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This paper describes a detailed experimental study using hot-wire anemometry of
the laminar–turbulent transition region of a rotating-disk boundary-layer flow without
any imposed excitation of the boundary layer. The measured data are separated into
stationary and unsteady disturbance fields in order to elaborate on the roles that
the stationary and the travelling modes have in the transition process. We show
the onset of nonlinearity consistently at Reynolds numbers, R, of ∼510, i.e. at the
onset of Lingwood’s (J. Fluid Mech., vol. 299, 1995, pp. 17–33) local absolute
instability, and the growth of stationary vortices saturates at a Reynolds number of
∼550. The nonlinear saturation and subsequent turbulent breakdown of individual
stationary vortices independently of their amplitudes, which vary azimuthally, seem
to be determined by well-defined Reynolds numbers. We identify unstable travelling
disturbances in our power spectra, which continue to grow, saturating at around
R= 585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear
saturation amplitude of the total disturbance field is approximately constant for all
considered cases, i.e. different rotation rates and edge Reynolds numbers. We also
identify a travelling secondary instability. Our results suggest that it is the travelling
disturbances that are fundamentally important to the transition to turbulence for a
clean disk, rather than the stationary vortices. Here, the results appear to show a
primary nonlinear steep-fronted (travelling) global mode at the boundary between
the local convectively and absolutely unstable regions, which develops nonlinearly
interacting with the stationary vortices and which saturates and is unstable to a
secondary instability. This leads to a rapid transition to turbulence outward of the
primary front from approximately R= 565 to 590 and to a fully turbulent boundary
layer above 650.

Key words: absolute/convective instability, boundary layer stability, transition to turbulence

1. Introduction
The laminar–turbulent transition of the incompressible rotating-disk flow without any

imposed flow is discussed. For an infinite rotating disk in otherwise quiescent fluid,
von Kármán (1921) derived an exact similarity solution of the governing equations
for the laminar boundary layer. The Rossby number for the von Kármán flow is Ro=
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FIGURE 1. A sketch of the von Kármán boundary layer on a rotating disk showing the
mean velocity profiles (in a laboratory frame).

−1, as defined, for example, by Lingwood & Garrett (2011). The velocity distribution
in the boundary layer is three-dimensional and has an inflection point in the radial
direction. Figure 1 shows the laminar velocity profiles where U = U∗/(r∗Ω∗), V =
V∗/(r∗Ω∗), W =W∗/(ν∗Ω∗)1/2 are non-dimensional radial, azimuthal and axial mean
velocities, respectively. U∗, V∗, W∗ are the mean radial, azimuthal and axial velocities,
r∗ is radius of the disk at the measurement position, z∗ is the wall-normal height from
the disk surface, Ω∗ is the rotational speed of the disk, ν∗ is the kinematic viscosity
of the fluid, θ∗ is the angular position, and * denotes a dimensional quantity.

The inflectional nature of the mean velocity leads to inviscid instability, usually
called ‘cross-flow instability’. Local stability analysis (e.g. Malik, Wilkinson &
Orszag 1981) shows that the critical Reynolds number for convective instability
of the stationary mode (i.e. fixed with respect to the rotating disk) within this
so-called Type-I cross-flow instability is about R= 287, where the Reynolds number is
R= r∗(Ω∗/ν∗)1/2. The flow on the rotating disk is also unstable to a so-called Type-II
viscous instability. Type-II stationary disturbances have higher critical Reynolds
number and smaller spatial growth rates than Type-I stationary disturbances. However,
the Type-II travelling modes can have significantly lower critical Reynolds numbers
than both stationary and travelling Type-I modes. Faller (1991) shows that the critical
Reynolds number of Type-II travelling modes is R = 69.4 where the wave angle is
−19.0◦. The mode with maximum spatial growth rate is a Type-I mode that has large
negative frequency in the rotating frame (Hussain, Garrett & Stephen 2011), i.e. a
disturbance that is travelling significantly slower than the rotating disk. However, as
shown in many studies (e.g. in the flow visualization of Kohama 1984), the dominant
observed structures in the convectively unstable region of the boundary layer are
stationary (cross-flow Type-I) spiral vortices; typically 28–32 are observed. These
vortices are triggered by small, but unavoidable roughnesses on the disk surface,
which continuously excite the stationary mode. Travelling modes are not naturally
excited repeatably and continuously reinforced in the same way, and so (despite some
such modes having lower critical Reynolds numbers and higher growth rates) their
contribution to the disturbance field and their role in the transition process are often
overlooked.

The rotating-disk flow is considered to be a good model for comparison with
swept-wing boundary-layer flows (e.g. Gregory, Stuart & Walker 1955) due to their
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similar velocity profiles and cross-flow instability. However, the rotating-disk flow has
azimuthal periodicity that is not reflected as spanwise periodicity in the swept-wing
flow, and observations of the rotating-disk flow differ from swept-wing flows in at
least one important way, namely the relatively small variation in Reynolds number
observed for laminar–turbulent transition across different facilities. This difference is
clearly shown in flow visualizations for which the rotating-disk flow exhibits a sharp
circular demarcation of turbulent breakdown in the transitional region (e.g. Kohama
1984) whereas for swept-wing boundary-layer flows (e.g. Dagenhart & Saric 1999)
the transition zone zigzags in the spanwise direction.

A recent experimental study of the rotating-disk flow (Imayama, Alfredsson &
Lingwood 2013) suggested that the transition Reynolds number, Rt, defined as the
onset of the nonlinearity is 515 ± 1 %, independent (within the ranges spanned by
available data) of background noise level, edge condition, and edge Reynolds number
Redge, where Redge = r∗d(Ω

∗/ν∗)1/2, r∗d being the finite radius of the disk.
Lingwood (1995) found that the convectively unstable rotating-disk boundary layer

becomes locally absolutely unstable in the radial direction for certain travelling
disturbances (i.e. with negative frequency in the rotating frame) above RCA = 507,
where RCA denotes the critical Reynolds number for the absolute instability. She
suggested that the absolute instability at a fixed radial position is the trigger for the
onset of nonlinearity at that location, the first step of the transition process. She
also confirmed experimentally (Lingwood 1996) the absolute instability above ∼507
by introducing a travelling wavepacket into the boundary layer and observing that
the trailing edge becomes fixed (radially) in space as it approaches RCA. Lingwood
(1997b) showed that a model swept-wing boundary-layer flow exhibits local chordwise
absolute instability for certain sets of parameters. However, unlike the absolute
instability of the rotating-disk flow, she suggested for swept-wing flows that, due
to the lack of periodicity in the spanwise direction (analogous to the azimuthal
periodicity present for the rotating-disk configuration, which creates a semi-closed
flow), unidirectional absolute instability of swept-wing flows may be less physically
significant and that ‘laminar–turbulent transition may still be a convective process’.

Davies & Carpenter (2003) conducted direct numerical simulations (DNS) of the
linearized Navier–Stokes equations, which unlike local stability analysis account for
spatial variation of the flow, and found that the rotating-disk boundary-layer flow
is linearly globally stable, in contrast to Lingwood’s (1996) observations. Davies &
Carpenter (2003) instead suggested that the convective behaviour eventually prevails
even for strongly locally absolutely unstable regions. To explain this contradiction,
Pier (2003) showed that a nonlinear approach provides, via a subcritical mechanism,
a nonlinear global instability (provided that background disturbances are sufficient)
at the location for the onset of local absolute instability, resulting in a self-sustained
finite-amplitude disturbance that is subject to secondary instability.

Another approach was taken by Healey (2010) who, using the linearized complex
Ginzburg–Landau equation, proposed that if a finite-disk configuration is considered
(as applies to all physical experiments) then the local absolute instability gives
rise (via a supercritical mechanism) to linear global instability leading directly to a
nonlinear global mode regardless of the background disturbance level. Healey pointed
out that Davies & Carpenter (2003) disregarded upstream propagation of waves from
the edge boundary as a spurious numerical artifact and stopped the calculations
before such waves reached the domain of interest. Adding a nonlinear term into the
model, Healey (2010) also argued that as the transition Reynolds number approaches
the Reynolds number at the edge, the flow is stabilized and he suggested that this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

80
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.80


On the laminar–turbulent transition of the rotating-disk flow 135

effect explains the scatter, albeit small, observed in the earlier experimental transition
Reynolds numbers. However, from the experiments of Imayama et al. (2013), with
various edge conditions and edge Reynolds numbers, it was concluded that these
different conditions did not affect the transition Reynolds number significantly.
Instead, Imayama et al. (2013) showed that the scatter in the reported transition
Reynolds numbers could be explained by the different definitions of transition used
by various researchers, rather than a nonlinear stabilizing effect brought about by the
proximity of the edge of the disk. Nevertheless, application of a consistent definition
for transition to previous experimental results, as attempted by Imayama et al. (2013),
showed that the transition Reynolds number is highly reproducible across different
facilities, which may lend support to Healey’s (2010) primary suggestion that the finite
radius of the disk creates a (supercritical) linear global instability leading directly to
a nonlinear global mode irrespective of differences in background noise levels.

