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We prove that no stochastic domination exists between the effective resistance of a
spherically symmetric random tree and that of a branching process in a varying
environments tree if they grow according to the same law of distribution+

1. INTRODUCTION

All of the trees that we consider in this article are infinite and leafless in the sense
that the degree of every vertex~number of edges incident with it! is greater than one+
Two types of random trees are considered+ The first is the spherically symmetric
random tree~SSRT!, denoted byT, in which the degree of a vertex at distancen from
the rootr depends only onn and is denoted bydn+ The degree sequence$dn; n $ 0%
is assumed to consist of independent random variables+ For the second type, we
consider a doubly-indexed family$dnk: n $ 0;k $ 1% of independent random vari-
ables and they are, for fixed n, identically distributed according to the same distri-
bution of dn+ We interpretdnk as the degree of thekth vertex of thenth level of a
branching process in a varying environments tree~BPIVET!, denoted byT *+ We
call a vertex v a branching vertex if its degree is greater than two+ If G is a finite
graph~electrical network! and voltagev is applied between two vertices~nodes! a
andb such that the voltage ata is va and atb it is vb5 0, the effective resistance,Reff,
of G is defined as

Reff 5
va
ia
,
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whereia is the current flowing into the circuit at node a+ See@2# +A flow j onG from
a to b is a function defined on the setE of edges ofG as follows+ If xy [ E, then

jxy 5 2jyx, (1)

(
y

jxy 5 0 if x Þ a,b, (2)

jkl 5 0 if kl Ó E+ (3)

The energy dissipation of a current flowj is defined as

1

2 (
x, y

jxy
2 rxy,

whererxy is the resistance assigned to the edgexy+
The principle of conservation of energy@2# states the following: If v is any

function defined on the vertices of a graphG and j is a flow from a vertexa to a
vertexb, then

~wa 2 wb! ja 5
1

2 (
x, y

~wx 2 wy! jxy+

If a voltageva is imposed betweenaandbwith vb50,we obtain voltagesvx and
currentsixy+ The currenti defines a flow froma to b and by the above principle, we
conclude that

va ia 5
1

2 (
x, y

~vx 2 vy! ixy,

and from Ohm’s law, we get

va ia 5
1

2 (
x, y

ixy
2 rxy+

SinceReff 5 va0ia, then

ia
2Reff 5

1

2 (
x, y

ixy
2 rxy+

If a unit resistance is assigned to every edgexy[ E and a voltage is applied between
a andb such thatia 5 1, then

Reff 5
1

2 (
x, y

ixy
2 ;

that is, the effective resistance is the energy dissipation of the unit current flow when
unit resistances are assigned to the edges+ See@2# +
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We consider for a moment a finite treeTn of heightn and short circuit all the
leaves into a single vertex+ Let Rn be the effective resistance of such a finite tree+
Then, the effective resistance of an infinite tree is defined to be the limit, asn goes
to infinity, of Rn+ The energy dissipation of a flowj on infinite trees is defined
similarly+

The following two laws are considerable tools in determining upper and lower
bounds for the effective resistances+

Two ways to modify the network that we are interested in bounding its effective
resistance so as to get a simpler network are by shorting or cutting+ Shorting in-
volves connecting a given set of nodes together with perfectly conducting wires so
that the current can pass freely between them+ All nodes that were shorted together
behave as if they were a single node+However, cutting means deleting some branches
of the network+ The usefulness of shorting and cutting procedures stems from the
following two laws+ See@2# +

Shorting law: Shorting certain sets of nodes together can only decrease the
effective resistance of the network between two given nodes+

Cutting law: Cutting certain branches can only increase the effective resistance
between two given nodes+

The following theorem plays a vital role in obtaining an upper bound for the
effective resistance+

Thomson’s Theorem @2, p+ 63#: If i is the unit current flow between two vertices
a and b, then the energy dissipation1

2
_ (x, y ixy

2 rxy minimizes the energy dissipation
1
2
_ (x, y jxy

2 rxy among all unit flows from a to b.

