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1. Introduction

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. We study here the existence

of multiple non-trivial smooth solutions for the following nonlinear Dirichlet problem:

−∆px(z) = m(z)|x(z)|r−2x(z) + f(z, x(z)) a.e. on Z,

x|∂Z = 0.

}
(1.1)

Here 1 < r < p < ∞ and ∆px = div(‖Dx‖p−2Dx), the p-Laplacian differential oper-
ator. Our goal is to prove a ‘three-solutions theorem’ for problem (1.1). Recently, such
theorems were proved by Dancer and Perera [3], Liu [8], Liu and Liu [9], Papageorgiou
and Papageorgiou [10] and Zhang and co-workers [12,13]. In all these works the Euler
functional of the problem is coercive. In addition, in [3,12,13], the asymptotic limits

a± = lim
x→0±

f(z, x)
|x|p−2x

play an important role. Additional multiplicity results (two solutions) for coercive prob-
lems, using critical groups, can be found in [4]. Here the Euler functional need not be
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coercive. In fact, the hypotheses incorporate both coercive and non-coercive problems
in our framework of analysis, since the conditions that we impose on the nonlinearity
f concerning its behaviour near infinity are minimal. More precisely, we require only
that x → f(z, x) has subcritical growth. Also, here we do not assume that the limits
a± = limx→0± f(z, x)/(|x|p−2x) exist.

2. Preliminaries and hypotheses

In our analysis of problem (1.1), we shall use the Sobolev space W 1,p
0 (Z) and the subspace

C1
0 (Z̄) = {x ∈ C1(Z̄) : x|∂Z = 0}.

Both W 1,p
0 (Z) and C1

0 (Z̄) are ordered Banach spaces, with order cones given, respectively,
by

W+ = {x ∈ W 1,p
0 (Z) : x(z) � 0 a.e. on Z}

and

C+ = {x ∈ C1
0 (Z̄) : x(z) � 0 for all z ∈ Z}.

In fact, C+ has non-empty interior, given by

IntC+ =
{

x ∈ C+ : x(z) > 0 for all z ∈ Z,
∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

Here we denote by n(z) the outward unit normal at z ∈ ∂Z. In an ordered Banach
space X with order cone K, we write u � v if and only if v − u ∈ K, and u < v if and
only if u � v and u �= v. Also, if u � v, then we define

[u, v] = {y ∈ W 1,p
0 (Z) : u(z) � y(z) � v(z) a.e. on Z}.

Henceforth, by A : W 1,p
0 (Z) → W−1,p′

(Z), where 1/p + 1/p′ = 1, we denote the non-
linear operator corresponding to −∆p and defined by

〈A(x), y〉 =
∫

Z

‖Dx‖p−2(Dx, Dy)RN dz for all x, y ∈ W 1,p
0 (Z).

Here, 〈· , ·〉 denotes the duality brackets for the pair (W 1,p
0 (Z), W−1,p′

(Z)).
Let λ1 > 0 denote the principal eigenvalue of (−∆p, W

1,p
0 (Z)) and let u1 denote the

Lp-normalized principal eigenfunction. It is known that u1 does not change its sign, and
so we may assume that u1 � 0. Nonlinear regularity theory implies that u1 ∈ C+ and
the nonlinear strong maximum principle of Vazquez [11] yields that u1 ∈ IntC+.

Let X be a Banach space and ϕ ∈ C1(X). The critical groups of ϕ at an isolated
critical point x with ϕ(x) = c are defined by

Ck(ϕ, x) = Hk(ϕc, ϕc \ {x}) for all k � 0,

where Hk is the kth singular relative homology group with coefficients in Z and ϕc =
{x ∈ X : ϕ(x) � c}.

The hypotheses on the nonlinearity f are the following.
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Hypothesis 2.1. f : Z × R → R is a function such that f(z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → f(z, x) is measurable;

(ii) for almost every z ∈ Z, x → f(z, x) is continuous;

(iii) for almost all z ∈ Z and all x ∈ R we have

|f(z, x)| � a(z) + c|x|q−1,

where a ∈ L∞(Z)+, c > 0 and

p < q < p∗ =

⎧⎨
⎩

Np

N − p
if p < N,

∞ if p � N ;

(iv) there exists τ ∈ (p, p∗) such that

lim sup
x→0

f(z, x)
|x|τ−2x

< ∞ uniformly for almost every z ∈ Z;

(v) f(z, x)x > 0 for almost every z ∈ Z and all x �= 0 (strict sign condition).

