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Linear stability analysis of a Newtonian
ferrofluid cylinder surrounded by a
Newtonian fluid
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We performed a linear stability analysis of a Newtonian ferrofluid cylinder surrounded by a
Newtonian non-magnetic fluid in an azimuthal magnetic field. A wire is used at the centre
of the ferrofluid cylinder to create this magnetic field. Isothermal conditions are considered
and gravity is ignored. An axisymmetric perturbation is imposed at the interface between
the two fluids and a dispersion relation is obtained allowing us to predict whether the
flow is stable or unstable with respect to this perturbation. This relation is dependent on
the Ohnesorge number of the ferrofluid, the dynamic viscosity ratio, the density ratio, the
magnetic Bond number, the relative magnetic permeability and the dimensionless wire
radius. Solutions to this dispersion relation are compared with experimental data from
Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and, more recently,
Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502). A better agreement than
the inviscid theory and the theory that only takes into account the viscosity of the ferrofluid
is shown with the data of Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481)
and those of Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502) for small
wavenumbers.

Key words: magnetic fluids

1. Introduction

Ferrofluids are superparamagnetic suspensions comprised of nanometric magnetic
particles in a water- or oil-based liquid. A surfactant is used to prevent the agglomeration
of particles. Given the nanometric size of the particles, ferrofluids can be considered as a
single liquid phase. Due to the ability to control them with magnetic fields, ferrofluids are
of interest in various flows such as liquid jets. During jet atomisation, cylindrical ligament
structures are observed. Thus, it is interesting to study the stability of a ferrofluid cylinder
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under a magnetic field. Few experiments have been conducted on ferrofluid cylinders as of
now, nevertheless data have been collected. Arkhipenko et al. (1981) studied the stability
of a ferrofluid cylinder in glycerine subjected to an azimuthal magnetic field created by a
cylindrical conductor inside the ferrofluid. The cylinder was initially stabilised with a high
magnetic field intensity and then destabilised by decreasing this intensity. The growth
rate and the wavelength of the fastest growing mode at different magnetic field intensities
were measured. Bourdin, Bacri & Falcon (2010) performed a similar experiment using
Freon instead of glycerine as the surrounding fluid. Contrary to Arkhipenko et al. (1981),
their measurements were only made at high magnetic field intensities when the cylinder
was stable. The perturbation frequency was imposed at one location and the associated
wavenumber was measured. The theoretical models based on a linear stability analysis
developed to date tend to overpredict the experimental data. Considering an inviscid
ferrofluid with an inviscid surrounding fluid (Arkhipenko et al. 1981), the predicted growth
rate is between 3 and 15 times higher than that observed in experiments. By considering
the ferrofluid viscosity, but neglecting the surrounding fluid (Canu & Renoult 2021), this
error decreases, although the growth rate is still 2 to 7 times higher than the experimental
data. Regarding the difference with the experimental data of Bourdin et al. (2010), the
inviscid theory used by the authors (theory of Arkhipenko et al. (1981) but without
considering the radius of the cylindrical conductor and the density of the surrounding
fluid) has a relative error of around 40 %–50 %, whereas that of the viscous theory without
surrounding fluid (Canu & Renoult 2021) is around 20 %–30 %. In the case of these two
experiments the difference may be explained by the viscosity of the surrounding fluid,
which is not negligible, especially for the case of the Arkhipenko et al. (1981) experiments.
Therefore, there is a need to consider the surrounding fluid viscosity in stability analysis.
This addition will bring us closer to experimental conditions that can be encountered in
medicine, for example, where a ferrofluid can be injected into a viscous biological liquid
for drug targeting applications.

