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Abstract

We introduce a novel logic-based system for reasoning over data streams, which relies on a frame-
work enabling a tight, fine-tuned interaction between Apache Flink and the I2-DLV system.
The architecture allows to take advantage from both the powerful distributed stream processing
capabilities of Flink and the incremental reasoning capabilities of I2-DLV , based on overground-
ing techniques. Besides the system architecture, we illustrate the supported input language and
its modeling capabilities, and discuss the results of an experimental activity aimed at assessing
the viability of the approach.

KEYWORDS: stream reasoning, stream processing, overgrounding, knowledge representation
and reasoning, answer set programming

1 Introduction

Stream Reasoning (SR) (Dell’Aglio et al . 2017) consists in the application of inference

techniques to data streams. Recently, SR has been studied in several fields, and be-

came more and more relevant in diverse application scenarios, such as IoT, Smart Cities,

Emergency Management. Hence, different approaches have been proposed (Barbieri et al .

2010; Phuoc et al . 2011; Hoeksema and Kotoulas 2011; Pham et al . 2019) in contexts

such as Complex Event Processing (CEP), Semantic Web and Knowledge Representation

and Reasoning (KRR). Among declarative KRR paradigms, Answer Set Programming

(ASP) (Brewka et al . 2011) is a well-established proposal that gained attention also

outside of the academia thanks to the availability of robust and efficient implementa-

tions (Gebser et al . 2018). ASP is acknowledged as a particularly attractive basis for SR.

Indeed, some important steps forward in this direction have been taken; we mention here

the Logic for Analytic Reasoning over Streams (LARS) framework (Beck et al . 2018)

∗ This work has been partially supported by the project “MAP4ID - Multipurpose Analytics Platform
4 Industrial Data”, N. F/190138/01-03/X44 and by the Italian MIUR Ministry and the Presidency of
the Council of Ministers under the project “Declarative Reasoning over Streams” under the “PRIN”
2017 call (CUP H24I17000080001, project 2017M9C25L 001).
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and its implementations (Bazoobandi et al . 2017; Beck et al . 2018; Eiter et al . 2019; Ren

et al . 2018) StreamRule (Mileo et al . 2013), C-ASP (Pham et al . 2019) and others (Do

et al . 2011; Gebser et al . 2011). However, ASP-based stream reasoners appear not mature

enough with respect to the desirable requirements for SR (Dell’Aglio et al . 2017). Hence,

there is still room for improvements, especially when dealing with real applications: for

instance, some systems are weakly usable in practice (e.g. enforce strict assumptions in

input programs) and others suffer from efficiency/scalability issues.

The aim of our work is to obtain a novel, reliable ASP-based stream reasoner; be-

sides efficiently scaling over real-world application domains, it should support a language

which inherits the highly declarative nature and ease of use from ASP, while being also

easily extendable with new constructs that are relevant for practical SR scenarios. In

this paper we present the prototype of I-DLV-sr , a system that relies on the proper

integration of two well-established solutions in the field of Stream Processing and ASP,

respectively. I-DLV-sr is based on a continuous cooperation between two components: an

custom designed application that leverages on Apache Flink (Hueske and Kalavri 2019),

a powerful stream processor for efficiently managing data streams, and I2-DLV (Ianni

et al . 2020), an ASP grounder and a full-fledged deductive database system that en-

ables incremental ASP evaluation via overgrounding techniques (Calimeri et al . 2019).

Currently, the supported language basically consists in normal stratified ASP enriched

with a set of constructs allowing to reason over streams. We tested the system with the

aim of assessing its reliability, performance, and scalability, and also of exploring ease of

modeling and reasoning capabilities. The results of a number of experiments, conducted

on both real-world and synthetic domains, are encouraging, proving the viability of the

approach and the robustness of the implementation.

The remainder of the paper is structured as follows. In Section 2 we describe the two

main components of I-DLV-sr ; Section 3 defines syntax and semantics of the currently

supported language, and illustrates how it can be used for modeling SR problems via

proper examples; in Section 4 the architecture of I-DLV-sr is presented and discussed

in detail; Section 5 illustrates the experimental settings and the results; related works

are discussed in Section 6, and, eventually, conclusions and future works are reported in

Section 7.

2 I-DLV-sr components

I-DLV-sr mainly consists of two components: a custom Flink -based Java application and

I2-DLV . Flink is a distributed Stream Processing system for both batch and real-time

stream data processing with high throughput and low latency. Applications relying on

Flink are built by designing, using the exposed APIs, ad hoc dataflow graphs that make

use of a number of different operators; besides pre-defined ones, custom operators can

also be implemented. Each operator transforms one or more input data streams into a

new data stream, that, in turn, can be the part of the input to subsequent operators. A

dataflow graph is basically a directed acyclic graph, where nodes represent the operators,

incoming arcs represent the input data streams, and outcoming arcs represent the inter-

mediate data streams resulting from operator applications. Each dataflow graph must

have one or more sources, from which the data streams originate, and at least one sink,

that can either emit the final output or persistently store it. Computation is automati-
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cally distributed and parallelized on the basis of dependencies among operators (Carbone

et al . 2015).

Incremental I-DLV system, namely I2-DLV (Ianni et al . 2020), is the recently pre-

sented incremental version of the deductive database system and ASP grounder I-
DLV (Calimeri et al . 2017). It incorporates overgrounding techniques (Calimeri et al .

2019) to accommodate incremental executions over different inputs. More in detail, I2-

DLV works in a server-like mode: given a fixed input program, it remains “listening” for

input facts. Every time new such facts arrive, it computes a ground program by prop-

erly updating the one resulting from previous “shots”. In other words, it automatically

maintains a ground program, semantically equivalent to the input one and monotonically

growing over time. It is worth noting that, just like I-DLV , in case of normal and strat-

ified w.r.t. negation ASP programs, I2-DLV computes the full semantics (i.e. returns

the unique answer set). Typically, an overgrounded program, after a number of shots,

converges to a propositional theory general enough to be reused together with possible

future inputs, with little or no further update required. This makes overgrounding very

attractive in SR contexts, as grounding activities in later iterations tend to be virtually

eliminated.

3 I-DLV-sr language

In this section, we introduce the syntax and the semantics of I-DLV-sr programs and

then we show the usage of I-DLV-sr language for Knowledge Representation via some

example scenarios.

