A NOTE ON *p*-PARTS OF BRAUER CHARACTER DEGREES

JINBAO LI[®] and YONG YANG[®]⊠

(Received 29 February 2020; accepted 12 March 2020; first published online 6 May 2020)

Abstract

Let *G* be a finite group and *p* be an odd prime. We show that if $O_p(G) = 1$ and p^2 does not divide every irreducible *p*-Brauer character degree of *G*, then $|G|_p$ is bounded by p^3 when $p \ge 5$ or p = 3 and A_7 is not involved in *G*, and by 3^4 if p = 3 and A_7 is involved in *G*.

2010 *Mathematics subject classification*: primary 20C15; secondary 20C20, 20D05. *Keywords and phrases*: finite groups, Brauer character, character degree, *p*-part.

1. Introduction

All groups considered in this paper are finite. Let *n* be a positive integer and *p* be a prime and write $n = p^a m$, where $p \nmid m$. We use $n_p = p^a$ to denote the *p*-part of the integer *n*. Let *G* be a group. Let Irr(G) be the set of all irreducible complex characters of *G* and let IBr(G) be the set of irreducible *p*-Brauer characters of *G*. We use $\mathbf{O}_p(G)$ to denote the largest normal *p*-subgroup of *G* and $\pi(|G|)$ to denote the set of different prime divisors of the order of *G*. As usual, A_n denotes the alternating group of degree *n*.

It is interesting to study how the arithmetic conditions on the invariants of a finite group affect the group structure. Let *G* be a group and *P* be a Sylow *p*-subgroup of *G*. The well-known Ito–Michler theorem [4] asserts that $p \nmid \chi(1)$ for every $\chi \in Irr(G)$ if and only if *P* is normal in *G* and *P* is abelian. In particular, this implies that $|G : \mathbf{O}_p(G)|_p = 1$. One natural generalisation of the Ito–Michler theorem is the following result of Lewis, Navarro and Wolf [2]: if *G* is solvable and $p^2 \nmid \chi(1)$ for all $\chi \in Irr(G)$, then $|G : \mathbf{O}_p(G)|_p \leq p^2$. It was also proved in [2] that if *G* is an arbitrary finite group such that 2^2 does not divide $\chi(1)$ for every $\chi \in Irr(G)$, then $|G : \mathbf{O}_2(G)|_2 \leq 2^3$. In [1], Lewis, Navarro, Tiep and Tong-Viet studied the similar problem for arbitrary finite groups when *p* is an odd prime. They showed that if *G* is finite and $\chi(1)_p \leq p$ for all $\chi \in Irr(G)$, then $|G : \mathbf{O}_p(G)|_p \leq p^4$. Recently, this result has been improved to p^3 by Qian in [5].

The project was supported by NSFC (11671063), the Natural Science Foundation of CSTC (cstc2018jcyjAX0060) and a grant from the Simons Foundation (No. 499532). © 2020 Australian Mathematical Publishing Association Inc.

It is natural to study the Brauer character degree analogue of the Ito-Michler theorem. This has been investigated by Michler [4] and Manz [3]. They showed that $p \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if G has a normal Sylow p-subgroup. The condition that G has a normal Sylow p-subgroup implies that $|G: \mathbf{O}_p(G)|_p = 1$. In [1], Lewis *et al.* proved that if G is a group with $\mathbf{O}_p(G) = 1$ and $\varphi(1)_p \leq p$ for every $\varphi \in \operatorname{IBr}(G)$, then one of the following holds.

(1) If p = 2, then $|G|_2 \le 2^9$.

84

- (2) If $p \ge 5$ or if p = 3 and A_7 is not involved in G, then $|G|_p \le p^4$.
- If p = 3 and A₇ is involved in G, then $|G|_3 \leq 3^5$. (3)

Lewis *et al.* further conjectured in [1] that the correct bounds should be 2^7 in (1), p^2 in (2) and 3^3 in (3). In this paper, we use some new techniques to improve the bounds stated above when p is an odd prime. Our approach is motivated by a recent result of Qian [5]. We prove the following result.

