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Abstract. Given a closed, orientable, compact surface S of constant negative curvature and
genus g ≥ 2, we study the measure-theoretic entropy of the Bowen–Series boundary map
with respect to its smooth invariant measure. We obtain an explicit formula for the entropy
that only depends on the perimeter of the (8g − 4)-sided fundamental polygon of the
surface S and its genus. Using this, we analyze how the entropy changes in the Teichmüller
space of S and prove the following flexibility result: the measure-theoretic entropy takes
all values between 0 and a maximum that is achieved on the surface that admits a regular
(8g − 4)-sided fundamental polygon. We also compare the measure-theoretic entropy to
the topological entropy of these maps and show that the smooth invariant measure is not a
measure of maximal entropy.
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1. Introduction
Any closed, orientable, compact surface S of genus g ≥ 2 and constant negative curvature
can be modeled as S = �\D, where D = {z ∈ C : |z| < 1} is the unit disk endowed with
hyperbolic metric

2|dz|
1 − |z|2 (1)

and � is a finitely generated Fuchsian group of the first kind acting freely on D.
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FIGURE 1. Chain of 2g geodesics when g = 2.

Recall that geodesics in this model are half-circles or diameters orthogonal to S = ∂D,
the circle at infinity. The geodesic flow ϕ̃t on D is defined as an R-action on the unit tangent
bundle T 1

D that moves a tangent vector along the geodesic defined by this vector with unit
speed. The geodesic flow ϕ̃t on D descends to the geodesic flow ϕt on the factor S = �\D
via the canonical projection

π : T 1
D → T 1S

of the unit tangent bundles. The orbits of the geodesic flow ϕt are oriented geodesics on S.
A surface S of genus g admits an (8g − 4)-sided fundamental polygon F obtained by

cutting it with 2g closed geodesics that intersect in pairs (g of them go around the ‘holes’
and another g go around the ‘waists’ of S) (see Figure 1).

The existence of such a fundamental polygon F is an old result attributed [4, 19] to
Dehn, Fenchel, Nielsen, and Koebe. Adler and Flatto [3, Appendix A] give a careful proof
of existence and properties of F .

We label the sides of F in a counterclockwise order by numbers 1 ≤ i ≤ 8g − 4 and
label the vertices of F by Vi so that side i connects Vi to Vi+1 (mod 8g − 4) (this gives
us a marking of the polygon).

We denote by Pi and Qi+1 the endpoints of the oriented infinite geodesic that extends
side i to the circle at infinity S. (The points Pi , Qi in this paper and [1, 2, 6, 12] are denoted
by ai , bi−1, respectively, in [3].) The order of endpoints on S is the following:

P1, Q1, P2, Q2, . . . , P8g−4, Q8g−4.

The identification of the sides of F is given by the side pairing rule

σ(i) :=
{

4g − i mod (8g − 4) if i is odd,
2 − i mod (8g − 4) if i is even.

(2)

Let Ti denote the Möbius transformation pairing side i with side σ(i).
Notice that in general the polygon F , whose sides are geodesic segments, need not

be regular, but the sides i and σ(i) must have equal length and the angles at vertices i

and σ(i) + 1 must add up to π . The last property implies the ‘extension condition’,
which is crucial for our analysis: the extensions of the sides of F do not intersect the
interior of the tessellation γF , γ ∈ � (see Figure 2). If F is regular (see [3, Figure 1]),
it is the Ford fundamental domain, that is, PiQi+1 is the isometric circle for Ti , and
Ti(PiQi+1) = Qσ(i)+1Pσ(i) is the isometric circle for Tσ(i), so that the inside of the former
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FIGURE 2. An irregular polygon with side identifications (left) and tessellation (right), genus 2.

isometric circle is mapped to the outside of the latter, and all internal angles of F are equal
to π/2.

