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1. Introduction. Let K denote an algebraically closed field and Tilt=Tilt
(
SL2(K)

)
the additive K-linear category of (left-)tilting modules for the algebraic group SL2(K).

In this note, we compute the (categorical) center Z(Tilt) of Tilt, using the explicit
description of the Ringel dual of SL2(K) from [5]. In characteristic zero, we have Z(Tilt)∼=∏

N K since Tilt is semisimple with simple objects indexed by N. Hence, our main concern
is the case of prime characteristic. Thus, for the duration, K is of characteristic p≥ 2.

THEOREM A. We have isomorphisms of K-algebras:

Z(Tilt)∼=K[Xv | v ∈N]
/
〈XvXw | v, w ∈N〉.

We will provide an explicit isomorphism in Theorem 4.6 and the discussion following
it. For a possible interpretation of the central elements Xv via Donkin’s tensor product
theorem, see Section 4.3.

Finally, in Section 5, we compute the centers of the categories of tilting modules in
the quantum group case, see Theorem 5.2, and of projective GgT-modules for g= 1, 2, see
Theorem 5.3, both for SL2.

2. Preliminaries. Throughout, we fix a prime p≥ 2. The main figure to keep in
mind is Figure 1 which illustrates the underlying graph of the quiver algebra Z in the cases
p= 3, p= 5, and p= 7.

We also warn the reader that we will always have a ρ-shift of 1 and the crucial number
will usually be “the highest weight plus 1,” which we will denote by v, w, etc.

In the following, we review basic notation related to Z. For more details, we refer to [5].
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Figure 1. The full subquivers containing the first 53 vertices of the quiver underlying Zp for
p ∈ {3, 5, 7}, showing from top to bottom the numbers v of the vertices, the generation of v, and
the p-adic expansion of v.

2.1. Some combinatorics of p-adic expansions.

DEFINITION 2.1. For any v ∈N, we write [aj, ..., a0]p :=∑j
i=0 aipi = v for the p-adic

expansion with digits ai ∈ {0, ..., p− 1} and aj �= 0. We sometimes also write ah for h > j,
and then ah = 0, by convention. Finally, the generation of v is the number of non-zero digits
of v minus 1.

REMARK 2.2. Conversely, we will sometimes specify numbers by p-adic expansions
with negative digits such as [3,−1,−6,−5, 0, 5,−6]7 = 320, 048.

The generation of v is a complexity measure for the indecomposable tilting module
of highest weight v− 1. For example, the indecomposables of generation zero are exactly
the simple tilting modules. Moreover, to each non-simple indecomposable tilting module,
one associates another tilting module of generation one lower, called its mother, whose
highest weight (plus 1) is obtained by setting the lowest non-zero digit to zero. Tracing the
matrilinear ancestry of an indecomposable tilting module through decreasing generation
numbers, one arrives at a simple tilting module, called an eve.

DEFINITION 2.3. If v= [aj, ..., a0]p ∈N is of generation zero, then v is called an eve.
The set of eves is denoted by Eve.

Note that Eve= Eve<p ∪ Eve≥p, with Eve<p and Eve≥p having the evident meaning.

EXAMPLE 2.4. For p= 7, we have Eve<p = {1, 2, 3, 4, 5, 6} and

Eve≥p = {[1, 0]7, [2, 0]7, ..., [6, 0]7, [1, 0, 0]7, [2, 0, 0]7, ..., [6, 0, 0]7, [1, 0, 0, 0]7, ...}.
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DEFINITION 2.5. For two finite subsets S, T ⊂N0 the distance between them is defined
as d(S, T)=min

{|s− t| | s ∈ S, t ∈ T
}
, and we write T > S to indicate the requirement that

every element in T is strictly greater than every element in S.

DEFINITION 2.6. For S ⊂N0 a finite set, we consider partitions S =⊔
i Si of S into

subsets Si of consecutive integers, which we call stretches. We fix the coarsest such
partition.

The set S is called down-admissible for v= [aj, ..., a0]p if:

(i) amin(Si) �= 0 for every i, and
(ii) if s ∈ S and as+1 = 0, then s+ 1 ∈ S.

If S ⊂N0 is down-admissible for v= [aj, ..., a0]p, then we define its downward reflection
along S as:

v[S] := [aj, εj−1aj−1, ..., ε0 a0]p, εk =
{

1 if k /∈ S,

−1 if k ∈ S.

Conversely, S is up-admissible for v= [aj, ..., a0]p if the following conditions are
satisfied:

(i) amin(Si) �= 0 for every i, and
(ii) if s ∈ S and as+1 = p− 1, then we also have s+ 1 ∈ S.

If S ⊂N0 is up-admissible for v= [aj, ..., a0]p, then we define its upward reflection
along S as:

v(S) := [a′r(S), ..., a′0]p, a′k =

⎧⎪⎪⎨
⎪⎪⎩

ak if k /∈ S, k − 1 /∈ S,

ak + 2 if k /∈ S, k − 1 ∈ S,

−ak if k ∈ S,

where we extend the digits of v by ah = 0 for h > j if necessary, and r(S) is the biggest
integer such that a′k �= 0.

EXAMPLE 2.7. Note that S = {7, 6} is up-admissible for v= [3, 1, 6, 5, 0, 5, 6]7. To
compute v(S) we let v= [0, 3, 1, 6, 5, 0, 5, 6]7 and then we get

v(S)= [0, 3
���

, 1, 6, 5, 0, 5, 6]7 = [2,−3, 1, 6, 5, 0, 5, 6]7 = [1, 4, 1, 6, 5, 0, 5, 6]7.

The wave indicates the digits on which we apply S.

We tend to omit set brackets, for example, for singleton sets {i} we also write v[i] and
v(i) instead of v[{i}] and v({i}).

DEFINITION 2.8. If S is up-admissible, then we denote by S ⊂N0 the down-admissible
hull of S, the smallest down-admissible set containing S, if it exists.

EXAMPLE 2.9. Let p= 7 and v= [3, 1, 6, 5, 0, 5, 6]7.

(a) The singleton sets {2}, {1} and {i} for i ∈N>5 are not down-admissible for v. Of
these, only {1} has a down-admissible hull and it is {1} = {2, 1}.

(b) Hence, the singleton sets {5}, {4}, {3}, and {0} are minimal down-admissible for v,
and we have

v[5] = [3,−1, 6, 5, 0, 5, 6]7, v[4] = [3, 1,−6, 5, 0, 5, 6]7,
v[3] = [3, 1, 6,−5, 0, 5, 6]7, v[0] = [3, 1, 6, 5, 0, 5,−6]7.