In the literature, several studies have theoretically considered a viscous fluid surrounded
by another viscous fluid in a non-magnetic case. The first linear stability analysis was
conducted by Tomotika (1935). He considered a cylinder of a viscous Newtonian fluid
surrounded by an infinite Newtonian fluid. He obtained a general dispersion relation under
the form of a determinant and solved it by considering a negligible inertia compared with
the viscous effects. In another study, Tomotika (1936) investigated the same configuration
but with the cylinder placed in an extending velocity field where the radial and axial
components are respectively proportional to the radial and axial coordinates. In this
type of field, the cylinder remains cylindrical until it breaks up into small drops once
it becomes very thin. Studies on cylinders placed in extending velocity fields were also
conducted by Mikami, Cox & Mason (1975), who performed experimental measurements
in addition to theoretical analyses, and by Khakhar & Ottino (1987). Kinoshita, Teng &
Masutani (1994) analysed the same case as Tomotika (1935). Similarly, they ignored inertia
and considered Stokes flows but, contrary to Tomotika (1935), they obtained an explicit
dispersion relation. They also obtained simplified dispersion relations for limiting cases
and found that the density ratio, the viscosity ratio (density and viscosity of the outer
fluid compared with the inner fluid) and the Ohnesorge number tend to stabilise the jet
when they are large. Furthermore, they observed that the density ratio is only significant
for gases surrounded by liquids. Stone & Brenner (1996) also simplified the dispersion
relation for the case in which both fluids have the same viscosity and then generalised
the results for several concentric fluids. In previous studies, velocity has been expressed
with a Stokes streamfunction. Funada & Joseph (2002) compared three methods: velocity
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Stability of a ferrofluid cylinder in another fluid

expressed with a Stokes streamfunction while considering viscosity; velocity expressed
with a potential while considering viscosity; and velocity expressed with a potential while
ignoring viscosity. The authors found that the three methods converge for sufficiently
high Reynolds numbers and that the second method gives intermediate results for low
Reynolds numbers. Gunawan, Molenaar & van de Ven (2002) explored the stability
of two proximate cylinders immersed in another fluid. In this case, the breakup of
the cylinders accelerates when the viscosity ratio is high and the distance between the
cylinders is short. Furthermore, according to the values of the viscosity ratio and the
distance between the cylinders, the deformations of the cylinders will occur in or out
of phase. In the literature, other kinds of viscous fluids were also studied. Gadkari &
Thaokar (2013) regarded conductive fluids placed in an axial or radial electric field as
well as the influence of this field on asymmetric modes of the perturbation. Finally,
Patrascu & Balan (2018) analysed the stability of viscoelastic fluids immersed in another
viscoelastic fluid and compared them with the limiting cases in which the fluids are
Newtonian.

Regarding the magnetic case, there is the work of Korovin in which a ferrofluid cylinder
is surrounded by another ferrofluid with different magnetic permeability and same density.
In Korovin (2001), an axial magnetic field is applied and the two ferrofluids have a different
viscosity. For this case, an explicit dispersion relation was obtained for the particular case
where the viscous forces are dominant. Then, the case in which both ferrofluids have
the same viscosity was treated (Korovin 2002; Kazhan & Korovin 2003). This time, the
dispersion relation was obtained using a single equation of motion valid for both ferrofluids
and at the interface. The same methodology was used in Korovin (2004) but for the case of
an azimuthal magnetic field created by a cylindrical conductor placed at the centre of the
inner ferrofluid. Again, both ferrofluids have the same density and viscosity. In a recent
paper (Korovin 2020), for the case of an inviscid ferrofluid without surrounding fluid, a
Langevin law for the magnetisation of the ferrofluid was considered instead of a linear
magnetisation usually assumed.

In this work, we will perform a linear stability analysis of a Newtonian ferrofluid
surrounded by a Newtonian non-magnetic fluid in an azimuthal magnetic field, for the
general case where the two fluids have different densities and viscosities. After formulating
this problem with different assumptions, we will derive the bulk equations for both
fluids and the jump conditions across the interface between them. A general dispersion
relation in explicit form will then be obtained, providing another formulation of this
relation compared with previous studies. Its solutions will finally be compared with the
experimental data (Arkhipenko et al. 1981; Bourdin et al. 2010).

