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We prove that no stochastic domination exists between the effective resistance of a
spherically symmetric random tree and that of a branching process in a varying
environments tree if they grow according to the same law of distribution

1. INTRODUCTION

All of the trees that we consider in this article are infinite and leafless in the sense
that the degree of every vertéxumber of edges incident with is greater than one
Two types of random trees are consider€de first is the spherically symmetric
random tre€¢SSRT), denoted byf, in which the degree of a vertex at distamdeom
the rootr depends only on and is denoted bgl,. The degree sequen¢d,; n = 0}

is assumed to consist of independent random variablesthe second typeve
consider a doubly-indexed famifg,.: n = 0;k = 1} of independent random vari-
ables and they ayéor fixed n, identically distributed according to the same distri-
bution ofd,,. We interpretd,, as the degree of thieh vertex of thenth level of a
branching process in a varying environments {BBIVET), denoted byT *. We
call a vertex v a branching vertex if its degree is greater than @ is a finite
graph(electrical networkand voltage is applied between two verticésodes a
andb such that the voltage atisv, and ab it is v, = 0, the effective resistancBqy,

of Gis defined as
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wherei, is the current flowing into the circuit at node®ed 2]. Aflow j on G from
atobis a function defined on the sEtof edges ofG as follows If xy € E, then

jxy = _jyx, (1)
Siy=0 ifx#ab, )
Yy

jlu=0 ifklgE. ©)

The energy dissipation of a current flgvis defined as
1.
> XEylxzyrxy,

wherer,, is the resistance assigned to the erge

The principle of conservation of enerdg] states the followinglf w is any
function defined on the vertices of a gra@handj is a flow from a vertexa to a
vertexb, then

o1 .
(Wa - Wb)Ja = 5 2 (Wx - Wy)]xy-
X,y

If avoltagev, isimposed betweemandb with v, = 0, we obtain voltages, and
currentd,,. The current defines a flow fromato b and by the above principleve
conclude that

. 1 .
Vala = E 2 Uy)lxy,
X,y
and from Ohm'’s lawwe get

xyrxy

NI

Uaia

X
<

SinceRgs = v4/i,, then

i2 —
|aReff_

NI

> i3y
X,y

If a unit resistance is assigned to every edge E and a voltage is applied between
a andb such thai, = 1, then

I\)IH

i

thatis the effective resistance is the energy dissipation of the unit current flow when
unit resistances are assigned to the edg§es|2].
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We consider for a moment a finite trdg of heightn and short circuit all the
leaves into a single verteket R, be the effective resistance of such a finite tree
Then the effective resistance of an infinite tree is defined to be the lmsit goes
to infinity, of R,. The energy dissipation of a floyvon infinite trees is defined
similarly.

The following two laws are considerable tools in determining upper and lower
bounds for the effective resistances

Two ways to modify the network that we are interested in bounding its effective
resistance so as to get a simpler network are by shorting or cugimgting in-
volves connecting a given set of nodes together with perfectly conducting wires so
that the current can pass freely between th&limodes that were shorted together
behave as if they were a single no®wever cutting means deleting some branches
of the network The usefulness of shorting and cutting procedures stems from the
following two laws Se€[2].

Shorting law: Shorting certain sets of nodes together can only decrease the
effective resistance of the network between two given nodes

Cutting law: Cutting certain branches can only increase the effective resistance
between two given nodes

The following theorem plays a vital role in obtaining an upper bound for the
effective resistance

THOMSON’S THEOREM [2, p. 63]: If i is the unit current flow between two vertices
a and b, then the energy dissipatigr®, , i3, minimizes the energy dissipation
3 2. yl4Txy among all unit flows from a to b.

Berman and Konsowfl ] give a generalization of Thomson’s Theordircan
be easily observed that the two laws above are easy consequences of Thomson's
theorem

2. SSRT AND BPIVET

Let T be the infinite spherically symmetric random tree that grows according to a
degree sequende,;n = 0} andT* be the branching process in a varying environ-
ments tree that grows according{th,: n= 0;k = 1}. In the rest of the articleall of

the edges are assigned one-unit resistafdesfollowing theorem of4] shows that

the mean effective resistance Dlominates that of *.

THEOREM 1: For T and T*, we have
E(R&r) = E(Ren),
where Ry and R denote the effective resistances dfand T, respectively.

Proor: Letj be the unit flowapplied at the roat of T*, that splits equally at every
branching vertex anD be its energy dissipatiohet us assume thahasZ children
that is there areZ vertices each of which is connected to the noby one edgeAt
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each of these verticewe apply a unit flow that divides equally at each branching
vertex Let D; stand for the energy dissipation of that flow applied at the var.tése
can easily verify that
1 12
D=-+ = > D.
zZ Zz? ,:21 :

It follows from Thomson'’s principle that

and hence

The last equation follows becauBg i =1, 2,..., Z, are identically distributed ran-
dom variablesOn the other hand

E(Rerr) = E(E(Rer| 2)).
The tre€T (as an electrical netwoylconsists of Z identical resistances connected in
paralle| each of which has mean equ&P,. For more detajlseg[3]. Now,

1 1
E(Reff‘z) = z + E ED,.

Then

1 1
E(Rs) = E Z + z ED;

and consequently

E(R&#) = E(Reg). |

The following theorem gives an affirmative answer to the conjectufé]aind
shows that no stochastic domination exists betwRgrandR};. However we first
recall that a tree is called regular if all the vertices have the same d&deaeseT P
to denote a regular tree for which every vertex has defyré@ée binary tree is an
infinite tree such that the degree of the root is 2 and of every other verteifiha
edges of the binary tree are assigned unit resistances and the verices of each level are
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shorted together into a single nqgdieen the effective resistance is easily calculated
to be oneThereforethe effective resistance of any regular tigeb > 2, is finite.
This follows directly from the cutting law

THeoreM 2: If T and T* are as defined above such thgt dre nondegenerate
random variables, then

P(Rex > Rix) >0 and p(Rix > Re) > 0.

Proor: Consider two positive integees< b and a constart > 0 such that for all
n=0,

p(d,=a) >0 and p(d,=b)=c.

Let B, andB}; denote respectively the portions DandT * from the root to thenth
level. These are balls of radiuscentered at the rogif d(x) denotes the degree of an
arbitrary vertexx, then forN = 1,

N
p(d(x) = aforallxe By) =[] p(d,=a) > 0.
n=1

Let T*(v) stand for the subtree df* that consists of the vertaxand all its desce-
dents inT* andRq(T *(v)) stand for its effective resistandeet alsoZ;; denote the
number of vertices of theth level of T* and

O, = o (Z;, k=n).
Then there isRy < oo such that foN = 1 and conditioning o,

p(d(x) = bfor all x € BY andReq(T*(v)) = Ry for all v € BY — By 1)
N—1
= (P(Rex(T*(1)) = Ro) TT (p(d, = b))% > 0.

It follows consequently theR. andRy satisfy for largeN, the two inequalities
P(Re = Re(T?)) >0 and p(R&s = Re(T")) > 0.
Cutting law assures th&.(T?) > Rex(T®), from which
P(Rerr > Rey) > 0.
Changing the roles of andT * yields the other inequality
P(Rei < Rix) > 0. |
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