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Abstract. In most practical situations, for multi-component non-ideal complex
plasma mixtures in pressure–temperature (P–T ) phase space, the problem of solv-
ing the system of coupled nonlinear Saha equations subjected to the constraints
of electro-neutrality and conservation of nuclei is found to be effectively a one-
dimensional nonlinear problem, i.e. solving a single transcendental equation. Com-
putation of ionization stages and partition functions in the P–T phase space is
particularly important for non-ideal plasmas generated in devices in which pressure
is a reliably measurable parameter while it is difficult to measure the number
density of heavy particles. The methodology and algorithm presented herein are
based on deriving an equivalent single transcendental equation, for which the
solution is eminently trivial. The algorithm takes into account different practical
models for non-ideality corrections (lowering of ionization potentials, truncation
of partition functions and a corrected equation of state). The ease and efficiency
of the introduced algorithm allows, with significant simplicity, the computations
of population densities of all plasma species (ionized and excited) up to max-
imum ionization states equal to the atomic numbers of the involved elements with
minimal computational work. It also considers an extensive database of energy
levels of the excited states. The algorithm presented herein is analytically known
to be safe, fast and efficient. It shows no numerical instabilities, no convergence
problems and no accuracy limitations or lack of change problems, which have
been reported in the literature. A couple of non-trivial problems are worked out
and presented herein showing the effectiveness of the present methodology. For
completeness, a criterion for the validity of the assumption of local thermodynamic
equilibrium (LTE) is applied to the results from the sample problems, showing
the regions of the pressure–temperature phase space over which the assumption
is valid.
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1. Introduction
An accurate description of thermodynamic, optical and transport properties of
various substances over a wide region of the pressure–temperature (P–T ) phase
space is of fundamental as well as practical interest. Of great importance to many
applied problems is the case of high-temperature, partially ionized gas mixtures
(plasma mixtures). Nowadays a great number of plasma mixtures have come into
extensive use in a variety of industrial and engineering applications. Reliable in-
formation about thermodynamic, transport and radiative properties of complex
plasma mixtures over a wide range of temperatures and pressures is required for the
solution of many scientific and technological problems arising in industrial plasma
engineering, and high-energy density physics. However, a quantitative investiga-
tion of these properties necessitates information concerning the detailed popula-
tion densities of plasma species at specified temperature and pressure. Population
densities of plasma components (neutrals and charged) in the ground and excited
states are required for the calculation of the plasma equation of state, internal
energy, entropy, enthalpy, sound speed, specific heats, adiabatic exponent, as well as
transport properties such as electric conductivity, viscosity, thermal conductivity,
opacities and ion stopping power. Shielding gases for laser and plasma arc welding
[1], gas mixture discharges in thermal plasma processing [2], gas mixtures used
for X-ray emission and other purposes in small plasma focus experiments [3, 4],
plasmas generated from polyethylene and Lexan polycarbonates in the source
section of electrothermal-chemical plasma guns [5–7], dense plasma lasers, as well
as plasma mixtures generated in the chamber of inertial fusion energy (IFE) re-
actors from the molten salts Flibe and Flinabe or any other proposed compound
liquid wall material [8, 9] are examples of plasma mixtures for which computing
the detailed plasma composition is required for the development, functioning and
optimization of these devices and technologies. In regimes where the assumption of
Local Thermodynamic Equilibrium (LTE) is applicable, the populations of atoms
and their ionization products (ions and electrons) obey the Saha equation [10].
If the lowering of ionization potentials due to non-ideal effects [11–14] is taken
into account, the Saha equation (for a single chemical plasma species) can be
written as

nr+1ne
nr

= 2
Ur+1

Ur

[
2πmeKBT

h2

]3/2

exp
(

− Ieffr

KBT

)
r = 0, 1, . . . , (Z − 1), (1)

where ne is the number density of free electrons, nr is the number density of all
r-fold ionized atoms, Ur is the state-dependent partition function of r-fold ionized
atoms, me is the mass of an electron, h is Planck’s constant, and Ieffr = Ir − ∆Ir

is the effective ionization energy for the ionization process r → (r + 1), ∆Ir is the
lowering of the ionization potential. The set of Saha equations (1) can be derived
from thermodynamic principles through the minimization of the free energy. The
derivation of this set of equations from the minimization of the free energy ensures
consistency of the population densities calculated using this set of equations with all
thermodynamic properties derived from the same free energy function. Different
forms of the free energy functions will be directly reflected in the non-ideality
corrections to the Saha equations. The system of Saha equations (1), subjected to
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the constraints of electro-neutrality,