2. Formulation

We consider an incompressible Newtonian ferrofluid cylinder of infinite length surrounded
by a Newtonian non-magnetic fluid. The system is placed in a steady axisymmetric
azimuthal magnetic field. Isothermal conditions are also assumed and gravity is ignored.
According to Canu & Renoult (2021), under these assumptions, the azimuthal magnetic
field should be in the form H = B/reθ with B a constant, r the radial distance and eθ
the azimuthal unit vector. A wire with radius Rw is used at the centre of the ferrofluid
cylinder to create this magnetic field by passing an electric current of intensity I through
it. A representation of this configuration is shown in figure 1. Considering an infinite
length wire and a uniform electrical current inside it, the created magnetic field is
such that B = I/2π. In the basic state, both fluids are considered at rest. This state
is perturbed by imposing a small-amplitude axisymmetric disturbance. Linear stability
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Figure 1. Representation of a Newtonian ferrofluid cylinder around a wire and surrounded by a Newtonian
non-magnetic fluid.

analysis is then performed to investigate whether the flow is stable or unstable
with respect to this disturbance. The governing equations of this flow are described
below.

3. Governing equations

The equations, valid for both the ferrofluid and the surrounding fluid, are presented below.
The mass and momentum balance equations can be expressed as follows:

∇ · Ui = 0, (3.1)

ρi

(
∂Ui

∂t
+ Ui · ∇Ui

)
= −∇Πi + ∇ · τi , (3.2)

with Ui the velocity, ρi the density, τi = ηi(∇Ui + ∇Ut
i) the viscous stress tensor, ηi the

dynamic viscosity and Πi defined by Πi = Pi + Psi, where Pi refers to thermodynamic
pressure and Psi = μ0

∫ H
0 υi(∂Mi/∂υi) dH to magnetostrictive pressure. In this last term,

μ0 is the permeability of free space, υi the specific volume, and Mi the magnetisation. The
subscript i takes the value 1 for the ferrofluid and 2 for the surrounding fluid. In particular,
M2 = 0 and Π2 = P2.

As neither fluid is electrically conductive, Maxwell’s equations are thus

∇ · Bi = 0, (3.3)

∇ × Hi = 0, (3.4)

with Bi the magnetic induction field, which can be expressed as

Bi = μ0 (Hi + Mi) = μiHi, (3.5)

with μi the magnetic permeability of the fluid. For a ferrofluid, the magnetisation follows a
Langevin law (see e.g. Korovin 2020). Nevertheless, for sufficiently weak magnetic fields,
the response of the ferrofluid can be considered as linear, homogeneous and isotropic. The
magnetic field intensities encountered in this paper satisfy this condition. The magnetic
permeability of the ferrofluid μ1 can therefore be assumed constant. For the non-magnetic
surrounding fluid, μ2 = μ0.

For the jump conditions across the interface, the unit normal vector is introduced. It is
defined at a point on the interface, pointing from the ferrofluid to the surrounding fluid, and
is given by n = ∇S/||∇S|| = 1/

√
1 + (∂rs/∂z)2er − (∂rs/∂z)/

√
1 + (∂rs/∂z)2ez, where

S = r − rs is introduced to localise the position of the interface S = 0. The first jump
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condition is obtained by writing the mass balance equation at the interface without mass
exchange between the two phases

Ui · n = − 1
||∇S||

∂S
∂t

at r = rs. (3.6)

Moreover, the same assumption as in Tomotika (1935) is considered, namely no slip at the
interface leading to

[U × n] = 0 at r = rs, (3.7)

with the convention [A] = A2 − A1. Both (3.6) and (3.7) lead to the continuity of the
velocity components across the interface. Regarding the jump conditions for momentum,
there is continuity in the tangential component of the stress acting on the interface

[(n · T )× n] = 0 at r = rs, (3.8)

with T the stress tensor such that T i = −(P∗
i + (1/2)μ0H2

i )I + BiHi + τi , I the identity
matrix, P∗

i = Πi + Pmi and Pmi = μ0
∫ H

0 Mi dH the magnetic pressure. The jump of the
normal component of the stress acting on the interface involves surface tension

[(n · T ) · n] = σκ at r = rs, (3.9)

with κ = ∇ · n the curvature which is twice the mean curvature.
The jump conditions for the magnetic field imply the continuity of the normal

component of B and the tangential component of H across the interface. Replacing B
by expression (3.5), one finds

μ1H1 · n = μ0H2 · n at r = rs, (3.10)

H1 × n = H2 × n at r = rs. (3.11)

By using n · I × n = 0 as well as (3.5), (3.10) and (3.11), (3.8) and (3.9) are thus reduced
to

(n · τ1)× n − (n · τ2)× n = 0 at r = rs, (3.12)

P∗
1 + Pn − (n · τ1) · n = P2 − (n · τ2) · n + σ∇ · n at r = rs, (3.13)

with Pn = (1/2)μ0M2
1n; the n index refers to the normal component.