Together with {2, 1}, these are all minimal down-admissible sets for v.
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(c) The singleton sets which are up-admissible for v are {6}, {5}, {4}, {1}, and {0}.
(d) The set S = {5, 4, 3|0} is down- and up-admissible for v, and v(S) and v[S] can be

illustrated via

v[5, 4, 3|0] = [3, 1, 6, 5, 0, 5, 6]7 = [3,−1,−6,−5, 0, 5,−6]7,
v(5, 4, 3|0)= [3, 1, 6, 5

�����
, 0, 5, 6

�
]7 = [5,−1,−6,−5, 0, 7,−6]7.

We have marked the digits where we reflect in the set S, either down or
��
up.

2.2. The Ringel dual. Let K=K denote a field of characteristic p with prime
field Fp.

DEFINITION 2.10. We define two functions f, g : Fp→ Fp via

f(a)=
{

(−1)a 2
a if 1≤ a≤ p− 2,

0 if a= 0 or a= p− 1,
g(a)=

{−( a+1
a ) if 1≤ a≤ p− 1,

−2 if a= 0.

Note that f(p− 1)= g(p− 1)= 0 and g(a)= g(p− a− 1)−1 for a �= 0, p− 1.
Let Tilt denote the category of (left) tilting modules of SL2(K), see for example [6,

Section 1] for a concise summary of the main definitions and properties regarding Tilt.
Let T(v− 1) denote (a choice of representative of) the indecomposable tilting module of
highest weight v− 1.

DEFINITION 2.11. Define a K-algebra:

Z :=⊕
v,w∈NHomTilt

(
T(v− 1), T(w− 1)

)
.

Let ev−1 be the idempotent in Z corresponding to T(v− 1).

DEFINITION 2.12. For each finite S ⊂N0, we define scaling operators fS, gS, hS ∈ Z on
v= [aj, ..., a0]p as:

fSev−1 = f(amax(S)+1)ev−1, gSev−1 = g(amax(S)+1)ev−1, hSev−1 = g(amax(S)+1 − 1)ev−1.

EXAMPLE 2.13. Let again p= 7, v= [3, 1, 6, 5, 0, 5, 6]7 and S = {5, 4, 3|0}. Then,

fSev−1 = f(3)ev−1 = 4ev−1, gSev−1 = g(3)ev−1 = ev−1, hSev−1 = g(2)ev−1 = 2ev−1.

The following identifies Z explicitly and can be taken as an abstract definition of a
quiver algebra isomorphic to Z, see also Remark 2.15.

THEOREM 2.14 (See [5, Theorem 3.2]). The algebra Z is generated by ev−1 for v ∈N,
and elements DSev−1 and US′ev−1, where S and S′ denote minimal down- and up-admissible
stretches for v, respectively. These generators are subject to the following complete set of
relations.

(1) Idempotents.

ev−1ew−1 = δv,wev−1, ev[S]−1DSev−1 =DSev−1, ev(S′)−1US′ev−1 =US′ev−1.

(2) Containment. If S′ ⊂ S, then we have

DS′DSev−1 = 0, USUS′ev−1 = 0.

(3) Far-commutativity. If d(S, S′) > 1, then

DSDS′ev−1 =DS′DSev−1, DSUS′ev−1 =US′DSev−1, USUS′ev−1 =US′USev−1.
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(4) Adjacency relations. If d(S, S′)= 1 and S′ > S, then

DS′USev−1 =DS∪S′ev−1, DSUS′ev−1 =US′∪Sev−1,

DS′DSev−1 =USDS′hSev−1, USUS′ev−1 = hSUS′DSev−1.

(5) Overlap relations. If S′ ≥ S with S′ ∩ S = {s} and S′ �⊂ S, then we have

DS′DSev−1 =U{s}DSDS′\{s}ev−1, USUS′ev−1 =US′\{s}USD{s}ev−1.

(6) Zigzag.

DSUSev−1 =USDSgSev−1 +UT USDSDT fSev−1.

Here, if the down-admissible hull S, or the smallest minimal down-admissible
stretch T with T > S does not exist, then the involved symbols are zero by definition.

The elements of the form:

ew−1US′il
· · ·US′i0

DSi0
· · ·DSik

ev−1, (Basis)

with S′il > · · ·> S′i0 , and Si0 < · · ·< Sik , form a basis for ew−1Zev−1.
Finally, any word ew−1Fev−1 in the generators of Z expands in (Basis) via (1)–(6). �
REMARK 2.15. In fact, as already mentioned above, we could alternatively define Z as

the quiver algebra with underlying graphs as in Figure 1, using highest weights to index
the vertices, and two arrows directed in opposite directions for each edge in this graph.
The elements ev−1 are the vertex idempotents of this quiver algebra, and the elements D− ,
called down arrows, U− , called up arrows, are the arrows in this quiver, pointing left and
right, respectively.

REMARK 2.16. Note that all appearing scalars in the presentation of Z in Theorem 2.14
are from Fp rather than K.

REMARK 2.17. In Theorem 2.14.(4) and (6), the right-hand sides of the shown relations
feature morphisms indexed by admissible subsets that are not necessarily minimal. These
morphisms are defined to be

DSev−1 :=DSi1
· · ·DSik

ev−1, US′ev−1 :=US′il
· · ·US′i1

ev−1, (2-1)

where the products are taken over the minimal down- and up-admissible stretches
Sij and S′ij , respectively, such that S =⊔

j Sij and S′ =⊔
j S′ij , with Si1 < · · ·< Sik and

S′il > · · ·> S′i1 .

EXAMPLE 2.18. To be completely explicit with respect to Remark 2.15: if p= 3, then
the quiver of the idempotent truncation of Z supported on the vertices 0, 4, 6, 10, 12, and
16 would be

0 4 6 10 12 16
U{0} U{0}

D{0}

U{1}

U{0}

D{0}
U{1}

U{0}

D{0}

U{0}

D{0}

D{1}

D{0}

D{1}

.
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(The colors, here and below, are only to ease readability.) Here, the labeling is coming
from, for example,

17= [1, 2, 2]3, 17[0] = [1, 2, 2]3 = [1, 2,−2]3 = 13, 17[1] = [1, 2, 2]3 = [1,−2, 2]3 = 5,

which give the two downward arrows from 16, namely D{0}e16 = e12D{0} and D{1}e16 =
e4D{1}. We also have D{1,0}e16 =D{0}D{1}e16.

DEFINITION 2.19. For any down-admissible set S for v, we define the loop:

LS
v−1 :=USDSev−1.