For each fundamental polygon F with sides along geodesics PiQi+1, the Bowen–Series
boundary map fP : S → S is defined as

fP (x) = Tix if x ∈ [Pi , Pi+1). (3)

The map admits a unique smooth ergodic invariant measure μP (see [6, Theorem 1.2]).
Adler and Flatto [3] gave a thorough analysis of these maps, their two-dimensional natural
extensions, and applications to the symbolic coding of the geodesic flow on �\D. They
also describe the measure μP as a two-step projection of the invariant Liouville measure
for the geodesic flow.

We can now state our first main result.

THEOREM 1. The entropy of the boundary map with respect to its smooth invariant
measure is given by

hμP
(fP ) = π2(4g − 4)

Perimeter(F)
= π · Area(F)

Perimeter(F)
. (4)

Let S = �\D be any compact surface of genus g ≥ 2 and S0 = �reg\D be a special
genus g surface that admits a regular (8g − 4)-sided fundamental region Freg. By the
Fenchel–Nielsen theorem there exists an orientation-preserving homeomorphism h from
D onto D such that � = h ◦ �reg ◦ h−1 and the sides of the fundamental polygon F for
� belong to geodesics P ′

i Q
′
i+1, where P ′

i = h(Pi), Q′
i+1 = h(Qi+1) and PiQi+1 are the

extensions of the sides of Freg. The map h|S is a homeomorphism of S preserving the order
of the points {Pi} ∪ {Qi}.
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The Teichmüller space T (S) of a surface S can be thought of as any of the following:
(i) the space of Riemann surface structures on S modulo conformal maps isotopic to

the identity [8, §1];
(ii) the space of marked Fuchsian groups � such that π1(S)

∼→ � and S is orienta-
tion-preserving homeomorphic to �\D [9, Definition 2.1.1];

(iii) the space of all marked canonical hyperbolic (8g − 4)-gons in the unit disk D such
that side i and side σ(i) have equal length and the internal angles at vertices i

and σ(i)+1 sum to π , up to an isometry of D. (The topology on the space of
polygons is Pk → P if and only if the lengths of all sides converge and the measures
of all angles converge.)

The space T (S) is homeomorphic to R
6g−6. A standard way to parametrize T (S) is

through Fenchel–Nielsen coordinates (see the classical manuscript recently published
in [7]). The surface S can be decomposed along 3g − 3 simple closed curves into 2g − 2
pairs of pants (shown for g = 3 at the bottom of Figure 4). For any S′ ∈ T (S), these curves
are canonically represented by geodesics, whose lengths determine each pair of pants up to
isometry. To recover S′ we need in addition twist parameters when gluing pants together.
Thus altogether T (S) is parametrized by R

3g−3
+ × R

3g−3 (the first group of parameters are
called the lengths and the second the twists), and dim T (S) = 6g − 6.

The construction (iii) of T (S) by varying ‘marked’ fundamental polygons is less
common than the others. Following the earlier work [18, 20], Schmutz Schaller [16]
considers canonical 4g-gons, but the canonical (8g − 4)-gons may be considered as well.
The following is a heuristic argument for the derivation of the dimension of T (S) using
the (8g − 4)-gon: the lengths of the identified pairs of sides are given by 4g − 2 real
parameters; 2g − 1 real parameters represent the angles since four angles at each vertex
are determined by one real parameter. The dimension of the space of isometries of D is 3,
so we remain with (4g − 2) + (2g − 1) − 3 = 6g − 6 parameters.

A few years ago, Anatole Katok suggested a new area of research—or, at the very least,
a new viewpoint—called the ‘flexibility program’, which can be broadly formulated as
follows: under properly understood general restrictions, within a fixed class of smooth
dynamical systems some dynamical invariants take arbitrary values. Taking this point of
view, it is natural to ask how the measure-theoretic entropy hμP

(fP ) changes in T (S). Our
second main result addresses this question.

THEOREM 2. (Maximum and flexibility of entropy)
(i) Among all surfaces in T (S), the maximum value of the entropy hμP

(fP ) is achieved
on the surface for which F is regular and is equal to

H(g) := hμ
reg
P

(f
reg
P

) = π2(4g − 4)

(8g − 4) cosh−1(1 + 2 cos(π/(4g − 2)))
. (5)

(ii) For any value h ∈ (0, H(g)] there exists F ∈ T (S) such that hμP
(fP ) = h.

