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A formalism for multidimensional simple waves in gas dynamics using ideas
developed by Boillat is investigated. For simple-wave solutions, the physical
variables depend on a single function } (r, t). The wave phase } (r, t) is implicitly
determined by an equation of the form f(} )¯ r[n(} )®λ(} )t, where n(} ) denotes
the normal to the wave front, λ is the characteristic speed of the wave mode of
interest, r is the position vector, t is the time, and the function f(} ) determines
whether the wave is a centred ( f(} )¯ 0) or a non-centred ( f(} )1 0) wave.
Examples are given of time-dependent vortex waves, shear waves and sound
waves in one or two space dimensions. The streamlines for the wave reduce to
two coupled ordinary differential equations in which the wave phase } plays the
role of a parameter along the streamlines. The streamline equations are
expressed in Hamiltonian form. The roles of Clebsch variables, Lagrangian
variables, Hamiltonian formulations and characteristic surfaces are briefly
discussed.

1. Introduction

Simple waves play an important role in the theories of gas dynamics and fluid
mechanics (Courant and Friedrichs 1976; Landau and Lifshitz 1987; Chorin
and Marsden 1979) as well as in magnetohydrodynamics (Jeffrey and Taniuti
1964; Cabannes 1970) and elasticity. Both steady and time-dependent simple
waves have been extensively studied in fluid mechanics (Courant and Friedrichs
1976; Landau and Lifshitz 1987). Simple waves play a central role in the
solution of one-dimensional Riemann problems in hydrodynamics (see e.g.
Landau and Lifshitz 1987).

The method of solution of hyperbolic systems by means of combining simple
waves and work on simple-wave interactions has been developed by Burnat
(1965, 1971). Giese (1951) considered flows with degenerate hodographs, and
simple and double waves in steady compressible fluid flows. Riemann wave
interactions in magnetohydrodynamics have been studied by Zajaczkowski
(1979, 1980). Von Mises (1958) has discussed simple waves for one-dimensional
time-dependent flows and combinations of simple waves. Rozdestvenskii and
Janenko (1980) have developed the general theory of quasilinear systems of
equations with application to gas dynamics. Both Rozdestvenskii and Janenko
(1980) and Von Mises (1958) have discussed Riemann waves. In particular,
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these authors have discussed the work of Martin (1953), Ludford (1955) and
Zvg! alov (1955) on generalized Riemann invariants and non-isentropic simple
waves based on the Monge–Ampe' re equation. More recent work on Riemann
waves and simple waves emphasizing Lie symmetry groups has been carried out
by Grundland and Tafel (1996) and Doyle and Grundland (1996). Webb et al.
(1995) have considered some examples of multidimensional simple waves in
magnetohydrodynamics, with special emphasis on simple Alfve! n waves.

The Hamiltonian structures and integrability of the isentropic gas dynamic
equations in one Cartesian space dimension have been investigated by Nutku
(1987) and Olver and Nutku (1988). Ovsjannikov (1982) has determined group-
invariant solutions and partially invariant solutions of the gas-dynamic
equations using symmetry group methods. More recent work on group-
invariant solutions, partially invariant solutions and symmetry-group analysis
of the gas-dynamic equations has been carried out by Grundland and Lalague
(1994, 1995, 1996) (see also references therein).

The main aim of the present paper is to consider solutions for multi-
dimensional, simple waves in adiabatic gas dynamics by using the simple-wave
formalism developed by Boillat (1970), in which all physical quantities of
interest are assumed to depend on a single phase function } (xα), where x¯ (t,
x, y, z) are the independent time and space variables. Boillat’s analysis shows
that both the eigenvalues or characteristic speeds ²λ

i
: i¯ 1,…,n´ of the system

of interest and the wave normal n must be functions solely of } . This leads to
a system of first-order partial differential equations for the wave phase } that
determines the possible functional forms of } . Perhaps the main contribution of
this paper is the recognition that the wave phase } may be used as a parameter
along the simple-wave streamlines. This fact allows one to easily obtain the
streamlines by integrating two coupled ordinary differential equations
(equations (3.54)) in which } is the independent variable. We emphasize the
physical characteristics of the solutions.

In Sec. 2, the gas-dynamic equations and model are introduced. In Sec. 3, the
equations are written in an appropriate matrix form. The eigenequations and
eigenvalues for multidimensional simple waves in gas dynamics are obtained.
We discuss the role of the envelope of the family of plane-wave fronts
characterizing the simple wave and wave breaking, simple wave integrals,
streamline equations for simple waves in which the wave phase } plays the role
of a parameter along the streamline, and the relationship between char-
acteristics and simple waves. In Sec. 4, we consider examples of simple shear
waves and vortex simple waves. The role of Lagrangian fluid variables and
Hamiltonian formulations are discussed. Section 5 considers simple sound
waves. Simple sound waves are isentropic, irrotational fluid flows. Examples of
time-dependent simple sound waves in one and two Cartesian space dimensions
are constructed. The Hamiltonian formulation for simple sound waves in terms
of the density ρ and fluid velocity potential Φ is discussed. Boillat’s formulation
of simple waves is used to discuss the characteristics of steady simple sound
waves in two Cartesian space dimensions. Section 6 concludes with a summary
and discussion.
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2. The model

The equations of inviscid adiabatic gas dynamics are

¦ρ

¦t
­¡[(ρu)¯ 0, (2.1)

¦u

¦t
­u[¡u¯®

1

ρ
¡p, (2.2)

¦S

¦t
­u[¡S¯ 0, (2.3)

where the gas pressure p¯p(ρ,S) is a function of the density ρ and entropy S
j

and u denotes the fluid velocity. Equations (2.1)–(2.3) correspond respectively
to the mass continuity equation, the momentum equation and the entropy-
conservation equation. For the case of an ideal gas, the equation of state giving
the gas pressure p as a function of ρ and S has the form

p¯p
!
exp 0S®S

!

C
v

1 0 ρ

ρ
!

1γ

, (2.4)

where γ¯C
p
}C

v
is the ratio of specific heats C

p
and C

v
at constant pressure and

volume.

3. The simple-wave formalism

Following the development of Boillat (1970), the gas-dynamic equations
(2.1)–(2.3) are first written in the matrix form

A(α)
¦U

¦xα
¯ 0, (3.1)

where
U¯ (ρ,u

x
,u

y
,u

z
,S), (3.2)

is the state vector of the system. The matrix A(!) is the unit 5¬5 identity
matrix, and we use the notation (x!, x", x#, x$)¯ (t, x, y, z) to denote the
independent variables. The matrices ²A(i) : i¯ 1,…, 3) are given by

A(")¯

E

F

0

c#

ρ

u
x

0

0

0

u
x

ρ

0

0

u
x

0

0

0

0

0

0

0

u
x

0

0

1

ρ

¦p

¦S

0

0

u
x

G

H

, (3.3)

A(#)¯

E

F

c#

ρ

0

u
y

0

0

0

u
y

0

0

0

u
y

0

ρ

0

0

0

0

0

u
y

0

1

ρ

¦p

¦S

0

0

0

u
y

G

H

, (3.4)
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A($)¯

E

F

0

0

u
z

c#

ρ

0

0

u
z

0

0

0

u
z

0

0

0

0

0

0

ρ

u
z

0

0

0

0

1

ρ

¦p

¦S

u
z

G

H

, (3.5)

where

c#¯ 0¦p

¦ρ1
S

¯
γp

ρ
(3.6)

defines the gas sound speed c.
For simple-wave solutions,

Uα ¯Uα(} ) (3.7)

is the form of the state vector U, where } (t, x, y, z) is the wave phase. The
equations

ω¯®}
t
, k¯¡} , λ¯

ω

k
¯®

}
t

r¡} r
, n¯

¡}

r¡} r
, (3.8)

locally define the wave frequency ω, wavenumber k and wave phase speed λ
parallel to the wave normal n. Substitution of the solution ansatz (3.7) into the
gas-dynamic equations (3.1) yields the matrix equation

(A
n
®λI)[

dU

d}
¯ 0, (3.9)

where
A

n
¯A(")n

x
­A(#)n

y
­A($)n

z
. (3.10)

Using (3.3)–(3.5), the matrix A
n

in (3.10) has the form

A
n
¯

E

F

c#n
y

ρ

c#n
x

ρ

u
n

c#n
z

ρ

0

0

u
n

n
x
ρ

0

0

u
n

0

n
y
ρ

0

0

0

0

n
z
ρ

u
n

0

n
y
p
S

ρ

n
x
p
S

ρ

0

n
z
p
S

ρ

u
n

G

H

, (3.11)

where u
n
¯u[n is the fluid velocity component normal to the wave front and

p
S
¯ ¦p}¦S.
For a non-trivial solution of (3.9) for dU}d} , it is necessary that λ satisfy the

eigenvalue equation

det (A
n
®λI)3uh $

n
(uh #

n
®c#)¯ 0, (3.12)

where
uh
n
¯u

n
®λ. (3.13)

The solutions of the eigenvalue equation (3.12) for λ,

λ
"
¯u

n
®c, λ

#
¯λ

$
¯λ

%
¯u

n
, λ

&
¯u

n
­c, (3.14)
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correspond to the backward sound wave (λ
"
), the contact discontinuity (λ

#
), the

vortex eigenmodes (λ
$
,λ

%
) and the forward sound wave (λ

&
).

The right eigenvectors R¯U«(} ) of (3.9) satisfy the equations

ρ«uh
n
­ρn[u«¯ 0, (3.15)

1

ρ
(c#ρ«­p

S
S«)­uh

n
n[u«¯ 0, (3.16)

uh
n
u!v ¯ 0, (3.17)

uh
n
S«¯ 0, (3.18)

where
u!v ¯ (I®nn)[u« (3.19)

denotes the component of u« perpendicular to n, I is the unit 3¬3 matrix, and
the prime denotes differentiation with respect to } . Equation (3.15) corresponds
to the continuity equation, (3.16) and (3.17) correspond to the normal and
transverse momentum equations and (3.18) corresponds to the entropy
equation.

The solutions of (3.15)–(3.18) for the sound waves yield the right-eigenvector
solutions

R
"
¯ ρ«01,®

c

ρ
n, 01 , λ

"
¯u

n
®c,

R
&
¯ ρ«01,

c

ρ
n, 01 , λ

&
¯u

n
­c,

5

6

7

8

(3.20)

for the backward and forward sound waves. Similarly,

R
#
¯S«0®p

S

c#
, 0, 0, 0, 11 , λ

#
¯u

n
, (3.21)

correspond to the eigenvector R
#
and eigenvalue λ

#
for the contact discontinuity

solution. The vortex eigenmode (tangential discontinuity) right-eigenvector

R
$
¯ (0,L

!
Ω(} )¬n(} ), 0) (3.22)

spans a two-dimensional eigenspace, where Ω(} ) is an arbitrary function of }
not parallel to n (without loss of generality, one can choose Ω to the
perpendicular to n). If } is dimensionless and L

!
has dimensions of length than

Ω has the dimensions of angular velocity (i.e. [time]−"). Simple waves
corresponding to the vortex eigenmode solutions (3.22) are considered in Sec. 4.
Simple sound-wave solutions are considered in Sec. 5.

3.1. Boillat’s solution ansatz

The general solution of the eigenequation (3.9) corresponding to the kth
eigenmode is of the form

dU

d}
¯ a

k
(} )R

k
, (3.23)

where a
k
determines the wave amplitude, and R

k
is the right eigenvector of the

matrix A
n

corresponding to the kth wave mode. For the case where two or more
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of the eigenvalues are coincident, the solution (3.23) may be written as a sum
over the corresponding wave modes. Boillat (1970) noted that if the solution for
U is to be solely a function of } , it is necessary that n and λ(U,n) be functions
only of } . This places constraints on the possible functional form of } (t, x, y, z),
which we discuss below.

The requirements that λ¯λ(} ) and n¯n(} ) imply that } must satisfy the
first-order partial differential equations

n(} )¯
¡}

r¡} r
, λ(} )¯®

}
t

r¡} r
(3.24)

for the eigenmode of interest. Boillat showed that the general solution of the
differential equations (3.24) for } is of the form

G(} , r, t)3 f(} )­λ(} )t®r[n¯ 0, (3.25)

where r¯ (x, y, z) and f(} ) is an arbitrary differentiable function of } . An
alternative method for obtaining the solution (3.25) is given in Appendix A, For
non-exceptional waves with dλ}d} 1 0, centred simple waves correspond to the
choice f(} )¯ 0.

Implicit differentiation of (3.25) with respect to (t, x, y, z) yields the deriva-
tives of } :

}
t
¯®

λ

F
, ¡} ¯

n(} )

F
, (3.26)

where

F3G} ¯ f «(} )­
dλ

d}
t®r[

dn

d}
¯

1

r¡} r
. (3.27)

Note that, for a consistent solution, F must be positive. At points where FU
0, r¡} rU¢, r¡UαrU¢ and rUα

t
rU¢, and wave breaking occurs. Note that the

waves break on the envelope of the family of plane-wave fronts (3.25) where
G¯ 0 and F3G} ¯ 0 simultaneously.