LEMMA 2.20 (See [5, Lemma 3.23]). Let v ∈N with minimal down-admissible
stretches Sj, ..., S0. Then, we have the K-algebra isomorphism:

EndTilt
(
T(v− 1)

)∼=K
[
L

Sj

v−1, ..., LS0
v−1

]/〈
(L

Sj

v−1)
2, ..., (LS0

v−1)
2
〉
,

and if S is down-admissible for v, then LS
v−1 =

∏
k|Sk⊂S LSk

v−1. �

EXAMPLE 2.21. Again, let us consider p= 7 and v= [3, 1, 6, 5, 0, 5, 6]7. Recall that
we have calculated the minimal down-admissible stretches of v in Example 2.9.(b). Hence,
EndTilt

(
T(v− 1)

)
has generators L{5}v−1, L{4}v−1, L{3}v−1, and L{0}v−1 as well as L{2,1}

v−1 . The maximal

loop L{5|4|3|2,1|0}
v−1 = L{5}v−1L{4}v−1L{3}v−1L{2,1}

v−1 L{0}v−1 can be thought of as a head-to-socle map on
T(v− 1).

For later use, we also recall

LEMMA 2.22 (See [5, Lemma 3.23]). We have

DSUSDSev−1 = 0, ev−1USDSUS = 0, (2-2)

whenever S is down-admissible for v.

2.3. Closures of the algebra. Using Theorem 2.14, we get a sequence:

Z1 � Z2 � Z3 � ... � lim←− Zi =: Z,

where Zi is the quotient of Z obtained by the ideal generated by {ev−1 | v > i}. (Note that
the category of K-algebras is complete, that is, has all limits, so Z is indeed a K-algebra.

REMARK 2.23. Note that elements in Z are finite K-linear combinations of elements
from Theorem 2.14.(Basis), while elements in Z can be (countably) infinite K-linear
combinations of these. In particular, the unit of Z is

1=∑
v∈N ev−1 ∈ Z, (2-3)

while Z is only locally unital.

Below Z′ will denote either Z or Z.

https://doi.org/10.1017/S001708952100001X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952100001X


THE CENTER OF SL2 TILTING MODULES 171

3. The center of the quiver algebra. We will now compute the center of Z′.

3.1. Reduction to connected components. Note that Theorem 2.14 implies that the
K-algebra Z decomposes as:

Z=⊕
e∈Eve Ze−1, Ze−1 :=⊕

v,w∈(e)p
ew−1Zev−1,

Z=∏
e∈Eve Ze−1, Ze−1 :=∏

v,w∈(e)p
ew−1Zev−1.

Here, (e)p denotes the set of natural numbers v such that the vertex v− 1 is in the connected
component of the graph underlying Z which contains e− 1.

EXAMPLE 3.1. As can be seen in Figure 1, (1)3 = {1, 5, 7, 11, 13, 17, ...}, see also
Example 2.18.

Letting Z(−) denote the center of an algebra, the following is thus immediate.

LEMMA 3.2. We have Z(Z)=⊕
e∈Eve Z(Ze−1) and Z(Z)=∏

e∈Eve Z(Ze−1)

The presentation of Z′ also immediately gives

LEMMA 3.3 (See [5, Proposition 5.3]). There are isomorphisms of algebras Z′e−1
∼=

Z′e′−1 for all e, e′ ∈ Eve with equal non-zero digits.

REMARK 3.4. In fact, Z′e−1
∼= Z′e′−1 for all e, e′ ∈ Eve, regardless of the digits. But the

isomorphism is, in contrast to the one from Lemma 3.3, not immediate from Theorem A,
the reason being the scalars fS , gS , and hS appearing therein.

Thus, it suffices to compute Z(Z′e−1) for e ∈ Eve<p ⊂ Eve.

3.2. The central elements.

DEFINITION 3.5. Let v= [aj, ..., a0]p ∈N. For i �= j and ai �= 0, we define elements
in Z′ by

Diev−1 :=D{i}ev−1, ev−1Ui := ev−1U{i}, Liev−1 := (−1)ai aiUiDiev−1.

Furthermore, we define

D(v) := {i ∈N0 | i < j, ai �= 0}.
In words, D(v) is the set of non-zero, non-leading digits of v= [aj, ..., a0]p. For S⊂D(v),
we consider

LSev−1 :=∏
i∈S Liev−1. (3-1)

Note that the factors in (3-1) commute by Lemma 2.20.

EXAMPLE 3.6. For p= 7 and v= [3, 1, 6, 5, 0, 5, 6]7, we have D(v)= {0, 1, 3, 4, 5}.
Thus, for S=D(v), we have LSev−1 = L5L4L3L1L0ev−1.

DEFINITION 3.7. Let S⊂N0 be finite. We define an equivalence relation ∼S on N as
follows. First, we let v∼S v for all v ∈N. Further, for v, w ∈N with v �=w, we declare
v∼S w if S⊂D(v)∩D(w) and v=w[k] or w= v[k] for some k /∈ S, Finally, we take the
transitive closure.
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In words, we have v∼S w if and only if either v=w, or v− 1 and w− 1 are connected
by a chain of arrows Dk or Uk for k /∈ S such that all vertices that are involved have S
among their non-maximal and non-zero digits. We call such a chain an S-path.

DEFINITION 3.8. For v ∈ (e)p, we introduce notation for the ∼D(v) equivalence
class of v:

(v)�p := {w ∈ (e)p | v∼D(v) w}.
EXAMPLE 3.9. Take again p= 7, v= [3, 1, 6, 5, 0, 5, 6]7 and S=D(v)=

{0, 1, 3, 4, 5}. Then:

(a) We have w= v(5, 4, 3)= [4, 5, 0, 2, 0, 5, 6]7 /∈ (v)�p , since 4 ∈D(v), but 4 /∈D(w).
(b) Recall that the only up-admissible singleton set not in D(v) is {6}, see

Example 2.9.(c). Thus, the only direct neighbor of v in (v)�p is v1 = v(6)=
[1, 4, 1, 6, 5, 0, 5, 6]7.

(c) The set (v)�p is an infinite set since v1 = v(6)= [1, 4, 1, 6, 5, 0, 5, 6]7 ∈ (v)�p , and
recursively vk = vk−1(5+ k) ∈ (v)�p . Note that the first six digits of the vk agree with
those of v.

LEMMA 3.10. Let v= [aj, ..., a0]p ∈N and w= [bk, ..., b0]p ∈N. If w ∈ (v)�p , then
bi = ai for 1≤ i < j.