Z∑
i=1

ini = ne (2)

and conservation of nuclei (constant number of heavy particles, nh) in the ionization
and recombination processes,

Z∑
r=0

nr = nh (3)

is a closed system which is sufficient for the calculation of the composition of a
plasma generated from a single chemical species. However, plasmas generated from
compoundmaterials or frommixtures of gases are thought to be more complex than
plasmas generated from a single chemical species. For these complex plasmas, the
equations for different chemical species are linked (at least) through the electron
number density and the common temperature.
The case of an ideal mixture of two monatomic gases has been treated in [1] where

a new technique by Trayner and Glowacki [15] has been used to solve the equations.
However, accuracy limitations (lack-of-change problems) of the algorithm used
and concerns about numerical stability were reported [1, 15]. Numerical stability
concerns and problems were even reported for the simplest case of solving a single
Saha equation (with unity as the maximum ionization state) coupled to an energy
equation when a Newton–Raphson technique was used [16]. In the present work,
we clear the complexity of this problem and introduce a simple, safe and stable, fast
and accurate solution to this problem. The method depends on the reduction of the
set of nonlinear equations into a simple form (an equivalent single transcendental
equation), showing that the problem for most cases is effectively a one-dimensional
nonlinear problem which requires minimal numerical work to be solved.
While it is a well-known fact that safety in obtaining convergence and numerical

stability are critical for such a problem, it may be helpful to explain why accuracy
and computational time are also of interest. In spite of the commonly known
fact that better (e.g. more accurate) numerical techniques should replace worse
techniques if they need the same or less computational effort, accuracy and com-
putational time are of interest for some other reasons. First of all, no procedure will
allow the computation of the populations of different species if their population does
not exceed the accuracy of the procedure. Therefore, in a weakly ionized plasma,
if the population of any species does not exceed the accuracy, the method fails.
Secondly, the time derivative of the ionization state may also be required in many
applications (see, for example, [17]). If the increment in time, dt, is small enough
such that the change in the ionization is comparable to the accuracy, the derivat-
ive term may assume the opposite sign which may be catastrophic and seriously
impose restrictions on the solution of the physical problem under consideration.
Noting that the time derivative is just an example and the argument applies to
the derivative with respect to any other parameter it becomes clear that accuracy
may be crucial in calculating ionization equilibrium; and finally, calculating the
ionization equilibrium of the plasma is not the ultimate goal. It is needed for
the calculation of thermodynamic functions, transport and optical properties. In
a typical simple self-consistent hydrodynamic simulation one needs to calculate
the ionization equilibrium several million times. Time savings in the calculation
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of ionization equilibrium, however small, lead to a huge time saving in the overall
time needed for the computations.
For these reasons, it is quite clear that improvements in terms of solution ac-

curacy and computational time, in addition to safety in obtaining convergence and
stability of the solution, are also valuable and needed.

2. A reduced formulation for plasma-mixtures in P –T phase space
Assuming that all chemical compounds and polyatomic molecules are fully disso-
ciated excludes all chemical reactions except ionization and recombination and the
plasmamixture in this case is effectively a mixture of inert gases. Hence, the plasma
composition can be completely described by the set of nonlinear Saha equations
with the constraints of conservation of electric charge and conservation of nuclei.
Noting that diatomic molecules dissociate at several thousand degrees Celsius while,
and because of the weaker bonds, polyatomic molecules begin dissociation at even
lower temperatures [12], the above assumption can be considerably justified for
plasmas of temperatures �1 eV. Denoting any chemical species in the mixture by
the subscript j and using J to refer to the total number of the elemental species
(J =

∑
j), the requirement of a constant number of heavy particles (conservation of

nuclei) gives

Zj∑
r=0

nr,j = nh,j (i)

and
J∑

j=1

nh,j = nH (ii)

where nh,j is the number density of heavy particles (nuclei) of elemental species
j, nH is the total number density of heavy particles of all elemental species in the
mixture and Zj is the atomic number (or the maximum allowed ionization stage)
of elemental species j. Dividing (i) by nH one obtains

