
leg is different from that of the left leg. Thus the landmark state is repeated only every two strides.)

By way of comparison, we obtained the basin of attraction that results from the walker’s normal
behavior, i.e. walking without resetting the AFO. Although this algorithm generates an exact basin of
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Fig. 15. (Colour online) Dynamic walker with knees: simulation with ratio of hip spring constant to knee spring
constant of 10. Vertical dotted lines represent knee collisions; vertical dashed lines represent ground collisions.
(a) AFO phase and frequency. (b) Stance angle and inter-leg separation angle. (c) Hip joint and knee joint angles
with respect to vertical. (d) Stance leg torque. (e) Knee joint torque. (f) Swing leg foot elevation above ground.
Simulation parameters: coupling parameter ε = 40, learning constant η = 8, final equilibrium angle βeq,f = −0.6
rad, stance leg torque gain τ̂h,o = 32.7 N-m, virtual spring constant κ̂ = 40.875 N-m/rad, damping coefficient
ν̂ = 3.8218 N-m-s/rad, knee joint virtual spring constant κ̂kn = 4.0875 N-m/rad.

attraction, it has the disadvantage of being considerably slower because it does not allow recursion.
For an initial condition bj to be included in the basin, it has to generate the complete sequence of
strides ending in �(z∗). If we assume the state space of the walker to be divided into nc × nc cells,
the number of computations required by the exact algorithm is of order O(n3

c). By contrast, the fast
algorithm with phase resetting is of order O(n2

c). The result of the exact algorithm for the same fixed
point is shown in Fig. 16. The basin from the exact algorithm is somewhat smaller because it avoids
convergence to gaits in the vicinity of but different from z∗.

With a view to implementing the AFO-based control on an actual bipedal robot, we simulated the
action of the AFO on a bipedal model featuring a finite ratio of hip mass to foot mass and articulated
knee joints. Simulations showed that the finite mass ratio does not adversely affect the stability of
the system. However, when the knees were allowed to bend passively under the action of a virtual
spring it proved difficult to find stable gait solutions. This was not altogether unexpected because the
virtual spring by itself can enforce an angle constraint but not a velocity one. Thus our next goal is
to design a phase-driven control for the knee joints that preserves the overall behavior of the simple
walking model (Section 6), namely by rejecting the velocity perturbations caused by rotation of the
knee joint and the impact at knee-lock. This problem is similar to the one studied by Garofalo,27 in
which a multi-DOF walking robot is forced to track the behavior of a simple walking model, in that
case a spring-loaded inverted-pendulum (SLIP) walker. The approach proposed there is to project the
torques computed for a low-priority task onto the null space of the Jacobian matrix transpose of a
higher priority task. A similar method may be applied in our case to ensure that the torques leading
the swing leg to its final position do not interfere with the higher priority task of controlling the angle
and velocity of the stance leg.
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Fig. 16. (Colour online) Basin of attraction using exact algorithm with normal behavior (period-1) of the walker.
The gait solution is θ∗ = 0.29501 and θ̇∗ = −0.49043.

9. Conclusion and Future Work
We have presented a simple control method that allows simultaneous frequency tuning and
stabilization of a bipedal walker by means of an AFO. The main results from this study are as
follows:

� An inverted-pendulum model provided a basic demonstration of the existence of orbitally stable
limit cycles in the closed-loop system formed by the AFO and the walker.

� AFO-driven walking control is not constrained to resonance tuning. Stride frequency can be
controlled independently of the natural pendulum frequency of the walker’s legs by adjusting an
independent control gain.

� Stability was accomplished by a constraint in the form of a spring and damper combination, with
a traveling equilibrium point linked to the oscillator phase. This strategy preserved the ability to
control stride frequency independently.

� To determine global stability of the AFO-driven walking control, we developed a recursive
algorithm that allows fast generation of the basin of attraction of a fixed point through periodic
resetting of the AFO. AFO resetting preserves the overall attractor properties of the fixed point
by ensuring that the gait converges to a small vicinity of the fixed point, although it does not
guarantee a sustained gait in that vicinity.

� Regarding the walking model with knees, the stabilizing action of the AFO is preserved for a
finite mass ratio but is generally insufficient for knee joints rotating in a purely passive manner.