This paper is organized as follows. In §2 we prove Theorem 1. The natural extension
FP of fP and the ‘geometric map’ Fgeo from [1] are used in the proof. In §3 we prove
Theorem 2 by invoking the isoareal inequality and using Fenchel–Nielsen coordinates
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in the Teichmüller space related to a fundamental (8g − 4)-gon. In §4 we compare the
topological entropy of the boundary map fP to the measure-theoretic entropy and show
that the smooth invariant measure μP is not a measure of maximal entropy. In Appendix A
we provide some computational tools for genus 2.

2. Proof of Theorem 1
The space of oriented geodesics on D is modeled as S × S \ �, where � is the diagonal
{(w, w) : w ∈ S}. The smooth measure

dν = |du||dw|
|u − w|2

on S × S \ � was most probably first considered by Hopf [10] as he introduced the measure
dm = dνds on T 1(D) to study ergodic properties of the geodesic flow. The measure dν

was later used by Sullivan [17], Bonahon [5], Adler and Flatto [3], and the current authors
[1, 12]. The measure dm is often more convenient for studying the geodesic flow than the
Liouville volume

dω = 4 dx dy dθ

(1 − x2 − y2)2 ,

which comes from the hyperbolic measure on D. Both measures dν and dm are preserved
by Möbius transformations, and dω = 1

2 dm (see [5, Appendix A2]). (The constant relating
dω and dm was given incorrectly as 1/4 in [3, p. 250]. Following that, 1/4 was used in [1,
Proposition 10.1].)

Adler and Flatto [3] introduced the ‘rectilinear map’ defined by

FP (u, w) = (Tiu, Tiw) if w ∈ [Pi , Pi+1) (6)

and showed the existence of an invariant domain �P ⊂ S × S such that FP restricted
to �P is a two-dimensional geometric realization of the natural extension map of fP .
(In [12], the authors showed that �P is also the global attractor of FP : S × S \ � →
S × S \ �.) The set �P is bounded away from the diagonal � and has a finite rectangular
structure. Thus FP preserves the smooth probability measure

dνP := dν∫
�P

dν
.

The boundary map fP is a factor of FP (projecting on the second coordinate), so one can
obtain its smooth invariant probability measure μP as a projection.

The geodesic flow on S can be realized as a special flow over a cross-section that
is parametrized by �P , and the first return map to this cross-section acts exactly
as FP : �P → �P . Using this realization along with Abramov’s formula and the
Ambrose–Kakutani theorem, we have from [1, Proposition 10.1] (with a corrected
constant) that

hμP
(fP ) = hνP

(FP ) = π2(4g − 4)∫
�P

dν
,
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Φ→

FIGURE 3. Bulges Bi of �geo (left) are mapped to corners of �P (right).

and since Area(F) = 2π(2g − 2) by the Gauss–Bonnet formula, we have

hμP
(fP ) = π · Area(F)∫

�P
dν

. (7)

To prove Theorem 1, it remains only to show that
∫
�P

dν is equal to the (hyperbolic)
perimeter of F . For that, we use another map, also introduced by Adler and Flatto in [3],
called the ‘curvilinear map’ (or ‘geometric map’ in [1]). Denoting by uw the geodesic
from u to w, the map is defined on the set

�geo := {(u, w) : uw intersects F} ⊂ S × S \ �

and is given by

Fgeo(u, w) = (Tiu, Tiw) if uw exits F through side i.

There is a key correspondence between �geo and �P (see Figure 3).

PROPOSITION 3. [3, Theorem 5.1] The map  : �geo → �P given by

 =
{

Id on �geo ∩ �P ,
Tσ(i)−1Ti on Bi ,

where Bi = {(u, w) ∈ �geo \ �P : w ∈ [Pi , Pi+1]}, is bijective.