The late stage of laminar–turbulent transition has also been investigated in previous
studies. Kobayashi, Kohama & Takamadate (1980) and Wilkinson & Malik (1985)
observed secondary instability of the primary stationary vortices characterized as
a ‘kink’ in single-realization time series of the azimuthal velocity component just
before the turbulent breakdown region. Kohama, Suda & Watanabe (1994) fixed
a hot-wire probe on the disk surface and investigated disturbances travelling with
respect to the disk in the transition region. They found two different travelling
frequency components, one at 150 Hz and the other at 3.5 kHz, and concluded that
the higher frequency component was due to the secondary instability captured as
ring-like structures by the visualization technique just before the turbulent breakdown.
Using a theoretical approach, Balachandar, Streett & Malik (1992) suggested that
the root-mean-square amplitude of the primary stationary disturbances must be ∼9 %
of the local disk velocity to trigger the secondary instability at R = 500 and that
the travelling secondary instability appears as a pair of counter-rotating vortices.
However, recent studies suggest (e.g. Lingwood 1996; Healey 2010; Garrett, Harris
& Thomas 2012; Harris, Garrett & Thomas 2012; Imayama et al. 2013) that there
may be an alternative (lower Reynolds number) transition mechanism for sufficiently
rough disks. Such rough-disk flows may show early nonlinearity and secondary
instability, and turbulent breakdown (i.e. for R< 507 below the onset of the absolute
instability); Imayama et al. (2013) distinguished past experimental studies using
hot-wire anemometry as either clean-disk or rough-disk experiments, see their table 3.

The exact nature of the laminar–turbulent transition of the rotating-disk flow
is, however, still not fully understood, in particular, to what extent the absolute
instability, travelling disturbances and secondary instabilities are involved in the
transition process. An important factor in the present study is to try to distinguish
a primary travelling global mode and its secondary instability, or otherwise, from
the more easily observed stationary vortices; as the local absolute instability occurs
for travelling modes, consideration only of the latter is likely to obscure the global
instability behaviour. In this way, it is possible to draw some comparisons with the
subcritical and supercritical travelling global-instability mechanisms described by Pier
(2003) and Healey (2010), respectively, where the location of the steep-fronted global
mode is controlled by the onset of absolute instability and the turbulent breakdown is
triggered by secondary instability of the primary global mode; see also Viaud, Serre
& Chomaz (2011).

The aim of this study is to add to current understanding via careful experimental
investigation, using hot-wire anemometry, of the laminar–turbulent transition process
for a ‘clean’ disk, and to compare with theoretical, numerical and other experimental
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studies. The experimental setup is described in § 2. The experiments have been
performed without deliberate forcing of the boundary layer, i.e. without any artificial
excitation (e.g. roughness or impulsive jet). The results are presented in § 3. In
particular, the disturbances are decomposed into stationary and unsteady components
and the behaviour of each is investigated. Finally, the conclusions are given in § 4.

2. Experimental setup
The experimental setup is identical to the one in Imayama, Alfredsson & Lingwood

(2012) and Imayama et al. (2013), see Imayama et al.’s (2012) figure 1, and is a
modified version of the setup used by Lingwood (1996). The glass disk with a
thickness of 24 mm and a diameter of 474 mm is mounted on an aluminium-alloy
disk fixed by eight aluminum clamps. The edge of the glass disk is ground down
approximately 1.5 mm with a 45◦ angle giving a working radius of the glass disk of
r∗d = 235.5 mm, see the sketch of Imayama et al.’s (2013) figure 1(c). Around the disk
a wooden stationary board with outside diameter of 900 mm is mounted to minimize
noise contamination. The horizontal gap between the wooden plate and the disk is
less than 1 mm and vertically the disk surface and the plate are approximately flush.

Measurements of the azimuthal velocity are performed by hot-wire anemometry
using the same setup and techniques as Imayama et al. (2012, 2013). Table 1 shows
the experimental conditions in the present work and PP02, PP04–12 and IP02 are
identical to the data used in Imayama et al. (2012). The data PP02, PP04, PP06,
PP08, PP10, PP12, IP01 and IP02 in the present study are also used in Imayama
et al. (2013). Note, however, that the case labels used in table 1 are different
from those used in the other two papers. Two methods were used for varying the
Reynolds number: (a) varying the rotational disk speed and keeping the probe at
a fixed radial position (PP01–12); and (b) varying the radial position of the probe
at a fixed rotational disk speed (IP01–02). For cases PP01–12 measurements of the
azimuthal velocity profile were made at each Reynolds number, whereas for IP01
and IP02 measurements were only taken at a non-dimensional height z= 1.3, where
z= z∗(Ω∗/ν∗)1/2.

The non-dimensional boundary-layer thickness is given as δ95 = δ∗95(Ω
∗/ν∗)1/2,

where δ∗95 is defined as the wall-normal position where the azimuthal velocity is 5 %
of the local disk velocity, V∗w. Due to the limitations of hot-wire probes in measuring
low velocities, in this case close to the boundary-layer edge, we chose to calculate
the integral parameters using δ∗95 instead of integrating across the whole boundary
layer, such that the displacement thickness δ∗1,95 is

δ∗1,95 =
∫ δ∗95

0

V∗(z∗)
V∗w

dz∗. (2.1)

For the same reason, the momentum thickness δ∗2,95 is defined as

δ∗2,95 =
∫ δ∗95

0

(
1− V∗(z∗)

V∗w

)
V∗(z∗)

V∗w
dz∗. (2.2)

The shape factor H95 is defined as H95 = δ∗1,95/δ
∗
2,95 and the theoretical value using

the similarity profile is 2.23. The theoretical shape factor based on the full boundary-
layer thickness gives 2.12 instead. As can be seen from table 1 excellent agreement
with the theoretical value for laminar flow is obtained up to R= 530.
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Case R Redge r∗ Ω∗ z δ95 δ∗95 δ∗1,95 δ∗2,95 H95

(mm) (r.p.m.) (mm) (mm) (mm)

PP01 410 488 198 628 0.4–16 3.65 1.76 0.587 0.263 2.23
PP02 430 512 198 690 0.4–16 3.61 1.66 0.557 0.249 2.24
PP03 450 535 198 755 0.4–16 3.61 1.59 0.533 0.239 2.23
PP04 470 559 198 822 0.4–16 3.62 1.52 0.512 0.229 2.23
PP05 490 583 198 890 0.4–16 3.63 1.47 0.494 0.220 2.24
PP06 510 606 198 963 0.4–16 3.61 1.40 0.474 0.211 2.25
PP07 530 630 198 1040 0.4–16 3.57 1.34 0.456 0.203 2.25
PP08 550 654 198 1122 0.4–16 3.69 1.33 0.453 0.207 2.18
PP09 570 677 198 1205 0.4–16 4.77 1.66 0.488 0.246 1.99
PP10 590 702 198 1295 0.4–26 8.78 2.94 0.632 0.401 1.58
PP11 610 725 198 1385 0.4–26 12.1 3.94 0.767 0.531 1.46
PP12 630 749 198 1480 0.4–26 14.4 4.52 0.848 0.600 1.41
IP01 360–605 618 137–231 1000 1.3 — — — — —
IP02 360–700 731 116–226 1400 1.3 — — — — —

TABLE 1. Experimental conditions. Here, r∗ is the local radius of the hot-wire probe, Ω∗
the rotational speed, z the normalized wall-normal position, δ95 the normalized boundary-
layer thickness (δ95= δ∗95(Ω

∗/ν∗)1/2), where δ∗95 is defined as the wall-normal height where
the azimuthal velocity is 5 % of the disk velocity, δ∗1,95 the displacement thickness, δ∗2,95
the momentum thickness and H95 = δ∗1,95/δ

∗
2,95 the shape factor.

3. Results
3.1. Azimuthal mean velocity profiles

The azimuthal mean velocity profiles at various Reynolds numbers are shown in
figure 2(a). At low Reynolds number the measured data are in accordance with
the theoretical laminar profile as well as the theoretical boundary-layer thickness.
Figure 2(b) shows the deviation of the azimuthal mean velocity profiles from the
theoretical laminar profile. The deviation from the theoretical profile can be observed
at R = 550. Local linear stability analysis (Lingwood 1995, 1997a) showed that
local absolute instability occurs above R= 507 and that the absolute instability may
trigger nonlinearity. Imayama et al. (2013), using the same data as the present study,
observed the rise of the first harmonic in the spectra at R= 510, indicating the onset
of nonlinearity, and observed that this R-value was highly reproducible under various
experimental conditions. Distortion of the mean velocity profile is known not to
be a sensitive detector of the onset of nonlinearity (e.g. see the reinterpretation in
Imayama et al. 2013 of the transition Reynolds number given by Othman & Corke
2006 originally based on mean-flow deformation) and therefore it is not surprising
that the start of observable deviation in the mean profile is not seen until higher
values of about R= 550. Once the deviation of the profiles starts around R= 550, the
shape of the velocity profile changes considerably over a small range of R, resulting
in a thicker boundary layer and a steeper velocity gradient close to the wall, and for
high enough R the boundary layer is seen to be fully turbulent. Imayama et al. (2012)
suggested for similar conditions as the present experiments that the fully developed
turbulent boundary layer is observed above R= 650.