Syntax. We assume to have finite sets V , C and P consisting of variables, constants

and predicate names, respectively; we constrain V and C to be disjoint. A term is either

a variable in V or a constant in C. A predicate atom has the form p(t1, . . . , tn), where

p ∈ P is a predicate name, t1, . . . , tn are terms and n ≥ 0 is the arity of the predicate

atom; a predicate atom p() of arity 0 can be also denoted by p. A predicate atom is

ground if none of its terms is a variable. We denote as G the set of all ground predicate

atoms constructible from predicate names in P and constants in C. Given a predicate

atom a, a constant c ∈ C ∩N
+, a term t ∈ C ∪ V (counting term), and a non-empty set

of numbers D = {d1, . . . , dm} ⊂ N, we define three types of streaming atoms:

a at least c in {d1, . . . , dm} a always in {d1, . . . , dm} a count t in {d1, . . . , dm}
A streaming atom α (resp., not α) is said to be a positive streaming literal (resp.,

negative streaming literal), where not denotes negation as failure. A streaming literal

is said to be ground if none of its terms is a variable. For a set L of streaming literals,

preds(L) denotes the set of predicates appearing in L. The following shortcuts are

admitted:

– a in {d1, . . . , dm} in place of a at least 1 in {d1, . . . , dm};
– a in place of a at least 1 in {0} (this is called “degenerate” form of a streaming

literal);

– a at most c in {d1, . . . , dm} in place of not a at least c′ in {d1, . . . , dm} where

c′ = c+ 1.

Given a streaming atom of any type, if D = {n ∈ N | 0 ≤ n ≤ w ∧w > 0} we indicate it

simply as [w]; for example, we write a always in [3] instead of a always in {0, 1, 2, 3}.
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Table 1: Entailment of ground streaming literals.

α Σ |= α Σ |= not α

a at least c in {d1, . . . , dm} |{A ∈ O(Σ, D) : a ∈ A}| ≥ c |{A ∈ O(Σ, D) : a ∈ A}| < c
a always in {d1, . . . , dm} ∀A ∈ O(Σ, D), a ∈ A ∃A ∈ O(Σ, D) : a �∈ A
a count c in {d1, . . . , dm} |{A ∈ O(Σ, D) : a ∈ A}| = c |{A ∈ O(Σ, D) : a ∈ A}| �= c

A rule can be of one out of the two forms: (1) a :- l1, . . . , lb. or

(2) #temp a :- l1, . . . , lb., where a is a predicate atom, b ≥ 0 and l1, . . . , lb repre-

sent a conjunction of streaming literals. For a rule r, we say that the head of r is the

set H(r) = {a}, whereas the set B(r) = {l1, . . . , lb} is referred to as the body of r. A

program P is a finite set of rules; P is flat if all rules contain only streaming literals in

the degenerate form; P is restricted if only rules of form (1) occur in it. We say that a

rule r is safe if all variables appearing in H(r) or in a negative streaming literal of B(r)

also appear in a positive streaming literal of B(r). A program is safe if all its rules are

safe. We require programs to be safe.

A streaming literal is said to be harmless if it has form a at least c in {d1, . . . , dm}
or a always in {d1, . . . ,dm}; otherwise, it is said to be non-harmless. A program P is

stratified if there is a partition of disjoint sets of rules P = Π1 ∪ · · · ∪ Πk (called strata)

such that for i ∈ {1, . . . , k} both these conditions hold: (i) for each harmless literal in the

body of a rule in Πi with predicate p, {r ∈ P |H(r) = {p(t1, . . . , tn)}} ⊆ ⋃i
j=1 Πj ; (ii)

for each non-harmless literal in the body of a rule in Πi with predicate p, {r ∈ P |H(r) =

{p(t1, . . . , tn)}} ⊆ ⋃i−1
j=1 Πj . We call Π1, . . . ,Πk a stratification for P and P is stratified

by Π1, . . . ,Πk. An I-DLV-sr program is always stratified.

Semantics. We provide next an operational semantics of I-DLV-sr programs. We start

by introducing the notion of a stream. A stream Σ is a sequence of sets of ground predicate

atoms 〈S0, . . . , Sn〉 such that for 0 ≤ i ≤ n, Si ⊆ G. Each natural number i is called time

point. A ground predicate atom a ∈ Si is true at the i-th time point. Given two streams

Σ = 〈S0, . . . , Sn〉 and Σ′ = 〈S′
0, . . . , S

′
n〉, Σ = Σ′ iff Si = S′

i for each i ∈ {0, . . . , n}. For a
stream Σ = 〈S0, . . . , Sn〉, a backward observation identifies ground predicate atoms that

are true at some time points preceding the n-th time point. More formally, given a stream

Σ = 〈S0, . . . , Sn〉 and a set of numbers D⊂ N, we define the backward observation of Σ

w.r.t. D as the set {Si | i = n − d with d ∈ D ∧ i ≥ 0}, and we denote it as O(Σ, D).

Given w ∈ N, a backward observation of Σ w.r.t. [w] is called window.

A backward observation allows to define the truth of a ground streaming literal at a

given time point. Given a stream Σ = 〈S0, . . . , Sn〉,D = {d1, . . . , dm} ⊂ N, c ∈ C\{0} and
the backward observation O(Σ, D), Table 1 reports when Σ entails a ground streaming

atom α (denoted Σ |= α) or its negation (Σ |= not α). If Σ |= α ( Σ |= not α) we say

that α is true (false) at time point n.

Example 1

In the stream Σ = 〈{a(2), b(5)}, {a(3), c(7)}, {b(5)}, {a(3)}〉, atom b(5) is true at time

points 0 and 2. For D = {0, 1, 3}, the backward observation of Σ w.r.t. D is O(Σ, D) =

{{a(3)}, {b(5)}, {a(2), b(5)}}. We have that Σ |= b(5) at least 2 in {0, 1, 3}. Indeed, the
cardinality of the set {A ∈ O(Σ, D) : b(5) ∈ A} is 2.
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We define now the notions of substitution and applicability of a rule to a stream. A

substitution σ is a mapping from the set V of variables to the set of constants C. Given

a predicate atom a and a substitution σ, σ(a) is the ground predicate atom obtained by

replacing each occurrence of a variable v in a by σ(v). Given a streaming literal l, σ(l)

is the ground streaming literal obtained by applying σ to the predicate atom appearing

in l and to the counting term t possibly appearing in l if t ∈ V and σ(t) = 0. Given a

stream Σ = 〈S0, . . . , Sn〉, a rule r is applicable on Σ if there exists a substitution σ such

that Σ |= σ (b) for all b∈ B(r). In such a case, r is applicable on Σ via σ. Roughly,

applicability of rules identifies new ground predicate atoms that are true at time point

n; that is, a rule r fires implying the truth of the ground predicate atom σ(a), with

a ∈ H(r). Given a stream Σ = 〈S0, . . . , Sn〉 and an I-DLV-sr program P , a trigger for

P on Σ is a pair 〈r, σ〉 where σ is a substitution and r ∈ P is applicable on Σ via σ.

