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STOCHASTIC COMPARISONS OF INTERFAILURE TIMES
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Abstract

We provide some results for the comparison of the failure times and interfailure times
of two systems based on a replacement policy proposed by Kapodistria and Psarrakos
(2012). In particular, we show that when the first failure times are ordered in terms of the
dispersive order (or, the excess wealth order), then the successive interfailure times are
ordered in terms of the usual stochastic order (respectively, the increasing convex order).
As a consequence, we provide comparison results for the cumulative residual entropies
of the systems and their dynamic versions.
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1. Introduction and motivation

Stochastic processes are important tools used in many areas of science and engineering to
describe the evolution of systems over time. In this framework, the failure time and the mean
time between failures are often used as a basis to make decisions regarding the reliability of
a system. Therefore, results which give stochastic comparisons of the failure times or of the
interfailure times can be useful in reliability theory.

In this paper we focus on a stochastic process introduced by Kapodistria and Psarrakos
(2012) which has recently received some interest among researchers (see, e.g. Psarrakos and
Navarro (2013), Burkschat and Navarro (2014), Di Crescenzo and Longobardi (2015), and
Di Crescenzo and Toomaj (2015)). For a system governed by this process, the mean time
between failures coincides with the cumulative residual entropy, a measure of uncertainty
introduced in Rao et al. (2004) as an alternative to the Shannon entropy. The purpose of this
paper is to provide conditions on the first failure times of two such processes under which
the successive failure times, the interfailure times, and, consequently, the cumulative residual
entropies, are stochastically ordered in various senses. We also provide conditions to compare
the dynamic versions of the cumulative residual entropies of the systems.

Specifically, let X be a nonnegative continuous random variable with distribution func-
tion F . Based on X, Kapodistria and Psarrakos (2012) constructed a sequence of stochastically
increasing random variables {Xn, n ≥ 1}, where n is a positive integer, thus,

X1
d= X, [Xn+1 − Xn | Xn = t] d= [Xn − t | Xn > t], n ≥ 1, t > 0, (1.1)
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where [X | A] denotes a random variable having the same distribution of X conditioned on A

and ‘
d=’ denotes equality in distribution. Note that the construction of this sequence is based

on the relevation transform introduced by Krakowski (1973); see also Baxter (1982). The tail
distributions associated to this process satisfy the recursive scheme

F̄1(t) = F̄ (t), F̄n+1(t) = [1 + �Xn(t)]F̄n(t), n ≥ 1,

where �Xn(t) = − log F̄n(t) is the cumulative hazard function of Xn. In reliability, this
sequence of random variables represents a process that describes the successive failures of a
component, which, on failure, is replaced by a component of equal age, but the life distribution
of the nth component is assumed to be identical to the distribution of the time until the nth
failure. In this sense, at every failure instant, the component is instantly restored to its condition
immediately prior to failure and its lifetime distribution function is prolonged.

It has been proved (see Corollary 4.1 in Kapodistria and Psarrakos (2012)) that the means
of the sequence of random variables {Xn, n ≥ 1} satisfy the equality

E[Xn+1] = E[Xn] + ε(Xn), (1.2)

where ε(X) = − ∫ ∞
0 F̄ (t) log F̄ (t) dt is the cumulative residual entropy (CRE) of X, a measure

of uncertainty introduced in Rao et al. (2004) and studied, among others, by Rao (2005), Asadi
and Zohrevand (2007), and Navarro et al. (2010). The CRE is a measure that extends the
notion of Shannon entropy from the discrete to the continuous setting and has some important
properties. For example, it is always nonnegative, it vanishes if and only if X is degenerated
at some value, and it is shift-independent (that is, if Y = aX + b, with a > 0 and b ≥ 0, then
ε(Y ) = aε(X)); see Di Crescenzo and Longobardi (2009). These properties suggest that ε(X)

could also be considered as a measure of the dispersion of the random variable X. At this point,
following the requirements suggested by Bickel and Lehmann (1976) for a functional to be a
dispersion measure, it is of interest to study the consistency of CRE with the dispersive order,
a partial order that formalizes the intuition that a random variable X is less variable than Y .