THEOREM 1.1. Let *p* be an odd prime and *G* be a group such that $O_p(G) = 1$. Suppose that p^2 does not divide $\varphi(1)$ for every $\varphi \in \operatorname{IBr}(G)$.

- If $p \ge 5$ or if p = 3 and A_7 is not involved in G, then $|G|_p \le p^3$. (1)
- If p = 3 and A_7 is involved in G, then $|G|_3 \leq 3^4$. (2)

2. Main results

Note that for a group G and a prime p, the assertion p^2 does not divide $\varphi(1)$ for all $\varphi \in \operatorname{IBr}(G)$ is inherited by factor groups and normal subgroups of G. This property will be used frequently.

LEMMA 2.1. Let p be a prime and G be an almost simple group with nonabelian simple socle S. Suppose that $p \in \pi(|S|)$ and $\varphi(1)_p \leq p$ for all $\varphi \in \operatorname{IBr}(G)$. Then the following assertions hold.

- (1) $|S|_p > |G/S|_p$.
- (2) If p = 2, then $G = S \simeq M_{22}$ and $|G|_2 = 2^7$.
- (3) If p = 3 and $S = A_7$, then $|G|_3 = |S|_3 = 3^2$.
- (4) If $p \ge 3$ and $(S, p) \ne (A_7, 3)$, then $|G|_p = |S|_p = p$.

PROOF. See [1, Lemma 3.1] for (1) and [1, Lemma 4.3] for (2)–(4).

LEMMA 2.2. A group G has a normal Sylow p-subgroup P if and only if $p \nmid \varphi(1)$ for every $\varphi \in \operatorname{IBr}(G)$.

PROOF. See [4, Theorem 5.5] or [3, page 121].

LEMMA 2.3 [5, Proposition B]. Let p be an odd prime and let W be a normal p'subgroup of G. Assume that p^3 does not divide $|G/\mathbb{C}_G(W)|$ and that W is a direct product of some nonabelian simple groups. Then there exists $\theta \in Irr(G)$ such that $I_G(\theta)/\mathbb{C}_G(W)$ is a p'-group.

LEMMA 2.4 [1, Lemma 3.6]. Suppose that G is either A_7 or $3 \cdot A_7$, and that G acts nontrivially on the set Ω . Then there exist disjoint (possibly empty) subsets B_1 , B_2 , B_3 , B_4 , B_5 such that 9 divides $|G : \bigcap_{i=1}^5 \operatorname{Stab}_G(B_i)|$.

LEMMA 2.5 [1, Lemma 4.4]. Let p be a prime and let G be a solvable group with $\mathbf{O}_p(G) = 1$. If $\varphi(1)_p \leq p$ for all $\varphi \in \text{IBr}(G)$, then $|G|_p \leq p^2$.

Let Sol(G) denote the largest solvable normal subgroup of a group G.

LEMMA 2.6. Let p be an odd prime and G be a group with Sol(G) = 1. Suppose that $\varphi(1)_p \leq p$ for all $\varphi \in IBr(G)$. In addition, assume that A_7 is not involved in G if p = 3. Then $|G|_p \leq p$.

PROOF. We may assume that $p \in \pi(|G|)$ and $\mathbf{O}^{p'}(G) = G$ by induction. Let U be a maximal normal subgroup of G. Then G/U is a simple group and p divides the order of G/U. By Lemma 2.1(4), $|G/U|_p = p$ and, by induction, $|G|_p \leq p^2$. Let W be a minimal normal subgroup of G contained in U. Clearly, W is nonabelian because $\operatorname{Sol}(G) = 1$.

Assume that *p* divides |W|. By the choice of *U* and since *W* is contained in *U*, we see that $|W|_p \leq |U|_p \leq p$. Since *p* divides |W|, it follows that *W* is a nonabelian simple group with $|W|_p = p$. Since $G/(W \times C_G(W)) \leq Out(W)$, by Lemma 2.1(1) and the first paragraph of the proof, $G/(W \times C_G(W))$ is a *p'*-group. This implies that $G = W \times C_G(W)$ because $G = \mathbf{O}^{p'}(G)$. Suppose that *p* is a prime divisor of $|C_G(W)|$. Since $\mathbf{O}_p(W)$, $\mathbf{O}_p(C_G(W)) \leq Sol(G) = 1$, by Lemma 2.2 there exist $\varphi_1 \in IBr(W)$ and $\varphi_2 \in IBr(C_G(W))$ such that *p* divides $\varphi_1(1)$ and $\varphi_2(1)$. Then $\varphi = \varphi_1\varphi_2 \in IBr(G)$ and p^2 divides $\varphi(1)$, a contradiction. Hence $C_G(W)$ is a *p'*-group and the required result follows.