Proof. We prove by induction on the length � of a D(v)-path that the first j digits of
all elements w ∈ (v)�p agree with those of v. For �= 0, there is nothing to prove. Now
suppose w is at the end of a D(v)-path of length �≥ 1, whose last step is a morphism Uk

or Dk from w′ to w, with k /∈D(v). Since w′ is reached from v by a D(v)-path of length
�− 1, the induction hypothesis implies that the first j digits of w′ agree with those of v. In
particular, each of the first j digits is either in D(v) or zero, and so k ≥ j. Then, w=w′[k]
and w=w′(k) have the same first j digits as w′ and also as v, respectively.

Lemma 3.10 implies that (v)�p for v= [aj, ..., a0]p ∈N is a shifted copy of the block
(aj)p, see [5, Proposition 5.2]. As a consequence, we get the following.

COROLLARY 3.11. For every v ∈N, the set (v)�p is infinite, and if w ∈ (v)�p , then w≥ v.

The loops that we define now are only elements in Z but not in Z.

DEFINITION 3.12. For v ∈ (e)p and v �= e, we define elements:

Lv :=
∑

w∈(v)�p LD(v)ew−1 ∈ Ze−1. (3-2)

In words, Lv consists of the maximal loop at v− 1, together with the sum of all loops
of the same type on w− 1 for all w in the shifted block (v)�p .

3.3. The center. By Lemma 3.2, the following computes the center Z(Z′):

THEOREM 3.13. For e ∈ Eve<p, we have algebra isomorphisms:

Z(Ze−1)∼= {0}, Z(Ze−1)
∼=−→K

[
Xv | v ∈ (e)p \ {e}

]/〈
XvXw | v, w ∈ (e)p \ {e}

〉
, Lv �→ Xv.

Proof. We first observe that we have Z(Z′e−1)⊂
∏

v∈(e)p
ev−1Z′ev−1. Indeed, if z ∈

Z(Z′e−1) and v ∈ (e)p, then we have zev−1 = ze2
v−1 = ev−1zev−1. The observation follows

since z is by assumption a finite or infinite sum of terms zev−1 for v ∈ (e)p.
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• Let us first consider Ze−1. Here, Lemma 3.17.(b) (proven below) shows that the
infinite sums Lv defined above are in the center Z(Ze−1), while Lemma 3.19
(also proven below) shows that they, together with the identity, give a basis of
Z(Ze−1). Thus,

Z(Ze−1)∼=K
〈
1, Lv | v ∈ (e)p \ {e}

〉
.

The second isomorphism then follows because we already know the relations
among the Lv, cf. Lemma 3.15.
• For the first isomorphism, note that we have an inclusion Z(Ze−1) ↪→ Z(Ze−1) of

non-unital K-algebras. However, Lemma 3.17 implies that all non-trivial elements
of Z(Ze−1) are supported on infinitely many idempotents, so Z(Ze−1)= Z(Ze−1)∩
Ze−1 = {0}.

3.4. Some lemmas for the proof of Theorem 3.13. Next, we identify the relations
among the Lv.

LEMMA 3.14. For e ∈ Eve<p and v ∈ (e)p with v �= e, we have 0 ∈D(v).

Proof. Any v ∈ (e)p can be reached from e through a finite sequence of Di and Ui. It is
straightforward to check that under each such an arrow, the zeroth digit stays unchanged or
is reflected to its negative. The zeroth digit of any v is, thus, either e or p− e. Unless v= e,
this implies 0 ∈D(v).

LEMMA 3.15. For e ∈ Eve<p and v, w ∈ (e)p \ {e}, we have LvLw = 0.

Proof. By Lemma 3.14, we have 0 ∈D(v) for any v ∈ (e)p with v �= e. If (v)�p ∩
(w)�p =∅, then we have LvLw = 0 trivially. Otherwise, the product LvLw is supported on
certain z ∈ (v)�p ∩ (w)�p , but there it is a multiple of L2

0ew−1 = 0, see Lemma 2.20.

Next will be that the Lv are central, which needs

LEMMA 3.16. Let v ∈ (e)p and i, k ∈D(v) with i �= k and i ∈D(v[k]). Then, we have

ev−1LiUkev[k]−1 = ev−1UkLiev[k]−1 �= 0, (3-3)

ev−1LiUiev[i]−1 = ev−1UiLiev[i]−1 = 0. (3-4)

In particular, a loop of type Li can be transported along Uk , and thus, also along Dk , due
to symmetry.

Proof. We rewrite both sides of the desired equations and introduce notation as
follows. Here, we allow the case k = i, for which we have to prove that both sides are zero:

LiUkev[k]−1 = (−1)ai aiUSi DSi USk ev[k]−1

UkLiev[k]−1 = (−1)bi biUSk UTi DTiev[k]−1,

where Si = {i} and Sk = {k} are the down-admissible hulls for v, Ti := {i} is the down-
admissible hull for v[k], and bi denotes the ith digit of v[k]. In checking (3-3) and (3-4),
there are four cases to consider.

• If Si and Sk are distant, then Ti = Si and ai = bi, and (3-3) follows from
far-commutativity Theorem 2.14.(3).
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• If Sk > Si are adjacent, then we have ai = bi and Si is down-admissible for v[k],
which implies Si = Ti. Now, we distinguish two cases. Suppose ak �= 1, then we
compute

USi DSi USk ev[k]−1 =USi USk USiev[k]−1

= g(ak − 1)USk DSi USiev[k]−1

= g(ak − 1)USk

(
g(p− ak)USi DSi + f(p− ak)USk USi DSi DSk

)
ev[k]−1

=USk USi DSiev[k]−1 =USk UTi DTiev[k]−1,

as the f term gets killed by containment Theorem 2.14.(2) and we have g(ak − 1)

g(p− ak)= 1, because ak �= 1.
Now suppose ak = 1. Then, we compute

USi DSi USk ev[k]−1 =USi USk∪{k−1}USi\{k−1}ev[k]−1

=USk USi D{k−1}USi\{k−1}ev[k]−1

=USk USi DSiev[k]−1,

where we have used the overlap relation Theorem 2.14.(5). In either case, we
deduce (3-3) since ai = bi.
• Suppose that Si > Sk are adjacent. Then, we have ai − 1= bi. By the admissibility

assumption, we have bi �= 0, which implies Ti = Si, and we compute

USk UTi DTiev[k]−1 =USk USi DSiev[k]−1

= g(ai − 1)USi DSk DSiev[k]−1

= g(ai − 1)USi DSi USk ev[k]−1.