Zj∑
r=0

αr,j = cj (4)

where αr,j = nr,j /nH and cj = nh,j /nH are the molar fractions of the r-fold ionized
ions of the elemental species j and the total molar fraction of the elemental species
j, respectively. Summing over all elemental species (or equivalently dividing (ii) by
nH) yields

J∑
j=1

cj = 1. (5)

Similarly, the condition of quasi-neutrality (conservation of electric charge) gives

Zj∑
i=1

ini,j = ne,j (iii)
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with
J∑

j=1

ne,j = ne (iv)

where ni,j is the number density of i-fold ionized ions of the elemental species
j, ne,j is the number density of free electrons introduced to the system by ionizing
the atoms/ions of the elemental species j and ne is the total number density of
free electrons. In principle, free electrons can take any energy and, they should be
considered indistinguishable. Accordingly, the subscript j in the term ne,j must not
be misread as a sort, or quality distinguisher, but rather as a quantity or share
assigner for different sources of free electrons (elemental species). If one defines
Pr,j = nr,jKBT/P and Pe = neKBT/P , where P is the plasma pressure, we can
express the set of nonlinear Saha equations in terms of Pr,j , Pe and the pressure P
and obtain the following recurrence relation:

Pr+1,j =
Pr,j

(PeP )
ηr+1,j (T, ne, . . . )

where

ηr+1,j (T, ne, . . . ) = (KBT ) · 2
Ur+1

Ur

[
2πmeKBT

h2

]3/2

exp
(

− Ieffr

KBT

)
(6)

where the Saha coefficients ηr+1,j have been written in a general form to account for
any possible formulae for the lowering of ionization potentials. For ideal plasmas,
the Saha coefficients are functions of temperature only.
Multiplying (iii) by KBT/P and using the recurrence relation (6) one obtains

P0,j =
Pe,j∑Zj

i=1(i/(PeP )i)
∏i

m=1 ηm,j (T, ne, . . . )
(7)

where Pe,j = ne,jKBT/P .
One distinct feature in the case of a non-ideal plasma is the need to consider,

in addition to the lowering of ionization energies, the non-ideality correction to
the expression of the pressure, P , due to Coulombic corrections to the free energy.
In general, P can be expressed as P = nH(1 + Zav)KBT + ∆P , where ∆P is the
non-ideality correction to the plasma pressure. Performing similar steps with (i)
one obtains the following expression for Pe,j ;

cj =
Zj∑

r=0

αr,j

cj
nHKBT

P
=

Zj∑
r=0

αr,j
nHKBT

P

cj (1 − Pe − ∆P/P )

=
Zj∑

r=0

Pr,j = P0,j

(
1 +

Zj∑
i=1

∏i
m=1 ηm,j (T, ne, . . . )

(PeP )i

)
(v)

= Pe,j

[(
1 +

Zj∑
i=1

∏i
m=1 ηm,j (T, ne, . . . )

(PeP )i

)/ Zj∑
i=1

i

(PeP )i

i∏
m=1

ηm,j (T, ne, . . . )

]
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or

Pe,j = cj (1 − Pe − ∆P/P )

×
[ Zj∑

i=1

i

(PeP )i

i∏
m=1

ηm,j (T, ne, . . . )

/(
1+

Zj∑
i=1

∏i
m=1 ηm,j (T, ne, . . . )

(PeP )i

)]
. (8)

Now, summing over all chemical species, we obtain the final transcendental equation
needed to complete the system

Pe = (1 − Pe − ∆P/P )

×
J∑

j=1

cj

[ Zj∑
i=1

i

(PeP )i

i∏
m=1

ηm,j (T, ne, . . . )

/(
1+

Zj∑
i=1

∏i
m=1 ηm,j (T, ne, . . . )

(PeP )i

)]
.

(9)

Equations (6)–(9) constitute a reduced formulation of the set of nonlinear Saha
equations subjected to the condition of quasi-neutrality and the requirement of
constant number of heavy particles. For the case of a pure single elemental species
(J = 1), (9) and (8) become identical with Pe = Pe,j .
The solution of the set of equations in its current form is very simple and can be

performed safely and accurately with a minimum of computational work as shown
in Sec. 4, below. Before discussing the method of solution of the newly derived
reduced formulation, (6)–(9), one should recognize that the Saha coefficients ηm,j

include the state-dependent partition functions Ur,j (P, T ), it is essential, therefore,
to start by investigating this term and discussing its computation.