An application of 〈r, σ〉 to Σ returns the stream Σ′ = 〈S0, · · · , Sn−1, Sn ∪ σ(a)〉, with
a ∈ H(r). A trigger application is denoted as Σ〈r, σ〉Σ′.

Example 2

Consider again Σ as in Example 1 and let P1 be as follows:

r1: c(X) :- b(X) at least 2 in { 0,1,3 }.

Let us consider a substitution σ such thatX �→ 5. The rule r1 is applicable on Σ via σ and

the application of 〈r1, σ〉 to Σ returns Σ′ = 〈{a(2), b(5)}, {a(3), c(7)}, {b(5)}, {a(3), c(5)}〉.
We therefore establish the order of application of the rules of an I-DLV-sr program P

according to a stratification for P , and finally introduce the concept of streaming model

of an I-DLV-sr program on a stream.

Given a stream Σ and an I-DLV-sr program P stratified by Π1 . . .Πk, a stratum

application of Πs for s ∈ {1, . . . , k} on Σ is a finite sequence of streams Σ0, . . . ,Σh with

Σ0 = Σ and h ≥ 0 such that:

– for each 0 ≤ i < h, there is a trigger 〈ri, σi〉 for Πs on Σi such that Σi〈ri, σi〉Σi+1;

– for each 0 ≤ i < j < h, if Σi〈ri, σi〉Σi+1, Σj〈rj , σj〉Σj+1and ri = rj , then σi = σj ;

– there is no trigger 〈r, σ〉 for Πs on Σh such that 〈r, σ〉 /∈ {〈ri, σi〉}0≤i≤h.

Intuitively, starting from a stream Σ, we apply distinct triggers, considering only dif-

ferent substitutions for the same rule, as long as there is a new trigger. In general, for

each stratum Πs more than one stratum application exists. However, for any two stra-

tum applications of Πs on Σ, their last streams coincide. This intuition is proved by the

following proposition whose proof is given in the supplementary material corresponding

to this paper at the TPLP archives.

Proposition 1

Given a stream Σ, an I-DLV-sr program P stratified by Π1 . . .Πk, a stratum Πs with

s ∈ {1, . . . , k} and two stratum applications of Πs on Σ, Σ0, . . . ,Σh and Σ′
0, . . . ,Σ

′
t, we

have that Σh = Σ′
t.

We call the last stream in a stratum application outcome of Πs on Σ, denoted as

outcome(Πs,Σ). We now define the outcome over strata of P on Σ, obtained, start-

ing from the outcome of the first stratum Π1 of P and considering, one after the other,

subsequent strata according to the stratification.
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Given an I-DLV-sr program P stratified by Π1 . . .Πk and a stream Σ = 〈S0, . . . , Sn〉,
we compute the sequence of streams defined as follows: ΣΠ1

= outcome(Π1,Σ) and

ΣΠi
= outcome(Πi,ΣΠi−1

) for 1 < i ≤ k. We define outcome over strata of an I-DLV-sr

program P on the stream Σ, denoted R(P,Σ), the n-th element in the stream ΣΠk
. Note

that R(P,Σ) is independent from the chosen stratification.

Streaming model of I-DLV-sr restricted programs. For simplicity, we first define the no-

tion of streaming model for programs where only rules of the form (1) appear.

Let Σ = 〈S0, . . . , Sn〉 be a stream, P an I-DLV-sr restricted program stratified by

Π1 . . .Πk. Let Σ′ = 〈S′
0, . . . , S

′
n−1, Sn〉 be such that S′

0 = R(P, 〈S0〉) and each S′
i for

i ∈ {1, . . . , n− 1} is defined as R(P, 〈S′
0, . . . , S

′
i−1, Si〉). We define R(P,Σ′) as streaming

model of P on Σ.

Intuitively, the streaming model of P for a stream Σ = 〈S0, . . . , Sn〉 is the set of the

ground predicate atoms derived as true at the n-th time point. These latter come from

the evaluation of P over a stream that iteratively accumulates the evaluations at previous

time points.

Example 3

Let Σ = 〈{b(5)}, {c(7)}〉 and P2 be the following program:

r1: c(X) :- b(X). r2: d(X) :- c(X) in [1].

Note that P2 is stratified by the single stratum {r1, r2}; thus, the outcome over strata

of P2 on a stream Σ, R(P2,Σ), is the n-th element in the stream outcome(P2,Σ). We

have S′
0 = R(P2, 〈S0〉) = R(P2, 〈{b(5)}〉) = {b(5), c(5), d(5)} and Σ′ = 〈S′

0, S1〉 =

〈{b(5), c(5), d(5)}, {c(7)}〉. Since R(P2,Σ
′) = R(P2, 〈{b(5), c(5), d(5)}, {c(7)}〉) =

{c(7), d(7), d(5)}, the streaming model of P2 for Σ is the set {c(7), d(7), d(5)}.
Streaming model of I-DLV-sr programs. We now introduce the streaming model also for

I-DLV-sr non-restricted programs. To this aim, we need the notion of persistent outcome

and a slightly different definition of streaming model that takes into account the eventual

presence of #temp in rule heads. Such marking stands for temporary: indeed the truth of

heads of rules in the form (2) is in a sense, limited to the current time point. We are given

a stream Σ = 〈S0, . . . , Sn〉 and an I-DLV-sr program P stratified by Π1 . . .Πk. Let P(1) =

{r ∈ P |r is of the form (1)}, we define persistent outcome over strata of P on Σ the set of

ground predicate atoms {a ∈ R(P,Σ) | a ∈ Sn∨ (∃r ∈ P(1) s.t. r is applicable to ΣΠk
via

σ ∧ σ(h) = a∧ h ∈ H(r))} and we denote it with P(P,Σ). Basically, for an input stream

Σ = 〈S0, . . . , Sn〉, P(P,Σ) identifies the set of ground predicate atoms inR(P,Σ) deriving

from heads of rules of the form (1) or in Sn.