Here, we observe g(ai − 1)=− ai

ai−1 = (−1)ai ai

(−1)bi bi
, which verifies (3-3).

• Finally, if Si = Sk , then we have USi DSi USiev[k]−1 = 0 by (2-2). For the other side of
the equation, we consider USi UTi DTiev[k]−1. If Ti = {i}, then Si ⊃ Ti and the expres-
sion is zero by the containment relation Theorem 2.14.(2). Otherwise, we necessar-
ily have Si = {i} ⊂ Ti and we use the overlap relation Theorem 2.14.(5) to get

USi UTi DTiev[k]−1 =UTi\Si USi DSi DTiev[k]−1 = 0,

where we have again used containment at the end. Hence, (3-4) holds.

LEMMA 3.17. We have the following:

(a) If z ∈ Z(Ze−1) satisfies zev−1 = cLvev−1 for some v ∈ (e)p \ {e} and c ∈K, then
zew−1 also contains Lvew−1 with coefficient c for any w ∈ (v)�p .

(b) For v ∈ (e)p \ {e}, we have Lv ∈ Z(Ze−1).

Proof. For the first part, expand Lv into a product of basic loops and observe that the
w ∈ (v)�p are precisely the vertices to which Lv can be transported using Lemma 3.16. In a
central element, these loops Lv, therefore, have to appear with the same coefficient at any
w ∈ (v)�p .
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For the second part, we write v= [aj, ..., a0]p and observe that every arrow Uk or Dk

in the quiver, for which we write Yk , is one of the following:

(1) Yk is not adjacent to any w ∈ (v)�p , in which case it trivially commutes

YkLv = 0, LvYk = 0.

(2) Yk is adjacent to an w ∈ (v)�p , but not a generator for the equivalence relation∼D(v).
In this case, Lemma 3.10 implies k ≤ j and commutation follows from (3-4).

(3) Yk is a generating arrow of the equivalence relation ∼D(v), in which case it
commutes with the loops of type LD(v) by (3-3).

The following example shows that the assumption i ∈D(v[k]) in Lemma 3.16 is
necessary.

EXAMPLE 3.18. Let p= 3. Then, there is no element in z ∈ Z(Z0) such that ze12 =
U1D1e12. Indeed, we can compute

ze10D0e12 =D0ze12 =D0U1D1e12 =U1,0D1e12

However, U1,0D1e12 �= ze10D0e12 for any ze10, as is easily verified since the endomor-
phisms of e10 are spanned by e10 and U0D0e10.

Neither is there z ∈ Z(Z0) such that ze16 =U1D1e16, as such a loop, if central, could
be transported to e12.

Finally, we show that Lv, together with the unit, form a basis of the center.

LEMMA 3.19. The center Z(Ze−1) has a basis given by the unit (cf. (2-3)) and the Lv
for v ∈ (e)p with v �= e.

Proof. To see linear independence, first note that no linear combination of the (nilpo-
tent) Lv can be the unit. Moreover, assuming that

∑r
i=1 aiLvi

= 0 for ai ∈K and vi < vj

for i < j, we can multiply this equation with ev1−1 and get a1LD(v1)
ev1−1 = a1Lv1

ev1−1 =∑r
i=1 aiLvi

ev1−1 = 0. Hence, a1 = 0, since LD(v1)
ev1−1 is a basis element in the correspond-

ing endomorphism ring. We can repeat this process to show that all ai are zero.
Suppose now we are given z ∈ Z(Ze−1). Let v ∈ (e)p be minimal with zev−1 �= 0. If

v= e, then zev−1 = c · ev−1 for some non-zero scalar c ∈K. In this case, we proceed with
the central element z− c · 1 in place of z.

Now we assume that v �= e and claim that zev−1 = c · Lvev−1 for some non-zero scalar
c ∈K since otherwise we could find a smaller v.

To see this, suppose that zev−1 contains a summand d · LSev−1 and suppose there is
an i ∈D(v) \ S. We write Si := {i} for the admissible hull and split S = S>i ∪ S<i into sub-
sets of indices greater and smaller than i, respectively. Then, zDiev−1 =Dizev−1 contains a
summand:

d ·DSi LSev−1 = d ·DSi US>i US<i DS<i DS>iev−1

=
{

d ·US>i∪Si US<i DS<i DS>iev−1 if S>i is adjacent to i,

d ·US>i US<i DS<i DiDS>iev−1 if S>i is distant to i,

where we have used the adjacency relation Theorem 2.14.(4) in the first case, the far-
commutativity relation Theorem 2.14.(3) in the second case, and also that DSi commutes
with US<i DS<i , as verified in the proof of Lemma 3.16. In either case, the result is non-zero.
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A similar argument now shows that this term cannot be canceled by other summands of
Dizev−1. Thus, we have zDiev−1 �= 0, in contradiction to the minimality of v.

Now define z′ = z− cLv. By Lemma 3.17, we have z′ ∈ Z(Ze−1) and by Corollary 3.11
we know that z′ is supported at vertices w > v. Now proceed by induction.

4. The center of the tilting category. We now explain how Z(Z) and Z(Tilt) are
related.

4.1. Some general (and well-known) facts. Let K denote any commutative unital
ring. For an additive K-linear category C, we let End(C) denote its category of K-linear
endofunctors (which are thus automatically additive) and natural transformations. Within
this category, we have the K-algebra of endomorphism of any endofunctor F denoted by
EndEnd(C)(F). Recall the following definition.

DEFINITION 4.1. Let C be an additive K-linear category. Then, its center Z(C) is
defined as:

Z(C)= EndEnd(C)(IdC),

that is, the natural transformations of the identity functor IdC of C.

LEMMA 4.2. We have the following.

(a) The space Z(C) is a commutative K-algebra.
(b) If C and D are equivalent additive K-linear categories, then Z(C)∼=Z(D) as

commutative K-algebras.
(c) If C∼=∏

i∈I Ci as additive K-linear categories with trivial hom spaces between Ci

and Cj unless i= j, then Z(C)∼=∏
i∈I Z(Ci) as commutative K-algebras.

Proof. The first claim is evident. For the second claim we observe that, for any
additive K-linear full subcategory D⊂C, restriction defines a K-algebra homomorphism
r : Z(C)→Z(D). If C and D are equivalent, then one can check that r is an isomorphism.
The final claim can be proven mutatis mutandis as the second claim.

Let us consider the example pMod-A (projective right modules of some K-algebra A).

LEMMA 4.3. Let A be a K-algebra.

(a) We have an inclusion Z(A) ↪→Z(pMod-A) of commutative K-algebras.