3. Evaluation of the internal partition function
For a classical plasma in thermodynamic equilibrium, the population of excited
levels in the atoms or ions of the plasma are determined by Boltzmann statistics.
The population nr,j,ζ of level ζ of the atom/ion r of the chemical element j relative
to the total population nr,j of species r of that element j is given by

nr,j,ζ

nr,j
=

gr,j,ζ

Ur,j
exp

(
−Er,j,ζ

KBT

)
(10)

where Ur,j is the sum over all states known as the total internal partition function.
The total internal partition function is a dimensionless quantity, which for an
isolated atom/ion can be formally evaluated according to the equation

Ur,j =
∞∑

ζ=1

gr,j,ζ exp
(

−Er,j,ζ

KBT

)
(11)

where Er,j,ζ is the ζth excitation energy of species r of element j (counted from
the ground state) and gr,j,ζ = 2Jr ,j,ζ +1 is its statistical weight (degeneracy) where
Jr,j,ζ is the total angular momentum. In the calculation of the internal partition
function, all equilibrium populations (ground/excited states) have to be included.
For an isolated (free) atom/ion, Ur,j diverges and finite values are obtained only
when interactions with the environment are accounted for in order to truncate the
sum. Recalling that in a plasma environment, the ionization energies are reduced
such that excitation states with very high ζ do not exist, and the partition function
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actually converges. The summation in (11) is thus limited to a maximum of ζ =
ζ∗, which corresponds to a maximum energy Er,j,ζ ∗. In the computations of the
partition function the summation is performed over all the available spectroscopic
data [18] for the excitation energies and terminated at energy level Er,j,ζ ∗, which
is related to the effective ionization energy, Ieffr,j , by the relation Er,j,ζ ∗ � Ieffr,j =
Ir,j −∆Ir,j . Thus the partition function is a function of T and∆I(P, T ) just like the
exponential term of the Saha coefficients. This means that the solution technique
of the Saha equations is not affected by the dependence of the partition function
on the state as it does not introduce any new variables other than those already
existing in the exponential term of the Saha coefficients.

4. Method of solution
The method of solution of the set of equations (6)–(9) depends on the formulae used
for the lowering of ionization potentials, ∆Ir,j and the non-ideality correction to
the pressure, ∆P . Practically, one can face the following cases.
(a) An ideal plasma with no lowering of ionization potential and no pressure

correction term. In such a case, the Saha coefficients, η, are functions of the tem-
perature only and (9) is a transcendental equation in Pe, the solution of which
is eminently simple. Many software packages include solvers for transcendental
equations or algorithms for finding the zeros of a function. In addition, efficient
algorithms that use a combination of bisection, secant and inverse quadratic inter-
polation methods can also be used [19]. For cases in which one is only interested in
determining Pe or equivalently ne = PeP/KBT , the solution of the transcendental
(9) will suffice. However, if the interest extends to the determination of the detailed
composition of different elemental species and different ionization stages, simple
direct back-substitution into (8), (7) and (6) will be required to determine the
detailed composition. The algorithm is simply articulated in the following steps.

(1) Solve the transcendental (9) for Pe.

(2) Substitute in (8) to determine Pe,j for the elements of interest.

(3) Substitute for Pe, and Pe,j in (7) to calculate P0,j for the elements of interest.

(4) Use the recurrence relation (6) to calculate all the Pr+1,j of interest.

(5) The number density of any species r, j is simply recovered from Pr,j , where
nr,j = Pr,jP/KBT .

(b) Non-ideal plasma models with expressions for the lowering of ionization poten-
tials, ∆Ir,j and the pressure correction term, ∆P , that can be expressed explicitly
in terms of Pe and other known quantities such as P , for example. In this case also,
(9) is a transcendental equation in Pe. The method of solution is then identical to
the case of ideal plasmas. Examples of such models for the lowering of ionization
potentials can be found in the literature [13].
It may be appropriate at this stage to highlight some of the benefits and advant-