Since λ¯λ(U,n), the group velocity of the wave is given by

V
g
¯

¦ω

¦k
¯λn­(I®nn)[¡n λ. (3.28)

Using the result (3.28), it is straightforward to show that U(} ) does not change
along the ray path:

¦U

¦t
­V

g
[¡U¯ 0. (3.29)

For exceptional waves in which dλ}d} ¯ 0, one finds that ¡[V
g
¯ 0 (see Boillat

1970).

3.1.1. Integrals for simple waves. Integrals for simple waves are functions J(U)
that remain constant throughout the wave. Since U¯U(} ), the condition for
J to be an integral is

dJ

d}
¯

¦J

¦Uα

dUα

d}
3R[¡U J¯ 0, (3.30)
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where R¯ dU}d} is the right-eigenvector for the mode of interest. The first-
order partial differential equation (3.30) has characteristics

dU"

R"

¯
dU#

R#

¯I¯
dUN

RN
¯

dJ

0
. (3.31)

Hence the simple-wave integrals J may be identified with the integration
constants that appear in the solution of the characteristic equations (3.31).

The notion of a simple-wave integral should be distinguished from that of a
Riemann invariant. A Riemann invariant is a function F(U) that remains
constant on the characteristics (Chorin and Marsden 1979). For problems in one
space dimension, the variation of F along the characteristic curve (x(s), t(s)) is
given by

dF

ds
¯®¡U F[(A(")®λI)[

¦U

¦x

dt

ds
. (3.32)

Hence a Riemann invariant must satisfy the N first-order equations

¡U F[(A(")®λI)¯ 0. (3.33)

For the case of simple waves in gas dynamics in one Cartesian space dimension,
the simple-wave integrals and the Riemann invariants are the same functions,
but this is not in general the case for waves in more than one space dimension.
For the case of simple waves in magnetohydrodynamics in one Cartesian space
dimension, the simple-wave integrals for the Alfve! n and magnetoacoustic
modes do not satisfy (3.33), and Riemann invariants for these modes defined as
solutions of (3.33) do not exist.

3.2. Streamline equations

The simple-wave ansatz considered by Boillat (1970) has implications for the
fluid streamline differential equations

dx

u
x
(} )

¯
dy

u
y
(} )

¯
dz

u
z
(} )

. (3.34)

For the case of the vortex eigenmodes, it is also of interest to consider vorticity
streamlines:

dx

ω
x

¯
dy

ω
y

¯
dz

ω
z

, (3.35)

where ω¯¡¬u denotes the fluid vorticity. The form of the streamline
equations (3.34) and (3.35) suggests that the wave phase is a natural parameter
associated with the congruence, or family of integral curves for (3.34) and
(3.35).

The solution ansatz (3.25) for the wave phase } depends on the function f(} )
and on the vector function n(} ) defining the wave normal. Thus the geometry
of the streamlines will depend on the geometry of the curve C with tangent
vector T¯n(} ). The curve C is a curve in 2$ in which the position vector X(} )
is given by

X(} )¯& }

}
!

n(} «) d} «­X(}
!
). (3.36)
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If the curve X(} ) is thrice differentiable then the geometry of the curve is
conveniently described by the use of the Serret–Frenet formulae (see e.g.
Lipschutz 1969, Chap. 5). If X(} ) is not thrice differentiable, once can introduce
a general director basis (d

"
,d

#
,d

$
) to frame the curve (see e.g. Bishop 1975;

Goriely and Tabor 1996), in which

d
"
¯T(} )¯

X«(} )

rX«(} )r
(3.37)

is the tangent vector to the curve, and the unit vectors d
#

and d
$

are two
differentiable functions spanning the normal plane in such a way that ²d

"
,d

#
,

d
$
´ form a right-handed orthonormal triad (d

"
¬d

#
¯d

$
,d

#
¬d

$
¯d

"
). The

choice of the vectors d
#

and d
$

is arbitrary, as long as they span the normal
plane. Because the vectors ²d

"
,d

#
,d

$
´ are orthonormal,

d

d}
(d

i
[d

j
)¯d!

i
[d

j
­d

i
[d!

j
¯ 0. (3.38)

Writing d!
i
¯3$

k="
K

ik
d
k
, (3.38) imply that the matrix K

ij
is skew-symmetric,

i.e.
K

ij
­K

ji
¯ 0. (3.39)

Since d!
i
must be perpendicular to d

i
, it follows that

d!
i
¯ κ¬d

i
, (3.40)

where κ¯3$
i="

κ
i
d
i

is the twist vector. The twist equations (3.40) are the
natural generalization of the classical Serret–Frenet equations. It is straight-
forward to show that the matrix K

ij
and the twist vector κ are related by the

equations
K

ij
¯ κ

s
ε
sij

, (3.41)

where ε
sij

is the unit antisymmetric rank-3 tensor density. Hence

K¯

E

F

®κ
$

0

κ
#

0

κ
$

®κ
"

κ
"

®κ
#

0

G

H

. (3.42)

For the Frenet frame, the basis vectors ²e
"
, e

#
, e

$
´ are defined by the equations

e
"
¯T(} ), e

#
¯

T«(} )

rT«(} )r
, e

$
¯ e

"
¬e

#
. (3.43)

Equations (3.40) then reduce to

de
"

d}
¯ κe

#
,

de
#

d}
¯®κe

"
­τe

$
,

de
$

d}
¯®τe

#
, (3.44)

where
κ
"
¯ τ, κ

#
¯ 0, κ

$
¯ κ (3.45)

are the components of the twist vector. The functions κ(} ) and τ(} ) are known
as the curvature and torsion coefficients of the curve.

For more general curves x¯Y(} , t), where x depends on the time t as well as
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} , the time evolution of the director basis ²d
"
,d

#
,d

$
´ is governed by the spin

equations:

¦d
i

¦t
¯w¬d

i
, (3.46)

where w¯w(} , t) is the spin vector. Equations (3.46) have the same general
form as the twist equations (3.40), except that the twist vector κ(} , t) now
depends on t. The compatibility of the evolution equations (3.40) and (3.46)
requires ¦#d

i
}¦} ¦t¯ ¦#d

i
}¦t ¦} , which leads to the compatibility equations

¦w

¦}
®

¦κ

¦t
¯κ¬w (3.47)

between the twist κ and spin w.
Introducing the coordinates

q
"
¯ r[d

"
, q

#
¯ r[d

#
, q

$
¯ r[d

$
, (3.48)

where ²d
"
,d

#
,d

$
´ is a director basis describing the curve (3.36), the streamline

equations (3.34) may be written in the form

α¯
Fd}

u
"

¯
Fdq

#

Fu
#
­u

"
(κ

"
q
$
®κ

$
q
"
)
¯

Fdq
$

Fu
$
­u

"
(κ

#
q
"
®κ

"
q
#
)
, (3.49)

where

F¯ f «(} )­t
dλ

d}
­κ

#
q
$
®κ

$
q
#

(3.50)

is the same function as in (3.27), and u
"
, u

#
and u

$
are the components of u

parallel to d
"
, d

#
and d

$
. Using

q
"
¯ r[d

"
¯ f(} )­λ(} )t, (3.51)

(3.49) reduce to two first-order differential equations for q
#

and q
$

with
independent variable } , and in which t is a constant parameter.

Since

¡} ¯
d
"

F
, ¡q

#
¯d

#
­

κ
"
q
$
®κ

$
q
"

F
d
"
, ¡q

$
¯d

$
­

κ
#
q
"
®κ

"
q
#

F
d
"
, (3.52)

the Jacobian

J¯
¦(} , q

#
, q

$
)

¦(x, y, z)
¯¡} [¡q

#
¬¡q

$
¯

1

F
. (3.53)

Thus the Jacobian of the transformation between the new variables ²} , q
#
, q

$
´

and ²x, y, z´ is in general non-zero and well defined, but JU¢ on the wave
envelope, where FU 0 and r¡} rU¢. Hence the use of } , q

#
and q

$
as independent

variables is valid off the wave envelope, where F1 0.
From (3.49)–(3.51), the streamline equations (3.49) may be written in the

form

dq
#

d}
¯ a

##
q
#
­a

#$
q
$
­S

#
,

dq
$

d}
¯ a

$#
q
#
­a

$$
q
$
­S

$
,

5

6

7

8

(3.54)
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where

a
##

¯®
κ
$
u
#

u
"

, a
#$

¯
κ
#
u
#
­κ

"
u
"

u
"

,

a
$#

¯®
κ
"
u
"
­κ

$
u
$

u
"

, a
$$

¯
κ
#
u
$

u
"

,

S
#
¯

u
#

u
"

0df

d}
­t

dλ

d} 1®κ
$
( f­λt),

S
$
¯

u
$

u
"

0df

d}
­t

dλ

d} 1®κ
#
( f­λt).

5

6

7

8

(3.55)

Equations (3.54) are coupled linear first-order ordinary differential equations
for q

#
(} , t) and q

$
(} , t), in which the time t is regarded as a constant parameter.

Note that the source terms S
#

and S
$

depend on q
"
3 f­λt. Equations (3.54)

resemble the wave-mixing equations for Alfve! n waves in the solar wind derived
by Heinemann and Olbert (1980), in which the Alfve! n waves are reflected by
large-scale gradients in the background flow (see also Webb et al. (1997) for an
account of the wave mixing of sound waves and their interaction with the
contact discontinuity eigenmode is gas dynamics and two-fluid cosmic-ray
hydrodynamics).

3.2.1. Lagrangian and Hamiltonian streamline equations. We show below that
the streamline equations (3.54) may be written in terms of Lagrangian and
Hamiltonian variational principles.

Introducing the new variables

Q
!
¯ I

#
q
#
, P

!
¯ I

$
q
$
, (3.56)

where

I
#
¯ exp 0®& }

}
!

a
##

(} «) d} «1 , I
$
¯ exp 0®& }

}
!

a
$$

(} «) d} «1 , (3.57)

(3.54) reduce to

dQ
!

d}
¯ ν

#$
P
!
­3

#
,

dP
!

d}
¯ ν

$#
Q

!
­3

$
.

5

6

7

8

(3.58)

In (3.58),

ν
#$

¯ a
#$

I
#

I
$

, ν
$#

¯ a
$#

I
$

I
#

, 3
#
¯ I

#
S
#
, 3

$
¯ I

$
S
$
. (3.59)

Differentiation of (3.58) yields two decoupled ordinary differential equations for
Q

!
and P

!
. In particular, Q

!
satisfies the second-order differential equation

d#Q
!

d} #

®
ν!
#$

ν
#$

dQ
!

d}
®ν

#$
ν
$#

Q
!
¯ ν

#$
3

$
®

ν!
#$

ν
#$

3
#
­3 !

#
. (3.60)

A similar equation applies for P
!
in which Q

!
is replaced by P

!
and the subscripts

2 and 3 are interchanged in (3.60).
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Equations (3.58) may be obtained as a critical point of the Lagrangian
variational functional

,
!
¯& }

#

}
"

L
!
(Q

!
,P

!
,Q!

!
,P!

!
, } ) dη, (3.61)

where

L
!
¯P

!

dQ
!

d}
­"

#
ν
$#

Q#
!
®"

#
ν
#$

P#
!
­3

$
Q

!
®3

#
P
!

(3.62)

is the Lagrangian density.
Equations (3.58) may be written in the Hamiltonian form

dQ
!

d}
¯

¦H
!

¦P
!

,
dP

!

d}
¯®

¦H
!

¦Q
!

, (3.63)

where
H

!
¯ "

#
ν
#$

P#
!
®"

#
ν
$#

Q#
!
­3

#
P
!
®3

$
Q

!
(3.64)

is the Hamiltonian and Q
!

and P
!

are the canonical variables.
In terms of the original variables q

#
and q

$
, the Lagrangian density L

!
may

be written as

L
"
¯ I

#
I
$
[q

$
q!
#
(} )®("

#
a
#$

q#
$
®"

#
a
$#

q#
#
­S

#
q
$
®S

$
q
#
­a

##
q
#
q
$
)], (3.65)

where L
"
3L

!
. Extremizing the variation functional (3.61) with respect q

#
and

q
$
using the Lagrangian density (3.65) yields the differential equations (3.54) for

q
#

and q
$
.

The form of the Lagrangian density (3.65) suggests that

Q
"
¯ q

#
, P

"
¯ I

#
I
$
q
$

(3.66)

may be used as canonical variables. Since H
"
¯P

"
dQ

"
}d} ®L

"
for H

"
to be a

Hamiltonian, we obtain

H
"
¯ "

#
a
#$

P#
"

I
#
I
$

®"
#
a
$#

I
#
I
$
Q#

"
­S

#
P
"
®(S

$
I
#
I
$
)Q

"
­a

##
P
"
Q

"
. (3.67)

It is readily verified that Hamilton’s equations with Hamiltonian (3.67) and
canonical variables P

"
and Q

"
yields (3.54).