Given a stream Σ = 〈S0, . . . , Sn〉 and an I-DLV-sr program P stratified by Π1 . . .Πk,

let Σ′ be the stream Σ′ = 〈S′
0, . . . , S

′
n−1, Sn〉 where S′

0 = P(P, 〈S0〉) and each S′
i for

i ∈ {1, . . . , n− 1} is defined as P(P, 〈S′
0, . . . , S

′
i−1, Si〉). We define R(P,Σ′) as streaming

model of P on Σ.

The definition of the streaming model of an I-DLV-sr non-restricted program differs

from the one given for restricted programs as it considers the persistent outcome over

strata for time points up to n− 1 and the outcome over strata for n including heads of

rules in the form (2).
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Example 4

Let Σ be the stream of the Example 3 and P3 be the following program:

r1: #temp c(X) :- b(X). r2: d(X) :- c(X) in [1].

Since the first rule of P3 is of the form (2), we have that S′
0 = P(P3, 〈S0〉) =

P(P3, 〈{b(5)}〉) = {b(5), d(5)} and Σ′ = 〈S′
0, S1〉= 〈{b(5), d(5)}, {c(7)}〉. The streaming

model of P3 on Σ is the set R(P3,Σ
′) = R(P3, 〈{b(5), d(5)}, {c(7)}〉) = {c(7), d(7)}.

Modeling SR Problems. We next show how practical problems that require reasoning

over streams can be modeled via the I-DLV-sr language. Note that, besides stream-

ing literals, I-DLV-sr also supports built-in atoms and aggregate literals as defined in

the ASP-Core-2 standard (Calimeri et al . 2020); currently, the only restriction is that

aggregate elements cannot feature (non-degenerate) streaming literals. For the sake of

readability, we omitted their description in the language syntax; the following simple

program briefly shows their usage: in a scenario where the total number of cars passed

now or in the previous 20 time points must be computed, rule r1 counts the number of

passes for each car, while r2 uses an ASP aggregate to compute the total.

r1 : carPassing(C,N) :- car(C) count N in [20].
r2 : tot(T) :- #sum{N,C: carPassing(C,N)}=T.

Photo-voltaic system. Suppose that we need to build an Intelligent Monitoring System

(IMS) for a photo-voltaic system (PVS) to promptly detect malfunctions. Without going

into technical details, for the sake of simplicity, let us suppose that the PVS is composed

by a grid of interconnected panels via solar cables and each panel is provided with a

sensor that measures the amount of energy produced and continuously sends data to the

IMS. Each panel continuously produces energy to be transferred to a Central Energy

Accumulator (CEA), directly or via a path between neighbor panels across the grid. Let

us assume that a time point corresponds to a second. A panel is working if it is known

to have produced an amount of energy greater than a given threshold within the last

4 seconds, and, in addition, if it is reachable by the CEA (i.e. there exists a path of

working panels linking it to the CEA). If some unreachable working panels have been

detected more than 2 times in the last 3 seconds, an alert must be raised for an identified

malfunction. Furthermore, the IMS must request a maintenance intervention if the failure

is continuously observed for 5 seconds. This scenario can be modeled via an I-DLV-sr

program as reported next.

r1 : workingPanel(P) :- energyDelivered(P,W) at least 1 in [4],
energyThreshold(Et), W>=Et.

r2 : reachable(cea,P2) :- link(cea,P2), workingPanel(P2).
r3 : reachable(P1,P3) :- reachable(P1,P2), link(P2,P3), workingPanel(P3).
r4 : unlinked :- workingPanel(P), not reachable(cea,P).
r5 : regularFunctioning :- unlinked at most 2 in [3].
r6 : alert :- not regularFunctioning.
r7 : callMaintenance :- alert always in [5].

The predicates link and energyThreshold represent the PVS configuration and the

threshold defining a working panel for the given reasoning interval; these data do not

change during such interval. The predicate energyDelivered represents the amount of

power produced by each panel; at each time point within the reasoning interval, the

current values are sent to the IMS, thus producing a stream. Rule r1 defines a panel
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as working if it transmitted an amount of energy greater than the threshold at least

once in the interval from the current time point to the previous 4 consecutive ones, that

is, the last 4 seconds. Rules r2 and r3 recursively define the set of reachable working

panels starting from the CEA. Rule r4 detects if there are unlinked working panels and

r5 defines proper functioning by checking that the atom unlinked appeared no more than

two times in the last 3 seconds. Eventually, r6 raises up an alert if there is not a regular

functioning and r7 asks to call the maintenance if an alert has been raised in all the last

5 seconds.

Underground Traffic Monitoring. Let us imagine we want to build a monitoring system

for the underground trains in the city of Milan. In this example, we suppose that a time

point corresponds to a minute; given a station, passengers expect to see a train stopping

every 3–6 minutes, during the rush hours.The following I-DLV-sr program models a

simple control system that warns passengers when this regularity is broken to several

extents (i.e. mild/grave irregularity). This would allow, for example, to properly mark

each station on a map of a mobile/web app.

r1 : irregular :- train pass, train pass at least 1 in {1,2}.
r2 : irregular :- not train pass in [6].
r3 : #temp num anomalies(X) :- irregular count X in [30].
r4 : mild alert :- num anomalies(X), X>2, X<=5.
r5 : severe alert :- num anomalies(X), X>5.

Rules r1 and r2 are used to detect irregularities: trains arriving too early or too late.

Rule r3 counts the number of irregular situations in the last half an hour, producing an in-

stance of the num anomalies; r4 and r5 raise the proper warning. Note that num anomalies

is intended to be an auxiliary predicate whose instance is used for determining irregu-

larities only watching at the current time point; thus, it is marked as #temp, so that

its instance contributes to the current streaming model but it is no longer considered in

next time points.

