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Abstract

We study the quasi-stationary behavior of the birth–death process with an entrance
boundary at infinity. We give by the h-transform an alternative and simpler proof for
the exponential convergence of conditioned distributions to a unique quasi-stationary
distribution in the total variation norm. In addition, we also show that starting from any
initial distribution the conditional probability converges to the unique quasi-stationary
distribution exponentially fast in the ψ-norm.
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1. Introduction and main results

Let X = (Xt, t ≥ 0) be a continuous-time birth–death process taking values in Z+ := {0} ∪N,
where 0 is an absorbing state and N= {1, 2, . . .} is an irreducible transient class. Its jump rate
matrix (qij, i, j ∈Z+) satisfies

qij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bi if j = i + 1, i ≥ 0,

di if j = i − 1, i ≥ 1,

−(bi + di) if j = i, i ≥ 0,

0 otherwise,

where the birth rates (bi, i ∈N) and death rates (di, i ∈N) are strictly positive, and d0 = b0 = 0.
Consider π = (πi, i ∈N) with the coefficients

π1 = 1, πi = b1b2 · · · bi−1

d2d3 · · · di
, i ≥ 2. (1.1)
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Then, we have biπi = di+1πi+1 for i ∈N, which implies that the process X is reversible with
respect to π , that is, for all i, j ∈N, πiqij = πjqji. Put

A =
∞∑

i=1

1

biπi
, B =

∞∑
i=1

πi, R =
∞∑

i=1

1

biπi

i∑
j=1

πj, S =
∞∑

i=1

1

biπi

∞∑
j=i+1

πj, (1.2)

so we have
R + S = AB, A = ∞ ⇒ R = ∞, S<∞ ⇒ B<∞.

In this paper, we assume that the birth–death process is surely killed at 0, that is, for all i ∈N,
Pi(T0 <∞) = 1, where T0 = inf{t ≥ 0 : Xt = 0} is the absorption time of the process X, and Pi

denotes the probability measure of the process when the initial state is i. It is well known (see,
e.g., [10]) that the assumption on sure killing, Pi(T0 <∞) = 1 for all i ∈N, is equivalent to
A = ∞. Note that A = ∞ implies the process X is non-explosive. Let (Pt)t≥0 be the semigroup
of the process X before killing at 0. Then, for all i ∈N, Pt f (i) =Ei[f (Xt), T0 > t], and it acts on
the set of bounded measurable functions defined on N. Here, Ei denotes the expectation with
respect to Pi.

For such a process, we are interested in the asymptotic behavior of the process condi-
tioned on long-term survival. A well-studied object (see, e.g., [6, 12]) is the quasi-stationary
distribution, that is, a probability measure α on N such that, for any t ≥ 0,

Pα(Xt ∈ ·|T0 > t) = α. (1.3)

Here, as usual, Pα := ∑
i∈N αiPi. If there exists a probability measure μ on N such that

lim
t→∞ Pμ(Xt ∈ ·|T0 > t) = α, (1.4)

then we say that μ is attracted to α, or is in the domain of attraction of α, for the conditional
evolution. For any bounded and measurable function f on N, (1.3) can also be written as

α(Ptf )

α(Pt1)
= α(f ),

where 1 = 1N and α( f ) = ∑
i∈N αi f (i).