Since two Lagrangian densities L
"
and L

#
that differ by a perfect derivative

have the same Euler–Lagrange equations (see e.g. Bluman and Kumei 1989), it
follows that the Lagrangian

L
#
¯L

"
®

d

d}
(I

#
I
$
q
#
q
$
)

¯®I
#
I
$0q#dq

$

d}
­"

#
a
#$

q#
$
®"

#
a
$#

q#
#
­S

#
q
$
®S

$
q
#
®a

$$
q
#
q
$1 (3.68)

has Euler–Lagrange equations (3.54). Furthermore, Hamilton’s equations with
Hamiltonian

H
#
¯ I

#
I
$9"#a#$

Q#
#
®"

#
a
$# 0 P

#

I
#
I
$

1#®S
#
Q

#
®

S
$
P
#

I
#
I
$

­a
$$

Q
#
P
#

I
#
I
$

: (3.69)
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and canonical variables

Q
#
¯®q

$
, P

#
¯ I

#
I
$
q
#

(3.70)
reduce to (3.54).

The canonical transformations relating the Hamiltonians H
!
, H

"
and H

#
and

their canonical variables may be obtained using canonical generating functions
(see e.g. Goldstein 1980, Chap. 9). A discussion of the generating functions
relating H

!
, H

"
and H

#
and their canonical variables is given in Appendix B.

3.3. Characteristics and simple waves

Courant and Hilbert (1989, Vol. 2, Chaps 2 and 6) and Burnat (1965, 1971) give
extensive discussions of the characteristics of hyperbolic systems of differential
equations and their relation to simple waves, Riemann waves and double
Riemann waves. In this section, we give a brief discussion of characteristics and
their relation to simple waves.

To determine the characteristic surfaces φ(x, t)¯ const, for the gas-dynamic
equations (3.1), one considers a linear combination of the equations of the form

l
i
Ai(α)

j

¦Uj

¦xα
¯ 0, (3.71)

where we use the Einstein summation convention for repeated indices. The
convention (x!, x", x#, x$)¯ (t, x, y, z) is used in (3.71), and the sum over α is from
α¯ 0 to 3. Equation (3.71) may be written in the form

bα

j

¦Uj

¦xα
¯ 0, bα

j
¯ l

i
Ai(α)

j
. (3.72)

The directional derivative

M
j
¯ bα

j

¦
¦xα

(3.73)

will lie in the surface φ(x, t)¯ const if the vector B
j
¯ bα

j
eα lies in the surface and

is perpendicular to the normal N¯Nα eα ¯¡4 φ}r¡4 φr, where ¡4 denotes the
gradient in (t, x, y, z) space. The latter conditions yield the equations

B
j
[N3 l

i
Ai(α)

j

¦φ

¦xα
¯ 0. (3.74)

Equations (3.74) have non-trivial solution for the ²l
i
´ if

det 0Ai(α)
j

¦φ

¦xα1¯ 0. (3.75)

Equation (3.75) is equivalent to the characteristic equation (3.12). The above
discussion makes it clear that the function } ¯φ appearing in the simple-wave
ansatz corresponds to a characteristic surface.

In the case of gas dynamics, there are characteristic surfaces associated with
the sound waves, the vortex eigenmodes and the contact discontinuity. In
particular, for the sound-wave case, the eigenvalue equation

λ¯u[n­c, (3.76)
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when written in terms of the wave phase } 3φ, becomes the first-order partial
differential equation

H3 (φ
t
­u[¡φ)­c(φ#

x
­φ#

y
­φ#

z
)"/#¯ 0. (3.77)

The characteristics of (3.77) are

dx

dt
¯u­cn3V

g
,

dφ

dt
¯ 0, (3.78)

and

dsα

dt
¯®0¦H

¦xα
­sα

¦H

¦φ1 , α¯ 0, 1, 2, 3, (3.79)

where sα ¯~α φ. In (3.78), V
g
¯u­cn is the group velocity of the sound wave.

Equations (3.78) and (3.77) may be combined to yield the Monge cone:

0dx

dt
®u

x1#­0dy

dt
®u

y1#­0dz

dt
®u

z1#¯ c#. (3.80)

The solution of the underdetermined differential equation (3.80) for (x, y, z), for
a given solution for u and c, is an envelope of characteristics, and plays an
important role in the numerical solution of the gas-dynamic equations using
characteristics methods (see e.g. Zucrow and Hoffman 1976).

Equation (3.77) may be written in the form

φ
t
­V

g
[¡φ¯ 0, (3.81)

showing that φ is advected with the group velocity. For the case of simple
waves, V

g
¯V

g
(φ), and the characteristics (3.78) may be integrated to yield

x¯x
!
(φ)­V

g
(φ) t, (3.82)

where x
!
(φ) is an arbitrary function of φ. Note that the result (3.82) does not

hold for non-simple wave flows. Taking the scalar product of (3.82) with n yields
Boillat’s ansatz (3.25) for the wave phase, in which f(φ)¯x

!
[n and φ3 } (see

Appendix A for a derivation of (3.25)).

4. Vortex eigenmode solutions

In this section, we discuss simple waves that correspond to the vorticity
eigenmode (3.22) with eigenvalue λ¯u

n
. The deceptively simple equation

n[
du

d}
¯ 0 (4.1)

for the vorticity eigenmode encompasses a rich variety of fluid-dynamical
solutions. The vorticity eigenmode is characterized by zero pressure and
entropy variations. As in (3.22), the constraint (4.1) on the fluid velocity
variations may be written in the form

du

d}
¯L

!
Ω(} )¬n(} ), (4.2)

where L
!
has the dimensions of length, Ω(} ) is a function of the wave phase }
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that has dimensions of [time]−", and n(} ) is the normal to the wave front.
Without loss of generality, the function Ω(} ) can be chosen to be perpendicular
to n. The other constraint on the simple wave is that the wave phase must
satisfy an implicit equation of the form

G(} , r, t)3 f(} )­u
n
t®r[n(} )¯ 0. (4.3)

The variety of fluid-dynamical solutions associated with the vortex simple
waves derives from the fact that Ω(} ) and f(} ) are arbitrary functions of } , and
the vector function n(} ) for the wave normal is normalized so that n[n¯ 1. We
require that the solution for u(x, y, z, t) be a real single-valued vector function of
its arguments (further constraints in general will need to be imposed on
solutions that contain singularities in u or its derivatives). Formally, (4.2) has
the solution

u(} )¯L
!& }

}
!

Ω(} «)¬n(} «) d} «­u
!
, (4.4)

where u
!

is a constant vector, representing the fluid velocity when } ¯ }
!
.

Using the result (4.2), the vorticity of the simple wave is

ω¯¡¬u¯L
!
r¡} r(Ω®Ω[nn). (4.5)

Choosing Ω such that Ω[n¯ 0, we find that the fluid vorticity ω is parallel to
Ω. Because

r¡} r¯
1

F
, F¯ f «(} )­t

du
n

d}
®r[

dn

d}
, (4.6)

the vorticity ω is divergent at points where FU 0. Furthermore, at points where
r¡} r is bounded,

¡[u¯ r¡} rn[
du

d}
¯ 0 (4.7)

for the vortex simple wave. The rotation tensor ω
ij

and shear tensor σ
ij
, given

by

ω
ij
¯

1

2 0¥ui

¥x
j

®
¥u

j

¥x
i

1 ,
σ
ij
¯

¦u
i

¦x
j

­
¦u

j

¦x
i

®#
$
δ
ij
¡[u,

5

6

7

8

(4.8)

are both non-zero for these solutions. Thus the main physical characteristics of
the vortex simple wave are ω¯¡¬u1 0, ¡[u¯ 0, and the shear and rotation
tensors of the fluid are non-zero. Since ¡[u¯ 0,

u¯¡¬A (4.9)

is an alternative representation of the fluid velocity in the vortex simple wave.
In contrast to this behaviour, simple sound waves (Sec. 5) have ¡¬u¯ 0 and
¡[u1 0.

Note that one can obtain compressible, simple vortex waves if one allows
for entropy and density variations at constant pressure in (2.4) and (3.21).
If ρ¯ ρ

!
and S¯S

!
are both constant then the flow is incompressible and

isentropic.
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From (3.28), the group velocity V
g
of the vortex simple wave is equal to the

fluid velocity u. The partial differential equations (3.24) for the wave phase }
imply that } is advected with the flow, i.e.

¦}

¦t
­u[¡} ¯ 0 (4.10)

for the vortex simple wave. The characteristics of (4.10),

dr

dt
¯u(r, t), (4.11)

describing the fluid particle paths have solutions of the form r¯X(r
!
, t), where

r
!

denotes the fluid-particle position at time t¯ 0 (i.e. r
!

is the Lagrangian
particle position). Note that } (r, t) is constant on the characteristics (4.11), and
hence } may be used as a Lagrangian variable labelling the initial fluid-particle
position.

For the vortex simple wave, the fluid-particle paths r¯X(r
!
, t) satisfying

(4.11) have solutions of the form

r¯u(} )t­r
!
. (4.12)

Note that d} }dt¯ 0 by virtue of (4.10) and (4.11). Thus particles located on
the phase front } ¯ const move along the straight-line trajectories (4.12).
Taking the scalar product of (4.12) with the wave normal n yields (4.3), with
f(} )¯ r

!
[n. Equation (4.3) shows that the wave fronts } ¯ const are planar.

The waves break on the envelope of the family of plane-wave fronts (4.3),
where G¯ 0 and G} 3F¯ 0 simultaneously.

By taking the curl of the momentum equation (2.2), and noting that p¯p(ρ,
S), one obtains the vorticity equation

¦ω

¦t
­u[¡ω¯ω[¡u®ω¡[u­

1

ρ#

¡ρ¬¡S
¦p

¦S
. (4.13)

For barotropic flows, in which ¦p}¦S¯ 0, (4.13) is known as Helmholtz’s
equation (Saffman 1993, Chap. 1). For the vortex simple wave, ¡[u¯ 0, (4.7).
The term

ω[¡u¯ω[nr¡} r
du

d}
(4.14)

in (4.13), representing vortex-line stretching and rotation (Saffman 1993, Chap.
1), is zero for the vortex simple wave because ω[n¯ 0 from (4.5). The pressure-
gradient term involving ¦p}¦S in (4.13) is also zero for the vortex simple wave.
Thus

dω

dt
¯

¦ω

¦t
­u[¡ω¯ 0, (4.15)

and the vorticity vector ω is advected with the fluid in a vortex simple wave.
Vortex simple waves are a restricted class of vortex flows that have ¡[u¯ 0
and do not admit vortex-tube stretching and rotation. In principle, one could
consider the case of a Dirac delta distribution for Ω(} ) in (4.2), leading to
vortex-sheet solutions in which the tangential component of the velocity field
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jumps discontinuously across the sheet, but this class of solutions will not be
considered in the present paper. Note also that a more rigorous analysis of the
vorticity equation (4.13) is required at points where FU 0, r¡} rU¢ and rωrU¢.
Because ω, n(} ) and Ω(} ) are advected with the flow, it follows that F¯ 1}r¡} r
is also advected with the flow. This latter result may be verified more directly
by using the expression (4.6) for F and noting that n[du}d} ¯ 0 for the vortex
simple wave. Thus F is also a Lagrangian variable.

The simplest class of vortex simple waves correspond to the solutions of
(4.1)–(4.4) in which Ω and n are constant vectors with Ω[n¯ 0. The resulting
solutions consist of simple shear flows in one dimension. These solutions are
discussed in Sec. 4.1.

One class of flows that have been studied extensively in the literature is that
of two-dimensional incompressible vortex flows in which the fluid velocity

u¯¡¬(ψe
z
)¯ 0¦ψ

¦y
,®

¦ψ

¦x
, 01 , (4.16)

may be described in terms of the stream function ψ(x, y, t). Thus the vector
potential A in this case has the form A¯ψe

z
(see e.g. Saffman 1993). The

vorticity of the flow is given by

ω¯ωe
z
, ω¯®0¦#ψ

¦x#

­
¦#ψ

¦y#
1 . (4.17)

From the discussion following (4.15), the scalar vorticity ω is a Lagrangian
variable. It is of interest to note that the fluid-particle trajectories (4.11),

dx

dt
¯

¦ψ

¦y
,

dy

dt
¯®

¦ψ

¦x
, (4.18)

form a Hamiltonian system with Hamiltonian ψ. Equation (4.15) may be
written solely in terms of the stream function ψ in the form

¦
¦t

∆v ψ­
¦(∆v ψ,ψ)

¦(x, y)
¯ 0, (4.19)

where ∆v ψ¯ψ
xx

­ψ
yy

is the two-dimensional Laplacian of ψ. It is well known
that the equations of inviscid, non-dissipative gas dynamics form a Hamiltonian
system (see e.g. Zakharov and Kuznetsov 1984). Zeitlin (1992) discusses the
Hamiltonian structure of the two-dimensional vortex flows governed by
(4.16)–(4.19). In this development, the vorticity equation (4.15) may be written
in the Hamiltonian form

¦ω

¦t
¯²ω,H´, (4.20)

where

H¯&& "
#
u[u dx dy3®&& "

#
ω∆−"ω dx dy (4.21)

is the Hamiltonian and ∆−" is the inverse of the Laplace–Beltrami operator ∆

¯®~# in (4.17). The Poisson bracket for functionals A and B used in (4.20) is
defined by

²A,B´¯& dx«& dy«ω«
¦(δA}δω«, δB}δω«)

¦(x«, y«)
. (4.22)
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We give examples of two-dimensional vortex simple waves governed by
(4.16)–(4.19) in Sec. 4.2.

