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A mechanical theory is described for a phenomenon in the surgical procedure of
resuscitative endovascular balloon occlusion of the aorta (REBOA). In this procedure
a balloon is pushed into the aorta by a catheter and then inflated in order to stop
haemorrhage. One of the hazards of this procedure is the tendency for the balloon to
migrate away from its intended position. This work examines the mechanics of balloon
anchoring and migration by analysing the effects of pressure waves, the sheet flow and
solid friction in the thin gap between the walls of the aorta and balloon. A viscoelastic
model is adopted for the aorta wall for pressure waves between the left ventricle and the
balloon. The lubrication approximation is used for blood flow in the thin gap between
the walls of the balloon and aorta. Samples of quantitative predictions are discussed on
how the inflation pressure and balloon characteristics affect the balloon anchoring and
migration. The crucial roles of solid friction and balloon placement are pointed out, which
should help in guiding the manufacturing of balloons and their usage in the field.

Key words: blood flow, flow—vessel interactions

1. Introduction

Trauma from intra-abdominal, pelvic and groin haemorrhage cannot be effectively stopped
by applying clamping or compression. During the Korean war the surgical procedure
called resuscitative endovascular balloon occlusion of the aorta (REBOA) was invented
for treating battlefield injuries (Hughes 1954). The procedure is now well accepted
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for treating trauma patients who are in extremis (near death) from pelvic or lower
extremity injuries, and sometimes in patients with suspected intra-abdominal bleeding.
This technique involves rapidly placing a flexible catheter into the femoral artery in the
groin, maneuvering it into the aorta and inflating a balloon at its tip. This stops blood flow
beyond the balloon, essentially halting any bleeding, while also stopping all blood flow
distal to the balloon. Usually the inflated balloon is kept in the patient before transporting
him/her to the operating room. Typically the balloon is 5 ~ 10 c¢cm in length and usually
inflated with saline water.

During the procedure arterial pressure and the balloon inflation should be maintained
and the balloon position should be secured to prevent distal movement caused by cardiac
pressure. The degree of movement depends on cardiac output. If the patient has low
intravascular volume then the movement is weak. On the other hand the movement could
be strong if the patient is receiving volume resuscitation and adrenaline which is an
endogenous catecholamine with potent alpha- and beta-adrenergic stimulating properties.
The alpha-adrenergic property increases systemic vascular resistance (increased blood
pressure). The beta-adrenergic effect increases myocardial contractility and heart rate
(increased cardiac output). Although the balloon, sheath and wire can be secured with
sutures or an occlusive dressing that pin the apparatus to the patient, these need to be
observed continuously to assure no downward or caudal migration. Often an assistant
is needed to hold the apparatus while monitoring and communicating the mean arterial
pressure, maintenance of position and maintenance of occlusion (balloon inflation); see
Stannard, Eliason & Rasmussen (2011).

In arecent experimental study Borger van den Burg et al. (2019) tested balloon migration
in an in vitro model of human circulation. Eight different balloons manufactured in USA,
Japan and Russia were tested in a male porcine thoratic aorta of 30 cm length and 20 ~
30 mm diameter. Migration was recorded under both steady and intermittent pressure.
Tests under steady pressure were made in three ranges: (I) hypotensive (70-80 mmHg),
(II) normotensive (100—120 mmHg) and (III) hypertensive (160-180 mmHg). Test for each
range lasted 2 min. For CookCoda, balloon migration was 0-5 mm during range I, zero
movement in range II and 80 mm in range III after 90 s. Kinking of the soft catheter was
observed. No balloon movement was observed under intermittent pressure of 120 mmHg.
Details of the intermittent pressure were not reported.

To provide some helpful information for improved control of REBOA operations, it is
desirable to have a quantitative theory on its physics. In the existing literature of fluid
mechanics there are a few articles treating partially similar phenomena in different fields
of applications. Greenberg (1960) first investigated the transient motion of a frictionless
piston driven by sound in a fluid-filled tube. Starting from an unconstrained piston in an
initially calm fluid, different pressures were applied and maintained at the two ends of the
tube. The piston movement resulting from acoustic waves was analysed as a free-boundary
problem. Greenberg solved only the linearized problem for infinitesimal migration by
a Fourier method. The nonlinear transient problem was later solved by Miranker (1961)
who applied the theory of characteristics and numerical computations. In these theories
wall friction is neglected. In biophysics viscous stress can be more important than fluid
inertia in small blood vessels, prompting the use of the lubrication approximation by
many authors. For example, Lighthill (1968) studied the motion of a pellet in compliant
tube forced by steady blood flow, and countered by fluid resistance from viscous shear.
He cautioned however that ‘when flow speeds are sufficiently reduced, hydrodynamical
lubrication in the capillaries gets replaced by solid friction, which can support differences
of pressure without the red cells moving at all.” Fitz-Gerald (1969) extended his work to a
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Figure 1. Symbolic model of REBOA.

very compliant red cell in a relatively rigid capillary. Steady creeping flow through the gap
between a long cylinder and a concentric elastic tube was studied by Elbaz & Gat (2016).
Wave-induced flows in elastic ureters without occlusions have been examined by Lukoudis
& Roos (1970), Fung & Yih (1968) and Shapiro, Jaffrin & Weinberg (1969) for the effects
of peristaltic pumping. Of interest to geology, the lubrication approximation has also been
applied to lava flow down an incline (Huppert 1982a,b), fluid-driven fracturing (Ball &
Neufield 2018), spreading of viscous fluid injected between an elastic sheet and a rigid
substrate (Hewitt, Balmforth & De Bruyn 2015), peeling of an elastic sheet over viscous
fluid layer (Lister, Peng & Neufeld 2014) and buoyancy-driven rise of magma in cracks of
Earth’s lithosphere (Lister 1990), etc.

Compared with the studies cited above, REBOA flow is distinct in that the forces on the
balloon are intermittent, induced by the pulsating cardiac pressure. As a consequence, the
balloon response is also intermittent and affected by both fluid shear and solid friction.
The geometry of the fissure between the walls of the aorta and balloon must also vary
cyclically in time. In this work we consider an idealized REBOA system by assuming that
the inflated balloon is positioned in zone 1 (from the left subclaven artery to the upper
border of the aliac trunk) and unsupported by the catheter or the sheath; see figure 1.
Our theory accounts for wave propagation driven by the pulsating pressure at the aortic
valve. Blood-driven fissure between the walls of the aorta and balloon is treated by
unsteady lubrication approximation. Because part of the balloon wall is pressurized tightly
against the aortal wall, solid friction is included. Secure anchoring depends on the friction
coefficient between the contacting walls, the dimensions, the initial distention as well as
the initial position of the balloon. Distal migration due to insufficient anchoring is also
predicted by solving a nonlinear free-boundary problem numerically.