4 I-DLV-sr architecture

The system takes as input an I-DLV-sr program P and a stream Σ = 〈S0, . . . , Sn〉 and
iteratively builds a stream O = 〈O0, . . . , On〉 such that each Ot contains the result of the

evaluation at the time point t. Figure 1 depicts the high-level system architecture that

consists of three main modules: Execution Manager , Stream Manager and Subprogram

Manager , all making an ad hoc use of Flink APIs. Details about each module are given

below.

4.1 Execution Manager

The Execution Manager is in charge of setting up the evaluation of an I-DLV-sr program

P . First, it computes from P a flat program P ′ and determines a mapping τ from

streaming atoms to predicate atoms. Moreover, it divides P into subprograms taking

into account dependencies among all rules in P caused by streaming atoms so that each

subprogram can be separately processed, limiting the interplay between Flink and I2-

DLV . On the basis of such program splitting, it constructs the Flink dataflow graph

https://doi.org/10.1017/S147106842100034X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100034X


618 F. Calimeri et al.

St
re

am
 M

an
ag

er

Program Input
Stream

Apache Flink
dataflow graph

Streaming literals
 mapping

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

MnM1

queueing

Rewritten Program

Execution
Manager

Apache Flink

Use

Answer
Stream

General Architecture.

(b)(a)

St
re

am
 M

an
ag

er

Input
Stream

 Apache Flink
dataflow graph

Streaming literals 
mapping

Use

Use

I-DLV2

Su
bp

ro
gr

am
M

an
ag

er

Execution
Manager

Use

Apache Flink

M1 M2

Answer
Stream

queueing

Architecture specialized for an example program.

Figure 1: System architecture.

(cf. Section 2). Finally, it provides: the Stream Manager with the dataflow graph, the

Subprogram Manager with τ , and I2-DLV with P ′. The Execution Manager tasks are

detailed below.

Program Rewriting. The Execution Manager produces a flat program P ′ from P .

Each streaming atom p(t1, . . . , tn) � in {d1, . . . , dm}, with � ∈ { at least c, at most c,

always , count c}, which is not in the degenerate form and so that c is a constant, is

replaced by p′(t1, . . . , tn); each streaming atom p(t1, . . . , tn) count X in {d1, . . . , dm}
where X is a variable, is replaced by p′(t1, . . . , tn, X); in both cases, p′ is a fresh pred-

icate name. Such replacements are stored in a mapping τ . Ground instances of fresh

predicates will be generated by the Subprogram Manager on the basis of the evaluation

of corresponding streaming atoms performed by the Stream Manager .

Example 5

Below are reported a program P4 (left) and the flat program P ′
4 obtained by rewriting it

(right).

r1 : a(X) :- b(X) always in [2].
r2 : b(Y) :- a(X) in [1], Y=X+1, c(Y).
r3 : d(X) :- b(X) at least 2 in [4].
r4 : e(X,Y) :- a(X), b(Y).

r′1 : a(X) :- b aux1(X).
r′2 : b(Y) :- a aux1(X), Y=X+1, c(Y).
r′3 : d(X) :- b aux2(X).
r4 : e(X,Y) :- a(X), b(Y).

The mapping of the replacements is τ= {b(X) always in [2] �→ b aux1(X), a(X) in [1]
�→ a aux1(X), b(X) at least 2 in [4] �→ b aux2(X) }.

Program Splitting and Processing Order. Given an I-DLV-sr program P , we build a

directed labeled graph called Stream Dependency Graph and denoted GSD
P , whose nodes

are the predicates in rule heads of P and for each pair of nodes p and q, there is an arc (p,

q) if there exists a rule r ∈ P such that preds(H(r)) = {q} and p ∈ preds(B(r)). In case

p occurs in a streaming literal that is not in the degenerate form, then the arc is labeled

with “ < ”; no label is added otherwise. On the basis of GSD
P , we define an additional

directed labeled graph, called Stream Component Graph and denoted GSC
P : its nodes are

the strongly connected components of GSD
P (i.e. sets of predicates), and there is an arc

from component A to component B if there exists an arc (p, q) in GSD
P such that p ∈ A

and q ∈ B. Each arc (A, B) in GSC
P is labeled with “ < ” if there exists at least one arc

(p, q) labeled with “ < ” in GSD
P such that p ∈ A and q ∈ B; no label is added otherwise.
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Figure 2: Stream dependency (left) and component graphs (right) of Example 5.

Relying on GSC
P , rules of P that can be processed together are grouped, and a process-

ing ordering among groups of rules is established. For any pair of nodes A and B of GSC
P ,

we say that A precedes B (denoted A ≺ B) if there exists a path in GSC
P from A to B

containing at least one arc labeled with “ < ”; we say A is alongside B (denoted A ≈ B)

otherwise. We identify an ordering C1, . . . , Cn of the nodes of GSC
P such that, for each

i < j, it does not hold that Cj ≺ Ci. According to such an ordering C1, . . . , Cn, we col-

lect the predicates of some consecutive nodes in order to form a macro-node as follows: for

each pair of nodes Ci and Ck, with i ≤ k ≤ n we construct the macro-node M =
⋃

j Cj

with i ≤ j ≤ k such that either i = k (i.e. the macro-node actually consists of a single

node), or for each j = k, Cj ≈ Cj+1 (i.e. the macro-node consists of nodes that are all

alongside each other). We can therefore define an ordered sequence of all the maximal

macro-nodes such that for any pair of macro-nodes M1 =
⋃

j1
Cj1 with i1 ≤ j1 ≤ k1 ≤ n

and M2 =
⋃

j2
Cj2 with i2 ≤ j2 ≤ k2, if M1 precedes M2 in the sequence, then k1 < i2.

This ordered sequence induces both a splitting of P into subprograms and a processing

order for them: for each macro-node M , the subprogram PM is the set of all rules r of

P such that such that preds(H(r)) ⊆ M , that is, the predicate occurring in H(r) be-

longs to M ; the processing order for the subprograms coincides with the ordering in the

sequence of the corresponding macro-nodes. Note that for an I-DLV-sr program several

orderings of the nodes of GSC
P might exist, in general and therefore, different processing

orders might be obtained. In the following, we will refer to one of these processing orders

as OrdP .

Eventually, a rule r within a subprogram PM is streaming-recursive if there is a cycle

in the Stream Dependency Graph GSD
P among two nodes p and q where p ∈ preds(B(r))

and q ∈ preds(H(r)) such that there is at least an arc labeled with “ < ”.