The Hamiltonian form of the vorticity equation (4.20) also applies for fully
three-dimensional, incompressible, barotropic flows, except that the Poisson
bracket is given by the more general formula

²A,B´¯& d$x«ω«[9¡«¬0 δAδω«1¬¡«¬0 δB

δω«1: . (4.23)

The Hamiltonian is again given by the fluid kinetic energy. It is important to
note that the above Hamiltonian system is a constrained Hamiltonian system
because ¡[u¯ 0, and hence the Clebsch potentials in a Clebsch representation
of the velocity field are not all independent (see e.g. Zakharov and Kuznetsov
1984; Marsden and Weinstein 1983).

4.1. Simple shear waves

Consider the vortex simple-wave solution of the form (4.4) in which

Ω¯ (0, 0,Ω), n¯ (0, 1, 0), (4.24)

where Ω is a constant. Integrating (4.4) yields the solution

u¯®L
!
Ω} (1, 0, 0)­u

!
(4.25)

for the velocity field. The vorticity vector of the field from (4.5) has the form

ω¯¡¬u¯L
!
r¡} r(0, 0,Ω). (4.26)

By choosing f(} )¯L
"
} in Boillat’s simple-wave solution ansatz (4.3), for the

wave phase } we obtain

} ¯
ya
L
"

, ya ¯ y®u
!y

t, (4.27)

where u
!y

is the y component of u
!
. From (4.24) and (4.25),

u¯®
L
!
Ωya

L
"

e
x
, ω¯

L
!
Ω

L
"

e
z
, (4.28)

are the solutions for u and ω. This solution corresponds to a simple shear flow
in which u¯u

x
(y, t)e

x
varies linearly with y, and which reverses direction as ya

changes sign. This flow is depicted schematically in Fig. 1(a). The left panel
shows the variation of u

x
with ya , whereas the right panel shows the vorticity ω

as a function of ya .
Figures 1(b, c) show further examples of shear flows that correspond to

different choices of f(} ). In Fig. 1(b),

} ¯ tan−"0 ya
L
"

1 , f(} )¯L
"
tan } , (4.29)

whereas in Fig. 1(c),

} ¯ sgn(ya ) 0rya rL
"

1"/#, (4.30)

where sgn(ya ) denotes the sign of ya . In the solution (4.30), f(} )¯ } #L
"
if ya " 0 and

https://doi.org/10.1017/S0022377897006375 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377897006375


434 G. M. Webb et al.

1.0

0.5

0

–0.5

0
1.00.50–0.5–1.0

y

1.2

1.0

0.8

0.4

0
1.00.50–0.5–1.0

ω

0.2

0.6 (a)

4

0

–2

–4

10–1

y

1.2

1.0

0.8

0.4

0
1.00.50–0.5–1.0

ω

0.2

0.6 (b)

1.0

0.5

0

–0.5

–1.0
1.00.50–0.5–1.0

10

8

4

0
1.00.50–0.5–1.0

ω

2

6

(c)

2

ux

y

y

Figure 1. Examples of fluid velocity profiles u¯u(y)e
x
¯®L

!
Ω} e

x
(Ω¯ const) and the

vorticity ω¯ωe
z

for the simple shear waves of (4.24)–(4.31), for which (a) } ¯ ya }L
"
;

(b) } ¯ tan−" (ya }L
"
) and (c) } ¯ ya }(L

"
rya r)"/#, where ya ¯ y®u

!y
t and } is the wave phase.

f(} )¯ } #L
"

if ya ! 0. Note that there is a possible ambiguity in the solution in
this case, depending on whether one chooses the positive or negative square root
of rf(} )r. This last example shows that not all choices of f(} ) lead to analytic
behaviour, because the vorticity

ω¯
ΩL

!

2L
"

0L"

rya r1"/#ez (4.31)

diverges at ya ¯ 0 in this case.
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4.2. Two-dimensional vortex flows

The simple waves of interest are governed by (4.1)–(4.4), in which

n(} )¯ (®sin } , cos } , 0), Ω¯ (0, 0,Ω(} )) (4.32)

are the forms assumed for n(} ) and Ω(} ). These solutions turn out to be related
to the two-dimensional vortex flows governed by (4.16)–(4.19), in which the
streamfunction ψ(x, y, t) plays a central role. From (4.4) and (4.32), the fluid
velocity u(} ) in these solutions is given by

u(} )¯®L
!0& }

}
!

Ω(} «) cos } «d} «,& }

}
!

Ω(} «) sin } «d} «, 01­u
!
, (4.33)

where u¯u
!

at } ¯ }
!
.

Now consider the streamline equations (3.54) for the solution (4.33). Using
the Frenet frame, in which the basis vectors ²e

"
, e

#
, e

$
´ framing the curve with

tangent vector e
"
3n(} ) are defined in (3.43), we obtain the streamline

equations in the form

¦q
$

¦}
¯®0τ­κ

u
$

u
"

1 q
#
­

u
$

u
"

0df

d}
­t

du
"

d} 1 , (4.34)

¦q
#

¦}
¯®τq

$
®κ

u
#

u
"

q
#
­

u
#

u
"

0df

d}
­t

du
"

d} 1®κ( f­u
"
t), (4.35)

where

e
"
¯ (®sin } , cos } , 0), e

#
¯ (®cos } ,®sin } , 0), e

$
¯ (0, 0, 1) (4.36)

are the basis vectors for the Frenet frame. The curvature and torsion
coefficients of the curve (3.36) with tangent vector e

"
¯n(} ) are κ¯ 1 and τ¯

0. In this case, the curve (3.36) consists of the unit circle centred on X
!
. In (4.34)

and (4.35),
q
"
¯ r[e

"
¯®x sin } ­y cos } ,

q
#
¯ r[e

#
¯®x cos } ®y sin } ,

q
$
¯ r[e

$
¯ z,

5

6

7

8

(4.37)

The fluid velocity components in the Frenet frame may be written in the form

u
"
¯L

!& }

}
!

Ω(} «) sin (} ®} «) d} «­u
!y

cos } ®u
!x

sin } ,

u
#
¯L

!& }

}
!

Ω(} «) cos (} ®} «) d} «®(u
!x

cos } ­u
!y

sin } ),

u
$
¯u

!z
¯ 0.

5

6

7

8

(4.38)

In (4.38) and in the following analysis, we restrict our attention to flows with
u
!z

¯ 0.
Taking into account that κ¯ 1 and τ¯ 0, the streamline equations (4.34) and

(4.35) integrate to yield the solutions

q
$
¯ z¯ z

!
¯ const, (4.39)

q
#
¯

1

u
"

0[u#
q
"
]}}

!

­ψ®L
!& }

}
!

Ω(} «) q
"
(} «, t) d} «1 (4.40)
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for q
$

and q
#
, in which

q
"
¯ f(} )­tu

"
(} ) (4.41)

is the component of r parallel to e
"
. The integration constant ψ in (4.40) may

be identified with the streamfunction ψ(x, y, t) for the flow. The form of the
streamlines in terms of (x(} , t), y(} , t), z) may be obtained by inverting (4.37) to
yield

x¯®q
"
(} , t) sin } ®q

#
(} , t) cos } ,

y¯ q
"
(} , t) cos } ®q

#
(} , t) sin } ,

z¯ z
!
,

5

6

7

8

(4.42)

where q
"

and q
#

are given by (4.39)–(4.41).
A discussion of the streamline equations (4.39)–(4.42) from the perspective of

the Hamiltonian streamline formulation of Sec. 3.2.1 is given in Appendix C. In
Appendix C we also show that the streamfunction ψ in (4.40) satisfies the
vorticity-advection equation (4.15).

Example 1. A simple example of a two-dimensional (2D) vortex simple wave is
obtained by considering the case where

n¯ (®sin } , cos } , 0), Ω¯ (0, 0,Ω
!
), (4.43)

and Ω
!

is a constant. By choosing

u
!x

¯®L
!
Ω

!
sin }

!
, u

!y
¯L

!
Ω

!
cos }

!
, u

!z
¯ 0, (4.44)

(4.33) and (4.38) yield the results

u
x
¯®L

!
Ω

!
sin } , u

y
¯L

!
Ω

!
cos } , u

z
¯ 0,

u
"
¯L

!
Ω

!
, u

#
¯ 0, u

$
¯ 0,

5

6

7

8

(4.45)

for the velocity components in rectangular Cartesian coordinates, and in the
Frenet frame.

Consider the case of a centred simple wave in which f(} )¯ 0. Boillat’s ansatz
for the wave phase may be written as

®x sin } ­y cos } ®L
!
Ω

!
t¯ 0. (4.46)

Alternatively, using cylindrical polar coordinates (r, θ, z), (4.46) for the wave
phase } may be written as

r sin (θ®} )®L
!
Ω

!
t¯ 0. (4.47)

Because
F¯ r cos (θ®} )¯ [r#®(L

!
Ω

!
t)#]"/# (4.48)

must be positive, it follows that

} ¯ θ®sin−" 0L!
Ω

!
t

r 1 (4.49)

is the required solution for } (modulo 2π). Equation (4.48) shows that the
solution of interest is restricted to the region

r" r
crit

¯L
!
Ω

!
t. (4.50)

https://doi.org/10.1017/S0022377897006375 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377897006375


Multidimensional simple waves in gas dynamics 437

From (4.5), the vorticity of the flow is given by

ω¯
L
!
Ω

!

[r#®(L
!
Ω

!
t)#]"/#

e
z
, (4.51)

and hence the vorticity diverges at r¯ r
crit

.
Equations (4.39)–(4.41) now yield the solutions

q
"
¯ tL

!
Ω

!
, q

#
¯

ψ

L
!
Ω

!

®tL
!
Ω

!
(} ®}

!
), q

$
¯ z¯ z

!
(4.52)

for the fluid-velocity streamlines, where the streamfunction ψ is constant on the
streamlines. Using the transformations (4.42) and (4.52), the streamline
equations for (x, y, z) reduce to

x¯®tL
!
Ω

!
sin } ®9 ψ

L
!
Ωο

®tL
!
Ω

!
(} ®}

!
): cos } ,

y¯ tL
!
Ω

!
cos } ®9 ψ

L
!
Ω

!

®tL
!
Ω

!
(} ®}

!
): sin } ,

z¯ z
!
.

5

6

7

8

(4.53)

Note that } plays the role of the parameter along the streamline. In order that
F3®q

#
be positive, it is necessary to choose } " }

!
­ψ}(L#

!
Ω#

!
t) in the

streamline equations (4.53).
From (4.52),

ψ¯L
!
Ω

!
²tL

!
Ω

!
(} ®}

!
)®[r#®(L

!
Ω

!
t)#]"/#´

3L
!
Ω

!(tL!
Ω

! 9θ®sin−" 0L!
Ω

!
t

r 1®}
!:®[r#®(L

!
Ω

!
t)#]"/#* (4.54)

is the streamfunction ψ(r, θ, t) for the vortex simple-wave solution.
Figure 2 shows the vortex simple-wave streamline (4.53) for the parameter

values L
!
Ω

!
¯ 1, }

!
¯ 0 and t¯ 1, where we choose } &ψ}t to ensure that

F& 0. The streamlines (the solid lines) consist of spirals in the (x, y) plane that
are radial at the innermost radius r¯ r

crit
¯L

!
Ω

!
t and become azimuthal as

rU¢. The solution (4.53) only applies for r& r
crit

. The vorticity ω for the
solution diverges at r¯ r

crit
, and ωCL

!
Ω

!
}r as rU¢. Also shown in Fig. 2 are

examples of constant-phase fronts for the simple wave (the straight dashed
lines). The envelope of the family of plane-wave fronts obtained by varying }
is the circle r¯ r

crit
. This circle is the group-velocity surface r¯ut, where

u¯L
!
Ω

!
(®sin } , cos } , 0) is the group velocity.

Burnat (1971) presented a solution of the magnetohydrodynamic equations
in which the streamlines and the magnetic field lines are identical and consist
of spirals similar to those depicted in Fig. 2. Burnat’s solutions, like those in
Fig. 2, have unbounded derivatives on the wave envelope.