2. Blood flow in the aorta
2.1. Governing equations

As sketched in figure 1, a straight aorta extends from the left ventricle (aortic valve) at
x = 0 without side branches. The balloon is modelled as a compliant tube of length £ with
flat ends and is inflated with saline water to be tightly squeezed against the aorta. Details
of the coordinate system are shown in figure 2.

Consider first an insufficiently constrained balloon. It is assumed bleeding is essentially
halted after balloon inflation, and no flowing blood remains on the distal side (x > X(r) +
£). Migration from the initial position X(0) to X(¢) can begin after the aortic valve opens
at time t = 0. Let the blood pressure and velocity in the aorta be denoted respectively by
p(x, 1) and u(x, t). Between the heart valve and the balloon, the aorta wall suffers small
deformation to sustain wave motion. Let R denote the inner radius of aorta and the outer
radius of the balloon at both ends. Linearized law of mass conservation of blood in aorta
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Figure 2. Balloon in aorta. Solid curves: geometry under zero blood pressure. Dashed curves: after heart
valve opens. Labels (x, r): inertial coordinates; Labels (¢, n): coordinates moving with balloon.

requires

_da o 0u
2niR— + miR*— =
at x
where u is the area-averaged velocity and a(x, f) is the radial distention. As discussed in
Fung (1997), the Stokes—Wormersley number is usually large, viscosity can be ignored.
The linearized law of momentum conservation in the aorta requires

0, 0<x<X(@), (2.1

d 10
TP o0, 0<x<X0). 2.2)
at  pox
In many classical models of aorta walls, the excess blood pressure in the aorta and the wall
distention a are related by the linear relation
a=ap, 2.3)

where « is the wall compliance known to be

- = 4
o= 350" .
p is the blood density and C = 5 ~ 10 m s~ ! is the Moens—Korteweg wave speed
Eh
cr =2, (2.5)
2pR

with E being the Young’s modulus, and A, the thickness of the aorta wall. It can
be estimated from Hallock & Benson (1937) and Sonesson et al. (1993) that o =
01077y m Pa~! for a young male. It follows from (2.1) that

R 2.6)
pC2 3t dx ’
and from (2.2) that
?p 1 3%
W_EWZO’ 0<X<X(I) (27)

In a straight aorta blocked by a balloon, unbounded resonance would occur due to
the forcing of persistent pressure pulses from the heart. In more recent literature, the
artery wall has been modelled as a viscoelastic material (see Fung 1997; Pedley 1980)).
An extensive list of references can be found in Canic et al. (2006) who have treated
the nonlinear fluid/structure interaction in human femoral arteries by a Kelvin—Voigt
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shell model. In this study we focus only on small disturbances and adopt a linear
viscoelastic model of Kelvin—Voigt type for the aorta,

2 (28)
ap=a —, .
P o1

where B is the Kelvin—Voigt viscosity coefficient. Equation (2.7) is now changed to

%p 1 3% 33p

+ ﬂaxZaz =0, 0<x<X(@®. (2.9)

2o

The coefficient 8 is taken from Canic ef al. (2006). In particular, if A, is the artery wall
thickness then to the first order of approximation

_Ehaa h,Cy da hq
P="R "R % R

<1, (2.10)

where C),, is related to the Lame constants A, and u, by

20y

Cp = v
’ Ay + 2y

+ 24y, @2.11)

Using the experimental data of Armentano et al. (1995a,b) for a femoral artery, Canic et al.
(2006) found that h,C,/R = 1.6 x 103 Pas. By comparing with (2.10), the Kelvin—Voigt
coefficient 8 in (2.8) can be identified as

haCy
R

B=a 2.12)

By our choice of o = 107 "mPa!'andR=1cm=10"2m, B=16x 1072 s.
At the upstream end of the inflated balloon, x = X (), we impose the kinematic condition

ulX,t =X, x=X(. (2.13)
The dynamic boundary condition at the heart valve is
p0,n =P, x=0, (2.14)

where P(¢) is the known pressure at the ventricle. The initial conditions are assumed to be

ap
P = Puiastolics E =0; 0<x<X(0),r=0. (2.15)

2.2. Pressure at the heart valve

We also assume the cardiac pressure P(f) at the aortic valve starts at the diastolic pressure
Piastolic (e.g. 80 mmHg), then varies through cycles of pulses of period T with peaks
of the systolic height Pisygosic (e.g. 120 mmHg), as shown in figure 3. The first peak
arrives at t = Ty + T /2 after the valve opens, where To < T /2. Successive peaks arrive at
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Figure 3. Model of pressure pulses released from a ventricle for 7o = 0s, 71 = 0.1s, 72 = 0.3 s.

t=To+ (k—1/2)T,withk =1,2,3,.... For convenience, we introduce

T
T=1— <T() + 5) , (2.16)

so that P(f) becomes P(7) which is an infinite sequence of pulses peaked at T = kT, k =

0,1,2,3,.... Specifically the first peak in —% <T< % is assumed to be

0, —— <1< -1y
) 1
T T 0
cos| — |, —T <1t <0
Pmax 2T1 1
Pdiastolic + . (217)
e 0<1t<Ty;
cos| — ), ;
Pmax 2T2 2
T
0, Th <1< —.
2

Then P(t) can be written as a Fourier series

0 .
P(t) = Paiasotic + Po+Re S P et = 2 (2.18)
k=1 T
with
2pmax (T1 + 17)
Pyp=————,
T b
b _ 2 [m/zm T i (w/2Ty) e T2 4 iuk} @19
T L aem - w20 - )
By shifting the origin of time and changing from t to ¢,
o
P(t) = Puiastotic + Re Zﬁkei“ Kot >0, (2.20)
k=0
where
Py = Pre ot T/2) -y — py, (2.21)

In figure 3, P(¢) is shown for 7o = 0s, 71 = 0.1, 7> =0.3sand T = 1 s to be used in
later computations.
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2.3. Aorta pressure in anchored balloon

In general, p(x, t) is coupled with X(¢) by (2.9) and subjected to (2.13), (2.14) and (2.15).
The initial-boundary-value problem is nonlinear and will be solved later numerically
together with the flow inside the gap between the walls of the aorta and balloon. To
demonstrate how the viscoelastic model reduces resonance in the aorta, we solve the linear
initial-boundary-value problem for p for constant X as sketched below.