Figure 3 shows azimuthal mean velocity measurements as functions of Reynolds
number in a log–logplot (see also table 1). One of the characteristics of the
rotating-disk boundary-layer flow is that the dimensional boundary-layer thickness,
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FIGURE 2. (Colour online) (a) Azimuthal mean velocity, V , profiles and (b) azimuthal
mean velocity deviation from the theoretical laminar profile, 1V . Profiles measured for
cases PP01–12 at (A) R = 410, (B) R = 430, (C) R = 450, (D) R = 470, (E) R = 490,
(F) R= 510, (G) R= 530, (H) R= 550, (I) R= 570, (J) R= 590, (K) R= 610, (L) R= 630.
The solid lines at each Reynolds number show the theoretical azimuthal laminar velocity
profiles. The solid line at z = 3.60 indicates the normalized theoretical boundary-layer
thickness for the laminar profile where V becomes 0.05. The squares with the dashed
line show the measured boundary-layer thickness (δ95) given in table 1.

displacement thickness and momentum thickness in the laminar region are constant
with varying radius (Reynolds numbers) at a constant rotational speed. However,
for the PP01–12 cases in table 1 the radius is fixed, and the Reynolds number is
increased by increasing the rotational speed, which gives a decreasing boundary-layer
thickness. The non-dimensional boundary-layer thickness is given as δ = δ∗√Ω∗/ν∗
giving

δ∗ = δ
√
ν∗

Ω∗
= δ r∗

R
. (3.1)
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FIGURE 3. The rotating-disk boundary-layer characteristics as functions of Reynolds
number in log–log scale: �, the boundary-layer thickness, δ∗95; 1, the displacement
thickness, δ∗1,95; �, the momentum thickness, δ∗2,95; ©, the shape factor, H95. The solid
line shows the theoretical shape factor, H95= 2.23, based on the boundary-layer thickness
δ∗95. The dashed lines indicate slopes of −1.

Hence, in the laminar region a log–log plot of the boundary-layer thickness versus
R should show a slope of −1. Figure 3 shows the data together with fitted lines
with slope −1 giving good agreement. The boundary-layer thicknesses all start to
deviate from the theoretical line around R = 550, which is again an indication that
this is where the laminar profile starts to be deformed due to nonlinearity, as shown
in figure 2. At the same position the shape factor starts to decrease and reaches 1.41
at R= 630, close to what is expected for a turbulent boundary layer at low Reynolds
numbers and is in good agreement with the experimental results of Cham & Head
(1969), see their figure 5.

3.2. Velocity-disturbance characteristics
The root-mean-square (r.m.s.), skewness and flatness variation with Reynolds number
obtained at a constant height z=1.3 are reported in figure 4(a,c,d). The z-position was
chosen to coincide with the maximum measured amplitude of the stationary vortices
in the laminar region, which is shown in § 3.4.

The velocity data were obtained in two different ways. First (PP01–12, see table 1),
the rotational speed was varied, keeping the hot-wire probe at a constant radial
position, and the data at z= 1.3 were extracted from measurements used for the mean
velocity distributions reported in figure 2. Secondly (IP01–02), the radial position of
the probe was varied keeping a constant rotational speed and the non-dimensional
wall-normal position was kept constant at z= 1.3. Here, the measurements were taken
at intervals of 1R = 5. For these measurements the edge Reynolds numbers vary;
however Imayama et al. (2013) showed that this does not affect the instability and
transition process significantly.

Figure 4(a) shows vrms(= v∗rms/r
∗Ω∗) distributions where the filled symbols are

results obtained directly from the hot-wire anemometer signal. At low Reynolds
number, the IP02 case shows the highest background noise level compared with the
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FIGURE 4. (a) Azimuthal fluctuation velocity vrms, (b) growth rates αi, (c) skewness, and
(d) flatness distributions, measured at z = 1.3. The symbols indicate cases: I, PP01–12;
�, IP01; ©, IP02. The filled symbols denote unfiltered data, the unfilled symbols show
band-pass filtered data (17 < ω∗/Ω∗ < 70) below R 6 490 and high-pass filtered signal
(17< ω∗/Ω∗) for 4956 R6 525, where ω∗ is the frequency measured in the laboratory
frame.

other cases. This is due to the much higher rotational speed in that case, which
causes low-frequency vibration of the system. The PP01–04 cases also have higher
disturbance amplitudes compared with the IP01 case for low R despite lower rotational
speeds. This is probably because the effect of any rotational imbalance is greater at
larger radius. To maximize the signal-to-noise ratio (noise typically being vibration
and imbalance at low frequencies and electronic noise at high frequencies) in the
measured time series, the signals were filtered with a band-pass filter 17<ω∗/Ω∗<70
below R 6 490 and with a high-pass filter 17 < ω∗/Ω∗ for 495 6 R 6 525, where
ω∗ is the signal frequency. At higher Reynolds numbers, the disturbance amplitudes
become so large that the background noise becomes negligible in comparison without
filtering.

The resulting filtered r.m.s.-distributions are shown as unfilled symbols in
figure 4(a). The filtered data show exponential disturbance growth from lower
Reynolds numbers than the unfiltered data but, even with filtering, the background
noise cannot be removed completely at very low Reynolds number. Linear stability
analysis (e.g. Malik et al. 1981) shows the onset of growth of the stationary mode
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from about R= 290 and for the travelling mode the critical Reynolds number is even
lower than for the stationary mode. In figure 4(b–d) only filtered data are shown.

Figure 4(a) shows excellent agreement for the different measurement conditions
of the IP01, IP02 and PP cases except for R 6 450 where the background noise
levels control the differences observed. Exponential growth of vrms is observed up
to R = 550 beyond which the vrms amplitude continues to increase (to R = 585)
but with a slower rate. Above R = 550, deviation of the azimuthal mean velocity
profile from the theoretical laminar profile starts, as shown in figure 2(b). Thus, it is
expected that nonlinearity would be active at these Reynolds numbers. At R = 585
where the maximum vrms is observed, figure 2(curves I, J) show rapid growth of the
boundary-layer thickness, indicating turbulent breakdown. For R> 650 the disturbance
amplitude becomes almost constant indicating that the boundary layer has become
fully turbulent.

From the amplitudes of vrms it is possible to calculate the radial growth rate −αi,
assuming that vrms ∼ exp(−αiR), as is presented in figure 4(b). The growth rate is
obtained by fitting a line through five neighbouring points (using a least-squares fit),
i.e. the fitting points are taken over a range of 1R= 20. In figure 4(b), −αi is taken
as the radial spatial growth of the total disturbance amplitude, i.e. both stationary and
unsteady disturbances, as represented in figure 4(a).

One should be aware that the dimensional growth of the disturbance is larger
than that obtained from the slope in figure 4(a) due to the normalization of v∗rms
by V∗w, which increases with Reynolds number. To clarify this, we can express the
normalization in the following form:

v∗rms

V∗w
= R−2 v

∗
rmsr

∗

ν∗
.

As an example, for our configuration, if the Reynolds number is changed from 500
to 550 by increasing the rotation speed, then the normalizing velocity increases with
a factor of 1.21 whereas if the Reynolds number is changed the same amount by
increasing the radius the normalization velocity increases with a factor of 1.10. In
a local theoretical analysis this is of no concern but it will influence the growth rate
obtained from data such as shown in figure 4(a) (albeit a small effect in relation to the
values of −αi) and would complicate comparison of data from cases PP01–12 (with
varying rotational speed) with cases IP01-02 (with varying radius). In any case, the
PP01–12 cases are not shown in figure 4(b) due to too few data points for an accurate
determination of the growth rate.

In figure 4(b), the IP01 and IP02 cases differ for 400 6 R 6 475 because of the
different background noise levels in the two cases, as shown in figure 4(a). However,
the growth rate has a distinct maximum value at around R= 500 and starts decreasing
above this Reynolds number. This decrease in the growth rate can be explained by the
appearance of nonlinearity and these plots suggest that the radial growth rate can act
as a good indicator of the onset of nonlinearity. The local absolute instability appears
above R= 507, which is likely to trigger the nonlinearity and this is supported by the
highly repeatable appearance of the onset of nonlinearity in the range 5106 R6 520
under various measurement conditions shown by Imayama et al. (2013).

Figure 4(c,d) shows the skewness and flatness of the azimuthal fluctuating velocity
(calculated from the same data and with the same filtering as in figure 4a). The
skewness and flatness are defined as

vSkewness = v3

v3
rms

and vFlatness = v4

v4
rms

,
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respectively. The bar over the azimuthal fluctuation velocity, v, indicates the mean
of the value. The skewness plotted in figure 4(c) shows good agreement between the
different measurement conditions except for R< 450 due to the differing background
noise levels. Le Gal (1992) performed rotating-disk flow experiments in a water-filled
container using a hot-film probe and proposed that the sudden change in the variation
of the second- and third-order moments occurs simultaneously and that they are good
indicators of the transition to turbulence. In figure 4(c) the most skewed behaviour
is observed around R = 585 and the peak of vrms is observed at the same Reynolds
number, where figure 2(a) also shows thickening of the boundary layer. Our results
correspond to those of Le Gal (1992), and according to these indicators and using
his transition definition the transition Reynolds number would be ∼585. Furthermore,
Imayama et al. (2012) proposed a new way to describe transition characteristics of
a rotating-disk flow by utilizing the Reynolds number variation of the probability
density function (p.d.f.) as an indicator of transition. A similar approach was also
taken in Le Gal (1992). However, the p.d.f. map given by Imayama et al. (2012)
captures the characteristics of the transition process much more visually and clearly.
The application of the p.d.f. map to the wall-normal profile can be used to reveal the
wall-normal structure of the primary vortices and the vertical structure associated with
secondary instability at R= 570, see figure 7 in Imayama et al. (2012). The skewness
is sensitive to the tail shape of the p.d.f. and the peak in figure 4(c) at about R= 585
corresponds to the positive expansion of the p.d.f. in figure 6 of Imayama et al.
(2012), which is calculated from the same data as described here as IP02.