Using the solution (4.12), or integrating (4.11), yields

r¯ (r#
!
­L#

!
Ω#

!
t#)"/#, θ¯ θ

!
­tan−"0L!

Ω
!
t

r
!

1 (4.55)
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y

Figure 2. Streamlines for the time-dependent 2D simple vortex wave described by
(4.43)–(4.46), in which Ω¯Ω

!
e
z
is a constant vector along the z axis and n¯ (®sin } , cos

} , 0) is the wave normal. The outward spiral flow lines (4.53) are restricted to the (x,y) plane.
The dashed straight lines are representative constant phase fronts (i.e. } ¯ const). The
envelope of the family of phase fronts is given by the circle. The vorticity and fluid gradients
diverge on the wave envelope.

for the fluid-particle paths, where r¯ r
!
and θ¯ θ

!
at t¯ 0. Solving (4.55) for

r
!

and θ
!

yields the equations

r
!
¯ (r#®L#

!
Ω#

!
t#)"/#, θ

!
¯ θ®tan−" 9 L

!
Ω

!
t

(r#®L#
!
Ω#

!
t#)"/#: . (4.56)

From (4.56), one can show that θ
!
3 } (r, θ, t) is the simple-wave phase (4.49). It

is of interest to note that the vorticity for the simple vortex wave, ω¯L
!
Ω

!
}r

!
,

is a function of the Lagrangian variable r
!
. Hence, both ω and } 3 θ

!
are

Lagrangian variables. The streamfunction ψ in (4.54) may be written in the
form

ψ¯L
!
Ω

!
[L

!
Ω

!
tθ

!
(r, θ, t)®r

!
(r, t)], (4.57)

where we have set }
!
¯ 0 in (4.54). This shows that the streamfunction is most

naturally expressed in terms of the Lagrangian variables θ
!

and r
!
. The fluid-

particle paths (4.12) consist of straight lines in the (x, y) plane. The fluid
velocity u¯L

!
Ω

!
n in this example is normal to the wave fronts. One can

construct the streamlines at time t
#
from the streamlines at time t

"
by displacing

the wave fronts a distance L
!
Ω

!
(t
#
®t

"
) normal to the front. Equation (4.57) for

ψ shows that ψ
#
¯ψ

"
­(L

!
Ω

!
)#θ

!
(t
#
®t

"
) is the change of ψ induced by following

the particle paths.
The fluid velocity for the vortex simple wave may be written in the form

u¯L
!
Ω

!
r
!
¡θ

!
¯L

!
Ω

!
n. (4.58)

The result (4.58) for u in terms of r
!

and θ
!

shows that r
!

and θ
!

are Clebsch
variables for the solution (see e.g. Holm and Kuperschmidt 1983; Zakharov and
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Kuznetsov 1984). The relationship between the advection equation for r
!

and
θ
!
and the Hamiltonian Poisson bracket (4.22) is considered in Appendix D. It

is straightforward to generalize the above solution to the case where u
!z

1 0,
when one obtains helical-spiral-type streamlines for the flow.

Example. 2. As a second example of a vortex simple wave, consider a solution
of the form (4.33) for u(} ) in which the angular velocity Ω¯Ω(} )e

z
is not

constant. In particular, the choice

Ω¯ (}
c
®} )e

$
, n¯ e

"
¯ (®sin } , cos } , 0) (4.59)

leads to the solution
u(} )¯ (}

c
®} )e

"
®e

#
(4.60)

for the fluid velocity, where the orthonormal triad ²e
"
, e

#
, e

$
´ is defined in (4.36),

}
c
is a constant, and dimensionless variables have been adopted. We consider

the case of a centred simple wave in which f(} )¯ 0. Boillat’s ansatz (4.3) for the
wave phase } reduces to

G3 x sin } ®y cos } ­(}
c
®} )t¯ (}

c
®} )t®r sin (θ®} )¯ 0. (4.61)

Thus, in polar coordinates (r, θ, z), the wave-front equations are

θ¯ } ­sin−"9(} c
®} )t

r : , z¯ z
!
¯ constant. (4.62)

It is of interest to note that the curve X*¯u(} ) in (4.60) is the involute of the
circle X¯ (cos } , sin } , 0) (see Lipschutz 1969).

Equations (4.34)–(4.37) integrate to yield the streamlines

x¯®q
"
sin } ®q

#
cos } , y¯ q

"
cos } ®q

#
sin } , z¯ z

!
, (4.63)

where
q
"
¯ r sin (θ®} )¯ (}

c
®} )t,

q
#
¯®r cos (θ®} )¯

t["
$
(} ®}

c
)$®} ]®ψ

} ®}
c

.

5

6

7

8

(4.64)

The equation

r¯
[(}

c
®} )%t#­²t["

$
(} ®}

c
)$®} ]®ψ´#]"/#

r} ®}
c
r

(4.65)

and (4.62) give the streamlines in polar coordinates. The integration constant
ψ in the streamline equations (4.64) is the streamfunction for the solution, so
that u¯¡ψ¬e

z
is the fluid velocity (4.60) for the simple wave.

The simple wave is restricted to regions where F3 1}r¡} r, (4.6), is positive.
In the present example,

F¯®q
#
®t¯ x cos } ­y sin®t¯ r cos (θ®} )®t. (4.66)

The envelope of the family of phase fronts (4.61), satisfying the equations
G(} , r, t)¯ 0 and G} 3F¯ 0, yields the group-velocity surface r¯u(} )t of the
simple wave. Note, however, that the envelope of the family of phase fronts for
a non-centred wave in which f(} )1 0 does not in general coincide with the
group-velocity surface. There are two possible solution branches for the
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envelope, obtained by eliminating } between (4.62) and the equation F¯ 0. If
0! θ®} ! "

#
π, the envelope may be written as

θ¯ θ−
b
3 }

c
­cos−"0tr1®(r#®t#)"/#

t
,

} ¯ } −
b
3 }

c
®

(r#®t#)"/#

t
,

5

6

7

8

(4.67)

whereas if ®"
#
π! θ®} ! 0, the envelope is described by

θ¯ θ+
b
3 }

c
­

(r#®t#)"/#

t
®cos−" 0tr1 ,

} ¯ } +
b
3 }

c
­

(r#®t#)"/#

t
.

5

6

7

8

(4.68)

It is straightforward to show that θ+
b
" θ−

b
for the wave envelope boundaries

(4.67) and (4.68). Note that r" t is required for the envelopes to be well defined.
Since } may be used as a parameter along the streamlines, it is of interest to

know the behaviour of F as a function of } on the streamline. From (4.64) and
(4.66),

F¯
t[}

c
®"

$
(} ®}

c
)$]­ψ

} ®}
c

, (4.69)

on the streamline ψ¯ const. Alternatively, F may be expressed in the form

F¯
t(}

b
®} )

3(} ®}
c
)
²[} ®}

c
­"

#
(}

b
®}

c
)]#­$

%
(}

b
®}

c
)#´, (4.70)

where
}
b
¯ }

c
­[3(}

c
­ψ}t)]"/$. (4.71)

Equations (4.70) and (4.71) show that there are two cases of interest in which
F& 0, namely

}
c
! } ! } +

b
: } +

b
¯ }

c
­[3(}

c
­ψ}t)]"/$,

} −
b
! } ! }

c
: } −

b
¯ }

c
®(3r}

c
­ψ}tr)"/$,

5

6

7

8

(4.72)

where }
c
­ψ}t" 0 for the } +

b
branch, and }

c
­ψ}t! 0 for the } −

b
branch.

Equation (4.65) shows that rU¢ along the streamline as } U }
c
. As } U } ³

b
,

FU 0 and the streamline meets the envelope curves (4.67) and (4.68)
respectively.

Figures 3 and 4 illustrate the streamlines (4.63) for the simple wave for the
case }

c
¯ "

#
π at time t¯ 1. The example in Fig. 3 corresponds to the θ−

b
branch

solution for the wave envelope. The streamlines are the solid curves, while the
dashed curve represents the wave envelope. The streamlines are restricted to
the region r" r

b
(θ, t), where r

b
denotes the wave-envelope boundary. The

straight-line tangents to the envelope represent wave fronts on which } is
constant. Note that the wave envelope meets the circle r¯ t as } U }

c
¯ "

#
π and

θU "
#
π. The streamline for ψU®t}

c
corresponds to the straight-line segment

y& t along the y axis. The streamline representation in terms of } is problem-
atical for ψ¯®t}

c
, since }

b
¯ }

c
in this case. The range of θ has been restricted
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Figure 3. Streamlines for the time-dependent 2D simple vortex wave described by
(4.59)–(4.61), for which Ω¯ (}

c
®} )e

z
and n¯ (®sin } , cos } , 0). The streamlines are

restricted to the region outside the wave envelope (the dashed spiral). The parameter }
c
¯

"
#
π and γ¯ &

$
.
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0 5 10
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–5–10–15 15

Figure 4. Same as Fig. 3, except that the sense of rotation of the envelope and fluid
streamlines is reversed.

to the range ®$
#
π! θ! "

#
π in Fig. 3 to ensure a single-valued solution for the

streamfunction. Figure 4 shows a similar plot of the streamlines for the θ+
b

solution for }
c
¯ "

#
π. The solution in Fig. 4 is similar to that in Fig. 3, except that

the sense of rotation of the spirals is opposite to that in Fig. 3. One can show
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Figure 5. The wave envelope of Figure 4, for a case where the range of θ has not been
truncated to ensure a single-valued solution.

that as } U }
c
and rU¢, the streamlines in both figures become parallel to the

y axis. Figure 5 illustrates the wave-envelope boundary θ¯ θ+
b

for a case where
the range of θ has not been truncated to ensure a single-valued streamfunction
ψ.

The Lagrangian particle paths (4.12) in cylindrical polar coordinates are

r¯ [(r
!
­t)#­(θ

!
®}

c
)#t#]"/#, θ¯ θ

!
­sin−" 9(} c

®θ
!
)t

r : , (4.73)

where θ
c
3 } and r

!
3F are the Lagrangian variables. The fluid velocity (4.60)

admits the Clebsch representation

u¯®(F®t)¡µ­¡F, µ¯ "
#
(} ®}

c
)#. (4.74)

It is possible to relate the advection equations for } and F to the Hamiltonian
formulation (4.20)–(4.22) in a way similar to that in Appendix D for the first
example. One can also develop a Clebsch representation for u using the
rectangular Cartesian coordinates x

!
¯F cos } and y

!
¯F sin } representing the

initial fluid-particle position.

5. Simple sound waves

In this section, we consider simple sound waves. The eigenequations (3.20) for
the sound waves reduce to

du

d}
¯ c

ρ«
ρ

n(} ),
dS

d}
¯ 0, (5.1)

where
λ¯u[n(} )­c (5.2)
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is the characteristic speed of the phase front. Without loss of generality, we
have chosen the ‘forward’ sound-wave eigenmode. Because u¯u(} ), we obtain

ω¯¡¬u¯ c
ρ«
ρ

n¬¡} ¯ 0 (5.3)

for the fluid vorticity, where n¯¡} }r¡} r is the normal to the wave front.
Similarly,

¡[u¯ r¡} r
d

d} 0cρ«
ρ 13

1

F

d

d} 0cρ«
ρ 1 . (5.4)

The remaining equation needed to determine the simple sound wave is Boillat’s
equation (3.25) for the wave phase } :

G3 f(} )­λ(} )t®r[n(} )¯ 0. (5.5)

The group velocity for the wave from (3.28) is V
g
¯u­cn. Equations (5.1) may

be integrated to yield

u¯& }

}
!

c
ρ«
ρ

n(} *) d} *­u
!
, ρ¯ ρ(} ), S¯S

!
(5.6)

for the velocity u and entropy S, where u
!

and S
!

are integration constants.
Equations (5.1)–(5.6) show that simple sound waves are compressible,

irrotational isentropic flows. Since ¡¬u¯ 0, u¯¡Φ, where Φ is the velocity
potential. By using the Frenet frame, one can show that the velocity potential
Φ has the form

Φ¯ r[u®& }

}
!

d} q
"
c
ρ«
ρ
­g(t), (5.7)

where
q
"
¯ r[n¯ f(} )­λ(} )t (5.8)

(see Appendix E) and g(t) is a linear function of t determined below. The fluid
equations for irrotational, compressible isentropic flows may be reduced to the
mass-continuity equation and Bernoulli’s equation,

¦ρ

¦t
­¡[(ρ¡Φ)¯ 0,

¦Φ

¦t
­"

#
r¡Φr#­W¯ 0, (5.9)

for ρ and Φ, where W(ρ) is the gas enthalpy (W¯γp}[(γ®1)ρ]¯ c#}(γ®1 for
an adiabatic gas). In order to satisfy Bernoulli’s equation, the function g(t) in
(5.7) must be of the form

g(t)¯®("
#
rur#­W)

!
t­k

"
, (5.10)

where the subscript 0 denotes evaluation at } ¯ }
!
, and k

"
is an arbitrary

constant. Equations (5.9) may be written in the Hamiltonian form (see e.g.
Zakharov and Kuznetsov 1984)

¦ρ

¦t
¯

δH

δΦ
,

¦Φ

¦t
¯®

δH

δρ
, (5.11)

where the Hamiltonian functional

H¯&["#ρr¡Φr#­ε(ρ)] d$x (5.12)
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consists of the kinetic plus internal energy of the gas. For an adiabatic gas, the
internal energy density ε¯p}(γ®1). Thus the velocity potential in (5.7) plays
a central role in the Hamiltonian formulation of simple sound waves.