The bulk equations (3.1)–(3.2) as well as the jump conditions across the interface (3.6),

(3.10)–(3.13) are made dimensionless using the Rayleigh time
√
ρ1R3

0/σ , R0, σ/R0, an
arbitrary magnetic field intensity H0 and μ0 as the characteristic time, length, pressure,
magnetic field and magnetic permeability, respectively. The characteristic scales of the
Rayleigh problem are chosen to enable the comparison of solutions with a magnetic field
to those of the non-magnetic problem.
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The basic state, denoted by subscript 0 such thatΠ0i is the basic state ofΠi for example,
is obtained by taking H01 = 1/reθ and U0i = 0 in the equations. It is found that Π01 and
P02 are constants that are linked in the following way:

Π01 + 1
2 NBo,m = P02 + 1 at r = 1, (3.14)

with NBo,m = μ0(μr − 1)H2
0R0/σ the magnetic Bond number, and μr = μ1/μ0 the

relative permeability; NBo,m can be expressed as the product of two numbers (μr − 1)
and Γm = μ0H2

0R0/σ , with Γm a magnetic parameter that does not depend on μr.
The induced flow is decomposed around the basic state, as follows: Ui = ui, Πi =

Π0i + πi, Hi = H0i + hi and rs = 1 + ζ with ui, πi, hi the perturbed quantities in phase
i and ζ the surface perturbation. The dimensionless equations are linearised, and we thus
obtain the equations for the perturbed quantities

1
r
∂ruir

∂r
+ ∂uiz

∂z
= 0, (3.15)

∂u1r

∂t
+ ∂π1

∂r
− Oh1

(
1
r
∂2ru1r

∂r2 − 1
r2
∂ru1r

∂r
+ ∂2u1r

∂z2

)
= 0, (3.16)

ρr
∂u2r

∂t
+ ∂P2

∂r
− Oh1ηr

(
1
r
∂2ru2r

∂r2 − 1
r2
∂ru2r

∂r
+ ∂2u2r

∂z2

)
= 0, (3.17)

∂u1z

∂t
+ ∂π1

∂z
− Oh1

⎛
⎜⎝1

r

∂r
∂u1z

∂r
∂r

+ ∂2u1z

∂z2

⎞
⎟⎠ = 0, (3.18)

ρr
∂u2z

∂t
+ ∂P2

∂z
− Oh1ηr

⎛
⎜⎝1

r

∂r
∂u2z

∂r
∂r

+ ∂2u2z

∂z2

⎞
⎟⎠ = 0, (3.19)

uir − ∂ζ

∂t
= 0 at r = 1, (3.20)

∂u1r

∂z
+ ∂u1z

∂r
− ηr

(
∂u2r

∂z
+ ∂u2z

∂r

)
= 0 at r = 1, (3.21)

π1 − NBo,mζ − 2Oh1
∂u1r

∂r
+ 2Oh1ηr

∂u2r

∂r
− p2 + ζ + ∂2ζ

∂z2 = 0 at r = 1, (3.22)

μrh1r − h2r = 0 at r = 1, (3.23)

h1z − h2z = 0 at r = 1, (3.24)

h1θ − h2θ = 0 at r = 1, (3.25)

with Oh1 = η1/
√
ρ1σR0, the Ohnesorge number of the ferrofluid, ρr = ρ2/ρ1 the density

ratio and ηr = η2/η1 the dynamic viscosity ratio. Furthermore, due to (3.3) and (3.4), the
perturbation of the magnetic fields hi are curl- and divergence-free.