Assume that *p* does not divide |W|. Clearly $G > W \times C_G(W)$ and *p* divides $|G/(W \times C_G(W))|$ because $G = \mathbf{O}^{p'}(G)$. Hence by induction $|C_G(W)|_p \le p$ since $C_G(W)$ is a proper normal subgroup of *G* satisfying the assumption. By Lemma 2.2 again, there exists $\varphi_3 \in \operatorname{IBr}(C_G(W))$ such that $|\varphi_3(1)|_p = |C_G(W)|_p$. By the first paragraph of the proof, $p^3 \nmid |G|$. Since *W* is a *p'*-group, $\operatorname{IBr}(W) = \operatorname{Irr}(W)$. Now we can apply Lemma 2.3 to conclude that there exists some $\varphi_4 \in \operatorname{IBr}(W)$ such that $I_G(\varphi_4)/C_G(W)$ is a *p'*-group. It is clear that $\varphi_3\varphi_4 \in \operatorname{IBr}(W \times C_G(W))$ and $I_G(\varphi_3\varphi_4) = I_G(\varphi_3) \cap I_G(\varphi_4)$ since *W* and $C_G(W)$ are normal in *G*. Let θ be an irreducible constituent of $(\varphi_3\varphi_4)^G$. Then, by the hypothesis and the arguments above,

$$p \ge \theta(1)_p \ge |G: I_G(\varphi_3\varphi_4)|_p \cdot (\varphi_3\varphi_4(1))_p$$
$$\ge |G: I_G(\varphi_4)|_p \cdot \varphi_3(1)_p = |G: \mathbf{C}_G(W)|_p \cdot |\mathbf{C}_G(W)|_p = |G|_p,$$

and the proof is complete.

[3]

LEMMA 2.7. Let G be a group such that 3^2 does not divide $\varphi(1)$ for all $\varphi \in IBr(G)$ (p = 3). Assume that $\mathbf{O}^{3'}(G) = G$, Sol(G) = 1 and A_7 is involved in G. Then $G \simeq A_7$.

PROOF. Let *N* be minimal among normal subgroups of *G* that involve A_7 . Let *M* be a normal subgroup of *G* contained in *N* such that N/M is a chief factor of *G*. Since N/M is nonabelian, $N/M \simeq S^k$ with $S = A_7$ and *k* a positive integer. We claim that k = 1. If not, by Lemma 2.2, 3 divides $\theta(1)$ for some $\theta \in \text{IBr}(S)$. Since $\theta^k \in \text{IBr}(N/M)$ and 3^k divides $\theta(1)^k$, it follows that p^k divides $\varphi(1)$ for some $\varphi \in \text{IBr}(G)$, contradicting the assumption on *G*. Hence $N/M \simeq A_7$. Note that the minimality of *N* implies that *M* is the unique normal subgroup of *G* contained in *N* so that N/M is a chief factor for *G* and, in particular, *N* is perfect. Let *L* be the solvable residual of *M*. That is, *L* is the smallest normal subgroup of *M* so that M/L is solvable.

If one can prove that L = 1, then M is trivial by the condition that Sol(G) = 1. It follows that $N \simeq A_7$ is a minimal normal subgroup of G. Since $G/(N \times C_G(N))$ is isomorphic to a subgroup of Out(N) and $O^{3'}(G) = G$, we see that $G = N \times C_G(N)$. If $C_G(N)$ is not a 3'-group, then by Lemma 2.2, 3^2 divides $\varphi(1)$ for some $\varphi \in IBr(G)$, a contradiction. Hence $3 \notin \pi(|C_G(N)|)$ and so G = N because $O^{3'}(G) = G$.