Example 6

Let us consider the program P4 of Example 5. Figure 2 shows the Stream Depen-

dency and Component Graphs of P4. We can observe that GSD
P4

has three strongly

connected components: {a, b}, {d} and {e}. According to GSC
P4

, we have: {a, b} ≺ {d},
{a, b} ≈ {e},{e} ≈ {a, b}, {d} ≈ {e} and {e} ≈ {d}. As a consequence, there are

four orderings: o1 = {{e}, {a, b}, {d}}; o2 = {{a, b}, {e}, {d}}; o3 = {{a, b}, {d}, {e}};
o4 = {{a, b}, {e}, {d}}. Let us focus on o1. The maximal macro-nodes that we can

build are {a, b, e} and {d} and the resulting program splitting is: P4{a,b,e} = {r1, r2, r4},
P4{d} = {r3}. Moreover, r1 and r2 in P4{a,b,e} are streaming-recursive. Note that, o2
would induce the same maximal macro-nodes and in turn, the same splitting of o1 and

in both cases, {r1, r2, r4} are processed before {r3}.

Flink dataflow graph creation. As described above, given an I-DLV-sr program, the

Execution Manager splits it into subprograms and computes a processing order OrdP .

Then, according to OrdP , it builds an Flink dataflow graph by adding one or more nodes

for each subprogram and for each of its streaming atoms. As shown in Figure 1, there

are two kinds of nodes represented as empty or ��-filled dashed circles. Empty circles
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correspond to operators needed for evaluating a streaming atom; by means of Flink

APIs, we defined some operators in order to implement the semantics of in, always,

count, at least, and at most. ��-filled circles correspond to custom operators intended

to join results of the evaluation of all streaming atoms in a subprogram and to set up

the evaluation of such subprogram. We implemented within such operators, the low-level

transformations needed for filtering and joining outcomes of linked circles. Empty circles

are connected with directed arcs to the ��-filled one associated to the subprogram in which

the corresponding streaming atoms occur. ��-filled circles are linked to the empty ones

associated to the streaming atoms appearing in the subsequent subprogram in OrdP .

4.2 Stream Manager and Subprogram Manager

As depicted in Figure 1, the Stream Manager executes the scheduled operators in the

Flink dataflow graph and interacts with the Subprogram Manager that, in turn, mediates

communications with I2-DLV responsible for the evaluation of the flat program P ′, which
in fact, is always a normal and stratified w.r.t. negation ASP program. Let us assume to be

at the time point n. The Stream Manager handles the input stream Σ = 〈S0, . . . , Sn〉 and
the stream O = 〈O0, . . . , On〉 where O0, . . . , On−1 collect the results obtained from the

evaluations in previous time points and On, initially empty, is filled in while subprograms

are evaluated.

More in detail, let PM be the first subprogram in OrdP . The Stream Manager executes

the operators in the dataflow graph corresponding to the streaming atoms in PM over

Σ and O. Then, it passes to the Subprogram Manager Sn, On and the set of holding

streaming atoms H, that is, those evaluated as true, at the time point n. The Subprogram

Manager : (i) according to the mapping τ , generates from H the set H ′ of holding ground

instances of the fresh predicates introduced by the Execution Manager ; (ii) provides

Sn ∪ On ∪H ′ as input to I2-DLV that incrementally evaluates P ′ over such input and

computes the corresponding unique answer set A; (iii) receives A (i.e. a set of ground

(predicate) atoms) and adds A to On. The Stream Manager takes control back, evaluates

the next nodes in the dataflow graph and interacting with the Subprogram Manager ,

performs the evaluation of the next subprogram in OrdP . The process continues until

all subprograms are evaluated according to OrdP ; the output at n is Sn∪On. Note that

the smaller it is the number of subprograms, the smaller it is the number of iterations

between I2-DLV and Flink : indeed, maximal macro-nodes are limiting such interplay.

In case a subprogram contains some streaming-recursive rules R, the Stream Manager

has to repeatedly evaluate the streaming atoms in R, that is, every time On is enriched by

the Subprogram Manager . When no more new ground (predicate) atoms can be derived

for the predicates in the heads of R, the above described process goes on with the next

subprogram in OrdP .

Note that, the set Sn ∪On actually coincides with the streaming model of P on Σ. In-

deed, the streaming model is independent from the stratification of choice (see Section 3);

thus, if we consider the stratification where each stratum is the smallest possible, then

each subprogram consists of rules that might belong to one or more consecutive strata;

when evaluating a subprogram PM , I2-DLV by design takes into account dependencies

among the strata and processes rules in PM accordingly. Thus, the output computed for

PM coincides with the output that we would obtain when evaluating, one after the other,

the strata contained in PM as well as in all subprograms preceding PM , according to the
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definition of streaming model. In other words, the output computed for PM coincides

with the streaming model of the I-DLV-sr program constituted by all subprograms up

to PM on Σ. It is worth noting that the Stream Manager implements a queuing mecha-

nism for the subtasks that have to be performed for evaluating P on Σ exploiting Flink

APIs. Thanks to this, I-DLV-sr is able to manage backpressure (Karimov et al . 2018)

guaranteeing no loss of data, and thus the correctness of the output.

Example 7

Consider again P4 of Example 5. Figure 1 (b) illustrates the evaluation process of P4 by

referring to the general architecture. We assume to be at the n-th time point and that

Σ = 〈S0, . . . , Sn〉 is the input stream, while O = 〈O0, . . . , On〉 with On = ∅ is the stream

iteratively built so far.

The Execution Manager provides I2-DLV with the flat program P ′
4 obtained by rewrit-

ing P4, splits P4 and identifies the processing order for its subprograms. Suppose as

shown in Example 6 that the splitting is P4{a,b,e} = {r1, r2, r4} and P4{d} = {r3} and

that P4{a,b,e} precedes P4{d}. The Execution Manager accordingly creates the dataflow

graph and passes it to the Stream Manager .

The dataflow graph contains three empty dashed circles for the operators needed for

evaluating streaming atoms in P4{a,b,e} and P4{d}, and two ��-filled ones that receive

results from the linked empty circles and forward them to Subprogram Manager . More in

detail, the Stream Manager first evaluates the empty dashed circles relative to P4{a,b,e}
and then, the Subprogram Manager is required to take into account P4{a,b,e} hence,

producing the ground instances for a aux1 and b aux1 and properly invoking I2-DLV .