Let us define p(x, 1) = P(t) + W(x, 1) so that

2w 1 *w 3w 1 8%2P

R 4 =—— 0 X, 2.22
o2 2o Podar Tt TN T (222)
ow
W=0, x=0, —=0, x=X. (2.23)
0x
Since P(0) = Pjiastolic, We have
ow
W =0, ¥=0, t=0,0<x<X. (2.24)
Let W be given by
ad 1\ mx
W(x, ) =) T,(1)sin [(n - 5) Y] (2.25)
n=1
which satisfies (2.23). The solution for 7}, (¢) is
OO .
Tu(t) =Re Y _ Egqe™
k=1
00 00 L 2 2
— B2 t ) sin 5/ 4w; — B
—e Pt/ |:Re > Ejy cos 5,/460,% — B2 +Re > Epn (B + 2iptr) 42—_’1,32’1 ,
k=1 k=1 wy n
(2.26)
where
AuzPr
Ein = . . (227)
n@n = 1) (iButtic — 1 + w2)
and
Cn 1
Bn = Bwp, @, = 5 (n - 5) ; (2.28)

with w, being the eigenfrequency and B, the damping rate of the nth mode. The k-series
now starts from k = 1 since ng = 0. In (2.26) the first series represents the quasi-steady
pressure, the remaining two series represent the transient pressure which decays in large
time.

927 A20-7


https://doi.org/10.1017/jfm.2021.777

https://doi.org/10.1017/jfm.2021.777 Published online by Cambridge University Press

C.C. Mei, Y.L. Li, S. Michele, P. Sammarco and P.B. McBeth

240 T I . :
— B=103s A
20— = p=05x10"2s
e —— B=102s /
E 2007 p=15x102s
: /
=
Y
o
< T

0.40

X (m)

Figure 4. Maximum aortic pressure at the head of balloon at different X. Only g = [1.0, 1.5,2.0] x 1072 s
are known to be representative for a human aorta.

From (2.25),

WX, 1) = Z(—l)”_lTn(t) (2.29)

n=1

which depends on X through w,. The pressure at x = X is finally given by

o o
PX, 1) = Piastolic + Re [Z e Py + Z(—l)"—lmr)} . 1>0. (2.30)
k=1 n=1

The quasi-steady part is simply,

o0 o
pX. 1) = Pgiasiolic + Re Y _ ! [Pk + Z(—l)“Ekn} Couie> 1 (23D)
k=1 n=1
Figure 4 shows the behaviour of maximum p(X, f) according to (2.30) at the upstream
end of the balloon for g =[0.1,0.5, 1, 1.5, 2] x 1072 s. Only the three largest B’s are
known for human aorta (Canic et al. 2006), for which max p(X, #) increases monotonically
with X. For these three cases, the solution is dominated by (2.31) since the transients die
out quickly. The results for very small 8 = [0.1,0.5] x 1072 s are also included just to
show the occurrence of resonance at values of X corresponding to the eigenfrequencies
1.

3. Blood flow in the balloon-aorta gap
3.1. Initial distension of inflated balloon

We modify Lighthill (1968) who treated the pellet motion in an elastic vessel driven by a
steady blood flow. With reference to figure 2, let » be the radial distance from the aorta
axis and R the inner radius of the undeformed aorta, and & be the non-inertial coordinate
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moving with the balloon,

L
§=x—X(t)—§, t>0. (3.1)
Let us define
n=r—R 3.2)

and let n = b(§), —£/2 < & < £/2 describe the outer surface of the fully inflated balloon
and n = a(&, r) be the distention of the aorta wall. We assume that, when the aorta is
drained and p = 0, the aorta wall is initially in tight contact with the balloon, i.e. a = b for
—£/2 <& <1/2,t < 0. When the incident pressure pulse arises, the aorta wall is forced
by the blood pressure p, in the gap and a(§, r) become larger than b(§) and creates a gap
of positive thickness.

In principle, the balloon can be slightly compressed. However, the compliance of
the commercial balloon is O(1073) times that of the aorta (Secco er al. 2016). Since
the saline water inside is also quite incompressible, the inflated balloon retains its
shape approximately as a rigid body. The balloon distension »(§) is a function of the
balloon-fixed coordinate £ only. As a simple model to be used in later computations, we
shall choose a paraboloidal balloon with truncated ends, as sketched in figure 2,

R0

02/4
with bg being the maximum radial distension of the balloon. Today’s commercial balloons
have rounded ends. But in later calculations of the total longitudinal pressure force, the

difference between flat and round ends is negligible since the local pressure is essentially
constant. This follows from Gauss’ theorem,

///V-(pex)deffp(ex-n)dAzo, 3.4
\% A

where V and A = A1 U A, are respectively the total volume and surface of the head.

Unlike the aorta upstream of the balloon, no wave motion is expected in the thin gap.
We ignore B % = O(Ba/T) relative to a and approximate (2.8) by ap, ~ a. The thickness
of the partially open gap at any ¢ > 0 is therefore

b(§) = bo (1 ) ., —t=§=<¢/2, (3.3)

14
h(§. ) =a=-b=apg(§.0)—b@E). -5 <&<&O. 120, (3.5)

where &, (f) denotes the moving tip of the gap, as marked in figure 2. In particular,

14
h(&,0) = aPgiastotic — b(§), _E <& <&(0), =0, (3.6)
in view of the initial condition (2.15). Beyond the tip, the two walls are in close contact,
h(E 1) =0, & <§<{/2 (3.7

Because the balloon wall compliance is much smaller than o (Secco et al. 2016), the
initial distention of the contacting walls can be related to the initial contact pressure p. (&)
by

pe(§) = (3.8)

Later (¢ > 0) when the front of the pressure pulse crosses the upstream end of the
balloon, a gap must expand in —£/2 < & < &,(¢), since p.(§ = —£/2) =0 is always
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smaller than p(X, 1). In the gap p. is replaced by the blood pressure
pE. D) =pg, 0, —£/2<§<&©O). (3.9)

Note that pg(és, 1) = pe(§x) = b(§x)/a. Clearly if 0 < pg < pe(§ = 0) = bo/a, the gap
cannot extend beyond the mid-section of the balloon (i.e. £, < 0). Since p.(—£/2,0) =0
at the upstream end, the aorta wall will always be separated from the balloon by any finite
pressure p(X, t) after t = 0. To prevent leakage, the balloon must be inflated so that p.(0)

is greater than the maximum p(X, ¢) from the incident pulses. Take @ = 10~/ m Pa™!,
and a balloon with the maximum distention bp = 2 mm. (We maintain the assumption of
constant compliance in (3.8) for simplicity although linear elasticity may be inadequate
if by/R is not infinitesimal (Caro et al. 2011).) Then the maximum p.(0) = bg/a = 2 x
10* Pa = 150 mmHg, when it is higher than any p(X, 1), prevents the gap from advancing
to the mid-point (§ = 0) and no leakage will occur. Clearly a much less inflated balloon
will not be effective to halt haemorrhage. In later numerical examples we only examine
sufficiently inflated balloons of moderate distension that disallow leakage.