The system of equations is linear with respect to t and z, and nonlinear with respect to
r. Hence, we seek solutions in the form A(r) exp(ikz + αt), where A(r) is an unknown
function of r. Since this study explores temporal stability, we take k to be real,
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Stability of a ferrofluid cylinder in another fluid

and α = αr + iαi to be complex, such that k, αr and αi are respectively the wavenumber,
growth rate and oscillation frequency of the perturbation. Due to the azimuthal shape of
the magnetic field, the perturbation hi is decoupled from the other equations. Equations
(3.23)–(3.25) are therefore not required to obtain the dispersion relation.

4. Dispersion relation

Due to the incompressibility assumptions, the velocity in each fluid can be expressed using
a Stokes streamfunction ψ such that uir = −(1/r)(∂ψi/∂z) and uiz = (1/r)(∂ψi/∂r).
Moreover, the magnetic field is curl-free inside each fluid and can be written as a gradient
of a magnetic scalar potential φ such that hi = −∇φi. Because the perturbation of the
magnetic field is also divergence-free in each fluid, we have

�φi = 0. (4.1)

No slip and no penetration are considered at the wire surface and there is no perturbation
of the magnetic field at this location. These boundary conditions are expressed by

−1
r
∂ψ1

∂z
= 0 and

1
r
∂ψ1

∂r
= 0 at r = δw, (4.2)

φ1 = 0 at r = δw, (4.3)

with δw = Rw/R0 the dimensionless wire radius. Equations (3.23)–(3.25) and (4.1) lead
to φi = 0 showing that, for an azimuthal magnetic field, there is no axisymmetric
perturbation of the magnetic field. The previous system of (3.15)–(3.22) is solved using
the same method as in Canu & Renoult (2021), with the following dispersion relation
being obtained:

α2 + α2ρr
b̂2K0(k)

I0(k)− b̂1K0(k)
+ 2Oh1αk

[
kI0(k)− I1(k)+ ǎ1 (l1I0(l1)− I1(l1)) − b̂1 (kK0(k)+ K1(k)) − b̌1 (l1K0(l1)+ K1(l1))

I0(k)− b̂1K0(k)

+ηr
b̂2 (kK0(k)+ K1(k))+ b̌2 (l2K0(l2)+ K1(l2))

I0(k)− b̂1K0(k)

]

− k
(

1 − k2 − NBo,m

) [
I1(k)+ ǎ1I1(l1)+ b̂1K1(k)+ b̌1K1(l1)

I0(k)− b̂1K0(k)

]
= 0. (4.4)

In this relation, I0, I1, K0 and K1 are the modified Bessel functions of the first and
second kinds at the orders 0 and 1, li is a modified wavenumber for fluid i such that
l21 = k2 + (α/Oh1) and l22 = k2 + (αρr/Oh1ηr). The other quantities ǎ1, b̂1, b̌1, b̂2 and b̌2
are coefficients defined in Appendix A and are explicitly dependent on k, l1, l2, ηr and δw.
Here, the dispersion relation has a general explicit form. It tends towards the non-magnetic
case of Tomotika (1935), obtained under a determinant form, for NBo,m = 0 and δw → 0.
We also retrieve the dispersion relation of Korovin (2004) by taking ρr = 1, ηr = 1 and
considering a non-magnetic surrounding fluid. As with the azimuthal case in Canu &
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Figure 2. Comparison with the experimental data of Arkhipenko et al. (1981) in an azimuthal magnetic field.
(a) Value of Λ∗ as a function of NBo,m: �, experimental data with a column of 18 cm; ©, experimental data
with a column of 50 cm. (b) Value of α∗

r as a function of NBo,m; error bars correspond to the experimental
data and derive from a lack of information regarding the ferrofluids used. Both: dotted lines correspond to
the inviscid theory of Arkhipenko et al. (1981); dashed lines to the viscous theory without surrounding fluid of
Canu & Renoult (2021); and solid lines to the present viscous theory with surrounding fluid. Black corresponds
to R0 = 2.1 mm and grey to R0 = 2.8 mm. Identical lines are plotted for two ferrofluids FF1 and FF2 from
table 1.