The result received by the Subprogram Manager is forwarded back to the Stream Manager

that updates On. Such loop between Stream Manager and Subprogram Manager for

processing of P4{a,b,e} continues until nothing new can be inferred for the predicates

{a, b, e} and only after P4{d} is processed.

5 Experimental evaluation

In order to assess reliability and performance of I-DLV-sr , we carried out an experimental

activity over different SR problems and settings. All experiments have been performed on

a NUMA machine equipped with two 2.8GHz AMD Opteron 6320 CPUs, with 16 cores

and 128GB of RAM. For the sake of reproducibility, both the system and the whole set

of experiments are available at https://demacs-unical.github.io/I-DLV-sr.

We conducted two kind of analysis. First, we wanted to compare the performance

of I-DLV-sr with some other available logic-based stream reasoner. A number of im-

plementations are available (see Section 6); however, they considerably differ in syntax

and/or semantics, and also from an architectural/implementative point of view; thus, a

fair comparison is rather difficult. Given the distributed nature of I-DLV-sr , we com-

pared it to Distributed-SR (Eiter et al . 2019), which is the most recent LARS-based

implementation, supports a large set of features and relies on a distributed architecture.

The latest available version has been executed. For the former analysis, we considered

two benchmarks: Content Caching and Heavy Join. Content Caching (Beck et al . 2017;

Eiter et al . 2019) is a real-world benchmark that requires to manage the caching policy

of a video content over an incoming stream that describes the evolving popularity level
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(a) (b)

Figure 3: Results on Content Caching and Heavy Join.

of the content. Besides the original problem (Beck et al . 2017), we considered a slightly

different version that deals with more than one event per time point (we refer to a true

atom at a time point in the stream as an “event”). Therefore, the encoding is adapted

to handle more than one video content, and the incoming stream contains a number of

instances, representing the popularity levels for each content, ranging from 50 to 500.

Heavy Join is an artificial problem conceived in order to test scalability. It consists of

the single rule: a(X,Y):-b(X,Z) in [w],c(Z,Y) in [w]. where w is 2 or 20, depending on

the experiment. The input streams feature an equal number of instances of predicates b

and c whose total ranges from 50 to 500. In addition, in order to test I-DLV-sr specific

features, we conducted a performance analysis on the problem introduced in Section 3,

namely Photo-voltaic System, over grids of increasing size ranging from 20 × 20 panels

with 11, 970 links up to 30× 30 panels with 60, 682 links. In this data-intensive domain,

we performed a further analysis to check the advantages of incrementality on I-DLV-sr

performance.

Results are reported in Figures 3 and 4; in each plot, a marker in a line corresponds

to the average of the results of three executions; in each execution, the tested system

received inputs for 60 time points for Content Caching and Photo-voltaic System and

30 for Heavy Join. In the comparison with Distributed-SR, input arrives at a frequency

fixed to 1 time point per second, while in the Photo-voltaic System experiments, frequency

varies. Our analysis focuses on three measures: total time, #accepted requests and

latency: total time represents the total elapsed time for each execution, excepting the

initial time spent for the set up; #accepted requests is the number of accepted incoming

requests computed by checking the system logs, and counting the number of time points
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Figure 4: Results on Photo-voltaic System.

whose corresponding input is read by the system; latency is the processing-time latency,

that is, the interval between the time at which the system receives the input relative to

a time point and the time at which the system returns the corresponding output.

The left column of Figure 3 refers to Content Caching tests. Plot (a.1) is related to

experiments on the original encoding, where each time point features a single incoming

event; it reports total time (left y-axis) and #accepted requests (right y-axis), while

window sizes vary from 2s to 50s (x-axis). The two systems appear to have similar

behaviors w.r.t. total time, slightly above 60s on average, that is the minimum amount

of time needed for waiting all the incoming 60 requests (recall that here the frequency

is of a time point per second). The picture changes when looking at the right y-axis:

while I-DLV-sr accepts and correctly returns the expected output for all the 60 requests,

Distributed-SR fails in handling them all. Plot (a.2) refers to the modified encoding

mentioned above, with window sizes set to 5 seconds. For each execution, the graph

plots the two measures considered above; on the x-axis, the number of events per time

point ranges from 50 to 500. The two systems show similar trends in total times, that

grow along with the number of events for time points. As in the previous case, a loss

of incoming requests is reported for Distributed-SR, becoming more evident for greater

numbers of events.

Results for Heavy Join are displayed in the right column of Figure 3; the analysis is

the same of Plot (a.2). We considered window size of 2s in Plots (b.1) and 20s in (b.2),

respectively. The two plots depict similar results. In terms of total time, it is more

evident w.r.t. the Content Caching case that I-DLV-sr performs better than Distributed-

SR, and it maintains the same trend in both cases, while Distributed-SR exhibits a

fluctuating behavior. As for #accepted requests, Distributed-SR “misses” a relevant
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number thereof: the loss is limited when the number of events per time point is small,

but rapidly grows with the number of events for time point, so that in the end almost

all incoming requests are ignored.

The left column of Figure 4 depicts the results on the Photo-voltaic System benchmark

where I-DLV-sr has been tested over different grids with increasing sizes, one size per line.

This is a quite expensive domain as rules at lines 2–3 encode a reachability task among

working grid panels that vary over time. Plots (a.1) and (a.2) respectively report total

time and latency when on the x-axis, the period of incoming requests varies ranging

from 0.1s to 2s. In this case, #accepted requests is not reported as the system correctly

processes all the 60 requests. As for total time, the six lines in the plot show almost the

same trend: constant up to a certain period P , and then linearly growing. Note that, for

greater grid sizes, also P is greater: this is expected, and can be explained by observing

latency in Plot (a.2). Indeed, for each line in the plot, latency is smaller when the

period is close to its P value beyond which we observe the so-called sustainable through-

put (Karimov et al . 2018). This is because for period values smaller than P , I-DLV-sr is

asked to process requests that come more often, so it starts to enqueue pending requests.