Since  acts by fractional linear transformations, which preserve the measure ν, we
have that ∫

�P

dν =
∫

�geo

dν. (8)

Having proved (8), we now want to show that
∫
�geo

dν is equal to the (hyperbolic)
perimeter of F .
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LEMMA 4. (Bonahon) For any oriented geodesic segment s on D,∫
�+(s)

dν = length(s),

where �+(s) is the set of oriented geodesics intersecting s with the oriented angle at the
intersection between 0 and π .

The proof involves expressing dν = |du||dw|/|u − w|2 in a coordinate system (x, θ)

based on movement along geodesics, namely,

dν = 1
2 sin(θ) dθ dx,

where x is the distance along the segment s from the point of intersection of s with uw,
and θ is the angle that uw makes with s. (This measure is sometimes called ‘geodesic
current’.) See [5, Appendix A3] for details†.

Recall that the domain �geo of the geometric map Fgeo consists of all (u, w) for which
uw intersects F . This can be decomposed as �geo = ⋃8g−4

i=1 Gi , where

Gi = {(u, w) : uw exits F through side i} = �+(side i)

(these ‘strips’ are shown in [1, Figure 3]). Thus from Lemma 4 we immediately get∫
�geo

dν =
8g−4∑
i=1

∫
Gi

dν =
8g−4∑
i=1

length(side i) = Perimeter(F).

Combining this with (8), one can replace
∫
�P

dν by the perimeter of F in the denominator
of (7); this completes the proof of Theorem 1.

Remark 5. In [12], the authors introduced and investigated dynamical properties of
boundary map fA defined for an arbitrary multi-parameter A = {A1, A2, . . . , A8g−4} with
all Ai ∈ (Pi , Qi) satisfying the so-called ‘short cycle property’ fA(TiAi) = fA(Ti−1Ai).
It was proved in [1] that ν(�A) = ν(�P ) and FA and FP are measure-theoretically
isomorphic, which implies that hνA

(FA) = hνP
(FP ). This allows us to conclude that

μA = μP and to prove the same formula (4) for the entropy of fA:

hμA
(fA) = π2(4g − 4)

Perimeter(F)
= π · Area(F)

Perimeter(F)
= hμP

(fP ).

In other words, the entropy remains unchanged for all boundary maps fA defined using a
multi-parameter A satisfying the short cycle property.

3. Proof of Theorem 2
To prove that Theorem 2(i) follows from Theorem 1, we only need to show that for each
genus g the perimeter of F in T (S) is minimized on the regular polygon.

THEOREM 6. (Isoareal inequality) Among all hyperbolic polygons with a given area and
number of sides, the regular polygon has the smallest perimeter.

† Thank you to Alena Erchenko for providing this reference.
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FIGURE 4. Chain of 2g geodesics on S forming the sides of F (top) and decomposition of S into 2g − 2 pairs of
pants by 3g − 3 non-intersecting geodesics (bottom) for g = 3.

Proof. For a hyperbolic n-gon Pn, the inequality

Perimeter(Pn)
2 ≥ 4 dn Area(Pn), dn = n tan

(
Area(Pn)

2n

)
,

is given in [13, Theorem 1.2(a)], which also states that equality is achieved on a regular
polygon. Both isoperimetric and isoareal inequalities follow: Area(Pn) and n are constant,
so the right-hand side 4dnArea(Pn) is constant and thus the perimeter of F is minimal
when F is a regular polygon.

In our setting, F = Pn with n = 8g − 4 and Area(F) = 2π(2g − 2) is constant in
T (S), so by Theorem 6 the perimeter is minimized when F is regular. The expression
for the maximum value H(g) in (5) comes directly from (4), with

cosh−1
(

1 + 2 cos
π

4g − 2

)
being the length of a single side of the regular (8g − 4)-gon. This completes the proof of
Theorem 2(i).