Hypothesis 2.2. m ∈ L∞(Z), m � 0 and m �= 0.

3. Two constant-sign solutions

We consider the truncated functions, f± : Z × R → R, defined by

f+(z, x) = f(z, x+) and f−(z, x) = f(z,−x−)

We consider the following auxiliary nonlinear Dirichlet problem:

−∆px(z) = m(z)x+(z)r−1 + f+(z, x(z)) a.e. on Z,

x|∂Z = 0.

}
(3.1)

By an upper solution for problem (3.1), we mean a function x̄ ∈ W 1,p(Z) such that
x̄|∂Z � 0 and, for all y ∈ W+,∫

Z

‖Dx̄‖p−2(Dx̄, Dy)RN dz �
∫

Z

m(x̄+)r−1y dz +
∫

Z

f+(z, x̄)y dz.

We say that x̄ is a strict upper solution for (3.1), if it is not a solution of (3.1).
Next we derive a strict upper solution for problem (3.1).

Proposition 3.1. If Hypotheses 2.1 and 2.2 hold, then there exists some λ∗
+ > 0 such

that problem (3.1) has a strict upper solution x̄ ∈ IntC+, provided that 0 < ‖m‖∞ < λ∗
+.
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Proof. By virtue of Hypothesis 2.1 (iii)–(v), we have, for almost every z ∈ Z and all
x � 0,

0 � m(z)xr−1 + f(z, x) � c1(‖m‖s
∞ + xϑ−1), (3.2)

where c1 > 0, 1 < s and p < ϑ < p∗.
Let e ∈ IntC+ be the unique solution of the Dirichlet problem:

−∆pe(z) = 1 a.e. on Z and e|∂Z = 0.

Claim 3.2. There exists λ∗
+ > 0 such that for each m ∈ L∞(Z)+ with 0 < ‖m‖∞ < λ∗

+
we can find some η1 = η1(m) > 0 satisfying

c1‖m‖s
∞ + c1(η1‖e‖∞)ϑ−1 < ηp−1

1 . (3.3)

We argue by contradiction. So, we suppose that the claim is false. Then, we can find
{mn} ⊆ L∞(Z)+ such that ‖mn‖∞ → 0 and, for all η > 0,

ηp−1 � c1‖mn‖∞ + c1(η‖e‖∞)ϑ−1.

Hence, we obtain 1 � c1η
ϑ−p‖e‖ϑ−1

∞ for all η > 0.
Since ϑ > p, by letting η ↓ 0 we have a contradiction. This proves the claim. Now, set

x̄ = η1e ∈ IntC+. We have

−∆px̄(z) = −ηp−1
1 ∆pe(z)

= ηp−1
1

> c1‖m‖s
∞ + c1(η1‖e‖∞)ϑ−1 (see (3.3))

� m(z)x̄(z)r−1 + f+(z, x̄(z)) a.e. on Z (see (3.2)).

This implies that x̄ ∈ IntC+ is a strict upper solution for problem (3.1). �

We also consider the following auxiliary nonlinear Dirichlet problem:

−∆pv(z) = −m(z)v−(z)r−1 + f−(z, v(z)) a.e. on Z,

v|∂Z = 0.

}
(3.4)

We say that v
¯

∈ W 1,p(Z) is a lower solution for problem (3.4) if v
¯
|∂Z � 0 and∫

Z

‖Dv
¯
‖p−2(Dv

¯
, Dy)RN dz �

∫
Z

−m(v
¯
)r−1y dz +

∫
Z

f−(z, v
¯
)y dz

for all y ∈ W+. We say that v
¯

is a strict lower solution for (3.4) if it is a lower solution
but not a solution of (3.4).

Arguing as in the proof of Proposition 3.1, we obtain the following.

Proposition 3.3. If Hypotheses 2.1 and 2.2 hold, then there exists λ∗
− > 0 such that

problem (3.4) has a strict lower solution v
¯

∈ IntC+, provided that ‖m‖∞ < λ∗
−.
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Next we introduce an additional truncation. So, let

f̂+(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

m(z)xr−1 + f+(z, x) if 0 � x � x̄(z),

m(z)x̄(z)r−1 + f+(z, x̄(z)) if x̄(z) < x.

Clearly, f̂+ is a Carathéodory function. We further set

F̂+(z, x) =
∫ x

0
f̂+(z, s) ds

for all x ∈ R.
Also, we introduce the functional ϕ̂+ : W 1,p

0 (Z) → R, defined by

ϕ̂+(x) =
1
p
‖Dx‖p

p −
∫

Z

F̂+(z, x(z)) dz.