3.2. Lubrication approximation of blood flow in the gap

Let u/ (x, n, ) and vé (x, n, 1) denote the horizontal and radial blood velocity in the inertial
coordinate system fixed on the aorta, and ug(§, 1, 1), ve(&, n, t) denote the corresponding
velocity components in the non-inertial moving coordinates (§ = x — X(¢t) — €/2, n, 1).
Since

ug(§,m, 1) =ty (x, n, 1) — Xy, (3.10)
ug _ dug 05 _ dug Dy vy) _ 0(ug, vy) 3.11)
ax 0& 0x 9t an n '
For a narrow gap h/¢ < 1, the law of mass conservation is
duy v, . Oug  Ovg .
— 4+ —=0, ie.—+—=0, inb) <n<al,r). (3.12)
ax an d& an

Neglecting convective inertia and invoking the lubrication approximation, momentum
conservation requires

dpg 32”2 : dpg Fug
0= M % o re. 0= —¥ + ,u7, inbE) <n<al,t), (3.13)
and
apg . .
mir 0, inb¢E)<n<al,r). (3.14)
n
On the non-compliant balloon wall n = b(&) we have ufg, (x, b, 1) = X;, hence,

ug(é,b,1) =0, and wve(&,b,1)=0. (3.15)

On the aorta wall, n = a(&, 1), vé’z(é, a,t) = 0, hence,

ug(§,a,1) = =X, (3.16)
da(&, t) _Oa ﬁa_a oh B da

at ot ataE  ar aE

ve(§,a,1) = (3.17)
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Upon integrating (3.12) from n = b to n = a, applying Leibniz rule,

a [ da b
9 ), e dn — ug (8, 00% + ”g(s,)’b)g +vg(§,a) —vg(§,0) =0, (3.18)
and then using the boundary conditions (3.16) and (3 17), we obtain
o d + — =0. 3.19
08 / n (3.19)
Thus, the volume flux is not constant. Defining the depth-averaged velocity U by
a
Uh :/ ug dn, (3.20)
b
(3.19) becomes the depth-integrated law of mass conservation
a(Uh)
— 4+ — =0, (3.21)
& ot
which is similar to that of one-dimensional gas dynamics, where & plays the role of gas

density.
Integrating the momentum equation (3.13) twice, using (3.15) and (3.16) give the
velocity profile

Ipgm—ayn—=>b) _ n—>b

ug(§,m, 1) = T o X P (3.22)
The depth-averaged velocity is
U:_h_Z%_&:_h_zM_& (3.23)
12u 0& 2 Rua  0& 27 '

Substituting this into (3.21) yields
oh o [ I 8(h+b) hy
E‘%{lzua 2 12 f}’
which is similar to the approximate governing equation of a thin viscous layer on an incline
(Huppert 1982a; Lister 1992), and in a hydraulic fracture (Lister 1990). This nonlinear

diffusion equation must be solved numerically for the initial condition (3.6) in view of
(2.15). The boundary conditions are

pe=pX.0), até=—£/2, and hE 1)=0, &=1¢£/2, 1>0. (3.25)

A small gap must exist at the upstream end of the balloon at the start. Thus, at any ¢ > 0,
the walls of the aorta and balloon are separated only in —¢/2 < & < &,(¢) but remain in
tight contact in &,(¢) < & < £/2.

Solution of the complete problem requires numerical computation of the aorta pressure
p(X, 1) at the upstream end of the balloon, the gap thickness (&, 1), the tip position &, (f)
and the balloon motion X;. Details will be given in § 6.

For later use, the dominant shear stress in the fluid is, from (3.22),

8ug 8p[s 2y—(a+b) uXs

(3.24)

= = - 3.26
e = Mo T R e 2 h (3-26)
Hence,
Tenla ) _ iﬁ%_u_X’ (3.27)
Tenlp 206  h '
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4. Approximate analysis for gap evolution

As a preliminary step before the solution of the complete problem involving balloon
dynamics, we first analyse the mechanics of gap evolution, leaving X; to be determined
later.

Using (3.5), a = h + b, we integrate (3.24) over the small neighbourhood of the gap tip

h? da _ hy _ /é*ahds, @1
Ruadt 270 Jo oo o '

Since &, — & = O(£/2), the right-hand side is O(h¢/2AT), where AT =T+ T, =
0.4 s. Taking u=3.7x 1072 kg(m s)~!, «a =10""m Pa~!, £ =40 mm and h =
O(bg) = O(2 mm), we get

2
0<8a) _ R2pa € («/12;w¢€/(2AT)) <l

da _ 42
JE n 2AT h 4.2)

It follows that the aorta wall is very flat away from the small neighbourhood of the gap tip.
Matching pressures at £ = —£/2, we get

a(—L/2,1) = apg(—£/2,1) = ap(X, ). 4.3)

The straight line extending the flat aorta wall intersects the balloon at & where
a(—£/2,t) = b(&). For the paraboloidal balloon, this gives the quadratic equation for

&o.
&

- 52/4) =a(—£/2,1) = ap(X, 1). 4.4)

b(&0) = bo (

Recall that p(X, 1) < abyg since leakage is not allowed, the negative sign of the square root
must be taken so that

M:_Wr\/l—“@- (4.5)
€/2 bo bo

Note that if p(X, 0) > 0, £,(0) must be finite, i.e.

m:_\/@:_\/@, +6)
02 bo bo

and a small gap must exist at the upstream end of the balloon at the start.
To guarantee zero leakage, the intersection point £y(¢) must be on the upstream half of
the balloon wall. As an estimate, we take a relatively high p(X, 1) = 150 mmHg = 2 x
10* Pa, by = 2 mm, then a(—£/2,t) = 1.995 mm < by and &y = —1.0 mm. The velocity
of the intersection point is
dp(X, 1)
@ B ol a

B a1 — 2%

Thus, d&y/dt and dp(X, 7)/dt are of the same sign, implying that the gap tip advances (or
retreats) when the pressure rises (or falls).

927 A20-12
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We now study the small neighbourhood of &y defined by €(£ — &) where the small
parameter € will be identified later in (4.20). Introducing the inner coordinate,

o550 (4.8)
€

and changing the independent variable from (&, ¢) to (o, ), we employ the chain rule

dh.1)  dh(o.t) 10hds 9 10

— L = , 4.9
dr ot € do dr €  €do (4.9)
to rewrite (3.24) as
oh  d&oh 8 [ K [on ab]  hX,
€—— ——=— — + — — 1. (4.10)
ot dt do do | 2ua | 06 o0& 2
Ignoring € (dh/0¢) and integrating in o once, we have
h* [ 0h Lslo (% Xy o db] Sbos @1
2ua | 98 ~\a T2) P Tl e '

in a O(e{/2) neighbourhood of &y where the local balloon slope S is approximately a
constant. The integration constant is zero since 7 = 0 when the right-hand side vanishes.
We now use this approximation to examine the advance and retreat of the gap tip.