Future work will focus on developing a simple AFO-based control for the knee joints that
specifically rejects velocity disturbances. In order to achieve coordination among limb segments,
the control can be expanded to include multiple coupled oscillators. By introducing a certain level
of independence among leg actuators, it should also provide better disturbance rejection capabilities.
We will also investigate the use of AFO-driven control for generating stable running gaits. In order
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to model running, the bipedal model will have to be enhanced with biologically inspired properties
such as compliance and foot geometry.
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Appendix A. Inverted-pendulum system with backlash
The closed-loop system of Fig. 2 is described in frequency domain by

θ + P (jω)W (jω)N(	)θ − P (jω)τhou = 0. (28)

The dynamics of the inverted pendulum (Fig. 1(b)), after linearization and normalization, are given
by the transfer function P (s) = 1/(s2 − 1). The lateral “walls” are modeled as a combination of a
spring of stiffness k and damper with coefficient c to yield W (s) = cs + k. In order to find a limit-
cycle solution (	, ω) for Eq. (28), in addition to the backlash describing function N(	) we need a
describing function for the AFO. Using the low-pass assumption (Section 3), any signal in the system
of Fig. 1(b) can be approximated by a sinusoid. Thus given the AFO output u = cos φ, the pendulum
angular velocity �(t) can be expressed as a change in the amplitude and phase of u(t):

�(t) = |�| cos(φ + γ ). (29)

Substituting � in Eq. (26) we obtain

φ̇ = ω − ε|�| cos(φ + γ ) sin φ. (30)

The rate of convergence of the AFO to a limit cycle is faster than the rate of adaptation of the frequency
parameter ω.7 Therefore, the mean effective frequency ω̄ of the limit cycle21 can be approximated as

ω̄ = ω + 1

2
ε|�| sin γ. (31)

Assuming that the system has a stable limit cycle (	, ω), the frequency adaptation of the AFO
ends when ω̄ = ω. From Eq. (31), this yields the condition γ = 0. Applying this result to Eq. (29), we
obtain � = |�| cos φ = |�|u. But given that, in the frequency domain, � = jω θ , the AFO output
for the limit cycle in that domain is simply

u(jω) = jω θ(jω)

ω	
= j

	
θ(jω). (32)

Substituting u in Eq. (28) yields

1 + P (jω)W (jω)N(	) − j (τho/	)P (jω) = 0, (33)

which can be rewritten as N(	) − Q(	, ω) = 0, where

Q(	, ω) = j (τho/	)P (jω) − 1

P (jω)W (jω)
. (34)

Q(	, ω) is a complex function of which the real and the imaginary part are, respectively,

Re{Q(	, ω)} = k(ω2 + 1) + (τho/	)cω

c2ω2 + k2
(35)

Im{Q(	, ω)} = −cω(ω2 + 1) − (τho/	)k

c2ω2 + k2
. (36)

A solution (	, ω) represents a limit cycle of the inverted pendulum. The orbital stability of the limit
cycle can be determined by computing the gradients Re{ ∂Q

∂ω
} and Im{ ∂Q

∂ω
}. A locally stable limit cycle

is one for which both gradients are negative.
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Appendix B. Finding gait solutions for the bipedal walker using a linearized model
A periodic gait cycle occurs when the initial conditions of one step are repeated at the beginning of the
next step. We express a gait cycle solution as a set of values (	, �, Ts) such that the initial conditions
are θ(0) = 	 and θ̇ (0) = �, and Ts represents the period of one step. We will obtain approximate
gait cycle solutions for the walker by linearizing the equations of motion about [θ θ̇ β β̇]T = 0 and
using simplified expressions for the hip torques. The stance leg torque of Eq. (13) is approximated by

τh,st = τ̄hot e−σ t , (37)

where τ̄ho = 2πτho/Ts and σ = 2π/(Kst Ts). We still use Eq. (14) for the swing leg torque

τh,sw = k(β − βeq) + cβ̇, (38)

but prescribe βeq to be constant. This approximation is acceptable under the assumption that the
swing leg does not perturb the motion of the stance leg, as long as the final inter-leg aperture angle
β matches that of the nonlinear systems (1) and (2). Defining ψ = β − βeq and substituting τh,st and
τh,sw, the small-angle approximation of Eq. (2) yields

ψ̈ + cψ̇ + (cos βeq + k)ψ = θ − τ̄hot e−σ t − sin βeq. (39)