In Sec. 5.1, we discuss time-dependent simple waves in one Cartesian space
dimension, in which n¯ (1, 0, 0) is a constant vector along the x axis. Although
this solution has been discussed extensively in standard texts (e.g. Whitham
1974; Courant and Friedrichs 1976; Landau and Lifshitz 1987), our main aim
is to show the central role of the envelope of the family of wave fronts in the
(x, t) plane for wave breaking. In Sec. 5.2, we present an explicit example of a
two-dimensional simple sound wave, where the basic properties of the solution
depend critically on the envelope of the family of wave fronts. Unlike the one-
dimensional simple sound wave, the 2D sound wave has unbounded derivatives
at all times t" 0 on the envelope. In Sec. 5.3, we make some brief comments on
time-independent simple waves in two Cartesian space dimensions and discuss
the role of Boillat’s ansatz (5.5) for the wave phase in this case.

5.1. One-dimensional simple sound waves

For n¯ (1, 0, 0), (5.1) integrates to yield the solution

u¯R−­&ρ

ρ
!

c

ρ
dρ3u

!
­

2

γ®1
(c®c

!
), (5.13)

and S¯S
!
¯ const for the one-dimensional simple sound wave, where ue

x
is the

fluid velocity along the x axis. In (5.13),

c¯ c
!0 ρ

ρ
!

10γ−")/#
(5.14)

is the gas sound speed for a polytropic equation of state p¯p
!
(ρ}ρ

!
)γ, and

c
!
¯ (γp

!
}ρ

!
)"/# is the sound speed for ρ¯ ρ

!
. Choosing f(} )¯ } in (5.5), the

equation for the wave phase reduces to

} ¯ x®λ
+
(} )t, λ

+
¯u­c, (5.15)

corresponding to the forward sound wave. The constant of integration R− in
(5.13) may be identified as the Riemann invariant for the backward sound
wave, i.e. R− is constant on the backward sound-wave characteristic :

¦R−

¦t
­(u®c)

¦R−

¦x
¯ 0. (5.16)

To obtain the simple-wave solution, one specifies the initial density profile at
time t¯ 0:

ρ(x, 0)¯ ρ
i
(x). (5.17)

The solution for ρ at time t is ρ¯ ρ
i
(} ). The solution for c is given by (5.14), and

(5.13) gives the solution for u.
A straightforward calculation shows that

ρ
x
¯

dρ}d}

F
, ρ

t
¯®λ

+

dρ}d}

F
, (5.18)
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where

F3G} ¯ 1­t
dλ

+

d}
, G¯ } ­λ

+
t®x¯ 0. (5.19)

Thus, at points where F1 0, ρ and u satisfy the forward sound-wave equation

¦ρ

¦t
­(u­c)

¦ρ

¦x
¯ 0, (5.20)

and a similar equation applies for the evolution of u. The derivatives ρ
x

and ρ
t

diverge on the phase-front envelope G¯G} ¯ 0. Thus, the wave breaks when
F¯G} ¯ 0 at time t¯ t

B
, where

t
B

¯®
1

dλ
+
}d}

. (5.21)

The time t
B

" 0 if dλ
+
}d} ! 0.

As an example of wave breaking, consider the initial conditions

ρ(x, 0)¯ ρ
i
(x)¯ ρ

!
exp 0®x#

L#
1 (5.22)

for the density profile. In this case, the wave breaks at time

t
B

¯
L#

(γ­1) } c(} )
. (5.23)

From (5.19) and (5.23), one finds that the minimum value of t
B

occurs when
} ¯L}(γ®1)"/#, and the value of x at the minimum break time follows from
(5.15).

The above analysis indicates that the envelope of the family of phase fronts
G¯G} ¯ 0 plays a central role in the evolution of the one-dimensional simple
sound wave. The envelope consists of a curve in the (x, t) plane. From the
envelope, it is straightforward to generate the family of phase fronts by drawing
straight-line tangents x¯λ

+
(} )t­} to the envelope for each fixed value of } .

The envelope of the family of phase fronts also plays a central role in the 2D
simple sound waves considered in the next section.

5.2. Multidimensional simple sound waves

In the general multidimensional case, the eigenequations (5.1) have solutions of
the form (5.6). Consider a two-dimensional simple sound wave in which the
wave normal n(} )3 e

"
corresponds to the tangent vector to a space curve x¯

X(} ), and for which the Frenet frame for the curve consists of the orthonormal
triad ²e

"
, e

#
, e

$
´ defined by the equations

n3 e
"
¯ (®sin } , cos } , 0), e

#
¯ (®cos } ,®sin } , 0), e

$
¯ (0, 0, 1). (5.24)

The curvature and torsion coefficients for the curve are κ¯ 1 and τ¯ 0 (i.e.
X(} ) is a circle). Choosing the functional forms

ρ¯ ρ
!
(cos# } )α, c¯ c

!0 ρ

ρ
!

1(γ−")/#, α¯
2

γ®1
(5.25)
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yields solutions (5.6) for u of the form

u
x
¯u

x!
­#

$
αc

o
(sin$ } ®sin$ }

!
),

u
y
¯u

y!
­#

$
αc

!
(cos$ } ®cos$ }

!
).

5

6

7

8

(5.26)

For the sake of simplicity, we further restrict our attention to the case

u
x
¯ #

$
αc

!
sin$ } , u

y
¯ #

$
αc

!
cos$ } (5.27)

by appropriate choice of u
!
and }

!
in (5.26). From (5.25), the sound speed in the

model varies as
c¯ c

!
cos# } . (5.28)

For the case of an adiabatic gas with adiabatic index γ¯ &
$
and α¯ 3, and the

gas is supersonic throughout the flow (rur#®c#" 0). By appropriate choice of u
!

and }
!

in (5.26), one can obtain both subsonic and supersonic flows.
The components of the fluid velocity relative to the Frenet frame (5.24) are

u
"
¯ #

$
αc

!
cos (2} ), u

#
¯®"

$
α c

!
sin (2} ), u

$
¯ 0, (5.29)

and
λ¯u

"
­c¯ "

#
c
!
(Λ cos 2} ­1), Λ¯ "

$
(4α­3), (5.30)

is the phase speed of the wave. Note Λ¯ 5 if γ¯ &
$

and α¯ 3.
We consider the case of a centred simple wave, for which Boillat’s phase

ansatz (5.5) reduces to

G3λ(} )t®(®x sin } ­y cos } )¯ 0. (5.31)

The envelope of the family of plane-wave fronts obtained by varying } in (5.31)
yields the equations

G¯λ(} )t®q
"
¯ 0, G} 3F¯ t

dλ

d}
®q

#
¯ 0 (5.32)

for the envelope, where

q
"
¯®x sin } ­y cos } , q

#
¯®x cos } ®y sin } (5.33)

are the position-vector components q
"
¯ r[e

"
and q

#
¯ r[e

#
relative to the

Frenet frame base (5.24).
By inverting (5.33) it follows that the envelope of the family of plane-wave

fronts (5.32) is given by the equations

x(} )¯®q
"
sin } ®q

#
cos } , y(} )¯ q

"
cos } ®q

#
sin } , (5.34)

where
q
"
¯λ(} )t¯ "

#
c
!
t(Λ cos 2} ­1), q

#
¯®c

!
Λt sin 2} . (5.35)

The non-normalized tangent vector to the envelope (5.34) is given by

T¯ 0dx

d}
,
dy

d}
,
dz

d} 1¯ t0d#λ

d} #

­λ1 e
#
¯ "

#
c
!
t(1®3Λ cos 2} )e

#
. (5.36)

From (5.36), the tangent vector T vanishes when

} ¯ }
c
¯

1

2 92nπ³cos−" 0 1

3Λ1: , (5.37)

where n is an integer.
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Figure 6. The envelope (5.34), (5.35) of the family of phase fronts (5.31) for the simple sound-
wave solution described by (5.24)–(5.31). The cusps in the envelope occur when } has the
values (5.38). The time t¯ 1, γ¯ &

$
and }

c"
¯ 43.089°.

The form of the envelope (5.34), (5.35) in the (x, y) plane obtained by varying
the parameter } at time t¯ 1 and with γ¯ &

$
is displayed in Fig. 6. The envelope

consists of a four-cornered, distorted rectangle with cusped corners where the
tangent vector (5.36) vanishes. The cusps occur at

} ¯ }
c"

¯ cos−"0 1

3Λ1 , }
c#

¯π®}
c"
, }

c$
¯π­}

c"
, }

c%
¯ 2π®}

c"
.

(5.38)

The point on the envelope where x¯ 0 and y" 0 corresponds to } ¯ 0. At the
cusp in the first quadrant (x" 0, y" 0), } ¯ }

c"
¯ 43.089°, and } increases in a

clockwise fashion as one proceeds around the envelope.
Figures 7(a, b) illustrate the possible wave phase fronts associated with a

fixed field point P. In Fig. 7(a), the P is outside the wave envelope, whereas P
lies inside the wave envelope in Fig. 7(b). The wave fronts consist of the
straight-line tangents (5.31) to the wave phase envelope.

In Fig. 7(a), there are apparently two possible tangents to points on the wave
envelope corresponding to a fixed point P outside the envelope. However, it
turns out that only the tangent QP is applicable, because we require that F¯
1}r¡} r3G} be positive in (3.26) at points off the envelope. Consider, for
example, the tangent QP in Fig. 7(a), in which Q has coordinates (x

!
, y

!
) and for

which } ¯ }
!
. The general point (x, y) on the straight-line tangent satisfies the

equation
λ(}

!
)t­x sin }

!
®y cos }

!
¯ 0, (5.39)

and, in particular, the point (x
!
, y

!
) satisfies (5.39). As a consequence, the

equation of the tangent (5.39) may be expressed in the form

(x®x
!
) sin }

!
®(y®y

!
) cos }

!
¯ 0. (5.40)
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Figure 7. Constant phase fronts that are tangent to the wave envelope (5.34), (5.35) for the
simple sound wave (5.24)–(5.31). In (a), there are two possible tangents to the wave envelope
passing through a point P located outside the envelope. In (b), the point P is located inside
the envelope. For points P inside the envelope, up to four tangents may be drawn. The values
of } associated with each tangent are possible for } at point P.

On the tangent QP,

F3G} ¯ t0dλ

d} 1
!

­x cos }
!
­y sin }

!
. (5.41)

Because F
!
3F (x

!
, y

!
, }

!
, t)¯ 0 on the wave envelope, (5.40) and (5.41) yield

the results
F3F®F

!
¯ (x®x

!
) cos }

!
­(y®y

!
) sin }

!

¯
x®x

!

cos }
!

¯
y®y

!

sin }
!

(5.42)

at any point P(x, y) on the tangent QP. It follows from the results (5.42) that
if cos }

!
" 0 and x" x

!
or if cos }

!
! 0 and x! x

!
then F" 0. Similarly, if

(y®y
!
) sin }

!
" 0 then F" 0. For the point P in Fig. 7(a), only the tangent QP

has F" 0, whereas F! 0 for the tangent RP. Thus, for points outside the wave
envelope, the solution of (5.39) for } 3 }

!
is unique, since we require F" 0.

Hence the flow is single-valued and the physical variables are continuous and
differentiable outside the wave envelope. The derivatives of } and the physical
variables become unbounded on the wave envelope owing to a jump in the value
of } on the envelope.

A similar argument applied to points P inside the wave envelope (as
illustrated in Fig. 7b), does not lead to a unique solution for } inside the wave
envelope, unless one or more sides of the envelope are deleted.

Now consider the character of the fluid streamlines (3.34) in the region
outside the envelope. In terms of q

"
, q

#
and q

$
, the streamline equations (3.54)

reduce to

dq
#

d}
­

u
#

u
"

q
#
¯

u
#

u
"

q!
"
®q

"
,

dq
$

d}
¯ 0 (5.43)
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Figure 8. The streamlines (5.48) at time t¯ 0 for the simple sound wave (5.24)–(5.31). The
straight-line separatrices at 45° correspond to the constant-phase fronts } ¯ "

%
π, $

%
π, &

%
π and (

%
π.

in the present example. Using the results (5.30) and noting that q
"
¯λ(} )t,

(5.43) may be integrated to yield the solutions

q
#
¯ q!