The existence, uniqueness, and other properties of quasi-stationary distributions for birth–
death processes has been extensively studied in past decades. On quasi-stationary distributions
of birth–death processes, van Doorn [16] gave the following picture of the situation: there is
no quasi-stationary distribution, a unique quasi-stationary distribution, or an infinite continuum
of quasi-stationary distributions. Zhang and Zhu [18] proved that the unique quasi-stationary
distribution attracts all initial distributions supported in N. Villemonais [17] provided some
new results on the domain of attraction of the minimal quasi-stationary distribution. Until
now, no one has completely solved the problem of the domains of attraction of the infi-
nite continuum of quasi-stationary distributions for birth–death processes. However, existence
and uniqueness of a quasi-stationary distribution or attraction of all initial distributions do
not imply uniform convergence. This paper is devoted to studying the speed of convergence
of the conditional probability measure Pμ(Xt ∈ ·|T0 > t), for some initial measures μ on N,
towards the quasi-stationary distribution α when t goes to infinity. The total variation dis-
tance is usually used to quantify the weak convergence (1.4) – see, e.g., [2, 3, 11] – defined
as ‖μ− ν‖TV := supf ∈B1(N) |μ(f ) − ν(f )|, where μ, ν are any two probability measures on N,
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B1(N) denotes the set of bounded measurable functions defined on N such that ‖ f ‖∞ ≤ 1, and
‖f ‖∞ = supi∈N |f (i)|. Other distances, for example the 1-Wasserstein distance [13], can also be
used to quantify the weak convergence (1.4).

The boundary point ∞ is called the entrance boundary if R = ∞, S<∞. When ∞ is an
entrance boundary, the following result was obtained by Martnez et al. [11, Theorem 2]; this
work proves that implication (ii) implies (iii) by using the h-transform (or Doob’s h-transform).
Here, h is the eigenfunction of the first nontrivial eigenvalue of the infinitesimal operator of
the original absorbed process.

Theorem 1.1. For the birth–death process X satisfying A = ∞, the following statements are
equivalent:

(i) S<∞.

(ii) There exists a unique quasi-stationary distribution.

(iii) There exist a probability measure α and two constants C′, γ > 0 such that, for all t ≥ 0
and all probability measures μ on N,

∥∥Pμ(Xt ∈ ·|T0 > t) − α
∥∥

TV ≤ C′e−γ t.

Moreover, in (iii) the distribution α is the unique quasi-stationary distribution of X.

It is already known (see [16]) that (i) and (ii) are equivalent. This equivalence is only men-
tioned here for completeness. For any measurable function ψ : N→ [1,+∞), the ψ-norm of a
signed measure μ is defined as ‖μ‖ψ := sup|f |≤ψ |μ(f )|. If ψ = 1, then the ψ-norm is the total

variation norm. Let ‖·‖2 be the L2(m)-norm, defined by ‖f ‖2 = (∑
i∈N mif 2(i)

)1/2. Here, m is
the unique stationary distribution of the Q-process Y defined in Section 2. For convenience, we
denote

η(i) := Qi(λc), η ◦μi := μiη(i)

μ(η)
, (1.5)

where Qi(λc) is defined in Section 2 and denotes the eigenfunction of the first nontrivial eigen-
value of the infinitesimal operator of the process X. We write Eμ for the expectation with
respect to Pμ. Further, we have the following result.

Theorem 1.2. Let X be a birth and death process satisfying A = ∞ and S<∞. Assume that
there exists a function ψ : N→ [1,+∞) such that α(ψ2)<+∞, where α is the unique quasi-
stationary distribution of X. Then, for any probability measure μ on N, there exist tμ and ε > 0
such that, for any t ≥ tμ,

sup
|f |≤ψ

|Eμ[ f (Xt) | T0 > t] − α(f )| ≤ max{C1,C2}
[
α

(
ψ2

η

)] 1
2
∥∥∥∥d(η ◦μ)

d(η ◦ α)
− 1

∥∥∥∥
2
e−εt,

where

C1 =
(

1 + 1 + α(ψ)

1 − b

)
, C2 = 2 + α(ψ),

and b is a constant on (0, 1).

The rest of this paper is organized as follows. In Section 2 we present some preliminar-
ies that will be needed later. In Section 3 we give the proof of Theorem 1.1. The proof of
Theorem 1.2 is given in Section 4.
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2. Preliminaries

In this section we introduce the Q-process as an h-transform for the sub-Markovian
semigroup (Pt)t≥0, and preliminary facts which will be used later.