We define γ ≡ − sin βeq , ω2
n ≡ cos βeq + k and select c = 2ωn to make the swing leg critically

damped. Substituting these values into Eq. (39) and performing small-angle approximation on Eq.
(1) allows us to write the following set of linearized equations of motion:

θ̈ − θ = −τ̄hot e−σ t (40)

ψ̈ + 2ωnψ̇ + ω2
nψ = θ − τ̄hot e−σ t + γ. (41)

The task is to find a periodic gait solution for Eqs. (40) and (41) subject to initial conditions

θ(0) = 	 (42)

θ̇ (0) = −� (43)

ψ(0) = 2	 − βeq (44)

ψ̇(0) = 0 (45)

with jump conditions

θ+ = −θ− (46)

θ̇+ = cos 2θ−θ̇− (47)

ψ+ = −2θ− − βeq (48)

ψ̇+ = cos 2θ−(1 − cos 2θ−)θ̇−. (49)

The fixed point of the gait cycle is enforced by the boundary conditions

θ+(Ts) = 	 (50)

θ̇+(Ts) = −� (51)

ψ+(Ts) = 2	 − βeq. (52)

We solve for θ by first proposing the nonhomogeneous solution

θnh = B1e
−σ t + B2te

−σ t . (53)
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Applying θnh to Eq. (40),

(B1σ
2 − 2B2σ − B1)e−σ t + (B2σ

2 − B2)te−σ t = −τ̄hot e−σ t , (54)

which yields the coefficients

B1 = − 2σ τ̄ho

(σ 2 − 1)2
, B2 = − τ̄ho

σ 2 − 1
. (55)

The complete solution for θ is given by

θ = A1e
t + A2e

−t + (B1 + B2t)e
−σ t (56)

θ̇ = A1e
t − A2e

−t + (−B1σ + B2 − B2σ t)e−σ t , (57)

where initial conditions (42) and (43) applied respectively to (56) and (57) yield the coefficients

A1 = 1

2
(	 − � + B1(σ − 1) − B2) (58)

A2 = 1

2
(	 + � − B1(σ + 1) + B2). (59)

We proceed now to solve for ψ . Substituting the solution for θ (56) into Eq. (41) yields

ψ̈ + 2ωnψ̇ + ω2
nψ = A1e

t + A2e
−t + B1e

−σ t + B2te
−σ t − τ̄hot e−σ t + γ. (60)

Therefore, we propose the nonhomogeneous solution

ψnh = E1e
t + E2e

−t + F1e
−σ t + F2te

−σ t + F3. (61)

Applying ψnh to Eq. (41),

E1e
t + E2e

−t + (F1σ
2 − F2σ )e−σ t − F2σe−σ t + F2σ

2te−σ t

+2ωnE1e
t − 2ωnE2e

−t + 2ωn(−F1σ + F2)e−σ t − 2ωnF2σ te−σ t

+ω2
nE1e

t + ω2
nE2e

−t + ω2
nF1e

−σ t + ω2
nF2te

−σ t + ω2
nF3

= A1e
t + A2e

−t + B1e
−σ t + B2te

−σ t − τ̄hot e−σ t + γ, (62)

which yields the coefficients

E1 = A1

1 + 2ωn + ω2
n

E2 = A2

1 − 2ωn + ω2
n

F1 = B1

σ 2 − 2ωnσ + ω2
n

− 2
(ωn − σ )(B2 − τ̄ho)

(σ 2 − 2ωnσ + ω2
n)2

F2 = B2 − τ̄ho

σ 2 − 2ωnσ + ω2
n

F3 = γ

ω2
n

. (63)
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The complete solution for ψ adds an homogeneous (D1 + D2t)e−ωnt term to ψnh to yield

ψ = (D1 + D2t)e
−ωnt + E1e

t + E2e
−t + (F1 + F2t)e

−σ t + F3 (64)

ψ̇ = (−D1ωn + D2 − D2ωnt)e
−ωnt + E1e

t − E2e
−t + (−F1σ + F2 − F2σ t)e−σ t , (65)

where initial conditions (44) and (45) applied respectively to (64) and (65) yield the coefficients

D1 = 2	 − βeq − E1 − E2 − F1 − F2

D2 = D1ωn − E1 + E2 + F1σ − F2. (66)

The solutions for θ (56), θ̇ (57), ψ (64), and ψ̇ (65) are functions of the gait parameters 	, �, and
Ts . In order to solve for these, we need to use the jump conditions and boundary conditions of the
periodic gait. Boundary condition (50) applied to the jump condition (46) yields