As expected for higher moments, the flatness distribution in figure 4(d) has more
scatter for the different cases than the quantities shown in figure 4(a–c). For a
signal with a Gaussian distribution the flatness has a value of 3. At the lower
Reynolds numbers, the single-realization time series have amplitude modulation due
to inhomogeneously distributed initial disturbances hence the flatness is close to but
not exactly as expected for a Gaussian distribution. For R > 510 the disturbance
amplitude has grown sufficiently for the flatness to decrease and it has a minimum at
about R= 550, which is a little upstream from the peaks in disturbance amplitude and
skewness shown in figures 4(a) and 4(c). This behaviour shows that the amplitude
modulation of the single-realization time series reduces over this Reynolds number
range and the flatness becomes close to 1.5, which is the value expected of a
sinusoidal signal without amplitude modulation. These characteristics are also seen
in § 3.5 in the time series. Above R = 550 and the minimum in flatness, the
single-realization time series become skewed; see the positive skewness in figure 4(c).
Finally, vFlatness ≈ 2.7 at R > 635, which is within the range observed in turbulent
boundary-layer flows within the buffer and log regions; see, for example, figure 2(j)
in Imayama, Lingwood & Alfredsson (2014).

3.3. Velocity-disturbance spectra
To visualize frequency information, power spectra, P(ω∗), of single-realization time
series are plotted in figure 5 at intervals of 1R = 5 between R = 500 and R = 650
measured at z= 1.3. (The same definition of P(ω∗) is used here as in Imayama et al.
2013.) The spectra are obtained from time series containing ∼1 million points, where
the sampling rate is 720 samples per disk revolution. The time series are divided into
492 segments of 2048 data points each and the 492 spectra are averaged. However,
as will be shown later the modulation of the stationary vortices gives rise to spiked
spectra and, in order to smooth the spectra, a moving average is applied to P(ω∗). The
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FIGURE 5. (Colour online) Spectra measured at z= 1.3 (IP02). (a) Spectra with moving
average P(ω∗) at 1R = 5 intervals between R = 500 and 650. R = 500, 550, 600, 650
are indicated by dashed lines. The thick solid lines link the peaks of the primary
and harmonics in the spectra. The symbols located on the x-axis indicate the averaged
frequencies of the thick solid lines: �, primary; 1, first harmonic; ©, second harmonic;
�, third harmonic; ?, fourth harmonic, respectively. Vertical solid lines at R = 565, 590
indicate the region of rapid growth of high-frequency components. These solid lines are
also shown in (b and c). (b) The amplitude distribution of the primary and harmonic
spectra indicated in (a). (c) The exponential radial growth rate of the primary and
harmonics. The symbols in (b) and (c) are the same as in (a).

moving average is of box type with 25 points corresponding to a window of ω∗/Ω∗≈
8. The details of the spikes will be discussed later in the Appendix. The spectra in
figure 5 are calculated using the IP02 data, i.e. measured with a fixed rotation speed
with the Reynolds number increased by increasing the radial measurement position.

At R= 500 the primary spectral peak is observed around ω∗/Ω∗ = 30 as reported
by many experimental studies (Gregory et al. 1955; Kobayashi et al. 1980; Kohama
1984; Wilkinson & Malik 1985; Jarre, Le Gal & Chauve 1996; Lingwood 1996;
Othman & Corke 2006; Imayama et al. 2012, 2013; Harris et al. 2012) and is due
to the primary vortices (stationary in the rotating frame) passing the hot-wire probe.
The peak at ω∗/Ω∗ = 1 is due to the small rotational imbalance of the disk and,
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as shown, does not change amplitude with R. The first harmonics of the primary
instability can be seen in figure 5(a) to appear around R = 510 and the number of
harmonics increases as the Reynolds number increases indicating the strengthening
of the nonlinearity, corresponding to the reduction in the radial growth rate of the
primary instability above R= 510, as observed in figure 4(b).

Figure 5(a) gives a clear impression of the filling out of the high-frequency region at
R= 565–590, indicating turbulent breakdown over this range of the Reynolds number.
Since each power spectrum is constructed from a time series measured over several
rotations of the disk, this does not give information about any azimuthal variation
in the turbulent-breakdown behaviour at a given radius (or Reynolds number). We
consider azimuthal variation later but here this result shows that the transition process
is to a large extent dictated by the value of the Reynolds number. A recent numerical
study by Viaud et al. (2011) similarly captures this rapid turbulent breakdown. They
performed a direct numerical simulation in an open rotating cavity showing transition
to turbulence through a steep-nonlinear global mode with a secondary global mode
leading to ‘a very disorganized state’. They suggested that the appearance of the
secondary instability and the disorganized state sitting a little downstream of the
primary global front constituted a ‘secondary front’ (based on the spectrum in
their figure 5). Comparing their figure 5 with the projection on the right-hand side of
figure 5(a) here, the rapid development of high-frequency components at R= 565–590
seems to correspond to their result. However, the spectra in figure 5(a) do not capture
obvious signs of secondary instability in this region. Detailed attention is given to
secondary instabilities in § 3.5.

Imayama et al. (2012) suggested that the change of the slope in vrms as a function
of R around R = 545 in their figure 5 could correspond to Viaud et al.’s (2011)
‘secondary front’. However, the present spectrum shows that if the secondary front
exists it is more likely to lie at a higher value, e.g. R = 565–590. This Reynolds
number corresponds to the peak of vrms and vSkewness in figure 4(a,c) and rapid growth
of boundary-layer thickness in figure 2(curves I, J). The reason for the change of the
slope in vrms at around R= 545–550 in figure 4(a) is discussed in § 3.4.

Peak amplitudes of the primary frequency and its harmonics are shown in
figure 5(b). The peak frequency positions are shown as thick solid lines in figure 5(a).
The peak amplitude of the primary frequency increases with Reynolds number up
to R = 550; however at R = 550 the growth becomes almost saturated and the
amplitude starts to decrease above R = 585 indicating turbulent breakdown of the
primary vortices. The peak amplitudes of the harmonics have steeper growth than
the primary instability. The growth rates of the peak amplitudes of the primary
frequency and its harmonics are presented in figure 5(c), where the relation is given
as
√

P(ω∗)∼ exp(−αiR). The growth rates of the harmonics appear to collapse onto
common values for R= 550–560, where the change in the slope in vrms is observed
in figure 4(a).

Local stability analysis shows that the rotating-disk flow has stationary unstable
waves and also travelling unstable waves, see for example figure 6 in Lingwood
(1995). Here, we have shown the total (or combined) spectral characteristics of the
flow in figure 5, without distinguishing between the frequency contributions from
stationary and travelling modes. Note, that if spectra are calculated from ensemble-
averaged time series (as opposed to averaging the spectra of single-realization time
series, as here) then only the repeatable, continuously excited stationary waves are
retained in the spectra (see, for example, figure 15 in the Appendix). As discussed
in the Introduction (§ 1), the travelling disturbances are often overlooked because the
stationary disturbances are more easily observed and measured.
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For a stationary mode the normalized frequency, ω∗/Ω∗, detected by the hot-
wire probe in the laboratory frame directly corresponds to the integer azimuthal
wavenumber, β. However, a travelling mode with non-zero frequency ω∗t = ωcRΩ∗,
in the rotating frame, and azimuthal wavenumber, β, is observed at a frequency
ω∗/Ω∗ = ω∗t /Ω

∗ + β in the laboratory frame of reference, where ωc is the
non-dimensional frequency corresponding to that obtained from local linear stability
analysis in a rotating frame. A single hot-wire probe fixed in the laboratory frame
gives ω∗ but cannot give the frequency ωt and azimuthal wavenumber separately.
Therefore, it is difficult to distinguish stationary from travelling disturbances,
especially if the measured frequencies are similar, resulting in merging of the modes
in the spectra. Nevertheless, we show in figure 6(a–f ) that it is possible to distinguish
these modes.

Figure 6(a–f ) shows high-resolution power spectra, P(ω∗), at intervals of 1R= 20
between R = 410 and R = 630 and at different wall-normal positions. In contrast to
figure 5(a) the power spectra in figure 6(a–f ) are shown without any smoothing, which
helps to distinguish stationary from travelling modes. Figure 6(b) shows data measured
at the same wall-normal height as figure 5. In the unstable and turbulent-breakdown
regions at R = 410–610, there are two notable characteristics shown by the spectra.
First, without the smoothing of figure 5(a), the spectra have regions with regular
spikes at integer values of ω∗/Ω∗ and, secondly, a relatively smooth peaked region
on the downward slope of the primary and its harmonics; see particularly figure 6(e,f )
measured at the higher wall-normal heights at ω∗/Ω∗ ≈ 40, which helps to identify
this feature in the other subplots of figure 6. As mentioned in the previous section
(and see the Appendix), the integer spikes are due to the modulation of the stationary
disturbance. We suggest here and show in figure 15 (see Appendix) that the smooth
spectral hump at ω∗/Ω∗ ≈ 40 is due to travelling disturbances.