Definition 1.1. Let X and Y be two random variables with respective distribution functions F

and G. Then X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y ) if

F−1(p) − F−1(q) ≤ G−1(p) − G−1(q) for all 0 < q < p < 1.

This order compares X and Y by variability, because it requires the difference between any
two quantiles of X to be smaller than the corresponding quantiles of Y .

The starting point of this paper is the observation that the CRE is, in fact, consistent with
the dispersive order, that is, if X ≤disp Y then ε(X) ≤ ε(Y ). Moreover, if {Xn, n ≥ 1} is the
sequence (1.1) based on X, and {Yn, n ≥ 1} is a similar sequence based on Y defined by

Y1
d= Y, [Yn+1 − Yn | Yn = t] d= [Yn − t | Yn > t], n ≥ 1, t > 0, (1.3)

with tail distributions

Ḡ1(t) = Ḡ(t), Ḡn+1(t) = [1 + �Yn(t)]Ḡn(t), n ≥ 1,

it will be shown in Section 2 that

X ≤disp Y �⇒ ε(Xn) ≤ ε(Yn) for n ≥ 2. (1.4)
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136 M. A. SORDO AND G. PSARRAKOS

This suggests, taking into account (1.2), that the size of the random variable Xn+1 − Xn is a
measure of the variability of X (the more variable X, the bigger differences Xn+1 − Xn, for
n ≥ 1) which leads us to observe that (1.4) has a nice extension of the form

X ≤(1) Y �⇒ Xn+1 − Xn ≤(2) Yn+1 − Yn for n ≥ 1, (1.5)

where ‘≤(1)’ denotes some variability order and ‘≤(2)’ denotes some location order. It will be
shown that conjecture (1.5) holds when ≤(1) is the dispersive order (or, the excess wealth order)
and ≤(2) is the stochastic order (respectively, the increasing convex order). We define these
orders below.

In reliability systems, a matter of interest is how the age t of an item affects the information
about its residual life. To study this topic, Asadi and Zohrevand (2007) generalized the CRE
by considering a dynamic cumulative residual entropy (DCRE) defined by

ε(X, t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx, t ≥ 0.

It is easy to see that ε(X, t) = ε(Xt ), where Xt = {X − t | X > t} is the residual lifetime
of X at t (in particular, when F(0) = 0, ε(X, 0) = ε(X)). Applications and properties of these
measures can be found in Navarro et al. (2010), Baratpour (2010), Kapodistria and Psarrakos
(2012), Baratpour and Habibi Rad (2016), and Chamany and Baratpour (2014). We provide
conditions in Section 3 under which ε(X, t) is a measure consistent with the dispersive order.
In addition, given the sequences {Xn, n ≥ 1} and {Yn, n ≥ 1} defined, respectively, by (1.1)
and (1.3), we study sufficient conditions to order, for all t , the DCRE of Xn and Yn.

Next, we define the partial stochastic orders considered in this paper (see the books by
Shaked and Shanthikumar (2007), Müller and Stoyan (2002), and Belzunce et al. (2016a) for
general properties and applications).

Definition 1.2. Let X and Y be two random variables with respective distribution functions F

and G and survival functions F̄ and Ḡ.

(i) X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if
F̄ (t) ≤ Ḡ(t) for all t or, equivalently, if E[φ(X)] ≤ E[φ(Y )] for all increasing functions
φ such that the expectations exist.

(ii) X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if Ḡ(t)/F̄ (t)

increases in t . When X and Y are two absolutely continuous random variables with
densities f (t) and g(t) and hazard rate functions rX(t) = f (t)/F̄ (t) and rY (t) =
g(t)/Ḡ(t), this is equivalent to saying that rX(t) ≥ rY (t) for all t .

(iii) X is said to be smaller than Y in the increasing convex order (denoted by X ≤icx Y ) if
∫ ∞

t

F̄ (x) dx ≤
∫ ∞

t

Ḡ(x) dx for all t,

or, equivalently, if E[φ(X)] ≤ E[φ(Y )] for all increasing convex functions φ such that
the expectations exist.