ages gained (for these two cases) by recasting the equations into this reduced form.
The solution of the problem, for these two cases, is reduced to the trivial problem of
solving a single transcendental equation. Hereby, for these two cases, the problem
of evaluating the plasma composition is shown to be effectively a one-dimensional
nonlinear problem with only one independent variable that is, Pe (namely finding
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the root of a function). According to [19], ‘Simultaneous solution of equations in
N dimensions is much more difficult than finding roots in the one-dimensional
case. The principal difference between one and many dimensions is that, in one
dimension, it is possible to bracket or “trap” a root between bracketing values,
and then hunt it down like a rabbit. In multi-dimensions, you can never be sure
that the root is there at all until you have found it’. Furthermore, in principle, the
zero of a transcendental equation can be determined to any degree of accuracy at
the expense of the computational time (i.e. no accuracy limitations). Therefore, the
accuracy of the computations of the detailed plasma composition will be dictated
by the machine characteristics.
(c) Non-ideal plasma models where ∆Ir,j , ∆P cannot be expressed explicitly in

terms of Pe and known quantities but rather in terms of a common parameter
(such as the Debye length, λD), which depends on the individual Pr,j . The model
proposed by Griem [11] is an example of such a case. In this model the lowering
of ionization potentials and the pressure correction term are derived consistently
from the minimization of the free energy and are given by

∆Ir,j =
(r + 1)e2

4πε0λD
,

∆P = − KBT

24πλ3
D

(12)

with λD defined as

λD =

[
ε0KBT/e2

(
ne +

J∑
j=1

Zj∑
r=0

r2nr,j

)]1/2

. (13)

A similar and widely used model, known as the lambda approximation, was pro-
posed by Ebeling et al. [14]. The model introduced expressions for the lowering of
ionization potentials and the pressure correction term. Although these corrections
are derived consistently from the minimization of the free energy, the pressure
correction term is represented only by the first three terms from a Taylor series.
However, an exact closed form for this correction term is derived and is given below
where the non-ideality corrections become

∆Ir,j =
(r + 1)e2

4πε0(λD + a(T ))
,

and

∆P = − KBT

24πλ3
D

[
τ(κa(T )) − 9

ln(1 + κa(T ))
(κa(T ))3

− 3
2(κa(T ))

+
3

(κa(T ))2 + (κa(T ))3
+

6
(κa(T ))2

]

with a(T ) = ΛB/8, κ−1 = λD and

τ(χ) =
3
χ3

[
ln(1 + χ) − χ +

χ2

2

]
(14)

where ΛB = h/
√

2πmeKBT is the de Broglie wavelength and λD is expressed as
in (13).
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With a bit of analysis and insight, the solution in this case can also be obtained
with significant simplicity and to any desired accuracy. The fact that (9) can be
easily and accurately solved for any specified value of λD makes it, effectively,
equivalent to an algebraic expression of the form

Pe = f̄1(λD). (15)

At the same time, the definition of λD in (13) can be rewritten as

λD − f2(Pe) = 0

where

f2(Pe) =

[
ε0KBT/e2

(
ne +

J∑
j=1

Zj∑
r=0

r2nr,j

)]1/2

=
KBT√

P

[
ε0/e2

(
Pe +

J∑
j=1

Zj∑
r=0

r2Pr,j (Pe)

)]1/2

. (16)

Note that Pr,j has been written in (16) as a function of Pe since if one knows Pe,
all Pr,j can be calculated.
Now, upon substitution from (15) into (16) one obtains

λD − f2(f̄1(λD)) = 0 (17)

which is a transcendental equation in λD. The bar over f1 refers to the numerical
nature of the function f1. From (17) one can see that even for case (c), in which
∆Ir,j and ∆P cannot be expressed explicitly in terms of Pe and known quantities
but rather in terms of the common parameter, λD, the present analysis shows
that the problem of evaluating the plasma composition for a complex mixture
is effectively a one-dimensional nonlinear problem (or simply finding the root of
a function) with one independent variable, λD. Therefore, even for such a case,
the plasma composition can be determined with significant simplicity and to any
desired accuracy. It is interesting to notice that solving (17) simultaneously gives
the values of λD, Pe, Pe,j , Uj,r , Pj,r and ∆P and therefore it represents the whole
algorithm. Although (17) is solvable without any problem to the level of machine
accuracy it may be important to note here that in cases in which one is willing
to solve the equation to a lower accuracy it will be necessary in order for (17)
to be fully satisfied to have the predetermined tolerance (relative error, ε) of the
inner transcendental equation (9) be smaller than that of the outer transcendental
equation (17).
In the following section a couple of non-trivial sample problems that represent

this case are worked out in detail showing the simplicity and reliability of the
present proposed algorithm.
A model in which the non-ideal plasma corrections∆Ir,j can neither be expressed

explicitly in terms of Pe and known quantities nor in terms of a common parameter
that depends on the individual Pr,j is not known to the author at the present time.