(b) If A is unital, then we have an isomorphism Z(A)
∼=−→Z(pMod-A) of commutative

K-algebras.

Proof. We claim that the map:

Z(A) � c �→ χc :=
{
χP : P→ P, m �→mc | P ∈ pMod-A

}
gives the required inclusion or isomorphism, respectively.

Indeed, it is easy to see that χc is actually in Z(pMod-A) and that this map is a well-
defined inclusion of K-algebras.

To prove surjectivity under the assumption of unitality of A, given χ ∈Z(pMod-A),
its value on the projective right A-module A is by definition a map of right A-modules
χA : A→A. Let c := χA(1) ∈A, which actually belongs to Z(A). Next, for any
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P ∈ pMod-A and any m ∈ P, there is a unique f ∈HompMod-A(A, P) with f (1)=m. Using
this and naturality, we get

χP(m)= χP
(
f (1)

)= f
(
χA(1)

)= f (c)=mc,

which proves surjectivity.

4.2. The tilting center. Let us modify Lemma 4.3, which we need to do since Z is
non-unital:

LEMMA 4.4. We have an isomorphism of commutative K-algebras given by:

Z(Z)
∼=−→Z(pMod-Z), Z(Z) � c �→ χc :=

{
χP : P→ P, m �→mc | P ∈ pMod-Z

}
.

Proof. Defining c := χZ(
∑

v∈N ev−1), the argument is the same as in Lemma 4.3.

By the well-understood block decomposition:

Tilt=⊕
e∈Eve Tilte−1, Tilte−1 =

{
T(v− 1) | v ∈ (e)p

}
,

where hom spaces between Tilte−1 and Tilte′−1 are trivial unless e= e′.

DEFINITION 4.5. For v ∈ (e)p \ {e}, we define the natural transformation:

χv :=
{
χT : T→ T, χT = Lv | T ∈Tilte−1

}
, (4-1)

where Lv was defined in Definition 3.12.

Thus, we can finally prove Theorem A, which is a consequence of:

THEOREM 4.6. For e ∈ Eve<p, we have an K-algebra isomorphism:

Z(Tilte−1)
∼=−→K

[
Xv | v ∈ (e)p \ {e}

]/〈
XvXw | v, w ∈ (e)p \ {e}

〉
, χv �→ Xv.

Proof. By Theorem 2.14 and Lemma 4.2.(b), we need to compute Z(pMod-Ze−1).
This in turn, by Lemma 4.4, reduces to compute the algebra center of Ze−1, which is
Theorem 3.13.

4.3. The center and Donkin’s tensor product theorem. We expect that the central
elements Lv admit an interpretation via Donkin’s tensor product theorem, which, in our
notation, takes the following form.

PROPOSITION 4.7 (See [4, Proposition 2.1]). For v= [aj, ..., a0]p, we have an isomor-
phism of (left) SL2(K)-modules:

T(v− 1)∼= T(aj − 1)j ⊗ (⊗j−1
i=0 T(ai + p− 1)i

)
,

where the superscripts indicate Frobenius twist.

LEMMA 4.8. Let v= [aj, ..., a0]p and v′ = [1, aj−1, ..., a0]p. For all w=
[bk, ..., bj, bj−1, ..., b0]p ∈ (v)�p , define w′ = [bk, ..., bj]p. We have an isomorphism of
(left) SL2(K)-modules:

T(w− 1)∼= T(w′ − 1)j ⊗ T(v′ − 1).

Proof. First, note that Lemma 3.10 gives w= [bk, ..., bj+1, bj, aj−1, ..., a0]p. Thus,
applying Proposition 4.7 proves the claim.
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EXAMPLE 4.9. As before, let p= 7, v= [3, 1, 6, 5, 0, 5, 6]7 with v′ =
[1, 1, 6, 5, 0, 5, 6]7. Then, w= [1, 4, 1, 6, 5, 0, 5, 6]7 ∈ (v)�p and w′ = [1, 4]7. Proposition
4.7 and Lemma 4.8 give

T(v′ − 1)∼= T(7)5 ⊗ T(12)4 ⊗ T(11)3 ⊗ T(6)2 ⊗ T(11)1 ⊗ T(12)0,

T(v− 1)∼= T(2)6 ⊗ T(v′ − 1),

T(w− 1)∼= T(w′ − 1)6 ⊗ T(v′ − 1)∼= T(0)7 ⊗ T(10)6 ⊗ T(v′ − 1).

In the situation of Lemma 4.8 where

T(w− 1)∼= T(w′ − 1)j ⊗ T(v′ − 1)

it seems plausible that Lvew−1 = c · idT(w′−1)j ⊗ Lv′ for some scalar c ∈K. One approach to
proving this statement involves giving a diagrammatic interpretation of Frobenius twists
in the Temperley–Lieb category. Alternatively, it would also be interesting to have a proof
that such elements are indeed central and span the center, which does not use the explicit
presentation of Tilt, for example, using the abstract basis given in [2].

4.4. Blocks via the center. Let us discuss a classical application of the center of a
category, mimicking the well-understood case of category O. Note that Z(C) acts naturally
on all objects X of C via

χ � f := f ◦ χX = χX ◦ f, χ ∈Z(C), f ∈ EndC(X).

In particular, for any character of the center χs : Z(C)→K, we can fiber the category
C by defining full subcategories Cs ⊂C consisting of all objects where Z(C) acts with
character χs.

By Theorem A, the Cs for C=Tilt are exactly the blocks Tilte−1, which follows
because each K-algebra Z(Tilte−1), which has only one non-nilpotent basis element, has
exactly one simple.

4.5. The Casimir element. Let C : A→K denote the Casimir element of SL2(K),
which is an element in its distribution algebra, that is, a map from the coordinate ring A
of SL2(K) to K. Recall that C acts on every SL2(K) module M using the coaction �M of A
on M:

C : M �M−→ M⊗K A
1⊗C−−→ M⊗K K

∼=−→ M.

Let L(v− 1) denote the simple SL2(K) module of highest weight v− 1. We choose C=
(h+ 1)2 + 4fe and see that C acts on L(v− 1) as v2id. The proof of Lemma 3.14 implies
that C acts on L(v− 1) as multiplication by v2 = a2

0 = (p− a0)
2 = e2 ∈ Fp for every v ∈

(e)p. Since all L(v− 1) that appear in composition series of objects of Tilte−1 have v ∈ (e)p,
we see that C acts by this scaling on all objects in Tilte−1. Hence, in the blocks Z(Ze−1) of
the Ringel dual, we have C= e2 · 1.