θ−(Ts) = −θ+(Ts) = −	. (67)

Substituting θ−(Ts) in Eq. (56) yields

−	 = A1e
Ts + A2e

−Ts + (B1 + B2Ts)e
−σTs . (68)

Boundary condition (51) applied to the jump condition (47) yields

−� = cos 2	 θ̇−(Ts). (69)

Substituting θ̇−(Ts) in Eq. (57) yields

− �

cos 2	
= A1e

Ts − A2e
−Ts + (−B1σ + B2 − B2σTs)e

−σTs . (70)

Finally, applying the boundary condition (52) to the jump condition (48) yields

ψ−(Ts) = −2	 − βeq. (71)

Substituting ψ−(Ts) in Eq. (64) yields

−2	 − βeq = (D1 + D2Ts)e
−ωnTs + E1e

Ts + E2e
−Ts + (F1 + F2Ts)e

−σTs + F3. (72)

Thus the gait parameters 	, �, and Ts are the solution to (68), (70), and (72).

Appendix C. Dynamic walking model with knee joints and finite mass ratio
The dynamic walker with knees (Fig. 12) features a “thigh” segment with a mass M = 0.4167 kg
centered at the hip joint and a “shank” segment with a mass m = 0.0833 kg located at the distal point.
The centroidal moments of inertia are It = 0.005 kg/m2 for the thigh and Is = 0.001 kg m2 for the
shank. The total length of the leg is l = 1 m and the feet have radii of 0.2 m.

The state and control variables of the original walking model are defined in dimensionless space.
In order to be used on the dynamic walker with knees, these variables are made dimensional per the
walker’s physical parameters. To this end we will use the following values corresponding to the leg’s
knee-locked configuration:

� Center of mass: c1 = M
m+M

l

� Moment of inertia about the distal point [ox oy]T : Io = Is + It + Ml2

� Moment of inertia about the hip joint : Ih = Is + It + ml2

Thus the dimensional variables of the walker with knees (denoted by the symbol ˆ) are obtained as
follows:
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� Angular velocity: ˙̂θ =
√

Mgc1

Io
θ̇

� Stance leg torque: τ̂h,o = 2Mgc1τh,o

� Swing leg spring constant: κ̂ = mglκ

� Swing leg damping coefficient: ν̂ = 2
√

κ̂Ih

The mode transitions are based on the walker model by Fu.5 The first transition occurs when the
swing leg becomes fully extended and the knee joint becomes locked. The geometric condition for
the transition is

θ2 − θ3 = 0. (73)

Given the walker’s state in generalized coordinates, q = [θ1 θ2 θ3]T , and the inertia matrix D(q), to
find the joints’ angular velocities q̇+ after knee lock we apply conservation of momentum as

D(q+)q̇+ − D(q−)q̇− =
⎡
⎣ 0

−Pk

Pk

⎤
⎦ , (74)

where Pk in the impulse occurring on the knee joint as a result of the locking action. The associated
constraint is that the angular velocities of the thigh and the shank become equal after knee lock:

[0 1 − 1]q̇+ = 0. (75)

From Eqs. (74) and (75), we solve for q̇+ and Pk .
The second transition occurs when the leading foot makes contact with the ground and the trailing

leg becomes the swing leg. To derive the transition equations we define an extended state vector that
includes the Cartesian coordinates of the lowest point on the trailing foot (Fig. 12(b)):

p = [ox oy θ1 θ2]T . (76)

The geometric conditions for the ground collision are

θ1 + θ2 − π = 0 (77)

and

ox = oy = 0. (78)

Given the inertia matrix Dp(p), conservation of momentum yields

Dp(p+)ṗ+ − Dp(p−)ṗ− = J T
p (p−)

[
Pg,x

Pg,y

]
, (79)

where [Pg,x, Pg,y]T is the impulse (in Cartesian coordinates) on the leading foot at ground strike and
J T

p (p) is the Jacobian matrix relating the velocities ṗ to the Cartesian velocity of the leading foot
(point [gx gy]T in Fig. 12(b)). The associated constraint is that the Cartesian velocity of the leading
foot is zero after ground strike:

J T
p (p+)ṗ+ = 0. (80)

Equations (79) and (80) yield the solutions for for ṗ+ and [Pg,x, Pg,y]T .
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