5. Sample problems
The current methodology has been applied to compute the composition of two
complex plasma mixtures. In the first sample problem, the method has been used
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to calculate the ionization states of Teflon (C2F4) over a wide range of temperatures
and pressures. While in the second problem, a hypothetical mixture of five elements
representing ablation of Teflon in a helium–neon–argon atmosphere was considered.
An arbitrary concentration of this mixture (He(0.3):C(0.1):F(0.2):Ne(0.2):Ar(0.2))
was chosen to work the second problem. Necessary atomic data and excitation
and ionization energies have been taken from [18]. Comprehensive sets of energy
levels (more than 2400 for C2F4 and 5500 for He/C/F/Ne/Ar) have been used in
the computations of the partition functions. The model for non-ideality correction
proposed by Ebeling et al. [14], which represents case (c) as shown above, is used
to run these sample problems. For this case, all nonlinearities of the problem are
reduced into the single transcendental equation (17) which can be solved with
simplicity to machine accuracy for λD, Ur,j , Pe, Pj,r and ∆P at the same time.

6. Results and discussion
Figures 1(a) and (b) show the temperature dependence of the quantities Pe and

∑
Pr

in conjunction with the non-ideality correction term on the plasma pressure for
50 000 bar Teflon and (He(0.3)/C(0.1)/F(0.2)/Ne(0.2)/Ar(0.2)) plasmas, respectively.
The total plasma pressure (unity) is the sum of three terms: 1, the ideal pressure
of electrons, Pe; 2, the ideal pressure of ions including neutrals

∑
Pr ; and 3, the

non-ideality correction term ∆P/P . Although it does not have any mechanism to
distribute the non-ideality correction among different species, the current picture
of the pressure is very useful for the following reasons; (a) it allows the determ-
ination of the population densities without any problems (where densities can be
simply recovered from these expressions as shown above); (b) it reduces to the ideal
expressions as the degree of non-ideality is decreased with the terms Pe and Pr

representing the relative partial pressures of these components.
The fact that these terms (Pe and Pr ) reduce to the partial pressures in the

ideal case gives some tolerability to use the same terminology for the non-ideal
case while bearing in mind that these labels relative partial pressures for non-ideal
plasmas should not be interpreted in the usual sense where the relative partial
pressure is always less than unity. As shown in the figures, the sum of these three
contributions or terms shows a value of unity, as expected, at all temperatures. As
shown in the figures, the contribution of the non-ideality correction term assumes
negative values with the result that the sum of total contributions of the terms Pe
and Pr is greater than unity. With a non-ideal plasma equation of state such as that
given above (14) and used to work these sample problems, the sum of the terms Pe
and Pr or any of them or even the magnitude of the non-ideality correction may
exceed unity. However, the three contributions should always satisfy the constraint
that the sum of the three components should always be unity. In the rest of our
discussion we will refer to these terms as the relative partial pressures of electrons
and heavy particles with all of the above discussion kept in mind.
Figures 2(a) and 3(b) show the temperature dependence of the relative partial

pressures of different ionic species in a 15 000 bar Teflon plasma and 40 000 bar
He/C/F/Ne/Ar mixture plasma. As the temperature increases, the relative partial
pressures of neutral species (C0, F0) for Teflon and (He0, C0, F0, Ne0 and Ar0)
for the He/C/F/Ne/Ar mixture decrease monotonically as a result of the progress-
ive ionization. With further increases of temperature, higher ionized ionic species
appear at the expense of lower-fold ionized species.
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Figure 1. (a) Temperature dependence of the relative partial pressures of electrons and heavy
particles of a Teflon plasma at 50 000 bar; (b) temperature dependence of the relative partial
pressures of electrons and heavy particles of a He/C/F/N/Ar plasma at 50 000 bar.
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Figure 2. Temperature dependence of the relative partial pressures of individual ionic
species in: (a) a 15 000 bar Teflon plasma and (b) a 40 000 bar He/C/F/Ne/Ar mixture
plasma.
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Figure 3. Pressure dependence of the relative partial pressures of electrons and heavy
particles and the non-ideality correction term of a 2.7 eV Teflon plasma; (b) temperature
dependence of the specific volume of Teflon plasma at different pressures.
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Figure 4. (a) Contours of the values of the non-ideality correction term to the pressure in
a Teflon plasma over a wide range of temperatures and pressure and (b) contours of the
average ionization state of Teflon over a wide range of temperatures and pressures and the
LTE criterion.
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Figure 3(a) shows the pressure dependence of the relative partial pressures of
electrons, heavy particles and the non-ideality correction term of a 2.7 eV Teflon
plasma. As expected the relative partial pressure of electrons (or electron density)
decreases with increasing pressure because of the increase of the recombination
rate. However, at very high pressure (high density too) it starts to increase with
pressure again due to continuum lowering or what is known as a pressure ionization.
In Fig. 3(b) the temperature dependence of the specific volume of Teflon plasma at
different pressures is shown.
Figure 4(a) shows the contours of the values of the non-ideality correction term