5. Two other cases.

REMARK 5.1. The two theorems below can be proven, mutatis mutandis, as for Tilt,
but the computations are much simpler. Thus, we decided to keep the proofs short.
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5.1. A variation: the quantum case (generation 1). In the quantum group case,
the same calculations, using the Ringel dual computed in [3], work, but are much simpler,
and so is the result. Let Tiltq denote the quantum analog of Tilt with quantum parameter
q, where we use Lusztig’s divided power quantum group. Throughout this part, [3] serves
as our reference for statements about Tiltq. However, we use the notation from this paper.
In particular, we write [aj, ..., a0]k :=∑j

i=0 aiki = v for the k-adic expansion with digits
0≤ ai < k.

We will work over a field C(q) and distinguish the following cases:

• The quantum parameter q is a formal parameter, or q ∈C is q=±1 or not a root of
unity. Here, we set k =∞.
• The quantum parameter q ∈C is a root of unity q �= ±1. Here, k denotes the order

of q2.

We also let

χv :=
{
χT : T→ T, χT = L{0}v | T ∈Tilt

}
, δv :=

{
δT : T→ T, δT = δv | T ∈Tilt

}
, (5-1)

where L{0}v and δv are the maps that act as non-zero only on summands T(v− 1), on which
they are a head-to-socle map and the identity, respectively.

THEOREM 5.2. We have the following.

(a) For k =∞, there is an isomorphism of C(q)-algebras:

Z(Tiltq)
∼=−→∏

N C(q), δv �→ 1v.

(b) For the root of unity case, there is an isomorphism of C-algebras:

Z(Tiltq)
∼=−→⊕k−2

i=−1 X(i), X(i)=
⎧⎨
⎩

∏
N C if i=−1,

C[Xv | v ∈N]
/
〈XvXw | v, w ∈N〉 otherwise,

(5-2)

where χw �→ Xv, and δx �→ 1v for w, x ∈N as explained in the proof.

Proof. (a). This claim is clear as Tiltq is semisimple and its simples are indexed by N.
(b). For the root of unity case, we recall that we have equivalences of additive K-linear
categories:

Tiltq ∼=Tiltq
St ⊕Tiltq

0 ⊕ ...⊕Tiltq
k−2,

Tiltq
0
∼= ...∼=Tiltq

k−2
∼= pMod-Zq,

where Tiltq
St is semisimple with simple objects being the indecomposable quantum tilting

modules whose highest weight v satisfies a0 = 0, which is the first case in (5-2).
Moreover, the Ringel dual Zq of Tiltq

0 is a zigzag algebra with a boundary condition
on the vertex set N, that is,

(v0 − 1) (v1 − 1) (v2 − 1) (v3 − 1) ...
U{0} U{0}

D{0}

U{0}

D{0}

U{0}

D{0} D{0}
,
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where v0 = 1 and vi+1 = vi(0) for i≥ 0, subject to the relations

D{0}D{0}ev−1= 0, U{0}U{0}ev−1= 0, D{0}U{0}ev−1 =U{0}D{0}ev−1 for v �= 1, D{0}U{0}e0= 0.

(Note the boundary relation D{0}U{0}e0 = 0.) Formally, the algebra Zq is generated by ev−1

for v ∈N being of the form v= 1(0)...(0), and elements D{0}ev−1 and U{0}ev−1, modulo the
relations shown above, which are the analogs of the relations in Theorem 2.14.

Observe that we have central elements in Zq of the form:

L{0}v =D{0}U{0}ev−1 =U{0}D{0}ev−1, for v �= 1.

These are central since they are annihilated by any element except their idempotent.
Moreover, no other element is central, implying the second case in (5-2), using arguments
as in Section 4.1 and the quantum analog of Lemma 4.4. In particular, L{0}v corresponds to
the natural transformation in (5-1) and satisfies the relations of Xv in C[Xv | v ∈N]/〈XvXw |
v, w ∈N〉.

5.2. A variation: the GgT case for g = 1, 2 (generations 1, 2). Recall that

[aj, ..., a0]p =∑j
i=0 aipi = v. Using the same methods, in the case of projective GgT-

modules for SL2(K) and g= 1, 2, one can also calculate the center of the corresponding
additive K-linear category GgT-pMod. The corresponding Ringel duals were computed
in [1], which is also our reference for statements about GgT-pMod. Again, the resulting
algebras are much simpler than for Tilt.

Before we can state the theorem, let us define natural transformations L{0}v and δv

mutatis mutandis as in (5-1). We also need

χX
v :=

{
χX

P : P→ P, χX
P = L{0}v L{1}v | P ∈G2T-pMod

}
,

χY
x :=

{
χY

P : P→ P, χY
P = L{0}x | P ∈G2T-pMod

}
,

where both, L{0}v L{1}v and L{0}x , are non-zero only on corresponding indecomposable pro-
jective G2T-modules P(v−1) and P(x−1) for v ∈Z \ pZ and x ∈ pZ, where they are the
head-to-socle maps. We further need an analog of (4-1), namely

χZ
i :=

{
χZ

P : P→ P, χZ
P = Li | P ∈G2T-pMod

}
,

where Li is only zero on all indecomposable summands P(j−1) for j ∈ r(i) (the row of i, cf.
(5-5)). On such P(j−1), it is a map that factors through the highest weights of its horizontal
neighbors (on the grid as in (5-5)), which is unique up to scalars.

THEOREM 5.3. We have the following.

(a) For g= 1, we have K-algebra isomorphisms:

Z
(
G1T-pMod

) ∼=−→⊕k−2
i=−1 X(i), X(i)=

⎧⎨
⎩

∏
Z K if i=−1,

K[Xv | v ∈Z]
/
〈XvXw | v, w ∈Z〉 otherwise,

(5-3)

where χw �→ Xv, and δx �→ 1v for w, x ∈Z as explained in the proof.
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(b) For g= 2, we have K-algebra isomorphisms:

Z
(
G2T-pMod

) ∼=−→∏p−2
i=0 X(i),

X(i)∼=
⎧⎨
⎩

Z
(
G1T-pMod

)
if i=−1,

K[Xv, Yx, Zi | v, x ∈Z, i ∈ Eve<p]
/

I otherwise,

(5-4)

where

I=
〈 XvXw, XvYy, XvZj,

YxXw, YxYy, YxZj,

ZiXw, ZiYy, ZiZj,

∣∣∣∣
v, w ∈Z,

x, y ∈Z,

i, j ∈ Eve<p

〉
,

and LX
w �→ Xv, and LY

y �→ Yx for w, y ∈Z, and LZ
j �→ Zi for j ∈ Eve<p as explained

in the proof.