To prove Theorem 2(ii), we recall that Fenchel–Nielsen coordinates use a decomposition
of S into 2g − 2 pairs of pants by 3g − 3 non-intersecting closed geodesics whose lengths
can be manipulated independently (these lengths form 3g − 3 of the 6g − 6 coordinates).
We take one of these geodesics to also be a geodesic from the chain described in §1 that
corresponds to one entire side of F (this shared geodesic is on the far right in both parts
of Figure 4). Since the length of this side (one of the Fenchel–Nielsen coordinates) can be
made arbitrarily large, the perimeter of F can also be made arbitrarily large, which by (4)
means that hμP

(fP ) can be made arbitrarily small.
Using the continuity of the Fenchel–Nielsen coordinates, if � → �′ in T (S), then, by

the Fenchel–Nielsen theorem, � = h ◦ �′ ◦ h−1 for some orientation-preserving homeo-
morphism h : D → D, and h|S → Id as circle homeomorphisms, that is, d(h(x), x) → 0
for all x ∈ S. Therefore, for the endpoints of the geodesics PiQi+1 containing the sides
of the fundamental polygon F and the geodesics P ′

i Q
′
i+1 containing the sides of the
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FIGURE 5. Entropy as a function of a single Fenchel–Nielsen coordinate for g = 2.

fundamental polygon F ′, we have Pi → P ′
i and Qi+1 → Q′

i+1. It follows that the vertices
of F will tend to the vertices of F ′, and hence Perimeter(F) → Perimeter(F ′), that is, the
perimeter of F varies continuously within the Teichmüller space T (S). From Theorem 1
we conclude the continuity of the entropy hμP

(fP ) within T (S). By the intermediate value
theorem, hμP

(fP ) must take on all values between 0 and its maximum.
For genus 2, the techniques of Maskit (see Appendix A) allow us to accurately draw the

fundamental polygon F for any values of the Fenchel–Nielsen coordinates. Figure 5 shows
how the entropy changes as the single Fenchel–Nielsen coordinate representing the length
of the bottom side of F is varied.

4. Topological entropy
The notion of topological entropy was originally introduced for continuous maps act-
ing on compact metric spaces. As explained in [15], Bowen’s definition can also be
applied to piecewise continuous, piecewise monotone maps on an interval. The theory
naturally extends to maps of the circle, where monotonicity is understood to mean local
monotonicity.

The map fP is Markov with respect to the partition {I1, . . . , I16g−8} given by

I2i−1 := [Pi , Qi), I2i := [Qi , Pi+1), i = 1, . . . , 8g − 4 (9)

(see [3, Theorem 6.1]). The associated transition matrix M has entries

mij =
{

1 if fP (Ii) ⊃ Ij ,
0 otherwise,

and the topological entropy of fP is

htop(fP ) = log |λmax|,
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where |λmax| is the spectral radius (that is, the eigenvalue with largest absolute value) of
M (see, for example, [11, Proposition 3.2.5]).

In some situations the Lebesgue measure μ will satisfy hμ(f ) = htop(f ), but the
boundary map fP : S → S provides an example where the smooth invariant measure μP is
not a measure of maximum entropy (since fP is Markov, the measure of maximal entropy
is the Parry measure).

It is a direct calculation that λ = 4g − 3 + √
(4g − 3)2 − 1 is an eigenvalue of M with

corresponding eigenvector

v = (1, λ−1, 1, λ−1, . . . , 1, λ−1).

This shows that the topological entropy satisfies

htop(fP ) ≥ log
(

4g − 3 +
√

(4g − 3)2 − 1
)

, (10)

which is used in the proof of Corollary 7 below.
We should point out that as we move in the Teichmüller space T (S), by the

Fenchel–Nielsen theorem mentioned in the Introduction, the partition (9) of S into 16g − 8
intervals remains Markov with the same transition matrix M , therefore htop(fP ) does not
change.

COROLLARY 7. The measure-theoretic entropy of fP with respect to its smooth invariant
measure μP is strictly less than the topological entropy of fP .