(iv) X is said to be smaller than Y in the excess wealth order (denoted by X ≤ew Y ) if
∫ ∞

F−1(p)

F̄ (x) dx ≤
∫ ∞

G−1(p)

Ḡ(x) dx for p ∈ (0, 1). (1.6)
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It is well known that

X ≤hr Y �⇒ X ≤st Y �⇒ X ≤icx Y and X ≤disp Y �⇒ X ≤ew Y.

The rest of the paper is organized as follows. In Section 2 we consider the processes (1.1)
and (1.3) and obtain conditions, in terms of the dispersive order and the excess wealth order
of their first failure times, to compare, in various stochastic senses, the successive failure
times, the interfailure times, and the cumulative residual entropies of the systems. In Section 3
we compare their corresponding DCREs and provide examples that shed further light on the
theoretical results. Section 4 contains the conclusions. Throughout this paper, the random
variables X and Y are assumed to be nonnegative.

2. Comparing the time between successive failures

Consider the sequences {Xn, n ≥ 1} and {Yn, n ≥ 1} given, respectively, by (1.1) and (1.3).
Kapodistria and Psarrakos (2012) showed that

ε(Xn) = E[Xn+1 − Xn] =
∫ ∞

0
|F̄n(t) − F̄n+1(t)| dt, n ≥ 1. (2.1)

Observe that (2.1) can be written as

ε(Xn) =
∫ ∞

0
|F̄n(t) − h(F̄n(t))| dt, n ≥ 1,

where h(t) = t − t log t is a distortion function, that is, a nondecreasing function from [0, 1]
to [0, 1] such that h(0) = 0 and h(1) = 1. It has been shown by López-Díaz et al. (2012) that
the Wasserstein distance between a random variable X and its distortion is a measure of the
variability of X that satisfies the conditions of Bickel and Lehmann (1976). In particular, from
Proposition 2.7 in López-Díaz et al. (2012), it follows that if Xn ≤disp Yn then ε(Xn) ≤ ε(Yn)

for n ≥ 1. Moreover, taking into account that h(t) is a concave distortion function, it follows
from Yang et al. (2014), the next stronger result:

Xn ≤ew Yn �⇒ ε(Xn) ≤ ε(Yn) for n ≥ 1. (2.2)

The implication (2.2) tells us that ε(Xn) is a measure of the variability of Xn. In order to assert
that ε(Xn) measures the variability of the initial X (rather than Xn), we require the following
result.

Theorem 2.1. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Then, the following hold.

(i) If X ≤disp Y then Xn ≤disp Yn for n ≥ 2.

(ii) If X ≤ew Y then Xn ≤ew Yn for n ≥ 2.

Proof. In order to prove (i), note that

G−1
n Fn(x) = G−1F(x) for all x and for n ≥ 1. (2.3)

The result follows from (2.3) by using the fact that X ≤disp Y is equivalent to saying that
G−1F(x) − x increases in x (see Section 3.B. in Shaked and Shanthikumar (2007)). To
prove (ii), assume that (1.6) holds. A change of variable shows that this is the same as∫ ∞

t

F̄ (x) d[G−1F(x) − x] ≥ 0.
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From Proposition 2.1 in Kapodistria and Psarrakos (2012) we know that the sequence {Xn,

n ≥ 1} is stochastically ordered in the likelihood ratio order, that is, it verifies X1 ≤lr X2 ≤ · · · .
This implies (by using Theorem 1.C.1 in Shaked and Shanthikumar (2007)) that F̄2(x)/F̄ (x)

increases in x. By Lemma 7.1(a) of Barlow and Proschan (1975), we have
∫ ∞

t

F̄2(x) d[G−1F(x) − x] ≥ 0,

or, equivalently, ∫ ∞

t

F̄2(x) d[G−1
2 F2(x) − x] ≥ 0,

which means that X2 ≤ew Y2. The result follows by induction. �
From Theorem 2.1, together with (2.2), we have

X ≤ew Y �⇒ ε(Xn) ≤ ε(Yn) for n ≥ 1. (2.4)

Since the dispersive order implies the excess wealth order, it follows from (2.4) that ε(Xn) is
a measure of the variability of X in the sense of Bickel and Lehmann (1976) for all n ≥ 1. In
order to obtain a stronger result, we first provide the following characterization of the dispersive
order. The proof follows along the same lines as the proof of Lemma 3.1 in Belzunce et al.
(2016b), and is, therefore, omitted.