Let (Qi(x), i ≥ 0) be a sequence of birth–death polynomials satisfying the recurrence
relation

Q0(x) = 0, Q1(x) = 1,

biQi+1(x) − (bi + di)Qi(x) + diQi−1(x) = −xQi(x), i ∈N.
(2.1)

We write Pij(t) = Pi(Xt = j). Under our assumptions, from [1, Theorem 5.1.9] we know that
there exists a parameter λc ≥ 0, called the decay parameter of the process X, such that, for all
i, j ∈N, λc = − limt→∞ (1/t) log Pij(t). To ensure the existence of quasi-stationary distribu-
tions, the decay parameter is usually required to be strictly greater than 0. On the existence and
uniqueness of quasi-stationary distributions for birth–death processes, we have the following
exact and detailed results.

Theorem 2.1. (van Doorn [16].) Let X be a birth–death process satisfying A = ∞.

(i) If λc = 0, then there is no quasi-stationary distribution.

(ii) If S = ∞ and λc > 0, then there is a one-parameter family of quasi-stationary distribu-
tions given by αλ(i) = (πi/d1)λQi(λ) for αλ(i), 0<λ≤ λc, i ∈N.

(iii) If S<∞ then λc > 0 and there is precisely one quasi-stationary distribution given by

α=
(
αλc (i) = πiη(i)

π (η)
= πi

d1
λcη(i), i ∈N

)
.

Remark 2.1. According to [5], we know that λc > 0 if and only if

δ := sup
n≥1

n∑
i=1

1

diπi

∞∑
j=n

πj <∞.

The process X conditioned to never be absorbed, usually referred to as the Q-process,
defined by Y = (Yt, t ≥ 0), plays a key role in the proofs of our main results. If λc > 0, we
know from [6, Proposition 5.9] that the Q-process Y , whose law starting from i ∈N is given
by Qi(Ys1 = i1, . . . , Ysk = ik) = limt→∞ Pi(Xs1 = i1, . . . , Xsk = ik | T0 > t), is a Markov chain
taking values in N, with transition kernel, for all i, j ∈N,

Qi(Ys = j) = eλcs η(j)

η(i)
Pi(Xs = j). (2.2)

Let (Qt)t≥0 be the semigroup of the process Y under Q. For all bounded and measurable
functions f on N and t ≥ 0, the equality (2.2) implies that, for all i ∈N,

Qtf (i) = eλct

η(i)
Pt(ηf )(i). (2.3)
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From (2.3), we have, for all i ∈N,

Ptf (i) = η(i)e−λctQt

(
f

η

)
(i). (2.4)

According to [6, Chapter 5], we know that the process Y is still a birth–death process taking
values in N with birth and death parameters given, for all i ∈N, by

b̃i = η(i + 1)

η(i)
bi, d̃i = η(i − 1)

η(i)
di.

We can compute the coefficients π̃ = (π̃i, i ∈N) analogous to (1.1):

π̃1 = 1, π̃i = b̃1̃b2 · · · b̃i−1

d̃2d̃3 · · · d̃i
= η2(i)πi, i ≥ 2. (2.5)

We define P̃ij(t) =Qi(Yt = j) for all i, j ∈N. Then, by (2.2) and (2.5), we get π̃iP̃ij(t) = π̃jP̃ji(t)
for all i, j ∈N. Namely, the process Y is reversible with respect to π̃ .

For the birth–death process X satisfying A = ∞ and S<∞, we know from [8, 9] that η(i)
is strictly increasing with i ∈N. When i ∈N, from (2.1), we see that η(i) has the minimum
value 1. Furthermore, we also have the following result.

Proposition 2.1. ([8], Lemma 3.4.) Let X be a birth and death process satisfying A = ∞ and
S<∞. Then η(∞) := limi→∞ η(i)<∞.

Proposition 2.1 plays a key role in the proofs of our main results. From Proposition 2.1 we
get μ(η)<∞, so (1.5) is well-defined.

We can see that one of the main features of the Q-process Y is that it is an h-transform of the
original absorbed process X. The equality (2.3) naturally suggests the use of the h-transform
to deduce quasi-stationary properties. This general method has been used successfully in, for
example, [7, 13, 14, 15]. Here, we also use the h-transform to study the quasi-stationarity of
birth–death processes.