Renoult (2021), the cutoff wavenumber only depends on NBo,m, with the cylinder being
stable for all wavenumbers when NBo,m > 1. This relation is solved and compared below
with experimental results taken from the literature.

5. Comparison with experimental data

The dispersion relation (4.4) is a transcendental equation due to the modified Bessel
functions that depend on α through l1 and l2. To solve this equation, the method of
Luck, Zdaniuk & Cho (2015) is used. The resulting solutions are then compared with
experimental data and previous theoretical studies. In figure 2, the wavelength (divided
by 2π) Λ∗ = 1/k∗ and the growth rate α∗

r of the most unstable mode are plotted as a
function of NBo,m and compared with the experiment of Arkhipenko et al. (1981). Note
that α∗

r is dimensionless here contrary to the data given in Arkhipenko et al. (1981). In
their experiment, a ferrofluid cylinder is around a cylindrical conductor and is surrounded
by glycerine. The conductor has a fixed radius (Rw = 1 mm) whereas the one of the
ferrofluid cylinder varies. Arkhipenko et al. (1981) realised the wavelength measurements
for two conductor lengths (18 and 50 cm) without indication on the radius of the
ferrofluid cylinder. For the growth rate measurements, two data sets are provided for
two cylinder radii (R0 = 2.1 and R0 = 2.8 mm). In their paper, two ferrofluids are
mentioned. However, for both measurements, no indication is provided on the ferrofluid
used. Ferrofluid properties are shown in table 1 and ρr = 1 and ηr = 28.3 are chosen here
for the density and viscosity of the surrounding fluid (glycerine) compared with those
of the ferrofluid, as indicated in Arkhipenko et al. (1981). In a previous study (Canu &
Renoult 2021), we showed that taking into account the ferrofluid viscosity without the
surrounding fluid better predicts the growth rate compared with the inviscid theory of
Arkhipenko et al. (1981). However, the difference with the experimental data was still
significant, probably due to the viscosity of the surrounding fluid being ignored. Indeed,
the latter is approximately 30 times higher than those of the ferrofluid, and thus its effect
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Stability of a ferrofluid cylinder in another fluid

Name Components ρ1 η1 σ μr
(kg m−3) (kg m−1 s−1) (N m−1) (–)

FF1 kerosene + magnetite 1220 6 × 10−3 9.2 × 10−3 2.2
+ oleic acid (with glycerine)

FF2 kerosene + magnetite 1157 6 × 10−3 1.1 × 10−2 3.5
+ oleic acid (with glycerine)

FF3 water + maghemite 1534 1.4 × 10−3 5.5 × 10−3 1.75
+ unknown surfactant (with Freon)

Table 1. Ferrofluid properties under standard laboratory conditions taken from Arkhipenko et al. (1981) (for
FF1 and FF2) and Bourdin et al. (2010) (for FF3).