When the period is greater than P , instead, I-DLV-sr is able to consider a request as

soon as it arrives, thus no queuing is needed, and the greater the period is w.r.t. P , the

greater it is the idle time between the complete processing of a request and the incoming

of the next one. Periods close to P are ideal, as idle time is close to 0 and no queuing

occurs. The right column of Figure 4 compares the performance of two different versions

of I-DLV-sr versions: one relies on the incremental I2-DLV system, while the other re-

lies on the non-incremental I-DLV engine (v. 1.1.6). Plots (b.1) and (b.2) report total

time and latency, respectively, of the two tested versions of I-DLV-sr , when on the

x-axis the grid sizes vary; the period of incoming requests is set to 0.1s. We observe that

the version relying on the incremental evaluator keeps total time and latency smaller

than the other; the gap between the two lines becomes more and more evident as the grid

size increases, suggesting that I-DLV-sr scales better when relying on the incremental-

based version. Intuitively, the gain is attributable to the incremental computation of

the transitive closure of the reachable relation over working panels; indeed, the adopted

overgrounding technique maintains and reuses all the previously computed ones, rather

than recomputing from scratch all the connections. We conclude by mentioning that the

same analysis about incrementality has been also done for Content Caching and Heavy

Join; however, as these domains are not data-intensive, the evaluation time per rule is so

small that recomputing everything from scratch each time is not that expensive. Results

are reported in the supplementary material corresponding to this paper at the TPLP

archives and show that the incremental-based version behaves as the non-incremental

one without suffering from potential overheads.

6 Related works

SR has been subject of a number of researches over the latest years.Nevertheless, there

are no standardized formalisms nor techniques for SR to date, making the comparison

among approaches relying on different semantics and technologies rather difficult. Apart

several relevant solutions stemmed in the semantic-web context (Barbieri et al . 2010;

Phuoc et al . 2011; Pham et al . 2019; Hoeksema and Kotoulas 2011), the proposals that
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relate most with ours are the ones based on ASP. With this respect, one well-established

is LARS: Logic for Analytic Reasoning over Streams (Beck et al . 2018), a formal frame-

work enriching ASP with temporal modalities and window operators. LARS theoreti-

cally consists of a full-fledged non-monotonic formalism for reasoning over streams; in-

deed, the full language is computationally intractable. Current implementations, such

as Laser (Bazoobandi et al . 2017), Ticker (Beck et al . 2018), and its recent distributed

version (Eiter et al . 2019), support smaller, yet practically relevant fragments. For per-

formance reasons, Laser handles only negation-stratified and stream-stratified programs,

that is, recursion is not supported if it involves negation or windows (Beck et al . 2015).

Ticker comes with two evaluation modes: one makes use of the state-of-the-art ASP sys-

tem clingo (Gebser et al . 2019) as back-end, and is intended for stratified programs, that

is, programs having only a single model; the other mode uses incremental truth mainte-

nance techniques under ASP semantics, and, in case of multiple solutions, computes and

maintains one single model randomly chosen. Distributed-SR is an additional version of

Ticker, recently released; in order to increase the throughput, it implements an interval-

based semantics of LARS that relies on Ticker as internal engine; it supports distributed

computation, at the price of disabling the support for recursion through window opera-

tors. All Ticker versions require any variable appearing in the scope of a window atom to

be “guarded” by some standard atom including it; such variables are grounded upfront

in a so-called pre-grounding phase.

I-DLV-sr supports the ASP fragment stratified w.r.t. negation, which is extended with

streaming literals over temporal intervals: recursion involving streaming literals is freely

allowed as well. The implementation is designed for supporting incremental evaluation

of I-DLV-sr programs, thanks to the integration with I2-DLV , and parallel/distributed

computation, thanks to the integration with Flink . From the one hand, incrementality

allows to efficiently evaluate logic programs at each time point and to avoid the need for

pre-grounding; also, apart from “canonical” safety, no restriction is required for variables

in streaming literals. On the other hand, parallelism and distribution pave the way to

the efficient evaluation of streaming atoms. During execution, each operator in the Flink

dataflow can have one or more operator subtasks, that are independent from each other;

hence, they can be executed in different threads and possibly on different machines or

containers. In case of recursive subprograms, distribution is limited by evaluating the

involved streaming atoms via single-threaded, undistributed operators.

A distributed stream reasoner that has in common with I-DLV-sr the usage of a

stream processor is BigSR (Ren et al . 2018); it is released in two versions built on top

of the state-of-the-art stream processors Spark Streaming (https://spark.apache.org)

and Flink , respectively. BigSR implements internal reasoning algorithms to compute the

semantics, and significantly differs from I-DLV-sr on the supported language, the input

format and the provided features. In particular, it is oriented toward ontology-based

reasoning and accepts RDF input streams. Moreover, input programs fall in the positive

fragment of plain LARS and can only contain the in window operator. In addition,

depending on the stream processor, further limitations are required. The version relying

on Spark Streaming accepts stratified programs that can be recursive but have only global

windows, that is, the rules must share the same window operator. The version built on

top of Flink , instead, accepts non-recursive stratified programs, but with global windows

at rule scope, that is, all literals in a rule must share the same window operator. In this
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latter version, such limitations are due to the BigSR usage of the multi-core/distributed

nature of Flink , that makes the handling of synchronization of clocks, task progress and

window trigger mechanisms difficult. Furthermore, I-DLV-sr and BigSR differs for the

adopted notion of time, as the former relies on event time notion while the latter on the

ingestion time one (Hueske and Kalavri 2019).

When designing I-DLV-sr , Spark Streaming and Apache Storm (Toshniwal et al . 2014)

were evaluated as alternative stream processors. Spark Streaming was excluded as, when

receiving live input streams, it divides the data into batches, which are lately processed by

the Spark engine to generate the final stream in batches. On the other hand, Flink does

not require the a-priori creation of batches and works in real-time, record by record, rather

than batch by batch. Apache Storm can handle data processing record by record but, it

does not provide the event time processing and does not natively offers the exactly-once

semantics as instead Flink does. This semantics ensures to I-DLV-sr that each incoming

event affects the final outcome exactly once and, even in case of a machine or software

failure, there is no data duplication nor unprocessed data.

7 Conclusions

We presented I-DLV-sr , an ASP-based stream reasoner relying on a tight interaction

between I2-DLV and a Flink application, that in the experiments showed good perfor-

mance and scalability. I-DLV-sr is easily extendable by design; hence, we plan to add

the support to additional language constructs while extending tests over new real-world

domains. Furthermore, we plan to study proper means to extend the language for the

management of noise and incompleteness, and further move toward a more complete SR

reasoner (Dell’Aglio et al . 2017).
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