Lemma 2.1. Let X and Y be two continuous random variables with strictly increasing distri-
bution functions F and G, respectively, and let h = F−1G. Then X ≤disp Y if and only if

E[φ(h(Y ) − h(x)) | Y > x] ≤ E[φ(Y − x) | Y > x]
for all x and for any increasing function φ.

We also need the following lemma.

Lemma 2.2. Let X and Y be two continuous random variables. Then, given the sequences of
random variables (1.1) and (1.3), the random vectors (Xn−1, Xn) and (Yn−1, Yn), with n ≥ 2,
have the same copula.

Proof. First observe that, from the continuity of X and Y , it follows that the marginal
distributions of the vectors (Xn−1, Xn) and (Yn−1, Yn) are also continuous, and the copula is
unique. Now, for 0 ≤ u, v ≤ 1, the copula of (Yn−1, Yn) is given by

C(Yn−1,Yn)(u, v) = P[Yn−1 ≤ G−1
n−1(u), Yn ≤ G−1

n (v)]

=
∫ G−1

n−1(u)

0
P[Yn ≤ G−1

n (v) | Yn−1 = s] dGn−1(s). (2.5)

Using the change of variable Gn−1(s) = t and taking into account that

[Yn | Yn−1 = s] d= [Yn−1 | Yn−1 > s], n ≥ 1, s > 0,

we see that the integral (2.5) is the same as
∫ u

0
P[Yn−1 ≤ G−1

n (v) | Yn−1 > G−1
n−1(t)] dt.
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Similarly, the copula C(Xn−1,Xn)(u, v) of (Xn−1, Xn) is given by
∫ u

0
P[Xn−1 ≤ F−1

n (v) | Xn−1 > F−1
n−1(t)] dt.

Using (2.3), we see that Gn−1G
−1
n (v) = Fn−1F

−1
n (v) for 0 ≤ v ≤ 1, and, therefore,

P[Yn−1 ≤ G−1
n (v) | Yn−1 > G−1

n−1(t)] =
⎧⎨
⎩

Gn−1(G
−1
n (v)) − t

1 − t
, t < Gn−1(G

−1
n (v)),

0, t > Gn−1(G
−1
n (v)),

= P[Xn−1 ≤ F−1
n (v) | Xn−1 > F−1

n−1(t)],
which means that C(Xn−1,Xn)(u, v) = C(Yn−1,Yn)(u, v) for 0 ≤ u, v ≤ 1. �

From (2.1) and the chain of implications

X ≤st Y �⇒ X ≤icx Y �⇒ E[X] ≤ E[Y ],
it is clear that the following result is stronger than (2.4).

Theorem 2.2. Let X and Y be two continuous random variables with strictly increasing
distribution functions F and G, respectively. Then, the following hold.

(i) If X ≤disp Y then Xn − Xn−1 ≤st Yn − Yn−1 for n ≥ 2.

(ii) If X ≤ew Y then Xn − Xn−1 ≤icx Yn − Yn−1 for n ≥ 2.

Proof. (i) First we prove that for an increasing function φ, it holds that

E[φ(Xn − Xn−1)] ≤ E[φ(Yn − Yn−1)] for n ≥ 2.

In order to establish this, let us consider the strictly increasing function h = F−1G = F−1
n Gn

for n ≥ 2. Observe that, on the one hand,

Xn
d= h(Yn), n ≥ 1,

and, on the other hand, the vectors

(Xn−1, Xn) and (h(Yn−1), h(Yn)), n ≥ 2,

have the same copula (this follows from Lemma 2.2 and Theorem 2.4.3 in Nelsen (1999)).
Consequently,

φ(Xn − Xn−1)
d= φ(h(Yn) − h(Yn−1)), n ≥ 2.

Therefore, for n ≥ 2, we have

E[φ(Xn − Xn−1)] = E[φ(h(Yn) − h(Yn−1))]
=

∫
E[φ(h(Yn) − h(Yn−1)) | Yn−1 = t] dGn−1(t).