Below the onset of absolute instability one might expect the most convectively
unstable travelling modes to determine the travelling spectral peak. At R = 507, the
nonlinear global mode might be expected to give the critical azimuthal wavenumber
and frequency of the local absolute instability, which are β = 68 and ωc =−0.0349,
respectively, see table 3 in Lingwood (1997a). Such waves would give an observed
frequency in the laboratory frame of ω∗/Ω∗=−0.0349× 507.3+ 68= 50.3. However,
as with figure 9 in Lingwood (1996), here we show that the travelling components
are centred around ω∗/Ω∗ ≈ 40 above about R = 500 and so figure 6 does not
clearly capture the local absolute frequency predicted theoretically. Nevertheless, this
perhaps corresponds to the global mode realized in the physical flow, which has a
more complex base flow than accounted for in theoretical analyses due, for example,
to unavoidable convectively unstable stationary vortices. A stability analysis of the
azimuthally varying base flow would clarify the effects on the absolute instability
and global stability characteristics but this lies outside the scope of this experimental
investigation.

3.4. Stationary and unsteady velocity-disturbance amplitudes
In figure 6 differences in the spectral characteristics of travelling and stationary
modes were shown. In this section, we investigate the different characteristics of
the disturbance field by decomposing the velocity fluctuations into stationary and
unsteady contributions.

The procedure for decomposition is as follows. The hot-wire measurements are
taken with reference to an angular datum. This makes it possible to ensemble
average the velocity time series for individual rotations of the disk, giving the part
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FIGURE 6. Spectra measured at (a) z= 0.6, (b) z= 1.3, (c) z= 2.0, (d) z= 3.0, (e) z= 4.0,
(f ) z= 6.0. The spectra are shown in black, blue and red repeatedly in that order between
R= 410 and R= 630 at 1R= 20 intervals.

of the time series, vrms,st, corresponding to the stationary modes. The time series
for the remaining unsteady part, vrms,us, is calculated from the total disturbance and
stationary disturbance fields as follows (under the assumption that the stationary and
the unsteady parts are uncorrelated, which is justified by calculations that show a
correlation of less than a maximum of 1 %):

vrms,us =
√
v2

rms − v2
rms,st.

The unsteady disturbances are a combination of noise (particularly at low Reynolds
numbers), travelling waves, time variation of the stationary disturbance field and, at
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FIGURE 7. (Colour online) Profiles of the azimuthal fluctuating velocity amplitude
measured at (a) R= 410, (b) R= 430, (c) R= 450, (d) R= 470, (e) R= 490, (f ) R= 510,
(g) R= 530, (h) R= 550, (i) R= 570, (j) R= 590, (k) R= 610, (l) R= 630. The symbols
indicate: 1, total velocity disturbance amplitude, vrms; ©, unsteady velocity disturbance
amplitude, vrms,us; �, stationary velocity disturbance amplitude, vrms,st, respectively. Filtered
data are shown at R= 410–510 in the same manner as figure 4(a).

high Reynolds numbers, unsteady turbulent fluctuations. Figure 7 shows disturbance
amplitude profiles of the total, the stationary and the unsteady components at intervals
of 1R= 20 in the range R= 410–630.

The velocity-disturbance profiles for the stationary component in figure 7(a) show
a maximum at about z= 1.3. For the unsteady component the maximum amplitude is
observed close to the wall and it does not change between R= 410 and 430 indicating
that the unsteady disturbance is dominated by background noise rather than a physical
instability. However, by R= 450, the unsteady disturbance amplitude starts to increase
and at R = 470 (figure 7d) a peak is clearly observed, also around z = 1.3. These
two types of disturbances grow with increasing Reynolds number with almost the
same growth rate and maximum peak position up to R = 530. However, at R = 550
(figure 7h), the disturbance profile starts to grow in the wall-normal direction, as does
the mean velocity profile shown in figure 2(a).

At R= 570 an obvious difference between the stationary and unsteady disturbances
can be seen. The unsteady disturbance profile has much higher amplitude than the
stationary one in figure 7(i). The stationary disturbance profile has a second peak
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around z = 3.0–3.5 in addition to the first peak around z = 1.3. Furthermore, the
amplitude of vrms,st at z = 1.3 does not grow significantly between R = 550 and
R= 570, possibly because of nonlinear saturation of the stationary mode (see below).
Meanwhile, the unsteady disturbance continues growing with the maximum peak
moving closer to the wall than z= 1.3. The total disturbance amplitude is mostly due
to the unsteady disturbance around z=1.3. By R=590, the amplitude of the stationary
disturbance has decreased compared with R = 570, possibly as a result of turbulent
breakdown of the stationary mode; the contribution of the unsteady disturbance to
the total disturbance amplitude is dominant. At R = 610–630 (figure 7k,l) the total
disturbance amplitude is almost entirely composed of unsteady disturbances due to
the almost fully turbulent nature of the boundary layer.

The decomposition of vrms into stationary and unsteady disturbance fields is also
applied to the disturbance growth measurements at constant wall-normal height,
namely to the IP01 and IP02 cases, as shown in figure 8. The total disturbance
amplitude for these two cases shows good agreement with figure 4(a) except at
low Reynolds numbers due to different background noise levels. In figure 8(a,b)
exponential growth of stationary disturbances is observed at R = 360–550. In good
agreement with figure 4(b), figure 8(c,d) shows the growth rate of the stationary
disturbances increasing with Reynolds number and approaching −αi ≈ 0.06 at
R = 500. Hussain et al. (2011) showed a linear convective growth rate for the
stationary mode in their figure 6, which is in accordance with the present results. For
R> 500, figure 8(c,d) show the growth rate of the stationary disturbance decreasing,
presumably due to nonlinear effects as shown in figure 5(a). Furthermore, around
R = 550 the stationary mode becomes saturated and its amplitude starts to decrease
at R = 570–580, indicating turbulent breakdown. This saturation in growth of the
stationary disturbances causes the change in the slope with increasing R at R = 550
in total disturbance amplitude, vrms.

Meanwhile, the growth of the unsteady disturbances behaves differently from the
stationary disturbances particularly in the later stage of the transition process. At
low Reynolds number, the total disturbance amplitude is dominated by unsteady
background noise. Above R ≈ 450, the travelling disturbances start increasing
exponentially and form the major part of the unsteady disturbance field, and, similar to
the stationary disturbances, the growth rate of the unsteady components also decreases
above R = 500–510. However, in contrast to the stationary mode, the unsteady
disturbance amplitude continues to increase above R= 550 up to R= 585, such that
between these Reynolds numbers the total disturbance amplitude is dominated by the
unsteady component.

The chain lines in figure 8 indicate the Reynolds number for the onset of the
absolute instability obtained from local stability analysis. Global behaviour (i.e.
accounting for spatial inhomogeneity) of the rotating-disk flow has been discussed
in early studies. Although Davies & Carpenter (2003) numerically demonstrated that
the rotating-disk flow does not exhibit global instability in the linear approximation
despite absolute instability existing in the semi-infinite region beyond the critical
Reynolds number, Healey (2010) has recently shown using a model equation, taking
into account the finite nature of a disk, that the local absolute instability gives rise
to linear global instability resulting directly in a primary nonlinear steep-fronted
global mode. Figure 8(c,d) shows that at R = 507 the radial growth rate starts to
decrease presumably due to the nonlinear effects. Building on Pier’s (2003) nonlinear
approach, which suggested that the flow has a primary nonlinear global mode (a
so-called ‘elephant mode’, see Pier & Huerre 2001; Chomaz 2005) fixed at the onset
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FIGURE 8. (a,b) The vrms (1), vrms,st (�), vrms,us (©) distributions measured at z=1.3 with
two edge Reynolds numbers, Redge = 618, 731 (IP01, IP02) cases, respectively. (c,d) The
growth rate of the total disturbance (1), stationary mode (�), unsteady component (©)
measured at z= 1.3 with two edge Reynolds numbers, Redge= 618, 731 (IP01, IP02) cases,
respectively. The chain lines in (a–d) show the Reynolds number for onset of absolute
instability.

of local absolute instability and that has a secondary absolute instability, Viaud, Serre
& Chomaz’s (2008) DNS for an open rotating cavity considered the global-stability
characteristics. Their figure 5(b) can be compared with figure 8(a,b) here, showing
similar behaviour at the primary front.