cannot be ignored. With the present theory, the predicted growth rate is very close to the
experimental data, especially for larger values of NBo,m. For the case with R0 = 2.1 mm,
the relative error is between 2.7 % and 47 % with a mean of approximately 28 %. For
R0 = 2.8 mm, the relative error is between 0.3 % and 88 % with a mean varying from
31 % to 51 % depending on the ferrofluid used. The uncertainty regarding the ferrofluid
used in the experiment does not lead to a better estimation of the error. Indeed, to make
dimensionless the experimental values of Arkhipenko et al. (1981), the Rayleigh time
is used. This time depends on the density and the surface tension which are different
for the ferrofluid FF1 and FF2 (table 1). This uncertainty is represented by error bars
in figure 2. The range of relative error given above corresponds to the extremum values
between the relative errors calculated for FF1 and FF2 for all experimental data points. By
contrast, the prediction for R0 = 2.1 mm seems to better correspond to the experimental
data for R0 = 2.8 mm. On this point, the experimental data do not follow the theoretical
prediction of all the models (inviscid theory, viscous theory without surrounding fluid and
viscous theory with surrounding fluid) about the decrease in the growth rate for thinner
layer of fluid (Canu & Renoult 2021). The possibility of a typographical error in the
figure legend of Arkhipenko et al. (1981) cannot be discounted but further experimental
data are necessary to confirm that. In this case, the relative errors would be lower than
those given above. Better predictions are also observed for the most unstable wavelength.
The curves for the inviscid theory and the viscous theory without surrounding fluid are
almost overlapped whereas the one for the present viscous theory deviates clearly from
the others. This observation shows that, for this experiment, the effect of the surrounding
fluid viscosity is more significant than the one of the ferrofluid viscosity which is coherent
with the fact that the surrounding fluid is almost 30 times more viscous than the ferrofluid.
Furthermore, the difference between the various models is greater for lower values of
NBo,m, because for NBo,m close to 1, the unstable regime is restricted to very small
wavenumbers. For these values, the effect of viscosity is indeed less visible. Another issue
concerns the finite length of the ferrofluid cylinder. Side effects should occur with greater
importance for the smaller cylinder producing thus a slight difference with the theoretical
predictions. Moreover, the finite length of the cylinder implies that an integer number of
wavelengths appears leading to the same value of wavelength for different magnetic Bond
numbers and, therefore, a step profile for the experimental data instead of a continuous
evolution.

The present theory is also compared with the experimental results of Bourdin et al.
(2010) in figure 3. The same experiment as in Arkhipenko et al. (1981) is performed
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Figure 3. Comparison with the experimental data of Bourdin et al. (2010) in an azimuthal magnetic field.
Circles correspond to experimental data for different NBo,m from 1.85 to 11.57; the dotted line to the inviscid
theoretical prediction made by Bourdin et al. (2010) (wire ignored); the dashed line to the viscous theory
without surrounding fluid of Canu & Renoult (2021); and solid line to the present viscous theory with
surrounding fluid plotted for the ferrofluid FF3 from table 1 and NBo,m = 6.51.
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Figure 4. Comparison with the experimental data of Bourdin et al. (2010) in an azimuthal magnetic field.
Circles correspond to experimental data for different NBo,m from 1.85 to 11.57; the dotted line to the inviscid
theoretical prediction made by Bourdin et al. (2010) (wire ignored); the dashed line to the viscous theory
without surrounding fluid of Canu & Renoult (2021); and solid lines to the present viscous theory with
surrounding fluid plotted for NBo,m = 6.51: (a) ηr = 0.5 and, from the darkest to the lightest, ρr = 1.031,
ρr = 0.5, ρr = 0.1 and ρr = 0.01; (b) ρr = 1.031 and, from the darkest to the lightest, ηr = 0.5, ηr = 0.25
and ηr = 0.01.

but with Freon (C2Cl3F3) as the surrounding fluid instead of glycerine and with another
ferrofluid (FF3 in table 1). The characteristics are ρr = 1.031 and ηr = 0.5. For the
viscosity of Freon, a common value is chosen because this viscosity is not provided
by Bourdin et al. (2010). The cylindrical conductor and the initial ferrofluid cylinder

927 A36-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.782


Stability of a ferrofluid cylinder in another fluid

have respectively a radius of Rw = 1.5 and R0 = 3.8 mm. Here, the cylinder is stable
(NBo,m > 1). Therefore, the oscillation frequency of the perturbation is considered. For
the theoretical predictions, only the case NBo,m = 6.51 is plotted, as the other cases
are nearly overlapping. The present viscous theory seems to improve the prediction
of the experimental data for small values of k (k < 1). However, for larger k values,
a divergence seems to appear. The difference between the theoretical predictions with
and without surrounding fluid is mainly due to the value of ρr. Indeed, we can see in
figure 4 that, for ρr � 1 and fixed ηr, the results tend towards those without surrounding
fluid, whereas for ρr = 1.031 and ηr � 1, the results are barely modified. Therefore,
the effect of ρr seems to be more significant than the one of ηr in this experiment.
However, the value of ρr is known in the experiment and this observation cannot
explain the discrepancy between the theoretical prediction and the experimental data
for large k values. New experiments would be useful to identify the source of this
discrepancy.