4.1. Gap advancing

Consider first the phase when aortic pressure rises so that d§y/d¢ > 0. During this phase
X; > 0. Defining the length

_ [ (a6 x,
om0 (%02, @)
and rewriting (4.11) as

h\2T d(h/8,) B

(E) [d(So/8+>+1]__1’ @1

which is a first-order differential equation for /8.,

1 h S
l-—— | d|— ) =——d&. (4.14)
h\? 8y 8y
1+ (5)
5t
The solution for the advancing tip is
" =g (4.15)
— — an - = — - ) .
Sy Sy Sy *

where &, corresponds to the gap tip where & = 0. In figure 5 this approximate result is
compared with the more complete numerical solution by the method of § 6. There is a
slight difference since (4.15) is based on approximating the local balloon surface by a
plane.
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1.7

1.6

L5

1.4

n (mm)

1.3

o Numerical
Approximate

1.2
n=>b
11 ‘ ‘ ‘ ‘ ‘
-14 -13 -12 -11 -10 -9 -8
§ (mm)
Figure 5. Snapshot of gap during the advancing phase of the second pulse at = 1.45 s. The circular dots
represent numerical results including the thin tail left by the first pulse. The hatched surface is the upstream
half of balloon wall.

Note that in the immediate neighbourhood of the tip & — &, = O(6+/S).
To have some preliminary idea of the magnitude of 5, we consider the instant when

Xl:09
12pna déo
5 0 = —_ 4.16
+lx,=0 =/ S 4 (4.16)

Let us estimate the pressure pulse height above Pgiggoiic to be Ap(X, ) =40 mmHg =
0.533 x 10* Pa and the duration to be AT = T} = 0.2 s, typical S = 2 mm/20 mm = 0.1.
Then

5| | Rpadé  [12pa?dpX,1) o« o dp(X, 1)
XN T TV s o sVt

1077 0.533 x 104
= 12x37x 1032222 X
2/20 0.2

=343 x 107%m = 0.0343 mm.
4.17)

At the outer limit of the inner field, i.e.away from the tip, —S(§ — &,)/5+ > 1. The
left-hand side of (4.15) may be approximated for large //8 so that tan~ ' (h/8,) — /2.
Since the aorta wall is nearly flat, 7 =~ S(§ — &), where S is the local balloon slope at &.
Equation (4.15) then becomes

SE—%) = S
— " — — = ——(&£ - &), 4.18
5 7 5 (& — &) (4.18)

which gives the position of the gap tip at ¢,
1/2
TSy 3112,1/,0{ dé& X;
—fH=—"—=- —_ 4+ — . 4.1

b= -5 [SS (dt+2 <0 4.19)

Thus, &, — & is a very short distance, and the tip is slightly behind &y (7). Because of this
and (4.15), the neighbourhood of the tip is of the length O(5/S), implying in turn that the
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o105
c— 0( - ) . (4.20)

On the other hand, &, — & = O(64/S) is very small in the immediate neighbourhood of
the tip; 7/44 is also small and

small parameter in (4.8) is

h _h K
tan~! —~ — — = (4.21)
L s L
Equation (4.15) can be approximated by
3 N
— = —— (£ &), 4.22
350 5 (& — &) (4.22)
hence,
h s 1/3
PN s 4.23
5 ( 5 3 S*)) (4.23)

which represents a blunt front similar to film flow down an incline (Huppert 1982a; Lister
1992) and is a well-known feature of the nonlinear diffusion equation (Landau & Lifshitz
1959).

4.2. Gap retreating

When the pressure pulse rises near its peak, the total force can be large enough to cause
balloon migration. As the peak is passed, the balloon remains stationary (X; = 0) since
the pressure never reverses direction. The tip reaches its farthest point at time #, and then
stops. As the pressure falls from pg to Pgjasolic, the aorta wall tends to fall on the balloon so
that &y moves backwards. The flow ceases inside the gap which becomes a tail between &
and &,. Numerical solution by the scheme to be described in § 6 indicates that &, remains
essentially constant. This can be confirmed by noting that the aorta wall is nearly parallel
to the balloon wall. Using the numerical evidence that d4/0& = 0 around &,, (3.24) is
approximately hyperbolic,

dh _ S(&)h* dh _db
— SE) = Elg*,

ar dpa €’
whose local characteristic curve is a straight line d& /dr = 0 since 22 = 0. Thus, the point
&, stays unmoved. As &g retreats, the tail must stretch in length and becomes thinner in
time. The current advancing gap climbs over the tail left by the previous pressure pulse.
The profile of the retreating gap away from &, but closer to &y can be treated analytically.
Defining

(4.24)

2o
S

)
d

5_() = , (4.25)

(4.11) can be rewritten as
1 h S
1+ — | d )= 5 dg, (4.26)
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which can be integrated to give

by
1.5 S
— ol = (&4 — £). 4.27)
s 2 h 5

3_+1

The integration constant £4 can be determined by requiring / to match smoothly its value
near &,

oh dla—>b
hE) = heo) + e — k) =04+ 2T 6 g b = —SE0)E —E0) -,

9§ 9§
(4.28)
since a is nearly constant (see (4.2)) and db/d&|g, = S(§0). Equation (4.27) can match
(4.28) if &4 = &, so that the gap profile is

-
S T S
o = 25— g, (4.29)
s_ 2 h 5_

5

Sufficiently far downstream of &, the right-hand side is positive and large, so that the
above equation can be approximated by

L[ h L SE—&) h 25(5 — &)
EIH(S__I)N 5 OrS, 1+exp< 5 )—)1. (4.30)

Thus, the thickness of the gap tail diminishes with time according to (4.25) due to the
fall of dp/dt and, hence, d§y/dz. The aorta wall tends to collapse onto the balloon during
pressure decline.

These features of the gap tail are reasonably confirmed by numerical solution of (3.24)
shown in figure 6. In comparison, the analytical theory is slightly inaccurate caused by
approximating the balloon wall by a plane of local slope S(&p).

In summary, the gap between the walls of the aorta and balloon evolves in three stages
between successive pulses.

(a) First, the gap opens at £ = —¢/2 and advances to the right. Due to viscosity, the gap
tip £4(¢) is of O(d4/S) behind &y(¢), 1.e.&x = &y — O(6+/S). The local gap thickness
is h = O(8) as shown by (4.15) and (4.23). As p, increases to a systolic peak, the
gap tip advances to the furthest point &, close to but behind &y (), i.e.&, = &o(¥) —
0(54+/9).