A notable feature in figures 8(a) 8(b) is that while the total disturbance amplitudes
(vrms) for the two measurement cases correspond very well, as shown in figure 4(a),
the relative amplitudes of the stationary and unsteady disturbances (vrms,st and vrms,us,
respectively), which together form vrms differ for the two cases. This perhaps indicates
that the travelling disturbances (via absolute instability) lead the flow to nonlinear
saturation irrespective of the amplitude of the stationary cross-flow vortices, which
do not themselves become absolutely unstable but which are unavoidably excited in
experiments and are convectively unstable. Here, we suggest that figure 8(a,b) shows
a primary nonlinear steep-fronted travelling global mode at the boundary between the
local convectively and absolutely unstable regions of rotating-disk flow, with nonlinear
saturation determined by the primary travelling mode, overlaying the saturation (at
lower amplitude) of the primary convectively unstable stationary mode. As in Viaud
et al.’s (2008) figure 5(b), figure 8(a,b) shows the primary front straddling RCA such
that the upstream tail of the front lies in the convectively unstable region, R < 507,
showing a smooth mapping from the convective to absolute regimes.
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As shown in § 3.3 and this section, even for very smooth clean disks, the stationary
vortices are unavoidable in experimental studies but they complicate the interpretation
of results and comparison with results from numerical and theoretical global-stability
studies. The stationary vortices modulate the base flow and it is still unclear how
the mean-flow modulation affects the global behaviour, for example, the critical
global frequency. However, as discussed by Imayama et al. (2013), it seems likely
that sufficiently rough disks could exhibit alternative laminar–turbulent transition
mechanisms based on the convectively unstable stationary vortices below the critical
Reynolds number for absolute instability. Here, what we can venture tentatively is
that in order to observe experimentally the ‘clean’-disk route with this steep nonlinear
global mode that saturates and leads to turbulent breakdown, the total disturbance
amplitude at the primary front at R= 507 (vrms,507), should not exceed the value of the
amplitude shown consistently here, i.e. vrms,507 should be less than ∼0.01 at z= 1.3.

3.5. Time series due to stationary and unsteady disturbances
To distinguish characteristics of stationary from travelling disturbances and other
unsteady components, ensemble-averaged and unsteady time series are presented in
this section. It is shown that the unsteady time series capture signs of secondary
instability at certain wall-normal heights and Reynolds numbers.

Time series of the azimuthal fluctuation velocity measured using hot-wire or hot-
film anemometry have been shown in many early studies (Smith 1947; Kobayashi
et al. 1980; Malik et al. 1981; Kohama 1984; Wilkinson & Malik 1985; Le Gal
1992; Kohama et al. 1994; Jarre et al. 1996; Lingwood 1996; Corke & Knasiak 1998;
Imayama et al. 2013). These measurements have elaborated on the primary stationary
instabilities of the boundary-layer flow and, to a lesser extent, secondary instabilities.

Figure 9 shows unsteady and stationary time series with p.d.f.s calculated using
the full (unaveraged) time-series records measured at z= 1.3 at intervals of 1R= 20
between R = 530 and 630, i.e. PP07–12 cases. The unsteady time series in figure 9
show data where the stationary (ensemble-averaged) time series have been subtracted
from arbitrarily selected instantaneous time series from single revolutions of the
disk. At R = 530 the ensemble-averaged time series is amplitude modulated, which
corresponds to azimuthal variation in the amplitude of the stationary disturbances
caused by superposition of disturbance fields generated by the inhomogeneous
distribution of unavoidable minute surface roughness. Figure 6(b) shows that at
R= 530 the spectrum has the fundamental frequencies and two harmonics, indicating
nonlinearity. The nonlinear effects are, however, still small at this Reynolds number
and are not obvious in figure 9(a).

Figure 9 also shows p.d.f.s of azimuthal fluctuation velocity. These correspond to
those used in the p.d.f. maps in Imayama et al. (2012). Note that the p.d.f. of a
sinusoidal wave has two symmetric maxima. The p.d.f. in figure 9(a), however, shows
one maximum located at almost zero because of the amplitude modulation of the
time series. The p.d.f. in figure 9(b) shows two maxima, which indicates that the full
single-realization time series at R= 550 has a much more constant amplitude than at
R= 530 in figure 9(a). This behaviour agrees with the flatness distribution discussed
in § 3.2, figure 4(d), showing that the flatness becomes close to 1.5 as the Reynolds
number approaches 550 (a sign of a near-sinusoidal signal).

Comparing time series at R = 550–570, the amplitudes of the unsteady time
series increase and the shape becomes sharper, whereas the amplitudes of the
ensemble-averaged time series are nearly constant. This sharpening of the signal
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FIGURE 9. Unsteady (blue) and stationary (red) time series of normalized azimuthal
fluctuation velocity and probability density function (p.d.f.) calculated using in each case
the full instantaneous time series record (unaveraged) measured at z = 1.3: (a) R = 530,
(b) R= 550, (c) R= 570, (d) R= 590, (e) R= 610, (f ) R= 630. Stationary time series are
constructed from ensemble-averaged time series and unsteady time series are constructed
by subtracting ensemble-averaged time series from instantaneous time series which are
arbitrarily selected for one revolution of the disk. The range of the ordinate is −0.3 to
0.3. t∗ and T∗ are time and a period of one disk revolution, respectively. Each p.d.f. is
normalized by the maximum value.

shape in the unsteady time series skews the p.d.f.s. This change accords with
nonlinear saturation of the stationary mode at R = 550–570, whereas the total
disturbance amplitudes, including the unsteady components, continue growing up to
about R= 585; see figure 8. Finally, figure 9(d) at R= 590 shows the amplitude of the
ensemble-averaged time series decreasing with turbulent breakdown of the stationary
mode. At R= 610 (figure 9e) ensemble-averaged time series show some evidence of
modulation with a period of 1/4 of the period of disk rotation. A phenomenon with
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FIGURE 10. Unsteady (blue) and stationary (red) time series of normalized azimuthal
fluctuation velocity and probability density function (p.d.f.) calculated using in each case
the full instantaneous time series record (unaveraged) measured at R = 570: (a) z = 3.0,
(b) z= 2.0, (c) z= 1.8, (d) z= 1.3, (e) z= 1.0, (f ) z= 0.6. Time is t∗ and T∗ is the period
of one disk revolution. The range of the ordinate is −0.3 to 0.3. Each p.d.f. is normalized
by the maximum value.

this periodicity was captured in the flow visualizations of Kobayashi et al. (1980) and
investigated by Corke & Knasiak (1998). Unsteady time series at R= 610 and above
are dominated by the turbulent signal component and the p.d.f. becomes increasingly
Gaussian.

These changes in the unsteady time series as a function of Reynolds number in
figure 9 are similar to the observations in Lingwood (1996) (see her figure 7), where
no obvious sign of secondary instability was captured in either single-realization or
ensemble-averaged time series. However, figure 10 presents unsteady time series and
ensemble-averaged time series measured at different wall-normal heights at R = 570
and captures in the unsteady time series the characteristic kinked fluctuation velocity
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FIGURE 11. A single-realization time series of normalized azimuthal fluctuation velocity
and p.d.f. calculated using in each case the full time-series record (unaveraged) measured
at R= 570: (a) z= 2.0, (b) z= 1.3. Time is t∗ and T∗ is the period of one disk revolution.
The range of the ordinate is −0.3 to 0.3. Each p.d.f. is normalized by the maximum value.

not at z = 1.3 but at lower and higher heights. The kinks at z = 1.8, 2.0, 3.0 lie on
the downward slope of the primary fluctuation; at z= 0.6, 1.0 they lie on the upward
slope of the primary fluctuation. Note that instantaneous single-realization time series
of the total disturbance field show the same features (see figure 11) and therefore they
are not an artefact of the subtraction of the ensemble-averaged signal. Importantly,
however, ensemble-averaged time series do not show such features, indicating that
the secondary instabilities associated with the kinks are travelling and, therefore,
averaged away by the ensembling process. Lingwood’s (1996) measurements were
taken at z = 1.3 whereas Kobayashi et al. (1980) and Wilkinson & Malik (1985),
who observed kinks in their time series, measured at z= 1.77 instead. These results
suggest, contrary to Lingwood (1996), that secondary instability plays a role in the
turbulent-breakdown process after the onset of absolute instability. The appearance of
the secondary instability corresponds to the rapid growth of the high-frequency
components in the spectra shown in figure 5(a). This observation agrees with
Viaud et al.’s (2011) suggestion that global instability of the primary mode leads
to secondary instability a little downstream of the primary front (the boundary
between convective and absolute instability) and ‘this secondary instability leads to a
very disorganized state, defining the transition to turbulence’.

Furthermore, Imayama et al. (2012) constructed p.d.f. maps from azimuthal
fluctuation velocity profiles at R = 570 in their figure 7(f ) to reveal the vertical
structure of the primary instability and secondary instability. Figure 11 shows the
p.d.f.s corresponding to the single-realization time series measured at two wall-normal
heights and using identical data to Imayama et al. (2012). Comparing the time series
and the p.d.f.s in figure 11(a), it is clear that the upper peak in the p.d.f.s can be
attributed to the kinked feature of the time series; the p.d.f. in figure 11(b) at z= 1.3,
however, does not show this feature nearly so clearly.

Viaud et al.’s (2011) figure 6 shows the vorticity field from DNS within an
open rotating-disk cavity, and just before the turbulent-breakdown region there are
several small structures (presented in black) located close to the disk surface and
seeming to sit on the primary vortices. If these structures are attributed to the
secondary instability, then the secondary instabilities reported here close to the wall
could correspond to their results. Pier (2003) performed a theoretical study of the
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rotating-disk flow and suggested that saturated travelling cross-flow vortices beating
at the global frequency (i.e. the frequency of the critical mode at the boundary
between local convective and absolute instability) are also absolutely unstable to the
secondary perturbations, and concluded that ‘transition to a turbulent flow is triggered
by secondary absolute instability while the transition location itself is controlled by
primary absolute instability’. The difference between the results of Viaud et al. (2011)
and Pier (2003) is largely that the latter found that the secondary instability with
largest absolute growth rate is a subharmonic mode whereas Viaud et al.’s (2011)
secondary instability is not subharmonic.