By using (1.3), this integral is the same as
∫

E[φ(h(Yn−1) − h(t)) | Yn−1 > t] dGn−1(t). (2.6)
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From X ≤disp Y , Theorem 2.1(i), and Lemma 2.1, we have

E[φ(h(Yn−1) − h(t)) | Yn−1 > t] ≤ E[φ(Yn−1 − t) | Yn−1 > t]. (2.7)

Now, it follows from (2.7) that (2.6) is less than or equal to∫
E[φ(Yn−1 − t) | Yn−1 > t] dGn−1(t). (2.8)

By using (1.3) again, we see that (2.8) is equal to∫
E[φ(Yn − Yn−1) | Yn−1 = t] dGn−1(t) = E[φ(Yn − Yn−1)],

which completes the proof of (i).

(ii) The proof follows the same lines as the proof of (i) by considering an increasing and
convex function φ (rather than simply increasing) and using Theorem 2.1(ii) and Lemma 3.1
of Belzunce et al. (2016b) rather than Theorem 2.1(i) and Lemma 2.1. �
Remark 2.1. As an anonymous referee pointed out, Theorem 2.2(i) admits an alternative proof
which is independent from Lemma 2.1, based on the following considerations. It follows from
the first lines of the proof of Theorem 2.2(i) that

Xn − Xn−1
d= h(Yn) − h(Yn−1), n ≥ 2,

with h = F−1G. Since Yn ≥ Yn−1 almost sure, the desired result is then obtained using
Equation (3.B.15) in Shaked and Shanthikumar (2007) with h = ϕ.

3. Comparing dynamic cumulative residual entropies

When the hazard rate of X or Y is increasing and X and Y are ordered in the dispersive
order, then the DCRE of Xn and Yn can be ordered for all n and for all t . We can even prove
a stronger result which is useful when the initial X or Y are not increasing failure rate (IFR)
but, after some iterations, we observe that Xn or Yn is IFR (we provide examples of this case
below).

Theorem 3.1. Let X and Y be two absolutely continuous random variables with the same left-
end points of the supports. If X ≤disp Y and there exists a positive integer n0 such that Xn0

or Yn0 is IFR, then ε(Xn, t) ≤ ε(Yn, t) for all t and n ≥ n0.

Proof. If we denote by rXn(t) the hazard rate function of Xn, it is easy to prove that

rXn+1(t) = �Xn(t)

1 + �Xn(t)
rXn(t), n ≥ 1, (3.1)

where �Xn(t) = − log F̄n(t). Recalling that �Xn(t) is increasing and rewriting (3.1) as

rXn+1(t) = 1

1/�Xn(t) + 1
rXn(t), n ≥ 1,

it follows that if rXn(t) is increasing then rXn+1(t) is increasing and, by induction, rXm(t) is
increasing for some positive integer m > n. Consequently, if Xn0 is IFR (the case when Yn0 is
IFR is analogous) then

Xn is IFR for n ≥ n0. (3.2)
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On the other hand, from Theorem 2.1, it follows that if X ≤disp Y then

Xn ≤disp Yn for all n. (3.3)

Under the assumptions on the supports, it follows from (3.2), (3.3), and Theorem 3.4 of Belzunce
et al. (1997) that Xn,t ≤disp Yn,t for n ≥ n0, where Xn,t = [Xn − t | Xn > t] and Yn,t =
[Yn − t | Yn > t] are, respectively, the residual lifetimes of Xn and Yn at t . Now, it follows
from (2.4) that ε(Xn,t ) ≤ ε(Yn,t ) for all t , or, equivalently, ε(Xn, t) ≤ ε(Yn, t) for all t . �

In what follows, we provide two examples where the random variable X
d=X1 is not IFR,

while the distribution Xn is IFR for some n ≥ n0 > 1.