"
­

1

I
#

9cs®"
#
c
!
t& }

}
s

I
#
(} «) (1®3Λ cos 2} «) d} «: ,

q
$
3 z¯ z

!
¯ const,

5

6

7

8

(5.44)

where
I
#
(} )¯ r cos 2} r"/%, q

"
¯ "

#
c
!
t(Λ cos 2} ­1). (5.45)

The function I
#
(} ) is the integrating factor for (5.43), and c

s
is related to }

s
by

the equation
c
s
¯ I

#
(} ) [q

#
(} , t)®q!

t
(} , t)]r} =}

s

, (5.46)

and } ¯ }
s

corresponds to a fixed point on the streamline. The streamlines
x¯X(} , t) and y¯Y(} , t) now follow from the transformations (5.34) between
(q

"
, q

#
) and (x, y). The wave phase } plays the role of a parameter along the

streamlines.
At time t¯ 0, the streamline solutions (5.44)–(5.46) reduce to

q
"
¯ 0, q

#
¯

c
s

I
#

, c
s
¯ q

#s
I
#s
, (5.47)

where the subscript s denotes that } ¯ }
s
. In terms of x and y, the streamlines

at time t¯ 0 have the forms

x¯®q
#s

I
#s

cos }

I
#
(} )

, y¯®q
#s

I
#s

sin }

I
#
(} )

. (5.48)

Figure 8 illustrates the streamlines (5.48) at time t¯ 0. The flow consists of four
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flows separated by the straight-line wave fronts : } ¯ "
%
π, $

%
π, &

%
π and (

%
π. The

phase fronts for } ¯ "
%
π, $

%
π, &

%
π and (

%
π are also streamlines, but are not described

by (5.48), since cos 2} ¯ 0 in these cases.
The form of the streamlines at time t¯ 1 is illustrated in Fig. 9 The flow

separates into four distinct regions corresponding to the top, left-hand side,
bottom and right-hand side of the wave envelope. Some of the incoming
streamlines from infinity impinge on the wave envelope. For this simple wave
flow to be used in a physical application would require matching the flow to
another solution of the fluid equations before the flow hits the wave envelope.
The flow near the cusps either flows inward toward the cusps or diverges to
infinity. From (5.44) and (5.45), rq

#
rU¢ as } U "

%
π, $

%
π and (

%
π. The solution (5.44)

for q
#
does not apply for } an odd multiple of "

%
π. For } ¯ "

%
π, $

%
π, &

%
π and (

%
π, the

streamlines coincide with the straight-line wave fronts, and correspond to flows
emanating or diverging from near the cusps in Figs 6 and 9. Thus, for example,
for } ¯ "

%
π, the streamline equations

dx

u
x

¯
dy

u
y

(5.49)

have solutions

y¯ x­
c
!

2"/#
t, (5.50)

and similar results hold for } ¯ $
%
π, &

%
π and (

%
π. As time increases, the wave

envelope and flow pattern move outward in such a way that the pattern is
preserved.

5.3. Steady, simple sound waves

In this section, we discuss steady, two-dimensional (2D) simple sound waves
treated in standard texts (e.g. Courant and Friedrichs 1976, Chap. 4) from the
perspective of Boillat’s simple-wave formalism.

For time-independent simple waves, λ¯®}
t
}r¡} r¯ 0. Hence the eigenvalue

equations for simple sound waves reduce to

u[n³c¯ 0, (5.51)
and

du

d}
¯³c

ρ«
ρ

n,
dS

d}
¯ 0 (5.52)

are the eigenvector relations. Because n¯¡} }r¡} r, the eigenvalue equations
(5.51) for 2D sound waves may be written in the form

H¯ (u#®c#)} #
x
­2uv}

x
}
y
­(v#®c#)} #

y
¯ 0, (5.53)

where the fluid velocity u¯ue
x
­ve

y
and c are functions of } only. Since

u¯u(} ) and v¯ v(} ), J¯ ¦(u, v)}¦(x, y)¯ 0. The vanishing Jacobian condition
J¯ 0 indicates that the hodograph transformation is singular for simple waves.

The characteristics of the partial differential equation (5.53),

dx

2[(u#®c#)}
x
­uv}

y
]
¯

dy

2[(v#®c#)}
y
­uv}

x
]
¯

d}

2Η
, (5.54)
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Figure 9. The streamlines and wave envelope at time t¯ 1 for the simple sound-wave
solution of (5.24)–(5.31).

imply that } is constant on the characteristics. Equations (5.54) lead to the
equations

dy

dx
¯

(v#®c#)}
y
­uv}

x

(u#®c#)}
x
­uv}

y

,
dy

dx
¯®

}
x

}
y

. (5.55)

From (5.55), y«¯ dy}dx satisfies the quadratic equation

(y«)#(u#®c#)®2uvy«­v#®c#¯ 0, (5.56)
with solutions

y«¯ ζ³ ¯
uv³c(u#­v#®c#)"/#

u#®c#
(5.57)

for y«.
The eigenequations (5.52) for du}d} may be written in the form

du

d}
¯ c

ρ«}
x

ρr¡} r
,

dv

d}
¯ c

ρ«}
y

ρr¡} r
. (5.58)

Equations (5.58) imply that

du

dv
¯

}
x

}
y

¯®y«. (5.59)

Substitution of the result (5.59) for y« into (5.56) yields the characteristics in the
(u, v) hodograph plane in the form

(udu­v dv)#®c#(du#­dv#)¯ 0, (5.60)
with integrals

θ³& (M#®1)"/#
dq

q
¯Γ³, (5.61)
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where q and θ are polar coordinates for u and v :

u¯ q cos θ, v¯ q sin θ, q#¯u#­v#, M#¯
q#

c#
, (5.62)

and M is the sonic Mach number.
The above development shows how Boillat’s formalism yields the char-

acteristics for steady 2D simple sound waves in two Cartesian space coordinates
x and y. The eigenvalue equation (5.51) was interpreted as a first-order partial
differential equation for } , with characteristics (5.57) in the (x, y) plane. The
characteristics in the (u, v) hodograph plane follow from the eigenvector
relations (5.52).

6. Summary and discussion

In this paper, we have studied some of the ramifications of Boillat’s (1970)
formulation of multidimensional simple waves for hyperbolic systems of
equations of type (3.1). The phase ansatz (3.25) derived by Boillat consists of
planar wave fronts for constant wave phase } , which move with constant phase
speed λ(} ) along the normal n(} ) to the front. The ansatz (3.25) for } (x, y, z, t)
implicitly determines the wave phase for a given wave normal n(} ) and wave
mode, and in which the arbitrary function f(} ) determines whether the wave is
a centred or non-centred wave. The envelope of the family of phase fronts
obtained by varying the wave phase } plays a central role in the solution
examples for vortex simple waves (Sec. 4) and simple sound waves (Sec. 5). On
the envelope, the gradients of } and the physical variables diverge. The phase
fronts can readily be reconstructed once the envelope is specified.

Perhaps the prototypical example of wave breaking, shock formation and
gradient ‘blow-up’ is that for the inviscid Burgers equation, or that for time-
dependent simple sound waves in one Cartesian space dimension (see e.g.
Whitham 1974). For appropriate initial conditions, the gradients blow up in a
finite time t¯ t

B
. If one considers the time t and space coordinate x to be

complex variables, the singularity formation at time t¯ t
B

corresponds to the
instant when the singularity in the complex time domain first hits the real time
axis (Caflisch et al. 1993). The break time t¯ t

B
(x) corresponds to the envelope

of the family of phase fronts (or characteristics) in the (x, t) plane.
For time-dependent simple waves in two or more space dimensions, the

examples of simple vortex waves (Sec. 4) and sound waves (Sec. 5) exhibit
singular behaviour on the wave envelope at all times t (where t is taken to be
a real variable). The examples studied in the present paper have a singularity
at the origin of the (x, y) plane at time t¯ 0. As time increases, the envelope of
the family of phase fronts expands away from the origin. If one extrapolates the
solutions to t! 0, then the wave envelope converges toward the origin as t
increases. The envelope can consist of a closed curve in the (x, y) plane (see e.g.
Figs 1 and 9) or an open curve (see e.g. Figs 3 and 4). For the simple sound wave
in Fig. 9, the physical solution is not well defined inside the envelope where the
solution is multivalued, indicating that the solution must be matched onto
another solution of the fluid equations on some boundary outside the envelope.

The singularities that form in two or more space dimensions are similar to
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caustics in geometrical optics, or the singularities that occur in linear wave
equations in two or more space dimensions, in which caustics occur on the
envelope of the family of plane-wave fronts.

In Boillat’s formulation of simple waves, one is free to specify the wave
normal n(} )¯ (n

x
,n

y
,n

z
). One can regard n(} )3 e

"
as the tangent vector to a

three-dimensional space curve x¯X(} ). The twisting and turning of the curve
x¯X(} ) may be conveniently described in terms of an orthonormal triad of
vectors ²e

"
, e

#
, e

$
´ attached to the curve. In general, the frame vectors ²e

i
´ rotate

as one progresses along the curve according to the twist equations de
i
}d} ¯

κ¬e
i
, where κ¯3

i
κ
i
e
i
is the twist vector (see e.g. Bishop 1975; Goriely and

Tabor 1996; see also (3.36) et seq.). The twist equations are a natural
generalization of the Serret–Frenet equations of classical differential geometry.
The twist equations play an important role in the theory of knots, and in
particular of knotted vortices in fluid dynamics (see e.g. Moffatt 1969; Moffatt
et al. 1992) and knotted magnetic field lines in magnetohydrodynamics (Berger
and Field 1984; Moffatt and Ricca 1992). One intriguing question left
unanswered by the present paper is : What are the properties of simple waves
in which n(} )¯X«(} )}rX«(} )r is the tangent vector to a knotted space curve
x¯X(} )?

The wave phase } turns out to be a natural parameter for the fluid
streamlines and the vortex streamlines (Sec. 3.2). The streamlines for the simple
waves reduce to two coupled first-order ordinary differential equations in the
independent variable } and the dependent variables q

#
¯ r[e

#
and q

$
¯ r[e

$
.

The equation q
"
3 r[e

"
¯ f(} )­λ(} )t corresponds to Boillat’s ansatz (3.25) for

} . The equations may be expressed in terms of Lagrangian and Hamiltonian
variational principles. The coefficients and source terms in the equations
depend on the detailed form of the fluid velocity u(} ), Boillat’s ansatz (3.25) for
the wave phase, and the curvature and torsion coefficients of the curve x¯
X(} ).

In Sec. 3.3 we discussed the link between characteristic surfaces and simple
waves (see e.g. Burnat 1965, 1971; Courant and Hilbert 1989). The simple-wave
phase surfaces } ¯ const correspond to a special class of characteristic surfaces
in which the fluid variables are solely functions of } . For more general solutions
of the fluid equations, the physical variables will depend on more than one
independent variable. The eigenvalue equation for λ¯®}

t
}r¡} r for a specific

wave mode may be written as a first-order partial differential equation for } in
the form }

t
­λr¡} r¯ 0. The characteristics of this equation are dx}dt¯V

g
,

d} }dt¯ 0, where V
g
is the group velocity of the wave, from which it follows that

}
t
­V

g
[¡} ¯ 0. The characteristics are directly related to the Monge cone for

the wave mode under consideration.
The vortex eigenmodes contain as a special case one-dimensional shear flows.

In two or more space dimensions, one obtains spiral flows. Since the vortex
eigenmodes and the entropy wave (contact discontinuity) have the same phase
speed λ¯u[n and group velocity V

g
¯u, it is possible to obtain compressible

vortex simple waves in which the gas pressure p is constant and the entropy
variations are linked to the density variations via the equation of state (2.4).
For incompressible simple vortex flows, the density, pressure and entropy are
all constant. In a vortex simple wave, ¡[u¯ 0 and ω¯¡¬u1 0. The vortex
simple waves do not allow vortex-tube stretching (ω[¡u¯ 0), and the vorticity
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is advected with the flow. It is useful to employ Lagrangian fluid variables in
the discussion of vortex simple waves. Clebsch representations of the velocity
field and Hamiltonian aspects of vortex dynamics have been discussed in
Sec. 4.

Simple sound waves are compressive (ρ is variable and ¡[u1 0), and are
characterized by zero vorticity (ω¯ 0) and zero entropy variations (S¯S

!
¯

const). Simple sound waves are potential flows, in which u¯¡Φ gives the fluid
velocity in terms of the velocity potential Φ. The explicit form of Φ for a simple
sound wave is given by (5.7)–(5.10). The equations coupling ρ and Φ are the
mass-continuity equation and Bernoulli’s equation. The latter equations may
be cast in a Hamiltonian form in which the Hamiltonian consists of the fluid
kinetic energy plus the internal energy of the gas, and the canonical variables
are ρ and Φ (see e.g. Zakharov and Kuznetsov, 1984). The solution for the two-
dimensional (2D) simple sound wave in Sec. 5 was obtained by using the fact
that the plane-wave fronts for } ¯ const are tangent to the wave envelope.
Since ρ¯ ρ(} ), the density contours coincide with the plane wave fronts for
} ¯ const. The streamlines in the 2D sound wave in Sec. 5 corresponded to a
supersonic flow consisting of four flows with concave-shaped streamlines
separated by straightline wave fronts for which } ¯ "

%
π, $

%
π, &

%
π and (

%
π (see Figs

6–9). The characteristics of steady 2D simple sound waves in two Cartesian
space dimensions treated in standard texts have been discussed here from the
perspective of Boillat’s simple-wave formulation.