of the pressure in a Teflon plasma over a wide range of temperatures and pressure.
As can be clearly seen in the figure, the magnitude of the non-ideality correc-
tion term increases with increasing pressure at the same temperature. An average
nuclear charge can be approximately assigned to this plasma mixture and the
critical (minimum) electron number density required for LTE can be determined
as a function of temperature. The criterion given by Fujimoto and McWhirter [20]
is adopted and applied for the present computations. For each pressure, a critical
value for the average ionization state, Zc, can be calculated by dividing the critical
electron number density by the corresponding nH = P

∑
r,j Pr,j /KBT and one can

verify the validity of the LTE assumption by comparing both Zav and Zc as shown
in Fig. 4(b). Figure 4(b) is a useful representation of the calculated ionization data
where contours of Zav are presented as functions of T and P . The logarithmic axes
scales have been used to cover a wide range of temperatures and pressures. As
shown in the figure the LTE assumption can be considered for Teflon plasmas with
pressures >0.1 bar. Also from the figure one can see that at very high temperatures
the average ionization state approaches its expected theoretical limiting value for
a fully stripped plasma, i.e. Zav = (2/6) × 6 + (4/6) × 9 = 8.
The results presented above have some interesting remarks that need some dis-

cussion. It is interesting to note that at very high temperature where the thermal
energy of the plasma particles is much greater than the interaction potential, the
plasma tends to be ideal with the result that the non-ideality correction terms
vanish and the plasma becomes fully stripped at the same time. The limiting
average ionization states for the mixtures are, therefore, 8 for Teflon and (0.3) ×
2 + (0.1) × 6 + (0.2) × 9 + (0.2) × 10 + (0.2) × 18 = 8.6 for the He/C/F/Ne/Ar
mixture. The corresponding limiting relative partial pressures for electrons and
heavy particles are, therefore, (8/9) and (1/9) for Teflon and (8.6/9.6) and (1/9.6)
for He/C/F/Ne/Ar, respectively. These expected limiting values are in complete
agreement with the results in the figures for Teflon, while for the He/C/F/Ne/Ar
mixture the temperature range shown in the figure shows ionization states of
argon up to Ar+16 only. The expected limiting partial pressures for He/C/F/Ne/Ar
for the range of temperature shown is, therefore, (8.2/9.2) and (1/9.2) which is in
complete agreement with Fig. 2(b).
Another interesting result can be seen in Figs 2(a) and (b) where, due to their

helium-like stable configuration, the curves for C+4, F+7, Ne+8 and Ar+16 show
wide distributions as a function of temperature.

7. Conclusion
The set of 1 +

∑
j Zmax,j coupled nonlinear equations in 1 +

∑
j Zmax,j unknowns

resulting from the nonlinear Saha equations (derived from the minimization of
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the free energy function) supplemented by electro-neutrality and conservation of
nuclei for complex plasma mixtures is reformulated into an equivalent reduced
form, which showed that, for most practical cases, the problem is effectively a
one-dimensional nonlinear problem (a single transcendental equation), the solution
of which is trivial. Implementing this simple efficient methodology simplifies the
problem and considerably reduces the computational effort needed to compute the
detailed plasma composition for different cases. The method is analytically known
to be safe, fast and efficient. It also shows no numerical instabilities, no convergence
problems and no accuracy limitations or lack-of-change problems, which have been
reported in the literature for other competitive techniques. Non-trivial sample
problems have been worked in detail showing the value and usefulness of this
method for applied and industrial plasma physicists. Finally, the present analysis
and methodology strongly signifies the belief that computational success crucially
depends on analysis and insight rather than numerics.
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