Example 3.1. Let X
d=X1 be a mixture of an Exp(2) and a gamma(2, 1) random variable with

density function
f1(t) = ( 2

3

)
2e−2t + 1

3 te−t , t ≥ 0,

tail distribution
F̄1(t) = 2

3 e−2t + 1
3 (1 + t)e−t ,

and hazard rate function rX1(t) = f1(t)/F̄1(t). In Figure 1 we illustrate the hazard rate
functions rX1(t), rX2(t), and rX3(t) for 0 ≤ t ≤ 20. We observe that rX1(t) is not monotonic;
in particular, it is decreasing for t < t0 and then increasing for t > t0, where t0 ∼= 2.37.
Moreover, rX2(t) is increasing, and, hence, rX3(t) is also increasing. Furthermore,

rX1(t) ≥ rX2(t) ≥ rX3(t), rX1(0) = 4
3 , rX2(0) = rX3(0) = 0,

and
lim

t→∞ rX1(t) = lim
t→∞ rX2(t) = lim

t→∞ rX3(t) = 1.

Example 3.2. Let X
d=X1 be a mixture of a Rayleigh(1) and a gamma(2, 1) random variable

with density function

f1(t) = ( 1
2

)
2te−t2 + 1

2 te−t , t ≥ 0,

tail distribution
F̄1(t) = 1

2 e−t2 + 1
2 (1 + t)e−t ,

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

t

r

Figure 1: The hazard rate functions rX1(t) (solid), rX2 (t) (dashed), and rX3(t) (dotted), where
rX1(t) ≥ rX2 (t) ≥ rX3(t), in Example 3.1, for 0 ≤ t ≤ 20.
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and hazard rate function rX1(t) = f1(t)/F̄1(t). In Figure 2, we illustrate, for 0 ≤ t ≤ 20,
the hazard rate functions rX1(t), rX2(t), rX3(t), and rX4(t). We see that rX1(t) ≥ rX2(t) ≥
rX3(t) ≥ rX4(t). Moreover, the hazard rates rX1(t) and rX2(t) are not monotonic, while rX3(t)

and rX4(t) are increasing functions. Furthermore,

rX1(0) = rX2(0) = rX3(0) = rX4(0) = 0,

lim
t→∞ rX1(t) = lim

t→∞ rX2(t) = lim
t→∞ rX3(t) = lim

t→∞ rX4(t) = 1.

When n0 = 1, from Theorem 3.1 we have the following corollary.

Corollary 3.1. Let X and Y be two continuous random variables with the same left-end points
of the supports. If X or Y is IFR and X ≤disp Y then ε(Xn, t) ≤ ε(Yn, t) for all t .

The proof of the following result is similar to the proof of Theorem 3.1 using Theorem 3.2
(rather than Theorem 3.4) in Belzunce et al. (1997), and is, therefore, omitted.

Theorem 3.2. Let X and Y be two continuous random variables with the same left-end points of
the supports. If X or Y is decreasing failure rate (DFR) and X ≤hr Y then ε(Xn, t) ≤ ε(Yn, t)

for all t .

In the following example we show that the sufficient conditions in Corollary 3.1 and
Theorem 3.2 are not necessary. In particular, we provide an example where X is IFR, Y is
DFR, and X �hr Y , but ε(X, t) ≤ ε(Y, t) for all t .

Example 3.3. We consider the random variables X and Y following a Rayleigh(1) and a
Pareto(1, 3) supported on [0, ∞), with density, tail, and hazard rate functions given by

f (t) = 2te−t2
, F̄ (t) = e−t2

, rX(t) = 2t,

and

g(t) = 3

(t + 1)4 , Ḡ(t) = 1

(t + 1)3 , rY (t) = 1

t + 1
,

respectively. The dynamic cumulative entropies of X and Y (see Navarro and Psarrakos (2017)),
are given by

ε(X, t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx = 1

2

∫ ∞

0
x(x + t2)−1/2e−x dx

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

t

r

Figure 2: The hazard rate functions rX1(t) (solid), rX2 (t) (long dashed), rX3(t) (short dashed), and
rX4 (t) (dotted), where rX1(t) ≥ rX2 (t) ≥ rX3(t) ≥ rX4 (t), in Example 3.2, for 0 ≤ t ≤ 20.
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and

ε(Y, t) = −
∫ ∞

t

Ḡ(x)

Ḡ(t)
log

Ḡ(x)

Ḡ(t)
dx = 3

4
(t + 1).