Proof. From (5), we have that H(g) = hμ
reg
P

(f
reg
P

), computed in Theorem 2(i), is an
increasing function of g, and we can calculate

lim
g→∞ H(g) = lim

g→∞
π2(4g − 4)

(8g−4) cosh−1(1+2 cos(π/(4g − 2)))
= π2

2 cosh−1(3)
.

Since H(g) is increasing, its value for any g is less than or equal to this limit. The function

log
(

4g − 3 +
√

(4g − 3)2 − 1
)

is also increasing, so, by (10), for any g ≥ 3 we have

htop(fP ) ≥ log(9 + 4
√

5) ≈ 2.8872

and, therefore,

hμP
(fP ) ≤ π2

2 cosh−1(3)
< 2.8 < log(9 + 4

√
5) ≤ htop(fP ).

The case g = 2 is checked separately:

hμP
(fP ) = π2

3 cosh−1(1 + √
3)

≈ 1.9784, htop(fP ) ≥ log(5 + 2
√

6) ≈ 2.2924.

This completes the proof of the Corollary 7.
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Remark 8. In [2] we prove that 4g − 3 + √
(4g − 3)2 − 1 is the maximal eigenvalue of M ,

thus making (10) an equality and obtaining the exact formula for htop(fP ). For Corollary 7,
however, the inequality is sufficient.
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A. Appendix. Computational tools for genus 2
The polygon in Figure 2 and the details of Figure 3 were produced using the generators
of � in terms of the Fenchel–Nielsen coordinates (α, β, γ , σ , τ , ρ) for g = 2 introduced
by Maskit [14]. In case they will be useful for others, we provide below the relevant
information for doing numerical experiments in T (S) for genus 2.

Maskit uses the six parameters above along with

μ = cosh−1(coth β cosh σ cosh τ + sinh σ sinh τ
)
,

δ = coth−1
(cosh γ cosh μ − coth α sinh γ sinh μ − sinh σ sinh ρ

cosh σ cosh ρ

)

to define matrices Ã, B̃, C̃, D̃ acting on the half-plane. Setting A = 1
2 ( i 1

1 i
)Ã( −i 1

1 −i
), etc.,

we get the following matrices acting on the unit disk:

A = sinh α

sinh μ

(
coth α sinh μ + i −i cosh μ

i cosh μ coth α sinh μ − i

)
,

B = sinh β

cosh τ

(
cosh τ coth β + i sinh σ cosh σ + i sinh τ

cosh σ − i sinh τ cosh τ coth β − i sinh σ

)
,

C =
(

cosh γ i sinh γ

−i sinh γ cosh γ

)
,

D = sinh δ

cosh ρ

(
cosh ρ coth δ − i sinh(γ + σ) −cosh(γ + σ) − i sinh ρ

−cosh(γ + σ) + i sinh ρ cosh ρ coth δ + i sinh(γ + σ)

)
.

Let Si be the transformation for which Pi is the repelling fixed point and Qi+1 is the
attracting fixed point. That is, the oriented axis of Si contains side i. We have

S1 = C−1D−1C, S2 = AC, S3 = ABDA−1, S4 = A−1,

S5 = D−1B−1, S6 = CA, S7 = D, S8 = DA−1C−1D−1,

S9 = B−1D−1, S10 = B−1AB, S11 = C−1DCB, S12 = C−1B−1A−1B.
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The side-pairing transformations are

T1 = C, T2 = C−1DC, T3 = A−1, T4 = B−1,

T5 = A, T6 = D, T7 = C−1, T8 = D−1,

T9 = B−1AB, T10 = B, T11 = B−1A−1B, T12 = C−1D−1C,

and the defining relation

ABDA−1C−1D−1CB−1 = Id

from [14] is equivalent to [12, Equation 1.5] with g = 2. The regular 12-gon corresponds
to values

α = 1
2 arccosh(1 + √

3), β = γ = 2α, σ = τ = ρ = 0

for Maskit’s Fenchel–Nielsen coordinates.
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