In the present paper, only a limited number of simple-wave examples have
been considered. These examples have been restricted to one- and two-
dimensional flows, and the majority of them are centred simple waves. It would
be of interest to explore three-dimensional simple waves. Further work is
planned on multidimensional simple waves in magnetohydrodynamics by
extending the preliminary results of Webb et al. (1995).
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Appendix A

In this appendix, we provide a derivation of the solution (3.25) for } of the
differential equations (3.24). An alternative derivation is given by Boillat
(1970). To solve (3.25), we first introduce the notation

p¯ }
x
, q¯ }

y
, r¯ }

z
, s¯ }

t
, (A 1)

so that

n(} )¯
(p, q, r)

(p#­q#­r#)"/#
, λ(} )¯®

s

(p#­q#­r#)"/#
. (A 2)

To analyse the constraints imposed on } by the first of (A2) it is useful to note
that

n¬¡} ¯ 0. (A3)

https://doi.org/10.1017/S0022377897006375 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377897006375


Multidimensional simple waves in gas dynamics 455

In component form, (A3) yields three first-order partial differential equations
for } :

H"3 rny®qnz¯ 0, (A4)

H#3pnz®rnx¯ 0, (A5)

H$3 qnx®pny¯ 0. (A6)

In (A4)–(A6), we use the notation n¯ (nx,ny,nz). In general, only two of
(A4)–(A6) are independent.

Consider the constraint imposed on } by (A6). The Cauchy characteristics
(see e.g. Sneddon 1957, Chap. 2) for (A6),

dx

H
p

¯
dy

H
q

¯
d}

pH
p
­qH

q

¯
dp

®(H
x
­pH} )

¯
dq

®(H
y
­qH} )

, (A 7)

with H3H$, reduce to

dx

®ny(} )
¯

dy

nx(} )
¯

d}

0
¯®

dp

pH}

¯®
dp

qH}

. (A 8)

In (A8), the expression d} }0 is to be interpreted as } is constant on the
characteristics. More precisely, we could have written d} }dτ¯ 0, where τ is a
parameter along the characteristics. Straightforward integrals of the first three
equations in (A8) are

} ¯ c
"
, xnx(} )­yny(} )¯ c

#
, (A 9)

where c
"

and c
#

are integration constants. Equations (A9) imply that the
general solution of (A6) is of the form

g
"
(} , z, t)¯ xnx(} )­yny(} ), (A 10)

where g
"
is an arbitrary differentiable function of } , z and t. Differentiation of

(A10) implicitly with respect to x and z yields expressions for r3 }
z
and p3 }

x
:

r¯®
¦g

"
}¦z

D
, p¯

nx

D
, D¯

¦g
"

¦}
®x

dnx

d}
®y

dny

d}
. (A 11)

Substitution of the results (A11) for r and p into (A5) leads to the solution form

g
"
¯®nz(} )z­g

#
(} , t) (A 12)

for g
"
. Combining (A10) and (A12) gives

g
#
(} , t)¯ xnx(} )­yny(} )­znz(} )3 r[n(} ) (A 13)

as the general solution of (A4)–(A6).
Now consider the constraint imposed on the solution by the second equation

in (A2). Implicit differentiation of (A13) yields expressions for ¡} and }
t
:

}
t
¯®

¦g
#
}¦t

F
, ¡} ¯

n

F
, F¯

¦g
#

¦}
®r[

dn

d}
. (A 14)

Substitution of the results (A14) into the second equation of (A2) leads to the
solution

g
#
¯λt­f(} ), f(} )¯ r[n®λt, (A 15)

which is the solution (3.25).
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Appendix B

In this appendix, we consider generating functions for canonical trans-
formations relating the Hamiltonians H

!
(P

!
,Q

!
, } ), H

"
(P

"
,Q

"
, } ) and H

#
(P

#
,Q

#
, } )

for the streamline equations of Sec. 3.2.1.
FromGoldstein (1980, Chap. 9), twoHamiltoniansH

"
(P

"
,Q

"
, t) and H

#
(P

#
,Q

#
, t)

yield the equivalent dynamical equations if their corresponding Lagrangian
densities L

"
and L

#
differ by a perfect derivative, i.e.

L
"
¯L

#
­

dF

dt
. (B 1)

The function F may then be identified as being related to the generating
function of the canonical transformation linking the two Hamiltonians. In
particular, if

F¯F
"
(Q

"
,Q

#
, t) (B 2)

then the equations

P
"
¯

¦F
"

¦Q
"

, P
#
¯®

¦F
"

¦Q
#

, H
#
¯H

"
­

¦F
"

¦t
(B 3)

relate the two sets of canonical variables and Hamiltonians. Similarly, if F has
the form

F¯F
#
(Q

"
,P

#
, t)®Q

#
P
#

(B4)
then the equations

P
"
¯

¦F
#

¦Q
"

, Q
#
¯

¦F
#

¦P
#

, H
#
¯H

"
­

¦F
#

¦t
(B 5)

describe the canonical transformations.
From (3.56), (3.64), (3.66) and (3.67),

Q
!
¯ I

#
q
#
, P

!
¯ I

$
q
$
, Q

"
¯ q

#
, P

"
¯ I

#
I
$
q
$
,

H
"
¯H

!
­a

##
I
#
I
$
q
#
q
$

5

6

7

8

(B 6)

are the basic equations connecting the streamline Hamiltonians H
!

and H
"

in
Sec. 3.2.1. From (B6),

P
"
¯ I

#
P
!
, Q

"
¯

Q
!

I
#

(B 7)

relate P
!
and Q

!
to P

"
and Q

"
. From the general results (B4) and (B5), one finds

that the choice

F¯F
#
(Q

!
,P

"
, } )®Q

"
P
"
, F

#
¯

Q
!
P
"

I
#

(B 8)

for F and F
#
generates the canonical transformations (B6) and (B7). Similarly,

using (3.66), (3.67), (3.69) and (3.70), we obtain

P
#
¯ I

#
I
$
Q

"
, Q

#
¯®

P
"

I
#
I
$

, H
#
¯H

"
­

d

d}
(I

#
I
$
)q

#
q
$

(B 9)
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as the canonical transformations linking H
"

and H
#
. Using (B2) and (B3), it

follows that
F¯F

"
(Q

"
,Q

#
, } )¯®I

#
I
$
Q

"
Q

#
(B 10)

is the canonical generating function in this case.

Appendix C

In this appendix, we discuss the streamline equations (4.39)–(4.42) from the
perspective of the Hamiltonian streamline formulation of Sec. 3.2.1. We also
demonstrate that the streamfunction ψ of (4.40) satisfies (4.19).

Using the results (3.69) and (3.70), the streamline equations take the forms

dP
#

d}
¯®

¦H
#

¦Q
#

,
dQ

#

d}
¯

¦H
#

¦P
#

, (C 1)

in which the equations

P
#
¯u

"
q
#
, Q

#
¯®q

$
, H

#
¯®u

"
S
#
Q

#
,

S
#
¯

u
#

u
"

( f «­tu!

"
)®( f­u

"
t),

5

6

7

8

(C 2)

define the Hamiltonian H
#
and the canonical variables P

#
and Q

#
. Using (C 2) in

(C 1) results in the equations

dQ
#

d}
¯ 0,

dP
#

d}
¯u

"
S
#
, (C 3)

with integrals

Q
#
3®z¯®z

!
, P

#
3u

"
q
#
¯& }

}
!

u
"
(} «)S

#
(} «, t) d} «­ψ, (C 4)

where z
!

and ψ are the integration constants. The integrals (C 4) are readily
shown to be equivalent to the integrals (4.39) and (4.40) for q

#
and q

$
, in which

ψ may be identified as the streamfunction.
One can show explicitly that ψ(} , q

#
, t) obtained by solving (4.40) for ψ,

namely

ψ¯ q
#
u
"
®[q

"
u
#
]}}

!

­L
!& }

}
!

Ω(} «) q
"
(} «, t) d} «, (C 5)

satisfies the streamfunction equation (4.19) by noting that

¡ψ¯
1

F 0¦ψ

¦}
®q

"

¦ψ

¦q
#

1 e
"
­

¦ψ

¦q
#

e
#
,

u¯¡ψ¬e
z
¯

¦ψ

¦q
#

e
"
­

1

F 0q" ¦ψ

¦q
#

®
¦ψ

¦} 1 e
#
,

ω¯®∆v ψ

¯®(1F 0 ¦
¦}

®q
"

¦
¦q

#

1 91F 0¦ψ

¦}
®q

"

¦ψ

¦q
#

1:­¦#ψ

¦q#
#

®
1

F

¦ψ

¦q
#

* .

5

6

7

8

(C 6)
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Equations (C 6) imply

u¯u
"
e
"
­u

#
e
#
, ω¯L

!

Ω

F
3L

!
r¡} rΩ, (C 7)

and that ω satisfies the vorticity-advection equation (4.15).

Appendix D

In this appendix, we show that although θ
!
3 } is a Clebsch variable for the

velocity u in the vortex simple wave of Example 1 in Sec. 4, the advection
equation for θ

!
cannot be cast in Hamiltonian form with Poisson bracket (4.22).

However, µ¯ tθ
!

does obey an evolution equation of Hamiltonian form with
bracket (4.22). We adopt a dimensionless formulation of the equations in the
following analysis. From the streamfunction equation (4.57),

µ¯ tθ
!
¯ψ­r

!
¯∆−"(ω)­

1

ω
(D1)

gives µ and θ
!

in terms of the vorticity ω, where

ψ¯∆−"(ω)¯®
1

2π&&ω« ln rx®x«r dx« dy« (D2)

gives the solution of Poisson’s equation (4.17) for ψ. From (D2) and (4.21), we
find

δH

δω«
¯®∆−"(ω«)¯®ψ«, ¡«¬0δHδω«

e
z1¯®v«,

δµ

δω«
¯®

ln rx®x«r
2π

®
δ(x®x«)

ω#

.

5

6

7

8

(D3)

Using the definition (4.22) of the Poisson bracket, and (D3) and (4.15), we find

²µ,H´¯
¦µ

¦t
. (D4)

Thus µ satisfies Hamilton’s equations, but θ
!
does not. From the fact that θ

!
is

advected with the fluid, it follows that µ satisfies the equation

¦µ

¦t
­u[¡µ¯

µ

t
. (D5)

Similarly, ψ, r
!

and ω satisfy Hamilton’s equations.

Appendix E

In this appendix, we derive the formula (5.7) for the velocity potential Φ for
simple sound waves. Using the Frenet frame equations (3.44), the eigenfunctions
(5.1) for du}d} may be written in the form

du
"

d}
¯ κu

#
­c

ρ«
ρ

,
du

#

d}
¯®κu

"
­τu

$
,

du
$

d}
¯®τu

#
, (E 1)
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where κ and τ are the curvature and torsion coefficients of the curve X(} ) with
tangent vector n(} ). Using q

#
3 r[e

#
, q

$
¯ r[e

$
and } as independent

coordinates, we obtain

u
"
¯

1

F 9¦Φ

¦}
­(τq

$
®κq

"
)
¦Φ

¦q
#

®τq
#

¦Φ

¦q
$

: ,
u
#
¯

¦Φ

¦q
#

, u
$
¯

¦Φ

¦q
$

, F¯
df

d}
­t

dλ

d}
®κq

#

5

6

7

8

(E 2)

for the velocity components in the Frenet frame. Equations (E2) may be
integrated to yield the expression

Φ¯ q
#
u
#
­q

$
u
$
­& }

(κu
#
q
"
­u

"
q!
"
) d} ­g(t) (E 3)

for the velocity potential Φ. Using the result in (E1) for du
"
}d} and integrating

by parts in (E3) yields the expression

Φ¯ q
"
u
"
­q

#
u
#
­q

$
u
$
®& }

}
!

c
ρ«
ρ

q
"
d} ­g(t)

3 r[u®& }

}
!

c
ρ«
ρ

q
"
d} ­g(t) (E 4)

for the velocity potential Φ. The expression (E4) is equivalent to the result (5.7)
for Φ. Note that Bernoulli’s equation (5.9) for simple sound waves depends on
the results

u¯¡Φ,
¦Φ

¦t
¯®& }

}
!

λc
ρ«
ρ

d} ­g«(t), (E 5)

d

d}
("
#
rur#­W)¯λc

ρ«
ρ

, (E 6)

where W is the gas enthalpy. The function g(t) is the linear function of t given
in (5.10).
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