(b) Second, the gap closes and the tip retreats toward —€/2. The gap between &y(¢) and
&, forms a very thin film of thickness 7 = O(6—) which decays with time. The tip
remains at &,.

(c) Third, at the next pulse, the inlet pressure increases again and the gap advances along
the thin film blood left by the previous pulse.

This process is repeated cyclically after each heart beat.
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Figure 6. Snapshot of gap during the retreating phase of the second pulse at = 1.7 s. The circular dots
represent numerical results and the hatched surface is the upstream half of balloon wall.

5. Balloon dynamics

We assume that before the heart valve opens, blood fills the aorta during the balloon
inflation. Since the balloon wall and saline water within are much less elastic than the
aorta wall, the balloon acts like a rigid body during migration.

After the blood wave arrives from the ventricle, the aorta wall near § = —£¢/2 is forced
to separate from the balloon by the blood pressure pg(&,1). A gap is formed with its
front advancing from & = —€/2 to &,(¢). In the region where the two walls are still in
tight contact, &,(f) < & < €/2, solid friction must be dominant. This is different from the
problem of Lighthill (1968) on the steady motion of pellet in a blood vessel where there is
always a non-zero gap and no solid friction, and also different from the mixed friction in
metal bearings where solid and fluid can coexist in the narrow gap dominated by partial
contact of asperities.

For a crude estimate of solid friction, partial guidance can be found from the literature
on the treatment of an abdominal aortic anuerysm, which is a localized dilatation of the
infrarenal aorta. The disease is often treated by placing a stent-graft into the aneurysm
to form an artificial conduit so as to exclude the aneurysm sac. The stent is a scaffold
made of fibrous biomaterials. Its migration can introduce shear forces and radial forces
that damage the endothelial cellular layer. To prevent such damages, the stent must be
anchored in place by sufficiently strong friction (Liffman et al. 2006). From Dunn et al.
(2007), the measured values of the friction coefficient are of the order of f = 0.03 ~
0.06. Petrini et al. (2005) and Wu et al. (2007) used the friction coefficient of 0.05. Vad
et al. (2010) conducted extensive experiments of three Nitinol stent-grafts in polymeric
tubes of different diameters (A: 22 ~ 28 mm, B: 20 ~ 28 mm, C: 18 ~ 24 mm). The
friction coefficients were found to be f = 0.08 ~ 0.16, 0.22 ~ 0.46 and 0.012 ~ 0018,
respectively. Clearly the range of f is wide among these devices. Unfortunately no data
are known on the friction coefficient in REBOA; hence, tentative estimates will be made
in the present theory. With this reservation we now formulate the equation of balloon
motion.
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Consider in general when by and p. are not large enough to stop the balloon motion.
Newton’s law requires
Md2X F@), X,>0 (5.1)
_— . > . .
dr? !

The mass M of the truncated paraboloid is

£/2 2 22 2
M=pb/ W[R+b(§)]2d5=npbzR€/ [”@@} d<s>
vy

oy R bo ¢/2
4by 8 b2
—nopR2 1+ -—— 4+ — 0 5.2
T Op {+3R+15R2} (5.2)

Since the balloon is normally filled with medical saline of density p, = 1.005 kg m—3, the
balloon with bp =2 mm, R = 1 cm and ¢ = 4 cm has the mass M ~ 16 g.

The total force F' consists of several parts,
F=F,—Fs+F,, (5.3)

where F),, Fy and F, stands for parts due to pressure, frictional resistance and viscous
shear, respectively.
The pressure force F), is

Fp=Fpg+Fpe, (5.4)

where F), , is due to fluid pressure on the balloon head and in the gap,

&x db
Fpg(0) = p(X, N7R® + / pg(§, 1) 21 (R + b(§)) & dé, (5.5)
—£/2
with
14
pX, 1) =p,g _i’t , (5.6)
and F), . is due to direct contact of the aorta and balloon,
/2 db
Fpe() = / pe(§, 021 (R + b(§)) & dé, 5.7
&

where p, is the contact pressure defined in (3.8).
Since the contact pressure over the dry part of the balloon wall is p. = bg/«, the friction
force Fy during balloon motion is

2/2 02 p
Fy(n) = Jpe(§, )21 (R+ b(§)) d§ = . ()f%Zn(R + b(§)) d§
* 5 (1
02
_ 2n/Rby / b#) (1 N @@) "
@ Jaw bo R bo

anzbo]Z{l 3

b
o« R 5()(* ~ 3 20+ (1= x2)3Gx2 + 9 + 8)} . (5.8

15R
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where (3.3) is used for »(£) and f is the kinetic friction coefficient. For brevity,
L) &0

are introduced. When the balloon stops to move, f should in principle be the static friction
coefficient. For lack of accurate information, no distinction will be made in this study.
Finally, the viscous drag force is

(5.9

&
F,(H) = / Tey 2w (R + b(§)) d&. (5.10)
—2/2 n=b
In view of (3.27) and p, = a/a,
h da X;
Ten |, = ~2a% 5.11)
It is convenient to write
F, = Fv,ag + Fv,X,, (5.12)

with
&x

&y h o
Foa(t) = — / O R+ bE) dE, Fox () = — /

Xi
—2m (R +b(§)) d&.
12 2a 0E —m“h 7 ( (§)) d§

(5.13)

The complete computational task is to solve the initial-boundary-value problem coupling
the aorta pressure p(X, 1), the gap advance/retreat and the balloon displacement X (7), due
to weak inflation, weak solid friction or high cardiac pressure.

For programming convenience, we employ the following governing equations for waves
in the aorta:

du _ _8(17/0)’ (5.14)
ot 0x
ap/p) 2 9\ du
ek C <1+'88t> o (5.15)

instead of (2.9). Equation (5.15) is obtained by substituting (2.1) into the time derivative
of (2.8). To account for the moving boundary, we introduce

x=X®¢ (5.16)

so that the aorta is defined by ¢ € [0, 1]. In terms of the new independent variables 7 and
¢, the equations for u and p/p become

ou XL ou 19dp/p

— = , (5.17)
ot X 0¢ X 0¢
d(p/p) Xt d(p/p) C*ou  C* 3 (0u 5.18)
ar X 9 Xac "Xoac\or) '
The boundary conditions are now specified at two known points ¢ = 0, 1,
p(t, e =0)=P@), u(t,¢=1) =X(). (5.19)
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6. Numerical solution for balloon migration

We employ the method of lines (Scheisser 1991) and discretize ¢ = [0, 1] at N + 1
points ¢;,j=0,1,..., N. There are 2N + 2 unknowns: u;,j =0,1,...,N—1, p;,j =
1,2,...,N, X and X;, governed by 2N + 2 first-order ordinary differential equations,

i X¢ 1
S = 2 Dyt~ L [Dv(p/p)]s =0 N1, (6.1)
dpi/p)  Xig o du -

along with Newton’s law (5.1) and X; = dX/dt. Here Dy is the derivative matrix which
can be either a Chebyshev differentiation matrix (see Trefethen 2000, Chapter 6) based on
N+1 Chebyshev points, or a standard central finite difference matrix based on N+1 nodes
of equal spacing, i.e.