3. Proof of Theorem 1.1

We only need to show that (ii) and (iii) are equivalent. If (iii) holds, then there exists a
unique quasi-stationary distribution and the distribution α defined in Theorem 2.1 is the unique
quasi-stationary distribution. That is, (ii) holds.

If (ii) holds then S<∞, so we know from the proof of [9, Theorem 3.1] that the Q-process
Y is strongly ergodic, which means that limt→∞ supi

∑
j∈N |̃Pij(t) − mj| = 0, where m = (mj =

πjη
2(j)/π (η2), j ∈N) is the unique stationary distribution of the process Y . It is well known

(see, e.g., [1]) that strong ergodicity implies exponential ergodicity. So, if the process Y is
strongly ergodic, then there exist two constants C, γ > 0 such that, for any i ∈N,

‖Qi(Yt ∈ ·) − m‖TV ≤ Ce−γ t. (3.1)

According to Proposition 2.1, we know that when i ∈N, 1 ≤ η(i) ≤ η(∞)<∞. Therefore, if
f (i) is a bounded and measurable function on N, then f (i)/η(i) is also a bounded and measurable
function on N. Thus, from (2.4), for all t ≥ 0, all probability measure μ on N, and f ∈B1(N),
we have

Eμ[f (Xt) | T0 > t] = μ(Ptf )

μ(Pt1)
= e−λctμ(ηQt(f /η))

e−λctμ(ηQt(1/η))
= (η ◦μ)Qt(f /η)

(η ◦μ)Qt(1/η)
.
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Note that

m( f /η) = α(f )
π (η)

π (η2)
= α(f )

α(η)
≤ α(f ).

So, for any f ∈B1(N), by (3.1) we get

|(η ◦μ)Qt(f /η) − α(f )| ≤ |(η ◦μ)Qt(f /η) − m(f /η)| ≤ Ce−γ t,

|(η ◦μ)Qt(1/η) − 1| ≤ Ce−γ t.
(3.2)

Therefore, combining the inequalities in (3.2), for any t> (log C)/γ we have

α(f ) − Ce−γ t

1 + Ce−γ t
≤Eμ[f (Xt) | T0 > t] ≤ α(f ) + Ce−γ t

1 − Ce−γ t
.

From (3.2) we have relations of the type Eμ[f (Xt) | T0 > t] = a(t)/b(t), with a(t) = α(f ) + δ(t),
b(t) = 1 + ε(t), and max{|δ(t)|, |ε(t)|} ≤ Ce−γ t. Then, it suffices to use the expansion

1

1 + ε(t)
= 1 − ε(t) + ε2(t)

1 + ε(t)

to get that |Eμ[f (Xt) | T0 > t] − α(f )| is bounded by C′e−γ t for some finite constant C′, and the
result follows straightforwardly.

4. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2, which is similar to [14, Theorem 2.1]
where the author considered the exponential convergence of conditioned distributions to a
quasi-stationary distribution in total variation and in 1-Wasserstein distance for general Markov
processes under several difficult-to-check conditions. For birth–death processes we have a
much simpler and explicit condition. Our more restricted context enables us to obtain a more
detailed result.

We only consider initial measures μ on N such that ‖(d(η ◦μ)/dm) − 1‖2 <+∞, since if
‖(d(η ◦μ)/dm) − 1‖2 = +∞ then Theorem 1.2 is trivially satisfied. Recall that if the birth–
death process X satisfies A = ∞ and S<∞, then the Q-process Y is strongly ergodic. Thus,
we know from [4, Theorem 1.1] that (Qt)t≥0 converges exponentially in the L2(m)-norm, i.e.
there is a positive ε such that, for all f ∈L2(m) and t ≥ 0,

‖Qtf − m(f )‖2 ≤ ‖f − m(f )‖2e−εt. (4.1)