Berman and Konsowa@1# give a generalization of Thomson’s Theorem+ It can
be easily observed that the two laws above are easy consequences of Thomson’s
theorem+

2. SSRT AND BPIVET

Let T be the infinite spherically symmetric random tree that grows according to a
degree sequence$dn;n $ 0% andT * be the branching process in a varying environ-
ments tree that grows according to$dnk: n$ 0;k$1% + In the rest of the article, all of
the edges are assigned one-unit resistances+The following theorem of@4# shows that
the mean effective resistance ofT dominates that ofT *+

Theorem 1: For T and T*, we have

E~Reff
* ! # E~Reff!,

where Reff
* and Reff denote the effective resistances of T* and T, respectively.

Proof: Let j be the unit flow, applied at the rootr of T *, that splits equally at every
branching vertex andD be its energy dissipation+ Let us assume thatr hasZchildren;
that is, there areZ vertices each of which is connected to the rootr by one edge+At
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each of these vertices, we apply a unit flow that divides equally at each branching
vertex+ LetDi stand for the energy dissipation of that flow applied at the vertexi +We
can easily verify that

D 5
1

Z
1

1

Z2 (
i51

z

Di +

It follows from Thomson’s principle that

Reff
* #

1

Z
1

1

Z2 (
i51

z

Di

and, hence,

E~Reff
* ! # ES 1

Z
1

1

Z2 (
i51

z

DiD
5 ESES 1

Z
1

1

Z2 (
i51

z

Di 6ZDD
5 ES 1

Z
1

1

Z
ED1D+

The last equation follows becauseDi , i 51, 2, + + + ,Z, are identically distributed ran-
dom variables+ On the other hand,

E~Reff! 5 E~E~Reff6Z!!+

The treeT ~as an electrical network! consists of Z identical resistances connected in
parallel, each of which has mean equalsED1+ For more detail, see@3# + Now,

E~Reff6Z! 5
1

Z
1

1

Z
ED1+

Then,

E~Reff! 5 ES 1

Z
1

1

Z
ED1D

and, consequently,

E~Reff
* ! # E~Reff!+ n

The following theorem gives an affirmative answer to the conjecture of@4# and
shows that no stochastic domination exists betweenReff andReff

* + However, we first
recall that a tree is called regular if all the vertices have the same degree+We useT b

to denote a regular tree for which every vertex has degreeb+ The binary tree is an
infinite tree such that the degree of the root is 2 and of every other vertex is 3+ If the
edges of the binary tree are assigned unit resistances and the verices of each level are
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shorted together into a single node, then the effective resistance is easily calculated
to be one+ Therefore, the effective resistance of any regular treeT b, b . 2, is finite+
This follows directly from the cutting law+

Theorem 2: If T and T* are as defined above such that dn are nondegenerate
random variables, then

p~Reff . Reff
* ! . 0 and p~Reff

* . Reff! . 0+

Proof: Consider two positive integersa , b and a constantc . 0 such that for all
n $ 0,

p~dn # a! . 0 and p~dn $ b! $ c+

Let Bn andBn
* denote respectively the portions ofT andT * from the root to thenth

level+These are balls of radiusncentered at the root+ If d~x! denotes the degree of an
arbitrary vertexx, then forN $ 1,

p~d~x! # a for all x [ BN ! 5 )
n51

N

p~dn # a! . 0+

Let T *~v! stand for the subtree ofT * that consists of the vertexv and all its desce-
dents inT * andReff~T

*~v!! stand for its effective resistance+ Let alsoZn
* denote the

number of vertices of thenth level ofT * and

ℑn 5 s~Zk
*, k # n!+

Then, there isR0 , ` such that forN $ 1 and conditioning onℑn,

p~d~x! $ b for all x [ BN
* andReff~T

*~v!! # R0 for all v [ BN
* 2 BN21

* !

5 ~ p~Reff~T
*~v!! # R0!!ZN

*

)
n51

N21

~ p~dn $ b!!Zn
*

. 0+

It follows consequently thatReff andReff
* satisfy, for largeN, the two inequalities

p~Reff $ Reff~T
a!! . 0 and p~Reff

* # Reff~T
b!! . 0+

Cutting law assures thatReff~T
a! . Reff~T

b!, from which

p~Reff . Reff
* ! . 0+

Changing the roles ofT andT * yields the other inequality:

p~Reff , Reff
* ! . 0+ n
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