It is clear that the function ε(X, t) is decreasing, while the function ε(Y, t) is (linearly) increasing
with respect to t . Moreover, since ε(X, 0) = √

π/4 < 3
4 = ε(Y, 0), we have ε(X, t) < ε(Y, t)

for all t . In the Figure 3(a) we illustrate, for 0 ≤ t ≤ 5, the hazard rate functions rX(t) and
rY (t), while in Figure 3(b), we illustrate the respective dynamic cumulative residual entropies.
We observe that the hazard rate functions have an intersection point, while ε(Y, t) is always
greater than ε(X, t). It follows from Theorem 3.B.20 of Shaked and Shanthikumar (2007) that
X �disp Y .

In what follows, to avoid confusion, we denote by F̄Xn and ḠYn (rather than F̄n and Ḡn)
the respective survival functions of Xn and Yn. Our purpose is to provide a sufficient condition
for the stochastic comparisons of the differences between two successive mean residual life
functions of the sequences Xn and Yn, denoted by

mXn(t) = E(Xn − t | Xn > t) =
∫ ∞
t

F̄Xn(x) dx

F̄Xn(t)
, t ≥ 0, (3.4)

and

mYn(t) = E(Yn − t | Yn > t) =
∫ ∞
t

ḠYn(x) dx

ḠYn(t)
, t ≥ 0,

respectively. Recall, from Proposition 4.3 in Kapodistria and Psarrakos (2012), that the
equilibrium tail of Xn+1 is written as

F̄ e
Xn+1

(t) =
∫ ∞
t

F̄Xn+1(x) dx

E(Xn+1)
= E(Xn)[1 + �Xn(t)]F̄ e

Xn
(t) + ε(Xn, t)F̄Xn(t)

E(Xn) + ε(Xn, t)
. (3.5)

Analogously, the equilibrium tail of Yn+1 is written as

Ḡe
Yn+1

(t) =
∫ ∞
t

ḠYn+1(x) dx

E(Yn+1)
= E(Yn)[1 + �Yn(t)]Ḡe

Yn
(t) + ε(Yn, t)ḠYn(t)

E(Yn) + ε(Yn, t)
.

Figure 3: (a) The hazard rate functions rX(t) (solid) and rY (t) (dashed); (b) and the dynamic residual
cumulative entropies ε(X, t) and ε(Y, t), in Example 3.3, for 0 ≤ t ≤ 5.
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Theorem 3.3. For t ≥ 0 and a fixed n ≥ 1, if Xn ≤st Yn and ε(Xn, t) ≤ ε(Yn, t), then
mXn+1(t) − mXn(t) ≤ mYn+1(t) − mYn(t).

Proof. By (1.2) and (3.5), we obtain

mXn+1(t) = E(Xn+1 − t | Xn+1 > t)

= E(Xn+1)
F̄ e

Xn+1
(t)

F̄Xn+1(t)

= E(Xn)[1 + �Xn(t)]F̄ e
Xn

(t) + ε(Xn, t)F̄Xn(t)

[1 + �Xn(t)]F̄Xn(t)

= mXn(t) + ε(Xn, t)

1 + �Xn(t)
. (3.6)

Similarly, we have

mYn+1(t) = mYn(t) + ε(Yn, t)

1 + �Yn(t)
. (3.7)

Since, by hypothesis, Xn ≤st Yn and ε(Xn, t) ≤ ε(Yn, t), it follows that �Xn(t) ≥ �Yn(t) and
[1 + �Xn(t)]−1ε(Xn, t) ≤ [1 + �Yn(t)]−1ε(Yn, t). By (3.6) and (3.7) the result follows. �

4. Conclusions

For a stochastic process satisfying (1.1), it is well known (see Kapodistria and Psarrakos
(2012)) that the CRE coincides with the mean time between failures. In this paper we have
considered two processes satisfying such conditions, and we have shown that when the first
failure times are ordered in terms of the dispersive order, or the excess wealth order, respectively,
then the corresponding mean time between failures are ordered in the usual stochastic order
and the increasing convex order, respectively. Consequently, the respective cumulative residual
entropies are also ordered. We have also provided conditions to order their respective dynamic
cumulative residual entropies for all t when one of the first failure rates are IFR or DFR.
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