[Dnf]; = JS;TJ;;_] 6.3)

Equations (6.1) and (6.2) are coupled with (5.1) and (3.24) for finding p, and &, to
determine F.
We require the boundary conditions,

and initial conditions

dx(0)
dr

uj(0) =0, p;j(0) = Paiastotic, X (0) = Xo, 0. (6.5)

When the balloon moves, the nonlinear heat equation (3.24) contains X; which has to
be solved by coupling with (6.1)-(6.5) and matching py(?) = p(X, ?). A fixed time step
At is used. From 1™ = nAt to {1 = (n + 1) Az, the balloon motion equation (5.1) is

approximated by
dx Fm 4 po+D
e _Arrre (6.6)
dr 2

with a truncation error of (A#)2. The force F™t1D is obtained by finding Wt from (3.24)
using the Crank—Nicolson finite difference scheme,

Lt _ () 1 dg(h+1) N 1 9g(h™)

At 2 0 2 98 ©.7)

where

W ah+b) h
(h+ )+_Xt(n+l/2) 6.8)

1M =15 oe 2

with X,(n+l/2) = (X,(”+l) +Xt("))/2. At the left boundary of gap & = —£/2, the gap

pressure matches the aorta pressure and satisfies (3.5), i.e. K1 (—¢/2) = ozp](\;”r]).
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The right boundary is the tip of the gap &,(¢) where the thickness i(&.(7)) = 0, which
requires

dbE) _ 3 d& 0k _,

= — = (6.9)
dr ot dr 0&
Thus, the tip moves at the velocity
d h
A& M _ 4 (6.10)

dr hg hele_g,o)

which can be numerically determined. A grid of equal spacing A& is used to dynamically
cover the computational domain between —¢/2 and —€/2 + M A& such that —¢/2 +
MAE < &.(t) < —€/2+ (M + 1)A&. The grid number M increases as &, (f) moves closer
to the balloon centre & = 0. The &-derivative of & and g are approximated by the central
difference formula for inner nodes but by single-sided differences for boundary nodes. The
unknown A"+ in the discretized nonlinear heat equation (6.7) is solved using MATLAB
nonlinear equations solver fsolve with analytically calculated Jacobian. Since F"+1
and XD are part of the solutions, a few iterations are required in each time step.

For the limiting case of constant X, this numerical scheme has been confirmed by
comparison with the exact result of (2.30) and analytical approximations as shown in
figures 5 and 6.

In our first numerical example the inputs are X(0) =20 cm, f = 0.202, Pyygoiic =
120 mmHg and P 45101 = 80 mmHg. In figure 7(a) the time series of the aortic pressure
pulses is first displayed. Positive F(#) occurs only during a brief moment around the pulse
peaks and appear as spikes. These spikes lead to sudden jumps of X (#) under each pressure
pulse. Note that both the spike height and the displacement jumps increase slowly in time,
due to the similar growth of max(p(X, r)) in figure 4. Finally, the location of the gap tip
&, is shown. After each jump, &, retreats somewhat due to the advancement of the balloon.
The total migration is 3.5 cm after 15 s, or roughly 0.233 mm s~!. The gradual lengthening
of &, follows the increase of displacement jumps. More details around a typical pressure
peak are displayed in figure 8. When p(X, f) climbs up the peak, the gap tip first retreats
along the balloon (figure 8a). Meanwhile migration begins and accelerates as long as
F > 0 (figure 8b). When p(X, ) falls down from the peak, the gap tip then advances
while the balloon decelerates and finally stops. Viscous drag is negligibly small throughout
(figure 8¢).

The effect of friction coefficient f is shown in figure 9 for f = 0.200, 0.201 and 0.202, all
for the same X (0) = 20 cm. The balloon displacement increases several fold if f is reduced
by only 1 %. To better understand the sensitivity of balloon migration on f and X(0), let us
first seek analytical estimates of the dominant force components F), = F), ; + F), . and Fy.
Since da/d& ~ 0 over the wet part of the balloon wall, the following approximation can
be made in the integrals of (5.5),

Pe(§) ~ pg(—£/2) = p(X, 1), (6.11)
so that
Fpg ~ 7R + p(X. 1) i*/(: 27(R + b(§))bg d&
= pX. 1) [R+ b(E )] (6.12)
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Figure 7. Balloon movement forced by intermittent cardiac pressure and resisted by friction. Input data: £ =
4 cm, bg =2 mm, Vj, = 16.185 ml and M = 16.3 g. (a) Blood pressure p(X, 1); (b) F = F), + Fy around the
peaks of pressure pulses when the balloon moves; (c¢) displacement of the balloon; (d) gap tip &,.

Using p. = by/«, the force on the dry part of balloon wall is

)2 o (U2
Fpe= / )Pc(§)2W(R + b(§))bs d§ = 7/ : b(&)(R + b(§))bs d§
t

&t &x(
2 3
_ _2n [Rb (§+) n b (S*)} ‘ (6.13)
o 2 3

On the other hand, the solid friction acting on the balloon surface in contact with the
aorta is already given by (5.8).

It can be seen in figure 7 that, around the first pulse peak at t = 0.5 s, the blood
pressure inside the gap is about 128 mmHg. The corresponding &, ~ —8.2 mm and
b(&x) ~ 1.7 mm. From (6.12) we get F, ; = 128 x 133 x m(0.01 + 0.0017)2 ~ 7.32 N.
Similarly F, . ~ —0.96 N from (6.13). The frictional resistance is Fr ~ 6.26 N from
(5.8). Neglecting the viscous drag Fj, the net force is 7.32 — 0.96 — 6.26 = 0.1 N, which,
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Figure 8. Numerically computed balloon velocity and forces near the peak of a typical pressure pulse. (a)

Pressure p(X, ) (dashed curve) and gap tip &,(7). (b) Balloon velocity (dashed curve) and the total force on
balloon F (solid). (¢) Viscous drag Fy 4, and Fy x, .

F

on a balloon with relatively small mass M = 16 g, leads to a large acceleration of
0.1/0.016 = 6.25 m s~ 2. If the coefficient f is reduced just by 1% from 0.202 to 0.200,
the frictional resistance is reduced by 6.26 x 0.01 = 0.06 N, i.e. 60 %, and the net force
is increased by 60 % from 0.1 to 0.16 N, resulting in considerable increase of balloon
acceleration and displacement.