Clearly, we have ϕ̂+ ∈ C1(W 1,p
0 (Z)).

Proposition 3.4. If Hypotheses 2.1 and 2.2 hold and 0 < ‖m‖∞ < λ∗
+, then prob-

lem (1.1) has a solution x0 ∈ IntC+.

Proof. Clearly, ϕ̂+ is coercive and sequentially w-lower semicontinuous. So, by the
Weierstrass theorem we can find x0 ∈ W 1,p

0 (Z) such that

ϕ̂+(x0) = m̂+ = inf[ϕ̂+(x) : x ∈ W 1,p
0 (Z)];

hence, ϕ̂′
+(x0) = 0 and consequently

A(x0) = N̂+(x0), (3.5)

where N̂+(x)(·) = f̂+(· , x(·)) for all x ∈ W 1,p
0 (Z). Since x̄ ∈ IntC+ is a strict upper

solution for problem (3.1), we have

A(x̄) > m(x̄+)r−1 + N+(x̄) in W−1,p′
(Z), (3.6)

where N+(x)(·) = f+(· , x(·)) for all x ∈ W 1,p
0 (Z). From (3.5) and (3.6), it follows that

in W−1,p′
(Z) we have

A(x̄) − A(x0) > mx̄r−1 + N+(x̄) − N̂+(x0). (3.7)

On (3.7) we act with the test function (x0−x)+ ∈ W 1,p
0 (Z). Notice that f̂+(z, x0(z)) =

m(z)x̄(z)r−1 + f+(z, x̄(z)) for almost every z ∈ {x0(z) > x̄(z)}. Therefore, we obtain

0 � 〈A(x̄) − A(x0), (x0 − x̄)+〉

=
∫

{x0>x̄}
(‖Dx̄‖p−2Dx̄ − ‖Dx0‖p−2Dx0, Dx0 − Dx̄)RN dz.
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Hence, |{x0 > x̄}|N = 0, i.e. x0 � x̄. Here | · |N denotes the Lebesgue measure on R
N .

Also, if on (3.5) we act with the test function −x−
0 ∈ W 1,p

0 (Z), then

‖Dx−
0 ‖p

p = 0, i.e. 0 � x0.

It follows that N̂+(x0) = mxr−1
0 + N+(x0), which implies that (3.5) becomes A(x0) =

mxr−1
0 + N+(x0) and, consequently,

−∆px0(z) = mx0(z)r−1 + f+(z, x0(z)) a.e. on Z and x0|∂Z = 0. (3.8)

Next we show that x0 �= 0. To this end, for t > 0 small we have

ϕ̂+(tu1) =
tp

p
‖Du1‖p

p − tr

r

∫
E

mur
1 dz −

∫
Z

F (z, tu1) dz

� tp

p
λ1 − tr

r

∫
Z

mur
1 dz.

Since r < p, if we make t ∈ (0, 1) small enough, then we infer that ϕ̂+(tu1) < 0, and
hence

ϕ̂+(x0) = m̂+ < 0 = ϕ̂+(0), i.e. x0 �= 0.

From (3.8) and the nonlinear regularity theory (see, for example, [6, pp. 737–738]),
we have x0 ∈ C+ \ {0}. Invoking the nonlinear strong maximum principle of [11], we
conclude that x0 ∈ IntC0. Moreover,

−∆px0(z) = m(z)x0(z)r−1 + f(z, x0(z)) a.e. on Z;

hence, x0 ∈ IntC+ is a solution of problem (1.1). �

Now we execute an analogous process on the negative semi-axis, for which we define

f̂−(z, x) =

⎧⎪⎨
⎪⎩

m(z)v
¯
(z)r−1 + f−(z, v

¯
(z)) if x < v

¯
(z),

mxr−1 + f−(z, x) if v
¯
(z) � x � 0,

0 if 0 < x.

Set

F̂−(z, x) =
∫ x

0
f̂−(z, s) ds.

Also, we consider the C1-functional ϕ̂− : W 1,p
0 (Z) → R, defined by

ϕ̂−(x) =
1
p
‖Dx‖p

p −
∫

Z

F̂−(z, x(z)) dz.

Arguing as in the proof of Proposition 3.4, we obtain the following.