The results presented here and by Imayama et al. (2013) broadly agree with Viaud
et al. (2011) and Pier (2003) with emergence of nonlinearity being highly reproducible
at the boundary of convective and local absolute instability, i.e. at the primary front, as
shown in Imayama et al. (2013) and the secondary instability appearing downstream
and leading rapidly to a disorganized state. Unfortunately measurements using a single
hot-wire probe fixed in the laboratory frame cannot easily capture the characteristics
of the travelling secondary instabilities such as the frequency and growth rate. Further
research would be required to characterize these instabilities fully.

When the surface of the disk is sufficiently rough an alternative transition
mechanism has been proposed, e.g. Lingwood (1996), Healey (2010), Harris et al.
(2012), Garrett et al. (2012), Imayama et al. (2013). Table 3 in Imayama et al. (2013),
which sorts ‘clean’ and ‘rough’ disk experiments, suggests that Kobayashi et al.’s
(1980) results could show a lower-Reynolds-number convective transition route caused
by high initial disturbance levels. While their kinked fluctuation velocity at R= 500
shown in their figure 9(d) is somewhat similar to the secondary instability shown
here at R= 570, it is likely that their secondary instability is due to large convective
growth of the stationary vortices. However, the difference between the secondary
instability of these two transition mechanisms is still not clear and further research
on the travelling global mode and its secondary instability is required.

3.6. Growth of stationary disturbances and their turbulent breakdown
In this section, the stationary vortices and their turbulent breakdown are studied
and are related to the flow visualizations by Kobayashi et al. (1980), which showed
stationary vortices and sharp turbulent transition at a well-defined Reynolds number.
Figure 12 shows ensemble-averaged azimuthal fluctuation velocities measured at
z = 1.3; each positive and negative region represents a stationary vortex. Visually,
figure 12(a) captures the characteristics of turbulent transition as well as Kobayashi
et al.’s (1980) flow visualizations.

Figure 12(a) presents the growth in disturbance amplitude with increasing Reynolds
number of the stationary vortices, and the amplitude suddenly drops indicating
turbulent breakdown. Outward of turbulent breakdown, there are signs of stationary
structures with four oscillations per revolution, as observed in Kobayashi et al.’s
(1980) figure 7; see also Corke & Knasiak (1998). Close inspection of the spectra
shows corresponding peaks at ω∗/Ω∗ of between 4 and 6. It is important to note
that although each stationary vortex has a different amplitude at the radial location
of turbulent breakdown, that radial location (or Reynolds number) is the same for all,
namely turbulent breakdown is controlled by Reynolds number rather than individual
vortex amplitudes; this is shown more clearly by figure 13.

Figures 12(b) and 12(c) show the same quantities as figure 12(a) but presented in
Cartesian coordinates, with Redge= 618 and 731, i.e. IP01 and IP02 cases, respectively.
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FIGURE 12. Stationary-vortex distributions measured at z = 1.3 with a radial step of
1R = 5: (a) Redge = 731 (polar coordinates and with the disk rotating anti-clockwise);
(b) Redge= 618 (IP01); (c) Redge= 731 (IP02). The filled contours from blue to red indicate
−0.12, −0.1, −0.08, −0.06, −0.04, −0.02, 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12 of the
ensemble-averaged fluctuation velocity normalized by the local wall speed. In (a), dotted
lines indicate R= 500, 600, 700, respectively moving outward, and outer solid circle line
indicates edge of the disk (i.e. R = 731). Horizontal dashed lines at R = 585 in (b,c)
indicate Reynolds number of maximum amplitude of vrms shown in figure 8(a,b). Labels
1–4 in (a) and (c) mark stationary structures and red circles in (b) and (c) highlight
example vortex-splitting events.
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FIGURE 13. Tracking individual stationary vortices for Redge = 731 (IP02), same data as
in figure 12(c). (a) 1v0.5 of each stationary vortex. The colour indicates the amplitude of
1v0.5 at R = 500 as a reference amplitude. Vertical solid lines at R = 565, 590 indicate
the region of rapid growth of the high-frequency component shown in figure 5(a). Vertical
dashed line at R = 585 indicates the Reynolds number of maximum amplitude of vrms
shown in figure 8(a,b). (b) The angle distributions of each stationary vortex. The colour
indicates the reference amplitude used in (a). Vertical solid line at R=540 indicates where
the wave angle of the stationary vortices starts decreasing.

These results show clearly the near-constant turbulent-breakdown Reynolds number
independent of the stationary-vortex amplitudes. The contour colours in the nonlinear
saturation region (i.e. R = 550–570) in figure 12(c) are lighter than in figure 12(b)
because the nonlinear saturation amplitude of the stationary mode is smaller, for
this Redge, as shown in figure 8(a,b) (although the saturation of the total disturbance
field is shown to be independent of Redge). In addition, comparing figure 12(b,c) to
Kawakami, Kohama & Okutsu’s (1999) figures 3 and 7, which are without and with
artificial roughnesses, respectively, differences in the breakdown of the cross-flow
vortices between the rotating-disk flow and swept-wing flow are clearly observable.

Corresponding to the observation, for example, by Wilkinson & Malik (1985),
figure 12(b,c) also shows the stationary vortices ‘splitting’ as the Reynolds number
increases; see, for example, the regions marked by red circles. In our experiments,
we find an increase in the number of stationary vortices from 27 to 34 over the range
R= 400–575. This increase with Reynolds number corresponds to the increase in the
most unstable azimuthal wavenumber for stationary disturbances from linear stability
theory (see Pier 2003).

To investigate details of each stationary vortex, figure 13 shows individually the
amplitude growth of each vortex and each vortex angle. Here, the amplitude, 1v0.5
is measured at z= 1.3 so that 1v0.5 gives half of the peak-to-peak amplitude of each
stationary vortex. The wall-normal height of z = 1.3 was chosen as this is where
the maximum amplitude of the stationary-disturbance r.m.s. profile (see figure 7)
is observed. The colour indicates the amplitude at R = 500, showing the range
of amplitudes (blue lowest and red highest) at this location. At R 6 470–480 the
individual stationary-vortex amplitudes do not necessarily develop maintaining the
same ordering as they have at R = 500. This is because the stationary vortices are
excited not by only one roughness but by unavoidable, minute roughnesses distributed
across the disk surface, and this distribution affects the relative amplitudes until each
vortex has grown sufficiently. However, for R> 470–480 each stationary vortex then
grows exponentially. At R = 550, nonlinear saturation is observed with amplitudes
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of 1v0.5 = 0.015–0.1. Typically, nonlinear saturation amplitudes of stationary vortices
in swept-wing flows are about 1v0.5 = 0.3 (Kawakami et al. 1999) or 0.16–0.22
(Chernoray et al. 2005), which are higher than those found here for the rotating-disk
flow.

Figure 13(a) shows that the stationary vortices undergo turbulent breakdown,
indicated by the decrease in their amplitude after nonlinear saturation, at almost
constant Reynolds number, R = 570–580, despite the variation in their amplitudes
at R = 500 of almost one order of magnitude. R = 570–580 corresponds to the
appearance of travelling secondary instabilities presented in figure 10 and subsequent
rapid growth in the high-frequency range shown in figure 5(a). These results indicate
that turbulent breakdown of the stationary vortices is triggered not by their amplitude
but by another mechanism, which could be growth of travelling disturbances instead.

Another interesting characteristic of the stationary vortices is captured by investigat-
ing their angles to the azimuthal direction. The stationary vortex angle, vangle, is
defined as the angle between the axis of the stationary vortex and the azimuthal
coordinate, see e.g. equation 1 in Wilkinson & Malik (1985). Figure 13(b) shows the
angle of each stationary vortex with the colours corresponding to those in figure 13(a).
In general, the angle increases with Reynolds number up until R= 540 where it then
decreases to turbulent breakdown. This change of the angle corresponds to the onset
of nonlinear saturation of the stationary vortices shown in figure 8(a,b) and where
the boundary layer starts to thicken as shown in 2(a). Indeed, R= 540 is where local
the azimuthal mean velocity profile first shows significant deformation due to the
stationary vortices.

Note that the change in angle for each stationary vortex at R= 540 is independent
of its amplitude, which suggests that this change in the stationary structure and the
nonlinear saturation may be triggered by the growth of the travelling mode through
nonlinear interaction. Namely, these results suggest that the convective instability of
the stationary mode and the consequent amplitude growth do not control turbulent
breakdown. Instead, it would appear that above R= 507 nonlinear interaction between
stationary and travelling disturbances may control the breakdown consistently in
Reynolds number, independent of azimuthal location.