6. Conclusions

We performed a linear stability analysis of a Newtonian ferrofluid cylinder surrounded by a
Newtonian non-magnetic fluid in an azimuthal magnetic field. The cylinder was perturbed
by a small-amplitude axisymmetric disturbance. We linearised the bulk equations and
jump conditions and obtained a dispersion relation depending on six dimensionless
parameters: the dimensionless wavenumber k, the Ohnesorge number of the ferrofluid
Oh1, the magnetic Bond number NBo,m, the dimensionless wire radius δw, the density
ratio ρr and the viscosity ratio ηr. Solutions to this dispersion relation were compared
with two experiments: the first concerns the growth rate and the wavenumber of the
fastest growing mode in the unstable regime, and the second the wavenumber of an
imposed perturbation frequency in the stable regime. A good agreement is observed with
the experimental data of Arkhipenko et al. (1981), as the consideration of the viscosity
of both the ferrofluid and the surrounding fluid is important for this case. Regarding
the comparison with the experimental data of Bourdin et al. (2010), we found a good
agreement for small k (k < 1). For larger k, a discrepancy is observed that remains
for now unexplained. New experiments are thus needed to understand the cause of this
discrepancy. Future studies should examine nonlinearities to predict the formation of
satellite drops which are undesirable, for example, in printing field where magnetic inks
can be used, and well visible in the experiments of Arkhipenko et al. (1981) in their
figure 3.
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Appendix A

The dispersion relation obtained in this work is provided in a simplified form to facilitate
the reading. All the notations introduced are developed below:
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a = kI0(kδw)K1(l1δw)+ l1I1(kδw)K0(l1δw)

b = l1I0(l1δw)K1(l1δw)+ l1I1(l1δw)K0(l1δw)

c = kK0(kδw)K1(l1δw)− l1K1(kδw)K0(l1δw)

d = l2I1(k)K1(l1δw)− l2I1(kδw)K1(l1)

e = l2K1(k)K1(l1δw)− l2K1(kδw)K1(l1)

f = l2I1(l1)K1(l1δw)− l2I1(l1δw)K1(l1)

g = kI0(k)K1(l1δw)+ l1I1(kδw)K0(l1)

h = l1K1(kδw)K0(l1)− kK1(l1δw)K0(k)

j = l1I0(l1)K1(l1δw)+ l1I1(l1δw)K0(l1)

m = l2K0(l2)K1(k)− kK1(l2)K0(k)

q = 2k2I1(k)K1(l1δw)−
(

k2 + l21
)

I1(kδw)K1(l1)

w = 2k2K1(k)K1(l1δw)−
(

k2 + l21
)

K1(kδw)K1(l1)

x =
(

k2 + l21
)

I1(l1)K1(l1δw)−
(

k2 + l21
)

I1(l1δw)K1(l1)

γ1 =
(

k2 − l22
)

K1(k) (K1(l2) (cg + ah)+ K0(l2) (cd + ae)) l2 +
(

k2 + l22
)

m (cd + ae)

γ2 =
(

k2 − l22
)

K1(k) (K1(l2) (cj + bh)+ K0(l2) (cf + be)) l2 +
(

k2 + l22
)

m (cf + be)

ǎ1 = −(cq + aw)ml2 − ηrγ1

(cx + bw)ml2 − ηrγ2

b̂1 = a + ǎ1b
c

b̌1 = −cI1(kδw)+ aK1(kδw)+ ǎ1 (cI1(l1δw)+ bK1(kδw))

cK1(l1δw)

b̂2 = K1(l2) (cg + ah)+ K0(l2) (cd + ae)+ ǎ1
[
K1(l2) (cj + bh)+ K0(l2) (cf + be)

]
cmK1(l1δw)

b̌2 = (cd + ae)m − [
K1(l2) (cg + ah)+ K0(l2) (cd + ae)

]
K1(k)l2

cml2K1(l2)K1(l1δw)

+ǎ1

[
(cf + be)m − [

K1(l2) (cj + bh)+ K0(l2) (cf + be)
]

K1(k)l2
]

cml2K1(l2)K1(l1δw)
.
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