Proposition 3.5. If Hypotheses 2.1 and 2.2 hold and 0 < ‖m‖∞ < λ∗
−, then prob-

lem (1.1) has a solution v0 ∈ − IntC+.
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4. The three-solutions theorem

In this section we prove the three-solutions theorem for problem (1.1). For this purpose,
we introduce the following truncations of the identity map, of the nonlinearity f and of
mxr−1 + f(z, x):

f̄0(z, x) =

⎧⎪⎨
⎪⎩

f(z, v0(z)) if x < v0(z),

f(z, x) if v0(z) � x � x0(z),

f(z, x0(z)) if x0(z) < x,

f̄+(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

m(z)xr−1 + f(z, x) if 0 � x � x0(z),

m(z)x0(z)r−1 + f(z, x0(z)) if x0(z) < x,

f̄−(z, x) =

⎧⎪⎨
⎪⎩

m(z)v0(z)r−1 + f(z, v0(z)) if x < v0(z),

m(z)xr−1 + f(z, x) if v0(z) � x � 0,

0 if 0 < x,

and

f̄∗
0 (z, x) =

⎧⎪⎨
⎪⎩

m(z)v0(z)r−1 + f(z, v0(z)) if x < v0(z),

m(z)xr−1 + f(z, x) if v0(z) � x � x0(z),

m(z)x0(z)r−1 + f(z, x0(z)) if x0(z) < x.

Also, we define

F̄±(z, x) =
∫ x

0
f̄±(z, s) ds and F̄ ∗

0 (z, x) =
∫ x

0
f̄∗
0 (z, s) ds.

Finally, we introduce the C1-functionals ϕ̄±, ϕ̄0 : W 1,p
0 (Z) → R, defined by

ϕ̄±(x) =
1
p
‖Dx‖p

p −
∫

Z

F̄±(z, x(z)) dz

and

ϕ̄0(z) =
1
p
‖Dx‖p

p −
∫

Z

F̄ ∗
0 (z, x(z)) dz.

In the next proposition we will locate the critical points of these three functionals.

Proposition 4.1. If Hypotheses 2.1 and 2.2 hold and 0 < ‖m‖∞ < λ∗
0 = min{λ∗

+, λ∗
−},

then the critical points of ϕ̄+ are in [0, x0], the critical points of ϕ̄− are in [v0, 0] and the
critical points of ϕ̄0 are in [v0, x0]. Furthermore, v0 and x0 are local minimizers of ϕ̄0.

Proof. We prove the case for ϕ̄0 (the proof for ϕ̄± is similar). So, let x ∈ W 1,p
0 (Z) be

a critical point of ϕ̄0. Then we have ϕ̄′
0(x) = 0; hence,

A(x) = ˆ̄N∗
0 (x), (4.1)
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where ˆ̄N∗
0 (x)(·) = f̄∗

0 (· , x(·)) for all x ∈ W 1,p
0 (Z). Thus,

〈A(x), (x − x0)+〉 =
∫

Z

mxr−1
0 (x − x0)+ dz +

∫
Z

f(z, x0)(x − x0)+ dz

= 〈A(x0), (x − x0)+〉, (4.2)

where the last equality is due to the fact that x0 ∈ IntC+ is a solution of (1.1).
By virtue of the strict monotonicity of the map A, from (4.2) we infer that

(x − x0)+ = 0,

i.e. x � x0. In a similar fashion we also can show that

v0 � x.

So, indeed the critical points of ϕ̄0 are in the ordered interval [v0, x0].
Without loss of generality, we may assume that x0 ∈ IntC+ is the only non-trivial

critical point of ϕ̄+ and v0 is the only non-trivial critical point of ϕ̄−. Otherwise, we
already have a third non-trivial solution of (1.1), distinct from x0 and v0, which is in fact
of constant sign.

As in the proof of Proposition 3.4, we can show that for t > 0 small we have ϕ̄+(tu1) <

0; hence,
m̄+ = inf[ϕ̄+(x) : x ∈ W 1,p

0 (Z)] < 0 = ϕ̄+(0).

Note that ϕ̄+ is coercive and sequentially w-lower semicontinuous. Therefore, we can
find some x̄0 ∈ W 1,p

0 (Z) such that

ϕ̄+(x̄0) = m̄+ < 0 = ϕ̄+(0),

i.e. x̄0 �= 0. It follows that x̄0 = x0. Because x0 ∈ IntC+, we can find small r > 0 such
that

ϕ̄+|
B̄

C1
0(Z̄)

r (x0)
= ϕ0|

B̄
C1

0(Z̄)
r (x0)

,

where
B̄

C1
0 (Z̄)

r (x0) = {x ∈ C1
0 (Z̄) : ‖x − x0‖C1

0 (Z̄) � r}.