4. Conclusions

The laminar–turbulent transition of the incompressible rotating-disk flow has been
investigated experimentally using hot-wire anemometry. The surface of the disk is
smooth and is considered to be well within the ‘clean’ category of experimental
facilities. No artificial forcing is applied to the boundary-layer flow. The measured
laminar mean velocity profiles and associated characteristics agree very well with
theoretical values. To investigate disturbance growth, azimuthal velocity measurements
are taken at constant wall-normal height (z= 1.3) and at intervals of 1R= 5 from the
laminar to the turbulent region for two different edge Reynolds numbers. The edge
Reynolds number does not appear to affect the total-amplitude growth, total nonlinear
saturation nor the final turbulent breakdown.

Power spectra show that the azimuthal fluctuation velocities in the instability region
are not only composed of stationary disturbances but also of unsteady disturbances.
The radial growth rate of the stationary disturbances corresponds to local linear
theoretical analysis (e.g. Hussain et al. 2011). As previously shown by Imayama
et al. (2013), the onset of nonlinearity is highly reproducible at R= 510–520 across
the various experimental conditions, supporting the theoretical finding that radial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

80
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.80


158 S. Imayama, P. H. Alfredsson and R. J. Lingwood

absolute instability above R = 507 triggers the nonlinearity as the first step towards
laminar–turbulent transition. In the present study, we show that the radial growth rates
of both stationary and unsteady disturbances consistently decrease beyond R ≈ 507
due to nonlinear interactions. It is not possible to identify frequency components
in the spectra corresponding exactly to the absolute/global frequency predicted from
theoretical analyses around ω∗/Ω∗ = 50.3 but here a travelling-mode contribution
centred on ω∗/Ω∗ ≈ 40 is clearly observed (particularly noticeable at high z). It is
possible that this corresponds to the global mode realized in the physical flow, which
is inevitably more complex than the base flow considered in theoretical analyses,
e.g. due to convectively unstable stationary vortices. Other effects presumably
attributable to the absolute instability are also observed, in particular at the later
stage of laminar–turbulent transition.

In the nonlinear region, the harmonic parts of the spectra grow and the stationary
vortices saturate at R = 550 whereas the travelling mode continues to grow up
to R = 585. The nonlinear saturation amplitude for the stationary vortices shows
some dependence on edge Reynolds number and/or on other differences in the
natural excitation of stationary disturbances between different cases; however the
total disturbance amplitude at saturation is constant for all cases, which is perhaps
due to compensations made by the travelling global-mode and secondary-instability
contributions.

Investigations of the growth of individual stationary vortices show that their
nonlinear saturation and turbulent breakdown are independent of their amplitudes,
which vary azimuthally dependent on their convective-growth history, and instead
their late-stage breakdown behaviour is determined by well-defined Reynolds numbers.
For example, irrespective of individual vortex amplitudes, at R= 540 the wave angle
starts to decrease and the amplitude of each stationary vortex starts to saturate.
Furthermore, for the stationary vortices turbulent breakdown occurs at R = 570–580
approximately homogeneously in the azimuthal direction despite individually varying
vortex amplitudes. These results show that convective growth and resulting amplitude
of the stationary mode is not fundamentally important to fixing the final turbulent
breakdown. At R = 570 unsteady time series capture signs of travelling secondary
instabilities characterized by kinked azimuthal fluctuation velocity. We note that the
secondary instabilities are not clearly observed at z= 1.3 but are above and below this
wall-normal height. At higher R, the flow becomes very disordered leading rapidly to
turbulence. Power spectra capture a jump in disturbance energy at high frequencies
between R = 565–590. These results correspond to Viaud et al.’s (2011) direct
numerical simulations of an open rotating-cavity flow and transition to turbulence
through a steep-nonlinear global mode with a secondary global mode leading to
turbulence.

We hypothesize that the (travelling) global mode emerges as a result of the local
absolute instability at R= 507 and develops nonlinearly interacting with convectively
unstable stationary vortices, which unavoidably are found to have finite amplitude by
R= 507 (as shown by figure 6), creating a primary front for the total disturbance field
comprising travelling and stationary disturbances. The behaviour of the front appears
to be insensitive to variations in edge Reynolds number and variations in the amplitude
of the stationary-disturbance field from case to case; the fronts for the total disturbance
field from different cases collapse onto each other as do the total nonlinear saturation
amplitudes at about R = 585 (see figure 4). In fact, from R ≈ 550 the front for the
total disturbance field is dominated by unsteady components presumably due to the
travelling global mode (see figure 8). This may determine the nonlinear saturation of
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350 400 450 500 550 600 650 700
10–4

10–3

10–2

10–1

R

1 2 3 45 6 7 R        Descriptions

1. 510  Onset of nonlinearity.

2. 540  Wave angle change and onset
         of mean-flow distortion.

3. 550  Nonlinear saturation of stationary
         disturbances.

4. 565  Onset of secondary instability and rapid
          growth of high-frequency components.

5. 570  Onset of turbulent breakdown of
         stationary modes.

6. 585  Nonlinear saturation of total disturbance
         amplitude.

7. 650  Fully-developed turbulence.

FIGURE 14. Summary of the laminar–turbulent transition process for ‘clean’ disk
conditions. The figure shows azimuthal disturbance growth as a function of Reynolds
number (IP02). The vertical solid lines and numbers show the Reynolds number at which
specific characteristics of the transition process are observed in this study, as summarized
to the right of the figure.

the stationary vortices and their subsequent secondary instability starting at R ≈ 565
and turbulent breakdown above R = 570–580, leading to fully developed turbulence
above R= 650.

The results presented support, for example, Lingwood (1995), Pier (2003) and Viaud
et al. (2011), and do not discount the possibility of a global linear instability as
proposed by Healey (2010) caused by the finite disk radius, leading directly to a
nonlinear global mode. In summary, figure 14 shows the key Reynolds-number values
for steps in the laminar–turbulent transition of the rotating-disk flow for ‘clean’ disk
conditions, as determined from the experiments described herein.
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Appendix
In § 3.3, we apply a moving average to the spectra to smooth out the spikes

observed at integer values of ω∗/Ω∗ at Reynolds numbers where the stationary
disturbances are unstable. These spikes have also been observed in other experimental
studies of rotating-disk flow (e.g. Imayama, Alfredsson & Lingwood 2011; Siddiqui
et al. 2013), where high-resolution spectra have been produced. In this study, it is
suggested that the integer spikes in the spectra indicate the stationary disturbances
whereas the relatively smooth peaked regions of the primary and its harmonics
are due to travelling disturbances. Figure 15(a) shows spectra of single-realization
and ensemble-averaged time series measured at z = 4.0 and R = 530, where the
single-realization data correspond to those shown in figure 6(e). Figure 15(b) is a
magnification of the spectra, showing that the spikes are located at each integer value
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FIGURE 15. (a) Spectra of single-realization (solid line) and ensemble-averaged (dashed
line) time series at z= 4.0 and R= 530. (b) A close-up view of the spectra in (a) over a
smaller frequency range.

of ω∗/Ω∗ (small misalignment of the spikes with exact integer numbers is due to
the resolution of Fourier transformation). It is clear that spikes in the spectrum of
the ensemble-averaged time series (which only shows the frequency content of the
stationary disturbances) correspond to spikes in the single-realization spectrum; other
features of the single-realization spectrum, such as the smooth peak centred at about
ω∗/Ω∗ = 40, correspond to travelling disturbances.

The inhomogeneous distribution of surface roughness on the disk excites disturbances
that are stationary in the rotating frame, creating a superposition of unstable vortices
with integer azimuthal wavenumbers (the azimuthal wavenumbers taking integer
values because of the azimuthal periodicity of the configuration). The superposition
of integer-wavenumber stationary disturbances creates an amplitude-modulated and
wavenumber-modulated signal, where the wavenumber modulation is fixed by the
azimuthal periodicity. The hot-wire probe in the lab frame interprets this wavenumber
modulation as a frequency-modulated time series, i.e. the frequencies it detects are a
conflation of the azimuthal wavenumbers and perturbation frequencies in the rotating
frame. Because the stationary disturbances have zero frequency in the rotating frame,
by definition, integer frequency values in the stationary component of the measured
frequency-modulated time series correspond to integer azimuthal wavenumber values.
Here, the Fourier transform of a frequency-modulated time series is given to
demonstrate the explanation above. A sinusoidal time series vsin is defined as

vsin = sin(w1t), (A 1)

to compare with frequency-modulated signal, where w1 is the frequency set to have
30 oscillations for one period, T , to simulate 30 stationary vortices. Furthermore, the
frequency-modulated time series vFMS is defined as

vFMS = sin(w1t+ cos(w2t)), (A 2)

where w2 is a modulation frequency set to have frequency modulation in a period of T
corresponding to one disk revolution time. A frequency-modulated signal such as this
results from a superposition of sinusoids periodic in T . Figure 16 shows vsin and vFMS.
Figure 17 gives the power spectra of these signals showing clearly spikes (at integer
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FIGURE 16. Sinusoidal (dashed line) and frequency-modulated (solid line) signal in one
period T .
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FIGURE 17. Power spectra of the sinusoidal and frequency-modulated signals vsin (dashed
line) and vFMS (solid line). The chain line is the high-resolution power spectrum of the
frequency-modulated signal. F is the normalized frequency.

values of normalized frequencies) in the frequency-modulated spectrum, as observed
in the spectra from the experimental data for stationary disturbances (see figure 15).
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