Proof. (a). Very similar as in the quantum case we have a decomposition of additive
K-linear categories:

G1T-pMod∼=G1T-pModSt ⊕G1T-pMod0 ⊕ ...⊕G1T-pModp−2,

G1T-pMod0
∼= ...∼=G1T-pModp−2

∼= pMod-ZG1T ,

where G2T-pModSt is semisimple with simple objects being projective G1T-modules
indexed as in the first case in (5-3). The Ringel dual quiver algebra ZG1T of G1T-pMod0 in
this case is a zigzag algebra on the vertex set Z, that is,

... (v−1 − 1) (v0 − 1) (v1 − 1) (v2 − 1) ...
U{0} U{0}

D{0}

U{0}

D{0}

U{0}

D{0}

U{0}

D{0} D{0}
,

where v0 = 1 and vi+1 = vi(0) for i ∈N0, v−i =−vi + 2 for i even, and v−i =−vi + 2p− 2
for i odd. These are the numbers with p-adic expansion [n1, a0]p where a0 ∈ {0, ..., p− 1}
and n1 ∈Z, which can be reached from 1 by successive upward or downward reflection in
the zeroth digit. The generators D{0} and U{0} are subject to the relations:

D{0}D{0}ev−1 = 0, U{0}U{0}ev−1 = 0, D{0}U{0}ev−1 =U{0}D{0}ev−1.

Formally, the algebra ZG1T is generated by ev−1 for v ∈Z being of the form v=
±(

1(0)...(0)
)
, and elements D{0}ev−1 and U{0}ev−1. The relations are the ones above

together with the usual idempotent relations. Thus, the situation is analogous to the quan-
tum case. In particular, the same arguments, mutatis mutandis, as for the quantum group
give the second case in (5-3).
(c). We start by recalling that

G2T-pMod∼=G2T-pModSt ⊕G2T-pMod0 ⊕ ...⊕G2T-pModp−2,

G2T-pModSt
∼=G1T-pMod, G2T-pMod0

∼= ...∼=G2T-pModp−2
∼= pMod-ZG2T ,

where G2T-pModSt is no longer semisimple, but rather equivalent to G1T-pMod. This
gives us the first summand in (5-4). The Ringel dual quiver algebra ZG2T still has vertex set
Z, but arranged on a grid, for example, if p= 5, then, as explained in [1, Section 6.3]:

https://doi.org/10.1017/S001708952100001X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952100001X


182 DANIEL TUBBENHAUER AND PAUL WEDRICH

.

(5-5)

The indexing of the positively labeled vertices wi = vi − 1 hereby works as follows.
v0 = [1]5(= 1), and each horizontal step is (0), for example, v1 = [1]5(0)= [2,−1]5 =
[1, 4]5(= 9), while each vertical step is (1), for example, v9 = [1, 4]5(1)= [2,−1, 4]5(=
49). Moreover, w−i =−wi, if i≥ 0 is even, w−i =−wi + 2p− 4, if i > 0 is odd. The vi are
exactly the integers with p-adic expansion [n2, a1, a0]p where a0, a1 ∈ {0, ..., p− 1} and
n2 ∈Z, which can be reached from 1 by reflection in the first two digits.

Precisely, the algebra ZG2T is generated by ev−1 for v ∈Z being as above, and elements
D{0}ev−1 and U{0}ev−1 as well as D{1}ev−1 and U{1}ev−1. The relations are such that each
column and each row is a zigzag algebra, and all squares commute, that is,

(1) Each row is a zigzag algebra, cf. Theorem 2.14.(2) and (6), that is,

U{0}U{0}ev−1 = 0=D{0}D{0}ev−1, D{0}U{0}ev−1 =U{0}D{0}ev−1.

(No boundary condition.)
(2) Each column is a zigzag algebra, cf. Theorem 2.14.(2) and (6), that is,

U{1}U{1}ev−1 = 0=D{1}D{1}ev−1, D{1}U{1}ev−1 =U{1}D{1}ev−1.

(3) All squares commute, cf. Theorem 2.14.(4), that is,

D{1}U{0}ev−1 =D{0}D{1}ev−1, D{0}U{1}ev−1 =U{1}U{0}ev−1,

D{1}D{0}ev−1 =D{0}U{1}ev−1, D{0}D{1}ev−1 =D{1}U{0}ev−1.
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These hold only for complete squares, that is,

w9

w0 w1

U{0}

U{1} ,

as in (5-5), does not satisfy any relation, and is in particular, not zero.

Hence, we get row and column loops:

Li := L{0}evi−1 =D{0}U{0}evi−1 =U{0}D{0}evi−1,

L′i := L{1}evi−1 =D{1}U{1}evi−1 =U{1}D{1}evi−1.

(Here, as in (5-5), only one expression for L{0}evi−1 makes sense if p|i. The above is just a
shorthand notation.) The relations imply that

evi−1ZG2T evi−1
∼=

⎧⎨
⎩

K[Li]
/
〈L2

i 〉 if p|i,
K[Li, L′i]

/
〈L2

i , (L′i)2〉 otherwise.
(5-6)

Note that these have bases {evi−1, Li} and {evi−1, Li, L′i, LiL′i}, respectively. Also, the loops
Li, for p|i, and LiL′i, otherwise, are central since only the idempotent evi−1 does not
annihilate them.

But there are more central elements. To define them, let c(j) denote the set of indexes
of the jth column, read left to right. For example, c(2)= {...,−8,−2, 2, 8, ...} for p= 5,
cf. (5-5). Then, we sum row loops over their column r(j), that is:

Lc(j) =∑
i∈c(j) Li ∈ ZG2T

.

We have Lc(j) ∈ Z(ZG2T
): that L′c(j) commutes with all idempotents is clear. Moreover, each

vertical arrow annihilates L′c(j) from both sides and each horizontal arrow transports a loop
Li to its neighbor, illustrated as:

i j

k l

=
i j

k l

=
i j

k l

.

Furthermore, a bit more thought (using arguments as in Section 3) proves that the central
elements which we have identified, that is,

Li, for p|i, LiL
′
i, otherwise, L′r(j), for j ∈ {1, ..., p− 1},

form a basis of Z(ZG2T
), and it remains to calculate the relations among these. We already

know the relations among the elements Li and LiL′i, see (5-6). Further, we have

Lc(j)Lc(k) = 0, Lc(j)Li = 0= LiLc(j), for p|i, Lc(j)LiL
′
i = 0= LiL

′
iLc(j).

This concludes the proof.
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