Hence, x0 is a local C1
0 (Z̄)-minimizer of ϕ̄0. From [5], it follows that x0 is a local W 1,p

0 (Z)-
minimizer of ϕ̄0. The argument for v0 ∈ − IntC+ is similar. �

Now we are ready for the multiplicity result.

Theorem 4.2. If Hypotheses 2.1 and 2.2 hold and 0 < ‖m‖∞ < λ∗
0 = min{λ∗

+, λ∗
−},

then problem (1.1) has at least three non-trivial distinct solutions x0, v0 and y0 such
that

x0 ∈ IntC0, v0 ∈ − IntC+, y0 ∈ C1
0 (Z̄)

and v0(z) � y0(z) � x0(z) for all z ∈ Z̄.
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Proof. From Propositions 3.4 and 3.5, we already have two solutions of constant sign:
x0 ∈ IntC+ and v0 ∈ − IntC+. By Proposition 4.1, we know that both x0 and v0 are
local minimizers of ϕ̄0. So, as in [1, Proposition 29], we can find r > 0 small enough such
that

ϕ̄0(x0) < inf[ϕ̄0(x) : ‖x − x0‖ = r]

and

ϕ̄0(v0) < inf[ϕ̄0(v) : ‖v − v0‖ = r].

Without loss of generality, we may assume that ϕ0(v0) � ϕ0(x0). Then, the sets
E0 = {v0, x0}, E = [v0, x0] and

D = ∂Br(x0) = {x ∈ W 1,p
0 (Z) : ‖x − x0‖ = r}

are linking in W 1,p
0 (Z) (see, for example, [6, p. 642]). Also, ϕ̄0 being coercive, we can

easily verify that it satisfies the Palais–Smale condition. So, we can apply the linking
theorem (see, for example, [6, p. 644]) and obtain some y0 ∈ W 1,p

0 (Z), a critical point of
ϕ̄0 of mountain-pass type, y0 �= x0, y0 �= v0. Hence [2],

C1(ϕ̄0, y0) �= 0. (4.3)

On the other hand, by Hypothesis 2.1 (iv), we can find some β > 0 and δ > 0 such
that

0 � f(z, x)x � β|x|τ

for all z ∈ Z and all |x| � δ. Now, let |x| � δ. If x ∈ [v0(z), x0(z)], then f̄0(z, x) = f(z, x),
and so

0 � f̄0(z, x)x � β|x|τ . (4.4)

If x > x0(z) (respectively, x < v0(z)), then

f̄0(z, x) = f(z, x0(z))

(respectively, f̄0(z, x) = f(z, v0(z))).
If µ ∈ (r, p), then for almost every z ∈ Z and all |x| � δ, x ∈ [v0(z), x0(z)], we have(

µ

r
− 1

)
|x|r + µF̄0(z, x) − f̄0(z, x)x �

(
µ

r
− 1

)
|x|r − β|x|τ (4.5)

since F̄0 � 0, and due to (4.4).
Since r < τ and |x| � δ < 1, from (4.5) it follows that(

µ

r
− 1

)
|x|r + µF̄0(z, x) − f̄0(z, x)x � 0 (4.6)

for almost all z ∈ Z and all |x| � δ, x ∈ [v0(z), x0(z)].
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If x > x0(z), then(
µ

r
− 1

)
x0(z)r − f(z, x0(z))x0(z) �

(
µ

r
− 1

)
x0(z)r − βx0(z)τ � 0.

A similar result is obtained if x < v0(z).
Invoking [7, Proposition 2.1], by (4.6) we have

Ck(ϕ̄0, 0) = 0 for all k � 0. (4.7)

If we compare (4.3) and (4.7), it is clear that y0 �= 0. Finally, the nonlinear regularity
theory implies that y0 ∈ C1

0 (Z̄). Since y0 ∈ [v0, x0], we conclude that y0 is a non-trivial
smooth solution of problem (1.1), distinct from x0 and v0. �
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häuser, Boston, MA, 1993).

3. E. N. Dancer and K. Perera, Some remarks on the Fuc̆ik spectrum of the p-Laplacian
and critical groups, J. Math. Analysis Applic. 254 (2001), 164–177.

4. F. O. de Paiva, Multiple solutions for a class of quasilinear problems, Discrete Contin.
Dynam. Syst. 15 (2006), 669–680.

5. J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local
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