In figure 10 the numerically computed balloon displacements for X(0) =
19.0, 19.5,20.0 cm and f = 0.200 are compared. Again a small change in X(0) leads to
a large difference in X(¢) at large ¢. At these initial positions, the peak pressures at X are
127, 127.6 and 128.2 mmHg, respectively. The difference of 0.6 mmHg corresponds to a
changein F), ; by 0.6 x 133 x 7(0.01 + 0.0017)% A~ 0.03 N. Thus, the net force is reduced
by 30 % for each 5 mm reduction of separation from the ventricle. This is again due to the
dependence of max(p(X, 1)) on X(0).

In the experiments of Borger van den Burg et al. (2019), migration of 0.9 mm s~
was observed in one test under a steady hypertensive pressure of 160-180 mmHg. Their
balloon was partially supported at the back by a catheter which buckled in some of the
tests. Since the measurement was performed for steady pressure on a much larger porcine
aorta of undocumented elastic properties and initial distension, a meaningful comparison
is not feasible and must await more definitive experiments and reliable modelling of the
catheter deformation.

1
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Figure 9. Balloon displacement for X(0) = 20 cm and different f. Other inputs are the same as those in
figure 7.

28 .
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20
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Figure 10. Balloon displacement for f = 0.200 and different X (0). Other inputs are the same as those in
figure 7.

7. Criteria for secure anchoring

When the balloon is securely anchored, X; = 0. We first use the numerical scheme to
compute the threshold value of max p(X, 1) by requiring F = F, — Fr + F, = 0. The
results are shown by circular dots in figure 11 for different by and f, but the same
X(0) =20 cm. For example, if o) = 2.4 mm and f = 0.2, then max(p(X, t)) must not
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Figure 11. Threshold of max(p(X, 1)) for fixed X(0) = 20 cm and different balloon distention by and friction
factor f. Circular dots: numerical computations. Solid curve: analytical approximations.

exceed 150 mmHg for secure anchoring. If max(p(X, t)) is higher, by and/or f must be
increased.

For confirmation, it is useful to compare the numerical computed criteria with analytical
approximations. Making use of the near flatness of the aorta wall over most of the gap and
invoking (4.19), we first use (3.3) for »(&) in (6.12) and (4.4) and then approximate &, by
&p so that

b 2 \T
~ 2 0f1-_20
F, o~ =nRpX,1) |:1 + R (1 (5/2)2)i| (7.1)

- nRZ% (1-13) [1 + % (1- Xg)T, (7.2)

with —1 < x0 = &p/(€/2) < 0. Use has been made of (4.4). By similar substitution in
(6.13) we get

Fper———0=x) E+§(E) I =xy |- (7.3)

which is negative and opposite to the direction of blood flow.
The total pressure force is

b b 1 /bo\> 2
— ~ P20 2 2 2y, 2 (20 2
Fp = Fpg + Fp.c ~ nR*2(1 XO)|:1+ (=) + 3 (R> (1 XO) } (7.4)

The solid friction along the contacting surface of the balloon and the aorta is obtained
from (5.8) with &, replaced by &g, i.e.xs« by xo.
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Figure 12. Comparison between &, and & for anchored balloon. Circular dots: numerically computed &, after
eliminating &g in (7.8) by using (4.5). Solid curves: max(&p) corresponding to max(p(X, ¢)) according to (4.5).

To ascertain that the viscous drag is negligible, we put X; = 0 in (5.13) to get

& b da &:—0(3+/9) &y h da
Fy=Fypy = —/ 2 nRdE = — / +/ 2R de.
—¢2 200 0§ —¢2 £,-0(4/5) | 20 08

(7.5)

Again by invoking (4.2), the first integral above can be neglected. The second integral is
over the small neighbourhood of the gap front. During the gap advance & = O(64) and
da/d& = O(5+/(64/S)) near the front, the second integral is of the order

2R 8. 8 nR82
OF,) = =5 (5, 2 2 ) = 1204 (7.6)
2u 5+/S S o
It follows that
F RS2 52 0.0343)2
0<_”>:2—+/a:_+~¥<<1_ (7.7)
F, nR*by/oc boR 2x 10

This confirms numerical computations that the balloon is mainly pushed by the normal
pressure over the wetted area and resisted by solid friction over the dry part. Though
responsible for the gap formation, viscous drag is a negligible part of the total force.

The condition for secure anchoring is F;, < Fy. From (5.8) and (7.4), the minimum f' for
anchoring the balloon is

2 bo 2 L (bo ’ 2\?
<1—x0>[1+;<1—x0>+§<;) (1—x0)}

U6 =3x0+2 b (1= x0°Gxg +9x0+8)
~ R 3 R 15

i| , —1<yx<0. (7.8)

For any given max(p(X, 1)), xo is found from (4.5) and plugged into (7.8) to obtain the
threshold friction coefficient f as a function of by/R and ¢/R. The result is displayed by
solid curves in figure 11. Agreement with numerical computation is excellent.
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To see how well haemorrhage is prevented by the anchored balloon, we display the
dependence of numerically computed &, on max(p(X, t)) and bg in figure 12. For a given
distension bg, larger max(p(X, t)) corresponds to smaller —&,, implying higher risk of
leakage. In addition, the analytical relation (4.5) is also plotted as solid curves, showing the
small difference between &y and &,, hence confirming a key estimate used in the analytical
approximation.

8. Conclusions

In order to provide guidance for avoiding the hazard of balloon migration in REBOA, a
quantitative theory is described here to examine the physical mechanism of fluid/structure
interaction. First it is found that the blood pressure that forces the balloon varies along
the aorta, and depends on the initial position of the balloon. Greater separation from the
ventricle leads to greater driving pressure. Hence, the proper initial placement may need
to be decided according to the patient’s blood pressure. The cardiac pressure is shown to
force the contacting walls to separate, whether the balloon is firmly anchored or not. The
fluid mechanics of gap formation is partially related to the physics of lubrication in narrow
conduits. Due to the intermittency of cardiac pressure, the gap front alternately advances
and retreats following the rise and fall of the incident pulses. Leakage and/or migration
also depend on a judicious balance between balloon distension by and roughness, hence,
the frictional resistance. For a given aortic pressure and f, migration can occur if by is too
small. On the other hand, for a given pressure and chosen by, bleeding cannot be stopped
if f is not large enough. Once migration begins, the balloon advances in abrupt steps
under each pressure pulse. Moreover, the migration speed is found to be sensitive to the
roughness of the balloon surface; thus, further experiments are needed for more accurate
data on aorta compliance and the friction properties of different balloon materials. An
improved theory may also need to consider the stiffness of the catheter and computational
simulation of the complex aortic system. Since the migration of an unsupported balloon
depends also on the careful choice of initial distension and placement, easy and safe use
of REBOA may require further innovations of locking devises.
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