From now on, we assume that $L \neq 1$ and let K be a normal subgroup of G contained in L such that L/K is a chief factor of G. Observe that $L/K \simeq T_1 \times \cdots \times T_n$, where $T_i \simeq T$ is a nonabelian simple group. Let $D/K = \mathbb{C}_{G/K}(L/K)$. Then $D \cap L = K$. Therefore $D \cap N < N$ and, by the uniqueness of M, we see that $D \cap N \leq M$. Since $G/DL \leq \operatorname{Aut}(L/K)$, if n = 1, then $ND/DL \simeq N/(D \cap N)L$ is solvable, a contradiction because $(D \cap N)L \leq M$ and $N/M \simeq A_7$. It follows that n > 1. If $3 \in \pi(|T|)$, then arguing as above, we get a contradiction. Hence 3 does not divide the order of Tand so $T \simeq {}^2B_2(2^{2m+1})$ for some $m \ge 1$. This implies that T has five distinct nonlinear irreducible 3-Brauer character degrees, say $\tau_1, \tau_2, \tau_3, \tau_4$ and τ_5 .

Observe that N/L acts on the set $\{T_1, \ldots, T_n\}$ and, since $D \cap N \leq M$, we conclude that N/L acts nontrivially. By Lemma 2.4, we can find disjoint subsets $B_1, \ldots, B_5 \subseteq \{T_1, \ldots, T_n\}$ such that $\bigcap_{i=1}^5 \operatorname{Stab}_{N/L}(B_i)$ has index in N divisible by 9. Define $\phi \in \operatorname{IBr}(L/K) = \operatorname{Irr}(L/K) = \operatorname{Irr}(T_1 \times \cdots \times T_n)$ by $\phi = \phi_1 \times \cdots \times \phi_n$ with $\phi_i = \tau_j$ if $T_i \in B_j$ for $j \in \{1, \ldots, 5\}$ and $\phi_i = 1_T$ otherwise. It is easy to see that $I_N(\phi)/L \leq \bigcap_{i=1}^5 \operatorname{Stab}_{N/L}(B_i)$ and so $9 \mid |N : I_N(\phi)|$. Therefore 9 divides $\varphi(1)$ for some $\varphi \in \operatorname{IBr}(G)$. This contradiction shows that L = 1 and thus the proof is complete by the argument in the second paragraph of the proof.

PROOF OF THEOREM 1.1. We may assume that $G = \mathbf{O}^{p'}(G)$ by appealing to induction. First, we assume that $p \ge 5$, or that p = 3 and A_7 is not involved in G. By Lemma 2.6, $|G : \operatorname{Sol}(G)|_p \le p$. Since $\mathbf{O}_p(\operatorname{Sol}(G)) \le \mathbf{O}_p(G) = 1$ by the hypothesis, we have $|\operatorname{Sol}(G)|_p \le p^2$ by Lemma 2.5 and consequently $|G|_p \le p^3$. If p = 3 and A_7 is involved in G, then $|G/\operatorname{Sol}(G)|_3 = 3^2$ by Lemma 2.7. Since $|\operatorname{Sol}(G)|_3 \le 3^2$ as above, we conclude that $|G|_3 \le 3^4$. This completes the proof.

References

- M. Lewis, G. Navarro, P. H. Tiep and H. P. Tong-Viet, 'p-parts of character degrees', J. Lond. Math. Soc. 92(2) (2015), 483–497.
- [2] M. Lewis, G. Navarro and T. R. Wolf, 'p-parts of character degrees and the index of the Fitting subgroup', J. Algebra 411 (2014), 182–190.

Brauer character degrees

- [3] O. Manz, 'On the modular version of Ito's theorem on character degrees for groups of odd order', Nagoya Math. J. 105 (1987), 121–128.
- [4] G. Michler, 'A finite simple group of Lie type has *p*-blocks with different defects, $p \neq 2$ ', *J. Algebra* **104** (1986), 220–230.
- [5] G. Qian, 'A note on *p*-parts of character degrees', Bull. Lond. Math. Soc. **50**(4) (2018), 663–666.

JINBAO LI, Key Laboratory of Group and Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, PR China e-mail: leejinbao25@163.com

YONG YANG, Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, USA e-mail: yang@txstate.edu

[5]