Note that η is bounded on N and has the minimum value 1, so if f is a measurable function on
N such that |f | ≤ψ and α(ψ2)<+∞, then f /η is also a measurable function on N and belongs
to L2(m). From Section 2, we know that the process Y is reversible with respect to π̃ , which
implies reversibility with respect to m. Thus, by (4.1) and the Cauchy–Schwarz inequality, for
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any probability measure μ on N and any measurable function f on N such that |f | ≤ψ , we
have

sup
|f |≤ψ

∣∣∣∣μQt

(
f

η

)
− α(f )

∣∣∣∣ ≤ sup
|f |≤ψ

∣∣∣∣μQt

(
f

η

)
− m

(
f

η

)∣∣∣∣
= sup

|f |≤ψ

∣∣∣∣m
(

dμ

dm
Qt

(
f

η

)
− f

η

)∣∣∣∣
= sup

|f |≤ψ

∣∣∣∣m
(

f

η
Qt

(
dμ

dm

)
− f

η

)∣∣∣∣
= sup

|f |≤ψ

∣∣∣∣m
[

f

η

(
Qt

(
dμ

dm
− 1

)) ]∣∣∣∣
≤

[
m

(
ψ2

η2

)] 1
2
∥∥∥∥dμ

dm
− 1

∥∥∥∥
2
e−εt

≤
[
α

(
ψ2

η

)] 1
2
∥∥∥∥dμ

dm
− 1

∥∥∥∥
2
e−εt.

Note that

Eμ[f (Xt) | T0 > t] = (η ◦μ)Qt(f /η)

(η ◦μ)Qt(1/η)
,

so, for any t> {log[(α(ψ2/η))1/2‖(d(η ◦μ)/dm) − 1‖2]}/ε, we get

α(f ) − (α(ψ2/η))1/2‖(d(η ◦μ)/dm) − 1‖2e−εt

1 + (α(ψ2/η))1/2‖(d(η ◦μ)/dm) − 1‖2e−εt

≤Eμ[f (Xt) | T0 > t] ≤ α(f ) + (α(ψ2/η))1/2‖(d(η ◦μ)/dm) − 1‖2e−εt

1 − (α(ψ2/η))1/2‖(d(η ◦μ)dm) − 1‖2e−εt . (4.2)

Since α(ψ2)<+∞, by the Cauchy–Schwarz inequality we have α(ψ)<+∞. Thus, by
(4.2), for any t> {log((α(ψ2/η))1/2‖(d(η ◦μ)/dm) − 1‖2)}/ε, we obtain

sup
|f |≤ψ

|Eμ[f (Xt) | T0 > t] − α(f )| ≤ max{C1,C2}
(
α

(
ψ2

η

)) 1
2
∥∥∥∥d(η ◦μ)

dm
− 1

∥∥∥∥
2
e−εt,

where

C1 :=
(

1 + 1 + α(ψ)

1 − b

)
, C2 := 2 + α(ψ),

and b is a constant on (0, 1).
Set φt(μ) := Pμ(Xt ∈ ·|T0 > t). For any t ≥ 0 and any probability measure μ on N, we know

from [14, Lemma 2.7] that
η ◦ φt(μ) = (η ◦μ)Qt. (4.3)

There exists tμ ≥ 0 such that, for any t ≥ tμ,

(
α

(
ψ2

η

)) 1
2
∥∥∥∥d(η ◦ φt(μ))

dm
− 1

∥∥∥∥
2
e−εt < b.
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Hence, by (4.1), (4.3), and the above result, for any t ≥ tμ, we get

sup
|f |≤ψ

|Eμ[f (Xt) | T0 > t] − α(f )| ≤ max{C1,C2}
(
α

(
ψ2

η

)) 1
2
∥∥∥∥d(η ◦ φtμ(μ))

dm
− 1

∥∥∥∥
2
e−ε(t−tμ)

≤ max{C1,C2}
(
α

(
ψ2

η

)) 1
2
∥∥∥∥d(η ◦μ)

dm
− 1

∥∥∥∥
2
e−εt.

This ends the proof of Theorem 1.2.
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